
HAL Id: hal-03327055
https://hal.science/hal-03327055

Submitted on 26 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Personalized Change Propagation for
Collaborative Modeling

Mohammadreza Sharbaf, Bahman Zamani, Gerson Sunyé

To cite this version:
Mohammadreza Sharbaf, Bahman Zamani, Gerson Sunyé. Towards Personalized Change Propagation
for Collaborative Modeling. International Hands-on Workshop on Collaborative Modeling (co-located
with the 24th International Conference on Model Driven Engineering Languages and Systems - MOD-
ELS 2021), Oct 2021, Virtual Event, Japan. �hal-03327055�

https://hal.science/hal-03327055
https://hal.archives-ouvertes.fr


Towards Personalized Change Propagation for
Collaborative Modeling

Mohammadreza Sharbaf∗,†, Bahman Zamani∗, and Gerson Sunyé†
∗MDSE Research Group, University of Isfahan, Isfahan, Iran

†LS2N, University of Nantes, Nantes, France
Email: m.sharbaf@eng.ui.ac.ir, zamani@eng.ui.ac.ir, gerson.sunye@univ-nantes.fr

Abstract—Building complex software-intensive systems re-
quires effective collaboration between stakeholders from diverse
domains. Model-driven engineering (MDE) aims to reduce the
complexity of software systems using separation of concerns and
continuous evolution of systems at high-level abstraction. When
dealing with complex systems, teams of stakeholders with com-
plementary expertise work concurrently on models to produce a
coherent and complete system. In such cases, multi-user modeling
environments would help designers create and refine models from
multiple points of view. Such environments must be adaptable
to the needs and interests of stakeholders. To address this
requirement, we propose an approach for personalized change
propagation in collaborative multi-view modeling. We capture
our ideas in the EMF.cloud environment and demonstrate our
approach by introducing a multi-user architecture for multi-
view collaborative modeling. We express personalized change
propagation as a high-level requirement for a collaborative
modeling environment and argue that no existing tool satisfies
such requirement. Finally, we discuss research challenges for the
proposed approach and outline directions for future research.

Index Terms—Collaborative Modeling, Multi-View Modeling,
Personalized Change Propagation, EMF.cloud

I. INTRODUCTION

Over the last decades, the complexity of software-intensive
systems has drastically increased. Hence, the development
of such systems is no longer an individual task, i.e., it
requires an effective team working by developers with different
backgrounds [1]. One of the promising approaches for coping
with the complexity of software is Model-Driven Engineering
(MDE) [2]. In MDE, models are the primary artifacts in
software development and are used in different contexts (e.g.,
code generation, documentation, and verification) to provide
automation and hence higher productivity [3]. MDE advocates
the use of Domain-Specific Modeling Languages (DSMLs),
which abstract the software construction from the underlying
implementation technology. The MDE foundation alleviates
the growing gap between heterogeneous domains by increasing
the level of abstraction and separation of concerns. However, to
make the collaboration possible, there is a need for modeling
frameworks with multi-user communication support.

In collaborative projects, a team is composed of technical
and non-technical stakeholders, together with external col-
laborators. Having diverse expertise, they work together on
models to produce a coherent and complete system [4]. In such
projects, stakeholders describe the system at different levels of
abstraction from multiple points of view. They may work on

distinct views or different parts of the same view. Moreover,
multiple stakeholders that work on different aspects of a
system have diverse habits, interests, and priorities. Therefore,
providing a collaborative multi-view modeling framework that
allows stakeholders to select their desired functionalities and
personalize their environment according to their own needs is
essential [5].

Change propagation, either synchronous (instantaneous) or
asynchronous (delayed), is an essential part of collaborative
modeling and has a high impact on stakeholders’ cooperation.
For instance, consider two stakeholders that work concurrently
on the same project. If they work on distinct views, they do not
need to receive each other’s changes immediately. In contrast,
if they work on the same view or manipulate interdepen-
dent views, immediate change propagation is a key concern.
The need for change propagation in collaborative projects
contrasts with the lack of support in current collaborative
environments. We reviewed 10 existing popular collaborative
tools to investigate how the modeling environments address
change propagation features. Despite the advances in the MDE
world, the result shows that there is no proper support for
personalized change propagation in the current collaborative
multi-view modeling environments.

In this paper, we introduce a new research roadmap in the
collaborative multi-view modeling domain to support person-
alized change propagation. We first introduce the collaborative
modeling features that are fundamental for change propaga-
tion. Then we explain how our approach handles each feature.
Moreover, we propose a multi-user architecture to support
collaborative modeling in the EMF.cloud multi-view model-
ing environment and express main points to enable support
of personalized change propagation. Finally, we outline the
challenges and directions that we have identified as significant
to address this concern.

The rest of this paper is organized as follows. Section II
introduces a motivating example and identifies envisioned
idea. Section III presents the overview of our approach for
personalized change propagation in collaborative modeling
environments. Section IV introduces the proposed architecture
for collaborative modeling in EMF.cloud and expresses the
personalized change propagation idea for this architecture.
Section V examines the support for personalized change
propagation in some popular collaborative modeling tools.
Finally, Section VI concludes the paper.



Response

On-schedule

    On-close

 On-demand

(Subscriber)

   Publish

Online

Offline

Collaboration Server
(Broker)

Request

On-
request

Request Response

Client3

(Subscriber)
Client4

(Subscriber)
Client5

(Subscriber)
Client6

(Requester)
Client2

(Publisher)
Client1

Fig. 1. Overview of Personalized Change Propagation Approach

II. MOTIVATING EXAMPLE

To motivate our work, we use simple model views of
the wind turbine case study [6] that describes the cooling
of the Generator subsystem. This subsystem includes input
temperature sensors, output fans for cooling the wind turbine
generator, and system parameters to specify temperature limits
for starting the cooling system. The design of control units
for cooling the generator relates to the specifications by three
stakeholders from different domains, including WT Manager,
IO Manager, and System Manager. The WT Manager defines
all the objects of the model view that specifies the wind
turbine. In the model view that relates to IO Manager, the
attributes of the wind turbine system are obfuscated, and only
the input and output objects of the generator system appear.
The System Manager can only specify system parameters,
while she/he has the same view as IO Manager. In such
cases, all stakeholders do not need to immediately send their
changes and receive those applied by others. Therefore, we
should allow the stakeholders to personalize the propagation
of change operations according to their needs and resources
that are common among the stakeholders.

To achieve this, stakeholders must have the authority to
select how to receive changes from others. For the IO Man-
ager, it is sufficient to be able to see the System Manager’s
changes when the latter has finished his work. But it may be
necessary for the IO Manager to receive the changes made
by the WT Manager immediately and on-demand. While the
WT Manager can become aware of the latest changes that
the IO Manager applies at a scheduled time. Furthermore,
the stakeholders should have the right to request the latest
common version of a model view at any time. For instance,
the IO Manager can request the System Manager model even
before the end of his/her work. Moreover, a stakeholder can
instantly send his/her changes to others or delay sending them
until he/she reached a certainty. In our case, WT Manager
and IO Manager decide to send their changes with online
and synchronous transactions, but System Manager selects the
offline and asynchronous submission.

III. OVERVIEW OF THE APPROACH

In this section, we present an overview of our approach
that has been conceived to provide personalized change prop-
agation in a collaborative modeling environment. Personalized
change propagation refers to the solutions in which each
user is able to customize the fundamental features of change
propagation according to his/her needs. In this context, Col-
laboration Scenario, Collaboration Type, Push Method, and
Undo/Redo are features that are concerned with propagating
change operations when multiple users work on models [7].

The collaboration scenario specifies the ability of the en-
vironment to support the change propagation for working on
different views. A view may be a projection of a single model
while another presents a projection of several models. In such
cases, a change on a model must be propagated to all views
on that model. Several collaboration scenarios are possible:
Multi-User Single-View (MUSV), Multi-View Single-Model
(MVSM), Multi-View Multi-Model (MVMM), and Single-View
Multi-Model (SVMM) [5]. The collaboration type is divided
into Online and Offline. Online collaboration modifies models
and propagates change operations to others immediately, while
offline collaboration allows publishing change operations at a
later time [4]. The push method defines the mechanism to
inform the users of change operations, including Any Modifi-
cation and Bulk Notification. Any modification is a continuous
approach in which users receive all changes in real-time. But
in the bulk notification, when a specific condition is reached,
users receive a group of changes with an approach, such as
Event-Driven, Periodic, or Change Threshold. The Undo/Redo
mechansim may be User-Specific or Global. The user-specific
undo/redo simply reverts the last change operation performed
by the user on a view. While the global undo/redo considers
the operations that are applied by all users [7].

Figure 1 illustrates a snapshot of the proposed approach con-
sisting of a collaborative server and a number of clients, which
underpin the development of different modeling artifacts. In
order to optimize the change propagation, the collaborative
server works as a broker to store and transmit models and their



changes by means of Application Program Interfaces (APIs).
Each client who joins the collaboration has a user identity and
particular access to modify model views. Clients may adapt
one or more of the following roles at the same time:

• Publisher in which the client sends changes that are
applied in its model view to the collaboration server,

• Subscriber in which the client listens to the particular
channel to receive changes performed on a model view,

• Requester in which the client sends a request and receives
the latest version of a model view as the response from
the server.

The mentioned roles allow clients to send and receive
model view modifications to/from the collaboration server
using two patterns: Publish-Subscribe and Request-Response.
Following the Publish-Subscribe pattern, the collaboration
server does not broadcast every change operation to other
clients. The server enables the definition of particular channels
to personalize sending and receiving modifications for each
client, given the change propagation features. To this end, the
client (publisher) can select a check-in method for sending
its modifications to the collaboration server. According to
the collaboration type, we consider the following check-in
methods:

• Online check-in that sends each change operation to the
server immediately,

• Offline check-in that sends a group of change operations
to the server at a later time.

In the collaboration server, the change propagation is con-
sidered as updating and synchronizing resources. Each re-
source can be a single model or a distinct view that the server
admin can specify according to the selected collaboration
scenario for supporting multi-view collaboration. When the
server receives new change operations for a resource, it first
updates the global instance of the resource. Then it forwards
all change operations to the check-out channels that are
specified for the resource. Clients should subscribe to one
check-out channel for receiving changes that are publishing
in a resource. We propose three check-out channels for each
resource based on the push methods as follows:

• On-demand in which subscribers immediately receive any
change operation of the resource when they are connected
to the collaboration server. This method is similar to the
any modification approach of the push method.

• On-schedule in which subscribers receive existing change
operations of the resouce in a Specific Time (e.g., at 2:00
A.M of every day), in a Period (e.g., every 10 minutes),
or based on a Numerical Threshold (e.g. for every 10
changes). We can map the On-schedule check-out method
to the periodic and change threshold approaches of the
push method.

• On-close in which subscribers receive all change oper-
ations that are submitted to the server by users that are
working on the resource when all users close the resource.
This method is a severe case that propagates changes

on specific conditions, which is concerned with Event-
Driven approach of the push method.

We also allow clients (requester) to receive a resource from
the collaboration server following Request-Response pattern.
Using this method that we called On-request, clients can
receive the latest version of a resource and its position from
the server when requesting it. The position is a number, which
specifies the last change operation that the collaboration server
applied to the resource. Moreover, since the local and global
lists of the propagated change operations are present, both
alternatives for the Undo/Redo feature can be handled in our
approach. In the simplest case, we only must apply the reverse
of the last change operation in the local list of a client for user-
specific undo and in the global list of the collaboration server
for the global undo.

IV. COLLABORATIVE MODELING IN EMF.CLOUD

In this section, we demonstrate how the personalized change
propagation approach can empower the EMF.cloud model-
ing environment to support multi-view collaborative model-
ing. EMF.cloud is a generic, open-source, and application-
independent framework for editing, processing, and managing
EMF-based models in a browser-based client. EMF.cloud with
a client-server scenario is focused on enabling the use of
many existing EMF-based technologies in a cloud context.
The model server is a central component of EMF.cloud that
is responsible for storing and updating model instances that
are hosted on its local workspaces. The model server pro-
vides command-based editing and undo/redo support for the
client and allows multiple views on the same model instance
based on the Language Server Protocol (LSP). However, the
current implementation of EMF.cloud does not support multi-
user and collaborative modeling. In the following, we first
propose a collaborative architecture for multi-user modeling
in EMF.cloud. Then, we explain the personalized change
propagation in the EMF.cloud multi-user architecture.

A. Multi-User Modeling Architecture

We propose a collaborative modeling architecture that uses a
client-server approach to support the communication between
multiple users. Each user represents an instance of EMF.cloud
that consists of a browser-based Client and a local Model
Server. Figure 2 shows an overview of the proposed archi-
tecture, where multiple instances of EMF.cloud are connected
exactly to one Collaboration Server. The central collaboration
server is used to coordinate the change propagation among all
connected users following an advanced RESTful API protocol
that uses the JSON serialization to transfer model data. We
briefly review the main attributes of each component in the
following.

1) Collaboration Server: The collaboration server is re-
sponsible for transmitting change operations among users and
storing the global version for each resource. To this end,
the collaboration server consists of an Incoming Manager for
receiving changes and requests from users, a Synchronizer to



Client 1Client 1Client 1 Model Server 1Model Server 1

Local Model

Model Server 1

Local Model

Change 
Manager

Client 2Client 2Client 2 Model Server 2Model Server 2

Local Model

Model Server 2

Local Model

Change 
Manager

Client NClient NClient N Model Server NModel Server N

Local Model

Model Server N

Local Model

 

Collaboration Server

Global Model

Change 
Manager

Incoming 
Manager

Outgoing Manager

On-demand

On-close

On-schedule

On-request

• Registration 
• Subscribe (Res, check-in channel)
• Online/Offline Publish (Res, msg)
• Request (Res)

Publish (Res, msg)

Response (Res, position)

• Receive Data

Fig. 2. Overview of the Proposed Architecture for Multi-user Modeling with Emf.Cloud

update resources and related change queues, and an Outgoing
Manager for sending resources and changes to the users.

2) Model Server: The model server is responsible to
support loading views, manipulating them, and propagating
changes. We extended the original version of the EMF.cloud
model server by adding a Change Manager for managing
communication with the collaboration server.

3) Client: The client component is mainly the same as the
client of the original EMF.cloud. We only added related forms
(e.g., Registration form) and Resource Change Awareness for
specifying incoming changes.

B. Personalized Change Propagation

Supporting both Publish-Subscribe and Request-Response
communications are critical to perform the personalized
change propagation in multi-user EMF.cloud architecture. To
achieve this, the following prerequisites must be considered.

• User registration and unique identity are required to
authenticate users

• Users should receive a list of resources when connect to
the collaboration server

• Each resource should be identified by a unique identity
• The collaboration server must create global copy for each

resource
• Each change operation has a publisher and modifies a

resource that should be specified for the check-in

• The collaboration server must create check-out channels
and notify users for new resources

• Each user can subscribe to only one check-out method
for each resource

• Each model server must have a stack of changes for user-
specific undo/redo

• The collaboration server must have a stack of changes
for each resource to support global undo/redo

V. DISCUSSION

In the last decade, several modeling environments are pro-
posed to support multi-user collaboration. Each environment
uses a specific mechanism to send and receive change oper-
ations between users. However, there is no a single tool that
allows users to personalize change propagation. We selected
important features of change propagation in collaborative mod-
eling environments based on the feature model presented by
Masson et al. [7]. Table I summarizes the support for features
of change propagation in 10 existing popular environments in
the last decade that could be used for collaborative modeling in
academia or industry. Note that we only investigated features
that the environment addresses, and those provided by external
extension or user’s effort are not the focus of this paper.

Table I shows that most of popular collaborative modeling
environments focus on Multi-User Single-View scenario. Only
one environment provides both Online and Offline collabo-
ration. In most of the environments, undo/redo is provided



TABLE I
SUPPORT FOR CHANGE PROPAGATION FEATURES IN POPULAR ENVIRONMENTS FOR COLLABORATIVE MODELING

Tool Collaboraion Scenario Collaboration Type Undo/Redo Push Method

CDO [8] MUSV Online, Offline Not Supported Any Modification, Event-Driven

OBEO [9] MUSV, MVSM Offline User-Specific Event-Driven

AToMPM [10] MUSV Online User-Specific Any Modification

WebGME [11] MUSV Online Not Supported Any Modification

MetaEdit+ [12] MVMM Offline User-Specific Event-Driven

EMFStore [13] MUSV Offline User-Specific Event-Driven

EMFCollab [14] MUSV Online User-Specific Any Modification

MDEForge [15] MUSV Offline Not Supported Event-Driven

GenMyModel [16] MUSV, SVMM Online User-Specific, Global Any Modification

Visual Paradigm [17] MUSV Offline User-Specific Event-Driven

in User-Specific level, while one environment supports both
levels, and three environments do not support it. Moreover,
Any Modification and Event-Driven are only two mechanisms
that are used for the push method. Given the limited capa-
bilities in the existing modeling environments that have not
allowed experts of different domains to customize propagating
changes in their collaboration, we propose research on collab-
orative modeling techniques to support personalized change
propagation. The following challenges and directions should
be addressed:

• Multi-View Branching: Users with diverse domains may
work on views of the same or different models. We feel
an environment should concern view branching and work
on older versions.

• Conflict Management: Several approaches are proposed
for conflict detection and resolution, but this seems in-
tended only for a single view, and internal relationships
among views are not considered for that functionality.

• Tracability: Tracing change dependencies helps under-
stand their impact on different views. But no tool is
identified that allows tracking those relationships.

VI. CONCLUSION

Building complex software-intensive systems is no longer
an individual task; it is a collaborative endeavor between
stakeholders from diverse domains. Different stakeholders
coordinate with each other and share their modifications to
achieve their project goals. Customizable tools are increasingly
demanded in today’s software industry. We have reviewed
ten popular modeling tools, but no tool allows stakeholders
to customize its environment based on their needs. In this
article, we introduced personalized change propagation as a
new research roadmap in the area of collaborative multi-view
modeling. We provided a general solution to support person-
alized change propagation in collaborative modeling environ-
ments. Moreover, we contributed an architecture for multi-
user modeling with EMF.cloud. The proposed architecture
argues the prerequisites to develop a customizable environment
for change propagation. We also outline some significant

challenges and future directions that must be addressed in this
regard.

REFERENCES

[1] J. Whitehead, “Collaboration in software engineering: A roadmap,” in
Proceedings of the Future of Software Engineering, 2007, pp. 214–225.

[2] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software engi-
neering in practice, 2nd ed. Morgan & Claypool Publishers, 2017.

[3] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in
model-driven engineering,” IEEE software, vol. 31, pp. 79–85, 2013.

[4] M. Franzago, D. Di Ruscio, I. Malavolta, and H. Muccini, “Collaborative
model-driven software engineering: a classification framework and a
research map,” IEEE Transactions on Software Engineering, vol. 44,
pp. 1146–1175, 2017.

[5] J. Corley, E. Syriani, H. Ergin, and S. Van Mierlo, “Cloud-based
multi-view modeling environments,” in Modern Software Engineering
Methodologies for Mobile and Cloud Environments, 2016, pp. 120–139.

[6] A. Bagnato, E. Brosse, A. Sadovykh, P. Maló, S. Trujillo, X. Men-
dialdua, and X. De Carlos, “Flexible and Scalable Modelling in the
MONDO Project: Industrial Case Studies,” in Proceedings of Workshop
on Extreme Modeling @MoDELS, 2014, pp. 42–51.

[7] C. Masson, J. Corley, and E. Syriani, “Feature Model for Collaborative
Modeling Environments,” in Proceedings of Workshop on Collaborative
Modelling in MDE at MODELS, 2017, pp. 164–173.

[8] E. Stepper, “CDO Model Repository Overview,” (Last accessed: 2021
July). https://www.eclipse.org/cdo.

[9] Obeo Designer, “Collaborate with Your Team,” (Last accessed: 2021
July). https://www.obeodesigner.com/collaborative-features.

[10] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo,
and H. Ergin, “AToMPM: A Web-based Modeling Environment,” in
MoDELS 2013 Demonstration, 2013, pp. 21–25.

[11] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,
T. Levendovszky, and Á. Lédeczi, “Next generation (meta) modeling:
web-and cloud-based collaborative tool infrastructure,” in Proceedings of
Workshop on Multi-Paradigm Modeling @MoDELS, 2014, pp. 41–60.

[12] S. Kelly, “Collaborative modelling with version control,” in Proceedings
of the Federation of International Conferences on Software Technolo-
gies: Applications and Foundations, 2017, pp. 20–29.

[13] J. Helming and M. Koegel, “EMFStore Project,” (Last accessed: 2021
July). http://eclipse.org/emfstore.

[14] EmfCollab, “Collaborative Editing for EMF models,” (Last accessed:
2021 July). http://qgears.com/products/emfcollab.

[15] J. Di Rocco, D. Di Ruscio, A. Pierantonio, J.S. Cuadrado, J. De Lara,
and E. Guerra, “Using ATL transformation services in the MDEForge
collaborative modeling platform,” in International Conference on Theory
and Practice of Model Transformations, 2016, pp. 70–78.

[16] M. Dirix, A. Michel, and V. Aranega, “Genmymodel: an online uml
case tool,” in ECOOP. 2013.

[17] Visual Paradigm, “Team Collaboration Toolset,” (Last accessed: 2021
July). https://www.visual-paradigm.com.

https://www.eclipse.org/cdo
https://www.obeodesigner.com/collaborative-features
http://eclipse.org/emfstore
http://qgears.com/products/emfcollab
https://www.visual-paradigm.com

	Introduction
	Motivating Example
	Overview of The Approach
	Collaborative Modeling in EMF.cloud
	Multi-User Modeling Architecture
	Collaboration Server
	Model Server
	Client

	Personalized Change Propagation

	Discussion
	Conclusion
	References

