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Quaternion symmetry in relativistic molecular calculations:
The Dirac—Hartree—Fock method

T. Saue® and H. J. Aa Jensen
Department of Chemistry, University of Southern Denmark—Main campus: Odense University,
DK-5230 Odense M, Denmark

(Received 5 April 1999; accepted 9 July 1999

A symmetry scheme based on the irreducible corepresentations of the full symmetry group of a
molecular system is presented for use in relativistic calculations. Consideration of time-reversal
symmetry leads to a reformulation of the Dirac—Hartree—Fock equations in terms of quaternion
algebra. Further symmetry reductions due to molecular point group symmetry are then manifested
by a descent to complex or real algebra. Spatial symmetry will be restricteg,tand subgroups,

and it will be demonstrated that the Frobenius—Schur test can be used to characterize these groups
as a whole. The resulting symmetry scheme automatically provides maximum point group and
time-reversal symmetry reduction of the computational effort, also when the Fock matrix is
constructed in a scalar basis, that is, from the same type of electron repulsion integrals over
symmetry-adapted scalar basis functions as in nonrelativistic theory. An illustrative numerical
example is given showing symmetry reductions comparable to the nonrelativistic casE29%
American Institute of Physic§S0021-960609)31637-9

I. INTRODUCTION groups are termed boson irreps. When time reversal is in-
. . . cluded in the symmetry group as well, it is no longer pos-
Symmetry plays an important role both in the theoreUcaISible to form representations such that the product of two

formulation and the comp utational |mplementat|'on of MO herators is represented by the product of the corresponding
lecular quantum mechanics. On the one hand, it elucidate . : N :

. ; . C o representation matrices. However, it is still possible to form
theory, possibly leading to its reformulation in a more com-

pact form. On the other hand, it may greatly reduce the com@ system of matrices, a corepresentation, that may be broken

. . ,3'4
putational effort in the implementation of theory. dovvln t%_wredumble formé._d h loitati f
The full symmetry group of a molecular system within n this paper we consider the exploitation of symmetry

the Born—Oppenheimer approximation consists of all unitary rélativistic molecular calculations in the finite basis ap-
or antiunitary operators that commute with its electronicProXimation when the Hamiltonian is totally symmetric with
Hamiltonian! Physically, the antiunitary operators involve "eSPect to time-reversal symmettthis excludes external
time reversal, whereas rotations, reflections, and inversion gpagnetic fields and nuclear spingVe shall specifically in-
space and spin coordinates are unitary operators. As th¢estigate the closed-shell Dirac—Hartree—Fo¢HF)
product of two antiunitary operators is a unitary operator, wemethod, and we shall concentrate on the dominating compu-
need to consider only one antiunitary operator, namely théational task, namely the construction of Fock matrices.
time-reversal operator itself; all others can then be expressed A straightforward implementation of symmetry in rela-
as products of the time-reversal operator and a unitary opivistic molecular calculations would be to construct a basis
erator. adapted to double group symmetsee Refs. 5—-8 and refer-

In the nonrelativistic realm, the Hamiltonian is spin-free, ences therein or, alternatively, to use projectiveray)
allowing a separation of spin and spatial symmetry. In theepresentation$'® We shall, however, pursue a somewhat
relativistic realm, however, spin symmetry is lost and thedifferent approach in which we work with the irreducible
single point groups are replaced by double groufifiese  corepresentations of the full symmetry group. A characteris-
are constructed from the single groups by the introduction ofic feature of the symmetry scheme that we present is the
an extra elemen, corresponding to a rotation ofi2about  transfer of symmetry information into the algebra of the
an arbitrary axis. This leads to a doubling of the number ofproblem at hand. Considering only time-reversal symmetry,
elements, but in general not to a doubling of the number ofhe Dirac—Hartree—Fock problem can be efficiently treated
irreducible representation@reps. For instance, the single using quaternion algebra.In the nonrelativistic limit this
point group D, has four irreps, but in the corresponding corresponds to using orbitals instead of spin-orbitals. How-
double group only one extra irrep appears. The extra irrepsver, as we shall see, for some point groups the problem may
are spanned by fermion functions and are therefore denotdsk reduced to complex or real algebra, which leads to further
fermion irreps. Correspondingly, the irreps of the singleconsiderable savings in computation time and memory re-
quirements of approximately a factor two and four, respec-

aCurrent address: IRSAMC—LPQ, Universigaul Sabatier, 118, route de t|vely, compared to not 'nVOkmg point gr_oup symmetr}_" This
Narbonne, 31062 Toulouse Cedex, France. symmetry scheme allows us to work with scalar basis func-
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tions (so-called atomic orbital]sadapted to boson irreps quaternion algebra naturally allows exploitation of time-
rather than fermion irreps, just as in nonrelativistic calcula-reversal symmetry. Finally we apply these results to the
tions. This has the advantage that it allows us to work withDirac equation given above.

conventional integral packages for nonrelativistig initio
calculations(although small modifications to skip the inte-
gral classes not used is, of course, computationally highly,

g . A. Quaternion algebra and time-reversal symmetr
beneficial and, as we have seen above, there is more sym- Q g y y

metry to exploit. Spatial symmetry will be restricted Bgy, A quaternion number is given by

and subgroups thereof. This is the set of all single point 3

groups with no elements of order higher than two. We shall 4=\ o, =v +v i+v,J+vsk; v,eR. (4)
therefore denote them binary groups. The symmetry scheme A=0

in thi i i e 11,12
presented in this article has been implementediRac, In his landmark paper on “magnetic electron&®Pauli in a

a code for four-component relativistic molecular calculationsfootnote refers to a remark by P. Jordan, stating that the
which incorporates the nonrelativistic two-electron integra'algebra of the spin matrices times .imaginali'y identical to

13
generatoHERMIT. . o ¥ -
The article is organized as follows: In Sec. Il we focusthat of the quqternlon units, J, and k.‘ In other words, we
gan make the isomorphous connection

on time-reversal symmetry and reduce the Dirac equation t
quaternion form. In Sec. lll the structure of Dirac spinors is
analyzed in terms of the boson irreps of the molecular point

group. In Sec. IV we present the new symmetry schemd his allows the expression of quaternion numbers as

based on quaternion algebra that automatically provides g=(s v]<s+i(d-v), (6)
maximum time reversal and point group symmetry reduction

in computational implementations based on the finite basi¥/heres can be considered the scalar parthe vector part,
approximation, with basis functions adapted to boson irrepsando=(o;,0y,0y). Observe that there is a certain arbitrari-
as in nonrelativistic implementations. The symmetry schem&ess in the above connection in the sense that we can reas-
is applied to the Dirac—Hartree—Fock problem and the comsSign the Pauli matrices to any cyclic permutation of the
putational gains are illustrated by a test case. qguaternion units. Accordingly, the quaternion units are
equivalent, and in a complex numbetib the imaginaryi

may correspond to eithdr J, or k without changing its al-
gebraic propertiefwe shall later see that the specific choice

in Eq. (6) corresponds to quantization of spin along the
Our point of departure is the time-independent Diracz-axis]. In view of this we shall terns=v,, the real part and

e1=I<ioy,; ez=j<—>i0'y; es=k—ioy. (5)

Il. TIME-REVERSAL SYMMETRY

equation Vi, Vo, andvs thei-, j-, andk-imaginary parts, respectively,
- N ) A of a quaternion number.
hoy=Ey; hp=p'mc+c(a-p)+V, @ The multiplication rule of the quaternion units is conse-

quently in one-to-one correspondence to the multiplication

WhereﬁD is the Dirac operator in the field of fixed nuclei ) )
rule of the spin matrice¥

with the zero point aligned with the nonrelativistic energy

scale. The Dirac matriceg and 8’ are given by 010 = 8+ €k Tk =€8j= — &ij — €jKEx, (7)
|0 o |0 0| where ¢;, is the Levi-Cevita symbol. Accordingly, the
a= o 0 B= 0 -2, product of two quaternion numbers is
I,—nXxn identity matrix. 2) d102=[S1,V1][S2,V2]
The Pauli matrices o are given in their standard =[(s182=V1-V2),(SpVi+S1Vo—{VaXVo})].  (8)
i
representation’ The presence of the vector product in the vector part ac-
0 1 0 —i 1 0 counts for an important and troublesome facet of quaternion
=1 ol T ol 9|9 —1|- @  algebra, namely the noncommutivity under multiplication.

We may add as an historical note that in the early days of
Note that this corresponds to a specific choice of spin quanguantum mechanics Dirac introduced the concept of
tization, namely along the-axis. This is never a problem in  c-numbers and}-numbers, where ¢ stands for classical or
nonrelativistic calculations because the spin symmetry isnaybe commuting” and 4 stands for quantum or maybe
completely decoupled from the spatial symmetry, and theyueer.”'® Maybe they should stand for complex and quater-
spin may thus be quantized along an arbitrary axis, whichjon?

conventionally is chosen to be tkexis. Even though spin is The connection between quaternion algebra and time-
not a good quantum number for relativistic systems, we shalleversal symmetry can be established in the following man-
see in this section how the Pauli spin matrices form a linkner: In the four-component formalism the time-reversal op-
between the Dirac equation, time-reversal symmetry, and aior< has the explicit forrtf

quaternion algebra. We first briefly recapitulate salient fea-

tures of quaternion algebra. Next we demonstrate how K= —i[l,® ay]fCO, 9)
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whereK, is the complex conjugation operator. Since we areB. The quaternion Dirac equation

concerned with fermion functions, we can alternatively de-  The Dirac operator in the molecular fie{duclear spins

fine the twge—revgrsal operator by its action on a fermiongnoreq is symmetric under time reversal and can therefore

function ¢,™ that is be reduced to quaternion form. It turns out that the structure
St 2 of the Dirac equation with respect to time-reversal symmetry
Kag=a"Ke; K'¢p=—4. (10 is best displayed by a reordering of the Dirac 4-spinors such

Using the notatiork.¢:= ¢, then¢ and ¢ are said to form a that components are grouped on spin lalje|s3) rather than

Kramers pair. A Kramers restricted basis is formed by thd@'9€ and small components,S),

union of a set of functiong¢;} and their Kramgrs partners ye ye

{¢i}. Consider a Hermitian one-electron opera@owhich is e PP S e

symmetric under time reversal, that §OK " '=0. In a ,/,S}: pSe | 7| e :[,T/,B}- 17
Kramers paired basis, the matrix representatiorDothen s s

has the following structur&® ~
With the reordered spinors, the time-reversal operatan

o A B AT=A;  Apg=0Opq 11) Eq. (9) now has the explicit form
—B* A*|' B'=-B; By=0Opyg- 0 _i
~ . ~ 12| A
The matrix can be expanded in Pauli spin-matrices, K==iloy®l3]Ke= l, 0 Ko. (18

Ag+iA, Bg+iB,
—Bgr+iB, Ar—iA,

Application of this operator demonstrates explicitly that the
eigenvectorsc andc in Egs. (13) and (14) are related by
time-reversal symmetry.

In the reordered form, the Dirac operator exhibits the

:|2®AR+[IUZ]®A|

+lioy]®Bg+[ioy]®B,, (12

thus displaying a quaternion structure. time-symmetric form of Eq(11),
SinceO is a Hermitian operator, its matrix may be di- v —icd 0 “icd
agonalized by a unitary transformation, giving real eigenval- . z R R B
uese, : —icd, —-2mc&+V —icd_ 0
A B[ c* 1 o —icd, v icd,
Oc=| gr ax| Cﬁl ZELB ' (13 —icd, 0 icd, —2mc+V
Simple rearrangemelitof this matrix equation gives A d d d
P g : g d=— =i (19
9z X~ ay

A BJ[-c*

OCZ_—B* A*__ o

(14 and the corresponding Dirac equation can therefore be writ-
ten in two-component form using quaternion algebrali-

From the above manipulations we conclude that the matrixated by upper prescrig@),

of a tlme—gymmetrlc Hermitian opergtcﬁ)_m a Kramers Qﬁo Qu—E Qy, (20)

paired basis is doubly degenerate with eigenvectors related

by time-reversal symmetry. The double-degeneracy of ghere

time-symmetric matrix strongly suggests that it may be

Ca*

_Cﬂ*l

block-diagonalized into two parts. This is indeed possible, . \% 0 |0 az .10 ay
but only at the expense of going from complex to quaternion Chp= ~ | Clf A 0 —CJ| A 0
algebral820 0 —-2mc+V d, d,
. . o ad,

svou AT 0 ot b 15 —ckLI 0 ] (2D)

0 —k(A+Bj)k v2 g1 | X
An analog(or rather its inverseis known from numerical and
methods, in which the@xXn complex Hermitian eigenvalue Q= lﬂa_lﬂﬁ*j- (22)

problem may be shown to be equivalent to a doubly degen-

erate 21X 2n real problem(see, for instance, Ref. 21The  The quaternion Dirac operat&®hp has an intriguing struc-

eigenvalue problem Ed13) reduces to a quaternion eigen- ture. The scalar potential enters the real part, whereas the

value equation of half the dimension, kinetic energy part is spanned by the quaternion uhijs

[A+ Bj][ca_cﬁ*j]: E[Ca_cﬁ*j]_ (16) and}v<. The equivalence of quaternion units thus parallels the

equivalence of the coordinate axesy,2. The equivalence

Comparing this equation with E¢12) leads to the specific of the quaternion units also implies that the quaternion Dirac

assignment of quaternion units we introduced in €. equation is unbiased with respect to choice of spin quantiza-
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tion axis, contrary to the Dirac equation in standard form,
where the form of the Pauli spin matrices refers to quantiza
tion along thez-axis.

Y ! 0)B(E D) |-=Eyt
+5m (o P)B(E)(0-p) |y =Ey

2meyS=B(E) (o p) Y

Ill. SPINOR STRUCTURE

In the previous section we have seen that the time- \here B(E)=
reversal symmetry of the Dirac operator in the molecular
field [Eq. (1)] allows solution of the corresponding eigen- o
value problem by quaternion algebra. In this section we willFrom the first line we can analyze the symmetry content of
consider spatial symmetry and discuss the structure of th&'e two-componeni* in detail,
Dirac spinors not in terms of fermion irreps, but rather boson
irreps. In the next section we shall see that this opens up the
possibility of further symmetry reductions in certain point I =
groups whereby the two-component Dirac equation of Eq.
(20) may be solved by real or complex algebra.

(23

(Pf TLa)

24
(TR T 29

where, for instancel [}, refers to the symmetry of the real

In terms of real scalar function$orbitals” in nonrela- art of thel.a-component. Obviously the svmmetry proper-
tivistic theory), any Dirac spinor has eight degrees of free-P @ P ‘ Usly: Y Y prop
; : : ties of the four real scalar functions ift are the same for

dom, corresponding to the real and imaginary parts of the =~ . " . . .

two large and the two small components. A given molecularrelat'V'St'C four-component implementations and for relativ-

9 P A9 istic two-component implementations, so this analysis is

4-spinor belongs to a fermion irrep of the molecular double alid for both types of implementations. After the internal

i .H hall sh h of the eigh . ) .
point group owever, as we shall show, each o 't.e €9 gymmetry properties of/- have been established, the inter-
real scalar functions of the spinor belongs to a specific boson ) S o
irrep nal symmetry properties af follow from the second line in

We shall restrict the detailed discussion to the binaryEq' (23). o~ o o
groups, that i, and its subgroups. The binary groups are The potentialV in the first line in Eq.(23) is diagonal

particularly simple to discuss since the single groups are aftd totally symmetric(as it defines the molecular point
Abelian. Also, many computer codes limit point group sym-9roup and does not give any information about the symme-
metry to the binary groups using bit operations. The bosoffY Properties of the four real scalar functions grr. The
irreps of the binary groups are spanned by any scalar, th§econd operator contains the energy-dependent operator
coordinategx,y,, the corresponding rotation{,R,,R,), ~ B(E) which is totally symmetric and two operators of the
and the product of coordinateyz We shall denote the cor- form (o-p) that relate the symmetry of the four real scalar
responding boson irrepsy, I'y, I‘Rq, andl',,,(q=X,y,2), functions ing* through the action of the Pauli spin matrices.
respectively. We are not interested in the action of the momentum opera-
The Dirac equation in E¢(1) can be transformed to two tor p per se, only its symmetry content. Since the momentum
coupled equations by the method of elimination of the smalbperator transforms as the coordinates, we may express the
component, structure of the second operator in terms of symmetry as

[o(T3T2T2)]eT@[o (T1 T3 TD)]
Po+ilg, T +ilg

~Tg il To=ilg,

- (PEL e+ T+ T2 ) + (DA, =TT ) (P2r =Ty +i(Ir;—T2ry)
—(Pry—Tir)+i(Mor;=T2ry)  (DEF+ T+ 20 —i(DE—T7Ty)

(25
|
Note the quaternion structufef. Eq. (12)]. In the above [ To+ilr Tr+ilg (T 4,.0)
equation we have introduced superscripts 1 and 2 to distin- T = o e
guish the two operatorax- p) involved in the direct product; ] _FRy+IFRx FO_'FRZ (0,0
otherwise, the antisymmetric part would vanish. This [(To,Tr)
2X2-matrix operator is totally symmetric in the double _ z ol . (26)
group and therefore it must leave the spinor structure in (FRvaRX) ¢

terms of boson irreps unchanged. In order to elucidate this
spinor structure we consider a large component 2-spinothis distribution of boson symmetries in the 2-spinor is in-
which is zero, except for the real part of the.-component  variant to repeated application of the operator in E2§),

which transforms as some irrdy, . From the above consid- and we have thus exposed the internal symmetry structure of
erations we find the following distributions of boson irreps the y, 2-spinors.

among the large components:
Downloaded 30 Oct 2002 to 130.79.34.222. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp
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More insight in the symmetry effect of the direct product the parity of the reference spinor. The symmetry content of
in Eqg. (25) can be obtained by inserting a specific choice ofthe large and small components, on the other hand, is related
representatives of the given symmetry species, by I'y,, showing that they have different parity. In conclu-

- AL A A s sion, we see that when we combine time-reversal symmetry

(o-r)(o-p)=r-p+io-l. @7 with spatial symmetry limited to binary groups, there are at
The first term transforms ag and therefore spans the totally most two qualitatively different spinors in terms of symme-
symmetric irrepl’y, whereas the second term is essentiallytry content, corresponding—as we shall see in Sec. IV B—to
the spin-orbit operator, in which the components of the antwo irreducible corepresentations solely distinguished by
gular momentum operatdr transform as the rotationg, , parity.

Ry, andR, respectively. Note that with the choicer(p)

X(o-p), i.e., the nonrelativistic limit, we would lose the |/ THE FULL SYMMETRY GROUP

second term, which is the antisymmetric part of the direct ) ) _ )

product function. In the previous two sections we have investigated prop-
The internal symmetry structure of thgs 2-spinor is ~ erties of the Dirac equation due to time reversal and spatial

obtained from the symmetry content of the second line in EqSYmmetry. In this section we shall combine the two symme-
(23), tries, that is, we will work with corepresentations of the full

R ! symmetry group. We shall present a symmetry scheme that
(I'sa:I'sa) provides maximum point group and time-reversal symmetry

Ts= reduction of the computational effort. This scheme will be

applied to the Dirac—Hartree—Fock problem in a finite scalar

(TR,.T},) basis. The basic features of the symmetry scheme are out-
=[o-(I'y,I'y,I')]® lined in Sec. IVA. We proceed at first in a rather intuitive
R |
L(Tlg TLp) manner, but in Sec. IV B more rigour will be introduced by
[(To.TR) forming connections to the theory of irreducible corepresen-
=[o-(I,,[,,T[)]® z T tations. Then, in Secs. IV C and IV D, the symmetry scheme
* ‘ I'g.,I’ ¢ is applied to the construction of the one- and two-electron
R, Ry
- Fock matrices, respectively. Finally, the possible symmetry
(TxyzI'2) reductions will be illustrated in Sec. IVE by a small test
= 'y T ®Ty=TyT . (28 case, namely the fimolecule.
yotx

From this symmetry analysis we see that the quaternion o
formalism introduced in the previous section allows us to” Application of symmetry to the DHF problem
express the distribution of boson irreps amongst the real and  |n the quaternion formalism introduced in Sec. I, the

imaginary parts of a 4-spinor in a compact form, Dirac—Hartree—FocKDHF) equation has the form of the
T [T, Tr] eigenvalue equatiofEq. (20)] with the quaternion Dirac op-
QL ! r .
I'o = r = ®T,. (29) erator replaced by a quaternion Fock operator. For further
v Q,S [Cyyzr Tl details the reader may consult Ref. 11. Solutions of this

We observe that the three imaginary parts of the quaterniofguation in the finite basis approximation may be obtained
Dirac spinor are spanned by the symmetries of the coordiPy Separate expansion of the large and small components in
nates or of the rotations. From the equivalence of the quate@ réal basis
nion units it follows that the Dirac spinor in quaternion form

QAL
has no preferred choice of quantization axis. On the basis of _ X~ 0 % .
the above distribution we can immediately deduce a theoreti- lo xS os|
cally significant and computationally useful result o5, S

and subgroups. For a moment, let the chdicg=T"; repre- (30
sent our reference spinor. The choiceldf other thanl’y
will generally introduce a redistribution of boson irreps. In We then obtain the quaternion DHF equations

some cases the original spinor can be recovered by the intro- 3

duqion of a quaternion_ phase fac_tor; in_ other cases th@f Qc= S9c: Sﬁ)}YI(XNX}(ﬁxvi QF= Y e,F,,

choice ofl" , leads to a spinor qualitatively different from the A=0

reference spinor. The two cases are easily distinguished by (31
observing that the two sets of boson irreflS;,I';} and  where S is the (rea) overlap matrix. The Fock matrifF
{Txyz.Ir}={l0.I'}® Iy, are identical in the absence of naturally splits into the one- and two-electron Fock matrices
the operation of inversion. On the other hand, in the inver-of one- and two-electron integral contributions, respectively.
sion groupC; irrepsT'y and I, correspond to the gerade The quaternion formulation of the DHF problem stems
and ungerade irreps, respectively, so that in the presence &bm the exploitation of time-reversal symmetry. In terms of
inversion the two sets respectively span the gerade and uthe real algebra of a computational implementation, the con-
gerade irreps. We observe that the Kramers partnétyof struction of two real matrices, corresponding to the real and
corresponds to the choidé¢=FRy, which does not change imaginary parts of the complex Hermitian Fock matrix, has

QcX=ci+Tct—jci+kel (X=L,9).
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been replaced by the construction of four real matrices of Further symmetry reductions may be obtained by invok-
half the dimension, thus reducing the operation count andhg spatial symmetry. We assume that we work in a basis of
memory requirement by a factor two. Furthermore, a quaterreal functions adapted to the boson irreps of the molecular
nion diagonalization scheme may be employed. The use gfoint group. From the spinor structure in terms of boson
quaternion diagonalizationsn terms of complex variablés irreps discussed in Sec. lll, it is then clear that a given
for relativistic molecular DHF calculations was first advo- symmetry-adapted basis function can only contribute to cer-
cated by N. Rech?® A routine for quaternion diagonaliza- tain positions in the Dirac spinor. If we chookg =1, the

tion based on real variabfhas been implemented inrAC basis set expansion of a quaternion Dirac spinor may be writ-
and was found to speed up diagonalization by a factor six.ten as

2 xr(T{e5i(To) +C5i(T'r ) 1= 05 (T ) + 05 (T'r, K}
Q= ) e (32
; XTI PAC (T eyo) + 5 (T )T —c5;(T )] +c5(T )k}

where, e.g.pgi(ro):o if I'y#1T';. Each part of the quater- with only one totally symmetric rotation, equivalent shifts
nion coefficients corresponds to a certain position in thegive strictly complex coefficients. This is the key step in the
Dirac spinor and therefore to a particular boson irrep, asymmetry scheme presented in this paper: Each boson irrep
indicated in parentheses. Consider now a large componemtill be associated with a quaternion unit. This corresponds to
basis function of symmetr/,. Clearly the number of non- a transfer of symmetry information to algebra, and will allow
zero contributions of the corresponding coefficient dependsymmetry reductions by reducing the algebra of the problem
on the number of totally symmetric rotations. As the infini- under study.
tesimal rotationR,, R, andR, are invariant under inver- We have seen above that the binary groups can be clas-
sion, rotations about their own axes, and under reflection isified according to the minimum algebra of expansion coef-
the corresponding horizontal plane, only three possibilitiedicients in the finite basis approximation. In the next section
exist, we shall see that this corresponds to a general classification
of irreducible corepresentations in terms of the algebra of

(i) In groups with no mirror planes or rotation€{,C;), their representation matrices

all rotations are totally symmetric;
(i)  In groups with one rotation axis or one mirror plane B. Irreducible corepresentations
(C,,Cun»S,), only one rotation is totally symmetric;
(i)  For all other groups no rotations are totally symmet-
ric.

In this section the results of the previous section will be
put on a solid theoretical footing by making reference to the
theory of irreducible representatioh$* When antiunitary
operators are present in the symmetry group, it is no longer
corresponds to a quaternion, complex, or real coefficient, re;:_)ossible to form matrix representations so that the product of
spectively, in terms of nonzero contributions. This is an im-tWO group elements is r.epresent.ed by the product of the cor-

sponding representation matrices. However, as shown by

portant result, because it means that the molecular poir{ﬁ. 1 il § t of matri
group symmetry effectively determines the algebra of the igher, we may St fofm a Set of matrices, a corepresen-

coefficient. For binary groups this result is straightforwardlytatlon’ that may be broken down to irreducible forms.

: . ¥ .
extended to basis functions of any irrgp. For these groups . Conilder a sg': of f(;mctt)llonﬁqsp} thv?lt span ta f::‘rtrr:non ¢
the relationl'y @T'r ®I'g =T'o holds, which implies irrep -y of some(unitary double group. We construct the se

of Kramers partneri@q%} by application of the time-reversal

(i) when there is only one totally symmetric rotation, the operator. It is straightforwardly shown that the fermion irreps
other two rotations belong to the same irrepl(y);  y andy are related by complex conjugation, and they are
and further characterized by the Frobenius—Schur test,

(i)  when there are no totally symmetric rotations, the
three rotations belong to three different boson irreps.

For a basis function of irred’y, the classification above

+1; real irrep

_ . _ FST:EZ ¥’ (G?)={ 0; complex irrep , (33
Accordlngly, when the(e are no totally symmetnc_rotatlons, 976 ~1: pseudoreal irrep

the coefficients of basis functions of any boson irrep have

only one nonzero contribution out of the four real variablesas Will be discussed shortlig is the order of the groyp

in %c. The coefficients are generally not real since they comaVith regards to the sets¢/} and {d%}, they necessarily
with a quaternion unit. However, we will correct for this by either span the same space or their intersection is void. Con-
shifting the quaternion unit over to the basis function-(  sider now the structure of the corresponding irreducible
—erxr), as will be demonstrated in Sec. IV C. For groupscorepresentation of the full symmetry group, which is neces-
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TABLE |. Classification of binary double groups. FST refers to the the other hand, the off-diagonal e|ememﬁin the ma-
Frobenius—Schur test ardis the number of totally symmetric rotations. . ~ . .
trix of O are in general not zero, and the matrix can

FST T therefore only be block-diagonalized by a quaternion
Quaternion groups +1 3 C,.,C tra?SformVatlon'
Complex groups 0 1 C,,Cq,Co 2 {¢p1N{$2}=0; FST=+0:
Real groups -1 0 C,y,D5,Dy, The Kramers partners span inequivalent irreps. Thus

again matrix elementR,; and R have to be zero for
unitary operators, and the irreducible corepresentation
_ matrices are complex. The identical conclusion applies
sarily spanned by the combined 4et}, ¢}. To avoid lin- to the matrix ofO.

ear dependencies in the casﬁg}z{gb%}, we assume that (3) {¢>3}={¢%}: FST=—1:

the set has been orthogonalized, but in such a manner that The Kramers partners are members of the same irrep

the Kramers pair structure has been preserved. For simplic- (y=%) and are rotated among each other under the uni-

ity, superscriptsy and y will be dropped in the following tary operations. The irreducible representation matrices
analysis. Acting with a general symmetry operat®n(uni- are quaternion. On the other hand, the operator matrix is
tary or antiunitary, we obtain generally real. All matrix elemen®S ;g are zero by sym-

. . . metry, whereas matrix element,, are generally real.
Gebq=2 bpRog(G)+ 2 dpRp(G),

P P We find that representation matrices and operator matrices
(34 are dualistic in the sense that real, complex, and pseudoreal

G‘f’qtzp: ‘f’PRPﬁ(GH% PpRpq(G). (quaternionirreps give quaternion, complex, and real opera-
Next we operate with the time-reversal operator on botHOr matrices, respectively. o
sides in Eq(34) to obtain For binary groups, the above classification scheme ap-
. . . plies to the group as a whole, as can be deduced from the
Gd)ntF ¢5R’,§q(G)—% PpR%(G), Frobenius—Schur test: In the binary double grodiys=E

(35) for rotations and reflections ar@?=E for inversions and

- Gd)q: Z qSﬁ?’;a(é) -> ¢pR;—q(G). the elemenE. This corresponds to a choice of Pauli gatige.
) P P ] The Frobenius—Schur test thereby attains the simple form
This enables us to form the connections 1

Rog=R5q:  Rpa= Ry (36) FST= 5% X"(G?)

We have thus seen that the general structure of matrix corep-

; . 2 —
resentations is - a[X(E)(1+ n)+ x(E)(ne+n,)], (38

- B0 where n;,Nnc, andn, are the number of inversions, rota-

tions, and reflections, respectively, in the corresponding
This structure corresponds to the structure of the matrix of Qingle point group. For fermion irreps we ha\m(E)

time-symmetric operato® Eq. (11), and the matrix can =—x(E)=—n,, leading to

therefore be block-diagonalized by a quaternion transforma- 1 i on

tion Eq.(15). We shall shortly see that there are cases where  FST=—= > y?"(6%)=—2[(1+n,)—(nc+n,)]. (39

the off-diagonal elementR;; and Ry, are identically zero 9% 9

for unitary operators, such that matrix blocking is obtainedlt follows that all fermion irreps of a given binary double
without resorting to quaternion algebra. However, such augroup are of the same kind, so that the Frobenius—Schur test
tomatic blocking is never obtained for antiunitary operatorsmay be used to classify the group as a whole. The classifi-
as is immediately seen from the representation matrix of theation of the binary double groups into real, complex, and
time-reversal operatoR(K)=[° ;']. In the quaternion quaternion groups may be done by a simple count of sym-
representation, the time-reversal operator is represented B)etry operations. In fact, the Frobenius—Schur test can be

the quaternion unijf, whereas the representation matrices ofreplaced by a simple couft of totally symmetric rotations

Roq  Rpg

_ p*_ *
qu qu

Gl g5 =[ ¢pdpIR(G) =[ 5]

the unitary subgroup are quaternion, complex, or real, deBZ' Ry, andRy, .

pending on the distribution of Kramers partners among the 3; quaternion groups

irreps of the double point group, T=1{ 1; complex groups. (40)
(D) {p5N{)}=0; FST=+1: 0; real groups

The Kramers partners are two equivalent bases for th&he classification of binary double groups is summarized in
same irrep ¢=y). For unitary operators, matrix ele- Table I. The classification corresponds exactly to the result
mentsR,q and Ry, have to be zero, but in addition we of the previous section and demonstrates the link between
may obtainR,,=Rpg= R;q with proper alignment of symmetry and algebra. This link forms the basis for the sym-
the basis, that is by a suitable similarity transformation.metry scheme presented in this paper. Its application to the
Hence the representation matrices of irnegre real. On  DHF problem will be demonstrated in the following.
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C. Construction of the one-electron Fock matrix

In this section we will consider the one-electron Fock matrix which in the quaternion formalism is given by

— Vit —ciD;%- ¢jDy5— ckDL® @1
—ciD3"—¢jDy"— ckD3" wSS '
with the notation
. . 3
Vi=alVixs), Wir=(xalV=2¢2x)), Dy.={x)l ﬁlxb- (42)

When the operation of inversion is present in the molecular point group, the Fock matrix will split into two blocks corre-
sponding to different paritied(,=I"y andI’ ,=T'y,,). When all rotations are totally symmetric, as in the groGgsandC; ,

no further symmetry reductions are possible and the problem is solved by resorting to quaternion algebra. When there are only
one or no totally symmetric rotations, further symmetry reductions are possible, as will be discussed presently. In the
following, attention will be restricted to the block of the Fock matrix correspondifdggte I'y; the symmetry structure of the

other block in groups with inversion symmetry is obtained by switching gerade and ungerade.

1. Real groups

We consider first the binary groups where no rotations are totally symmetric. This corresponds to thégrdDps, and
D,y . In terms of contributions not zero by symmetry, the left-hand side of the DHF equaEoné31)] can be written

_ Large components Small components _
To T, Tk, Tg, | T, r, T, L
Ty | Vv 0 0 0 0 —icDES jeDHS  —kcDHS ck
Tg, 0 Vit 0 0 —icD:S 0 —kcDHS —jeDis ick
opee. | % 0 0 vk (;,L —JjeDy  —keDZ® 0 L ic® _,jc% ’
Tx, 0 0 0 Vv — kDS —ch’;s —icD; 0 ke 43
| 0 —icD¥ _ jeD$+  —keDft wSS 0 0 0 s
r,| -icD* 0 —keDt —jcDSt 0 wWS§ 0 0 s
Ly —_]chfL —keDSt 0 —icp}t 0 0 ws 0 -Jjes
| To| —keDt —jeDSt - icD3* 0 0 0 0 wSs§ AL &S

where basis functions have been ordered by boson irreps. In the present form, both the Fock matrix and coefficients are
guaternion. However, we can make both matrix and coefficients real by a quaternion phase transfer, that is by shifting a
guaternion phase from coefficients to basis functions. Formally, this is done by multiplying basis functions by a quaternion unit

and corresponding coefficients by its complex conjugate. With the choice

X X
XT€rXr |

x=|_‘ Iy Tr, Tr Tr
cf—efck

[ Ty, I Ty Ty (44)
er| 1 1 J k

_ Large components Small components _
T, T, T, T, oy r, r, r,
Iy Vit 0 0 0 0 CDi‘s cD;‘S cDi‘s cé‘
Tp, 0 vit 0 0 —cDHS 0 D’ —cDi ct
Rl Ko T, 0 0 Vit 0 —cD;S - cDE 0 cD%S -ck
Tg, 0 0 0 vit —-cDXS D —cDi$ 0 % (45)
| R 0 eDit chL cDL w3S 0 0 0 s
r,| —-epf* 0 Dt —cDi* 0 wWAS 0 0 e
r,| -cpf* -—cD* 0 cDit 0 0 WSS 0 -c3
| Tx| —eDy Dt -cDf 0 0 0 0 WSS e
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By this operation four real matrices have been collapsed into one. This reduces the memory of the problem by a factor four and
allows the solution of the eigenvalue equation entirely in terms of real algebra. For groups with inversion symmetry, the
quaternion phases for basis functions in the block correspondifig tdl’,,, are found by replacing the irreps in Eg4) by

their direct products with’,y,.

2. Complex groups

The groupsCg, C,, andC,,, have one totally symmetric rotation. Three cases must be distinguished depending upon
which rotation is totally symmetric. We consider first the case whggeis totally symmetric. This implieﬂ“RX:FRy, ry

=I'y, andI',=T,,,. With the notationg={x,y}, nonzero contributions to the left-hand side of the DHF equation are given
by
_ Large components Small components
FO FRq nyz Fq
> LS v ~ v
Op(11 Qo= Ty A\ (I).L —icD; —_]CDfs— kL‘DfS cg-f- lCIl' (46)

g, 0 v —JjeD}*—keD* —icD -Jek+ikck

Tl  —EeD}" - jeDSt—keDS wss 0 S+ics

Tq| —jeDy —kcD3* —icDjt 0 wss Jes+kcs

in terms of basis functions ordered by boson irreps. The coefficients of the totally symmetriC jraep seen to be complex.
To obtain complex coefficients for all irreps and a complex matrix we again introduce a quaternion phase transfer between
coefficients and basis functions,

XT—€rxt X::‘ Fo  Tr,

cr—efer: | X=9 Tys Ty, (47)
er| 1 k
and we obtain
_ Large components Small components
Ty r R, Taye r,
LL —y LS _ LS LS -
CRl1l Cou Ty v 0 icD; thy +cDy cf)‘+tc’f . (48)
Te, 0 vit icDX—cpLs icDL* ck—ick
Tyye —icDt - ichL-F cD3* WSS 0 eS+ied
r, | —icD{*—cDf* ieDSt 0 WSS cs—ics

Four real matrices have thereby been packed into twatrix is straightforward. The quaternion phases introduced on
Memory is reduced by a factor two and the problem can behe basis functions corresponds to a transformation of indi-
handled by complex algebra. The cases vﬂﬂl or FRy be-  vidual elements of the Fock matrix,

ing totally symmetric may be treated by defining other shiftsg
of quaternion units, but a simpler solution is simply to rela-
bel the quaternion units. Note, however, that the equivalenthe gquaternion triple product appearing in the above trans-
operation in the Dirac equation in standard form correspondformation can be reformulated as

to a change of spin quantization axis.

S — * . _
F;UJ;AeA*> Fuv;FeF_QFuv;AeMeAevr er_e/.LAV‘ (49)

e::,eAeV:wA(MIV)e/_LAVY e,u,eAet :aA(/’Liy)e;LAvi (50)

wheree,,, , is the product quaternion unit anal, (u,v) its

phase(*=1). Note that the noncommutivity of quaternion

multiplication is associated with the phaseg(u,v) and not

the product quaternion unie,,,, so that, for instance,
The computational implementation of the above symmee,, , ,=€, . The symmetry reduced Fock matrix is now gen-

try scheme for the construction of the one-electron Fock maerated by taking a set of real one-electron integrals contrib-

3. Implementation
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u_ting to the _matrix, inserting pha.sa§\(,L_L,v), and then as- [S\]W;MAV]G,LAFeZ[QJW;AeA]eV
signing the integrals to the matrix indicated by,,. The

insertion of phases requires virtually no extra computational
P q y P :% [(MV|K)\)2SD)\K;}\AK]eZe)\e/.LAVeieV’

effort.
D. Construction of two-electron Fock matrix (54)
[SKMV;MAV]eMAV:eZ[QKlLV;AeA]eV
The quaternion two-electron Fock matrix has the follow-
; 11.
ing form™ = 2}\ [(Iu’)\| KV)SD)\K;)\AK]eZe}\e,uAVe: €,.
K
B-Kgt —K§® K- KES The same quaternion pentuplet product appears in both con-
F[A2]= sL s ussl—T| LsL .ss tributions and can be simplified in the following manner: A
two-electron integralur|x\) is zero unless the integrand is
JKEE KRS [KEEOKES totally symmetric, i.e.I',®I',®I',®I'y,=I"y. As each bo-
—J kSt kss| K st sl (51)  son irrep is associated with a quaternion unit, the selection
2 2 3 3 rule is reexpressed in algebraic terms aje,e;e,

=Qo(m,v,x,N\), whereQ is a phas€+1). The above re-
in terms of Coulomb and exchange contributions defined asult allows us to rewrite the quaternion pentuplet product as

e,enere;e,=Qp(u,\,k,v)er;

J;Lv;A:% (1v|KN)2D) o 5 where er=e€,\,= €. (55)

(52 It is computationally intractable to work with phases defined
in terms of four indices. However, a factorization is straight-

K’”;A:z;' (uA|kV)Dy oz - forwardly obtained,
K
e,e.ere e, =e e ere; e,

Due to the spinor structure in terms of boson irreps discussed =or(u,v)ey €,r1€x
in Sec. lll, blocks of the density matrifour real matrices
may be zero by symmetry. As the two-electron integrals are
totally symmetric, the same structure is transferred to th@nd the Coulomb and exchange contributions can be written
two-electron Fock matrix. In the previous section we haveyg

seen how the introduction of quaternion phase shifts on basis

functions leads to significant symmetry reductions for real ¢ — s

and complex groups. The reader may straightforwardly Juvirer wr(’u’y)% [(sv] kM) 27Dy cr]onra(N k),
verify that the equivalent transformatid&qg. (49)] of indi- (57)
vidual elements of the two-electron Fock matrix leads to ¢ — S

identical symmetry reductions. However, the Coulomb and K”V?Fer_wr(“’y)% [(uh]xv) Dy rlonreX ).

exchange contributions are expressed in terms of the original o
quaternion density matrix and not the density matrix of thel he factorization of phase@r(u,\,«,v) allows a two-step

phase transformed coefficients, and this must be correctegPnstruction of Fock matrices. We first form an auxiliary
for. density matrix,

We recall that the introduction of quaternion unitsonthe s, _ (N, k)%D, .. (58)
basis functionsy,—e,x, leads to a corresponding phase DT AR R Al
shift of the coefficients’c,,—c,; =€} %c,;. The original  from which we construct an auxiliary Fock matrfigl?!’.

ZEF(M!V)U))\FK()\rK)eF! (56)

quaternion density matrix is then replaced by The true Fock matrix is then recovered by
occ SFE_LZIJ;F: wr(u, V)SFELZB;F - (59
QDAK:Z ¢, °cki— Dy« Note that the component real matrices of the auxiliary den-
sity matrix are neither symmetric nor antisymmetric. How-
oce < s ever, each element of a component matrix has a specific
ZEi cyi Sci=ex 9Dy .8, (53 symmetry about the diagonal, which means that in the con-

struction of the auxiliary Fock matrix only half of the con-

tributions need to be explicitly inserted, since the other half
Note that this transformation is contravariant with respect tds recovered after symmetrization of the true Fock matrix.
the transformation of the Fock matrix E@9). By using the  Again, the insertion of phases takes virtually no computa-
transformation of the Fock matrix in E¢49), the Coulomb  tional effort, whereas the reduction in the number of real
and exchange contributions can now be written in terms ofnatrices to be constructed gives considerable computational
the transformed density matrix as savings.
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TABLE Il. Test calculations on the Jmolecule to illustrate symmetry sjon. Comparing now groups on the same level of algebra in
reduction by the symmetry scheme outlined in the arti@@—quaternion the two series. we see that ratios between CPU times for
group, C—complex groupR—real group). . ’ . . . .
Fock-matrix construction are identical to ratios between the
Average CPU seconds number of two-electron integrals on disk. On the other hand,
we observe a considerable speedup of diagonalization for
groups with inversion. This is due to the blocking of the

Point group  Per iteration  F[?-construction  Diagonalization

Cy Q 108.94 102.44 1.30 Fock matrix on the irreducible corepresentations of different
gz E% iégg 28'465 g'gg parity. It should be kept in mind that the observed reductions
Cizv Q 7560 73.29 034 in CPU times are accompanied by significant reductions in
Con (© 43.46 42.66 0.13 the memory needed for the calculation, as pointed out in Sec.
D (R 27.39 27.11 0.08 IV C.

The results of the sample calculation can be compared to
the results obtained by L. Visscher in Ref. 7, since the same
test system and identical basis sets have been used. The re-
E. Sample calculation sults of L. Visscher have been obtained with theLFDIR
code, which is based on the conventional four-component

To illustrate the savings that are possible with the sym
g P Y complex DHF operator rather than the two-component

metry scheme outlined above, we have performed DHF cal

culations on the diatomic molecule Esing an uncontracted quatermo_n operator_ used MIRAC. The Fock matrix is con-
cc-pVDZ basi€? (with one tightp-function addedl and the structed in the basis of functions adapted to the molecular

DIRAC code!! For each fluorine atom the large componentsdhoubl(r'I pomthgroup, ?Ut e} nlewbme:hod has been introduced
were expanded in asBpld basis, whereas the small com- that allows the use of real algebra for groups contair@ag

ponents were expanded in 8®p5d1f basis generated by or D, as a subgroup. CPU times can not be compared di-

kinetic balance. The total basis set thereby comprised Zlbectly since the calculations have been carried out on differ-
ent computers and with different numbers of two-electron

functions. All calculations were carried out at bond distance ) . .
of 135 pm. integrals on disk, but some important points can be noted: In
The calculations were carried out using a Conventiona]:heMOLFDlR calculations the CPU time for Fock-matrix con-

self-consistent fieldSCH scheme with two-electron inte- struction_is directly pr_oportional to the number of tWO'.
grals in symmetry-adapted basis stored on disk. An addi(_alectron integrals and independent of the algebra of the bi-

tional symmetry speedup is obtained in this case by notin@ary groups pre;ented. In therAc cal_culatlon, §|gn|f|cant
that the Coulomb contributions E¢62) appear only in one ymmetry reductions are observed W|t_h reduptlon of Fhe al-
of four real matrices in the quaternion two-electron Fockgebra of the group. Another o_bservatlon of Interest_ Is that
matrix Eq.(51) and only inLL andSSblocks corresponding evlgn ftc.)r the %:oum:l the CPU tlrlne for Fo”cl;-m?_trlx d:ca?ho—
to boson irred’y. By presorting two-electron atomic orbital nalization in thEDIRAC run 1S only a small fraction ot the
(AO) integrals (usjx\) on the irrep of density(uv), Cou- time for Fock-matrix constructiorfless than 1.5% In the

lomb contributions are calculated only for the set of integralg\_"o"':DIR run the dlagona!lzatlon at thﬁl level ta_lkes more
corresponding td,,=T'y. The F, molecule has been calcu- time than the Fock-matrix construction. For higher groups

lated in the quaternion grou@;, the complex groupC,, the diagonalization time drops significantly with increased

and the real grouf,, . the latter two chosen with the rota- P10¢King of the Fock matrix and the possible use of real

tion axis along the molecular axis. The symmetry groupsalgebra' For larger systems, as pointed out by L. Visscher,

were chosen to give exactly the same number of two-electroH']e diagonalization becomes insignificant compared to Fock-
integrals on disk15.3 million), so that differences in CPU matrix construction, unless this trend can be counterbalanced

time could be attributed to the symmetry scheme alone. ThBy efficient integral screening.

above groups have only one irreducible corepresentation. A

second series of calculations was carried out in which the/, CONCLUSION

operation of inversion was added to the above groups, giving ) o _

the groupsC;, Cp,, andD,y,, respectively, and 11.4 million This work exploits time reversal and point group sym-

integrals on disk. The calculations were performed on 4netry in molecular relativistic calculations. Previously it has
HP7200 workstation and the results are given in Table Il P€en shown that the time-dependent Dirac equation may be

The results confirm that the construction of the two-8XPressed in terms of complex quaterniis” We restrict
electron Fock matrix is the dominant computational task, acourselves to the time-independent case and the Dirac opera-
counting for more than 90% of the CPU time spent in eacHor in the molecular field(nuclear spins neglectedThe

SCF iteration. Considering first the series of groups withouDirac operator is then symmetric under time reversal and can
inversion, we observe that when going fras to C, sym- thereby be reduced to two-component form in terms of real

metry, that is from quaternion to complex algebra, Bh& qu_aterr_lions. A significant feature of the quaternion represen-
construction is speeded up by a factor 1.8 and diagonaliz4@tion, in contrast to the customary complex four-component
tion by a factor 2.7. When going ©,, , that is real algebra, '€Presentation, is the complete equivalence between-the
additional speedup factors 1.5 and 1.9 are observed for Fock:» @ndz-axes, as it should be. This equivalence is manifested
matrix construction and diagonalization, respectively. Identi-here in the equivalence between the quaternion units

cal trends are observed for the series of groups with inverandk. When complex is identified with quaterniori, the
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