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On damage regularity and defect nucleation modelling
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Abstract

The purpose of this article is to model defect nucleation. The defect is con-

sidered as a small volume which evolves as a damaged zone. The damage is

described by a transition zone which can be sharp or continuous. In the first

case, discontinuities occur and the initiation of defect is based on bifurcation

of an equilibrium state. When the transition is continuous, the initiation of

the defect is continuous. The analysis is based on considering different mod-

els of damage, depending on the regularity imposed on mechanical field. For

each model, the presence of discontinuities on mechanical fields is investigated.

Consequences of each model on defect nucleation are illustrated on particular

structures: bars under extension and spheres under radial loading.

Key words: Bifurcation; Nucleation of defect; Moving interface.

1. Introduction

Fracture mechanics is generally not accurate to model the full scenario of

degradation of solids under mechanical loading, damage description is more

appropriate for modelling the gradual loss of stiffness.

To model defect nucleation, many approaches have been proposed. Nucle-

ation of defect can be modelled by the appearance of a small cavity like in

non-linear elasticity [1, 2, 3], in viscoplasticity [4] or in plasticity [5, 6]. J. Ball
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[1] carried out a theoretical analysis of radially symmetric cavitation in elastic

solids. The results are based on comparison between the strain energy of a ho-

mogeneous sphere and those of a sphere containing an infinitesimal void at the

same radial loading. This bifurcation analysis provides the critical stress, load

at which the cavitation appears. Extension of this approach based on damage

mechanics has been proposed in [7] for brittle materials and more recently [8]

for more general damage models.

The simplest model of damage is described by a scalar function d which

evolves from 0 to 1. Simultaneously the stiffness of the material is decreas-

ing. After a critical load, uniqueness of equilibrium solution is lost, localization

occurs. To avoid spurious localization several models were proposed in the lit-

erature : non local damage models, higher- order gradient models through the

inclusion of deformation gradient, or damage gradient [9, 10, 11] as in phase

field approach [12, 13] and in the so-called variational approach of fracture [14].

Another point of view has been developed from many years based on moving

interfaces or layers. These studies emphasize the role of discontinuities in the

description of damage. When the transition from a sound material to a damaged

one is sharp, the evolution of damage is associated with a moving surface as in

[15, 7], when the transition is more regular, the evolution of damage is associated

with a moving layer [16, 17, 18].

This paper proposes a discussion of the existence of discontinuities and

presents a comparison between models to predict nucleation of defect. Influence

of the regularity of the fields on the defect initiation is studied using differ-

ent constitutive laws for damage modelling: a model with damage gradient as

in phase-field theory [12, 19, 20], and a model with internal constraint as the

thick-level-set model [16, 18].

2. A simple local damage model

The free energy w depends on the strain ε and on a scalar damage variable

d. The state laws are obtained by differentiating the free energy w with respect
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to the state variables [21, 22, 23]:

w(ε, d), σ =
∂w

∂ε
,Y = −∂w

∂d
, (1)

where σ is the local stress and Y the local energy release rate. For instance,

if we consider symmetric behaviour on traction and compression, we use the

potential:

w(ε, d) =
1

2
ε : C(d) : ε. (2)

The undamaged material has the properties C0 = C(0), the damaged one C1 =

C(1). The evolution of stiffness can be described by simple forms (Si = C−1
i ):

C(d) = ω(d)C0 + (1− ω(d))C1,

S(d) = ω(d)So + (1− ω(d))S1.
(3)

where ω(d) is a continuous decreasing function from ω(0) = 1 to ω(1) = 0.

When C1 6= 0, this model describes quasi-brittle materials, and totally dam-

aged material is obtained with C1 = 0. Such behaviour are generalizations of

behaviours considered in [24]. Function ω(d) can be a power law (α ≥ 0):

ω(d) =
1

1 + α
(1− d)α+1, α > 0, g(d) = −ω′ = (1− d)α. (4)

More complex functions ω have been introduced in [20, 25].

In presence of hardening, hardening function H(d) =
∫ d
o
h(p) dp is added to

free energy:

wH(ε, d) = w(ε, d) + H(d), (5)

and the local dissipation, per unit of volume, becomes:

D = Yhḋ, Yh = Y − h(d) = −∂wH
∂d

=
g(d)

2
ε : C0 : ε− h(d). (6)

2.1. Evolution of damage parameter

The evolution laws is given generally in terms of a regular function Φ(Y, d):

ḋ =
∂Φ

∂Yh
. (7)
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In this presentation, a generalized standard material [23] is used; this framework

ensures the positivity of the local dissipation. The driving force Y derives from

a positive function φ(ḋ) convex of ḋ (φ(ḋ) ≥ 0, φ(0) = 0):

Yh =
∂φ

∂ḋ
. (8)

When φ(ḋ) is a positive homogeneous convex function of degree one, the be-

haviour is rate independent.

Instead of φ(ḋ), the dual convex potential φ∗(Yh) may be used such that

φ∗(Yh) = sup
ḋ

(Yh.ḋ− φ(ḋ)), ḋ =
∂φ∗

∂Yh
. (9)

For non-regular function φ(ḋ), the differential (8) is replaced by the notion of

sub-differential

Yh ∈ ∂φ, φ(ḋ) + Yh(ḋ∗ − ḋ) ≤ φ(ḋ∗),∀ḋ∗. (10)

Consider, the non-smooth function:

φ(ḋ) =

Ycḋ, if ḋ ≥ 0,

+∞, otherwise.

(11)

The normality rule is recovered:

Yh ≤ Yc, ḋ ≥ 0, (Yh −Yc)ḋ = 0. (12)

In this case, the behaviour is rate-independent. Introducing the convex set C:

C = {Yh|Yh −Yc ≤ 0}, (13)

the normality rule is rewritten in terms of the indicator function IC of the convex

set C

ḋ ∈ ∂IC , IC =

0, if Yh ∈ C,

+∞, otherwise.

(14)
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2.2. Properties of damage

With respect to normality rule (11,12), the domain Ω is decomposed into

two sub-domains Ωo, Yh < Yc, ḋ = 0,

Ω+, Yh = Yc, ḋ ≥ 0 .

(15)

Any compatible variations δd of d with the normality rule are defined on the set

δd ∈ K = {d∗|d∗ = 0 over Ωo, d∗ ≥ 0 over Ω+}. (16)

2.3. Models with local discontinuities : an axial description

Consider a bar, with length L, under uni-axial loading. At point x ∈ [0, L],

displacement is u(x). The stiffness C0 is reduced to Young’s modulus E0. The

free energy (5) with hardening is then:

wH(ε, d) =
1

2
ω(d)E0ε

2 +

∫ d

0

h(p) dp. (17)

The equilibrium solution satisfies

σ = ω(d)E0ε,
dσ

dx
= 0. (18)

then the stress is uniform σ(x) = Σ. The driving force Yh becomes:

Yh =
g(d)

2
E0ε

2 − h(d). (19)

The fundamental solution. The fundamental solution is a uniform strain ε with

a uniform damage d. For ω = (1− d) and (1− d)2/2 and different h(d) = hod
β

we obtain different responses illustrated on figure 1. When softening occurs,

several solutions ∆ = u(L)/L can appear for the same Σ. At state Σ, the bar

can be decomposed into a finite number n of sub-domains Ωi, i = 1...n, over

each one the damage d is uniform d(x) = di. Therefore we have:

Yi =
1

2
g(di)E0ε

2
i − h(di) ≤ Yc, σi = ω(di)E0εi = Σ. (20)

Taking account of the local damage law ω and of the hardening function h =

hod
β , we have

f(di) = (α+ 1)2 Σ2

2E0(1− di)α+1
− hodβi ≤ Yc. (21)
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Figure 1: Homogeneous response of the bar, left : α = 0, ho = 0 and ho = 10, β =

1(−), 2(.), 5(−−) right: α = 1, ho = 0 and ho = 10, , β = 1(−), 2(.), 5(−−).

The function f is a decreasing function of di, damage evolves where f is maxi-

mum, this occurs on the sub-domain Ωm, where dm = maxi di. Simultaneously,

when damage evolves, the stress Σ decreases and the volume Ωm can be decom-

posed into two sub-domains :

Ω0
m where ḋ = 0, Ω+

m where ḋ > 0. (22)

This shows the multiplicity of solutions. To avoid such multiplicity more regu-

larity is required on the damage variable.

3. Models with moving interface

We consider a surface which separates two domains with different mechanical

characteristics, then mechanical fields can be discontinuous.

3.1. General features

Consider a body Ω decomposed into two sub-domains Ω0, Ω1 with common

boundary Γ. At a point XΓ, the normal vector to Γ is nγ outward Ω0. The

motion of Γ is described by the normal velocity vn(XΓ) = −anγ , (see figure 2).

The material of Ω0 is transformed into the material of Ω1 when the interface Γ is
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Figure 2: A moving surface : evolution of Ω0 and V ol1

moving with a ≥ 0. On the surface Γ any mechanical quantity f can experience

a jump denoted by ∣∣[ f ]∣∣
Γ

= f0 − f1. (23)

Any volume average has a rate defined by

d

dt

∫
Ω(Γ)

f dΩ =

∫
Ω(Γ)

ḟ dΩ−
∫

Γ

∣∣[ f ]∣∣
Γ
a dS. (24)

Time derivative of integrals defined on varying volume and surface domains has

been investigated in [26].

Perfect bonding and discontinuities. Along the interface perfect bonding is pre-

served at any time. Let us introduce the convective derivative.

Convective derivation. The convective derivative Da of any function f(XΓ, t) is

Da(f) = lim
τ→0

f(XΓ + vnτ, t+ τ)− f(XΓ, t)

τ
(25)

Any continuous mechanical quantity along Γ satisfies the general compatibility

conditions of Hadamard rewritten in terms of convective derivative:

∣∣[ f ]∣∣
Γ

= 0⇒ Da(
∣∣[ f ]∣∣

Γ
) =

∣∣[ ḟ ]∣∣
Γ
− a
∣∣[ ∇f ]∣∣

Γ
.nγ = 0. (26)

3.2. The sharp interface and moving discontinuity

The domain Ω is decomposed as a two-phase composite, sound material

in domain Ω0 with stiffness C0 and transformed material in domain Ω1 with
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stiffness C1. The local free energy is defined on each phase asw0(ε) = 1
2ε : C0 : ε, over Ω0,

w1(ε) = 1
2ε : C1 : ε+H, over Ω1,

(27)

where ε(u) is the strain. The constant H ≥ 0 is a stored energy due to the

transformation from material (0) to material (1).

The internal parameter d presents a strong discontinuity: d0 = 0, over Ω0

and d1 = 1, over Ω1, then
∣∣[ d ]∣∣

Γ
= −1. At every time, bonding is perfect

along the interface Γ, therefore displacement and stress vector are continuous.

3.3. The equilibrium state

We study now the equilibrium of the body Ω submitted to given boundary

conditions (BC).

Boundary conditions (BC). The external boundary ∂Ω of the body Ω is decom-

posed into two complementary parts (∂Ω = ∂Ωu ∪ ∂ΩT): on ∂Ωu the displace-

ment is imposed (u(x, t) = ud(x, t), x ∈ ∂Ωu) and on ∂ΩT, the traction Td(x, t)

is prescribed.

The unknowns of the equilibrium problem defined on Ω are displacements u

and position of the internal boundary Γ.

The potential energy. The total potential energy of the body is:

E(u,Γ) =

∫
Ω0(Γ)

w0(ε(u)) dΩ +

∫
Ω1(Γ)

w1(ε(u)) dΩ−
∫
∂ΩT

Td.u dS. (28)

The position of the interface Γ plays the role of an internal parameter.

Displacements are continuous along Γ, then velocities are satisfying the

Hadamard’s relations for discontinuities (26):∣∣[ u ]∣∣
Γ

= 0,
∣∣[ u̇ ]∣∣

Γ
− a
∣∣[ ∇u ]∣∣

Γ
.nγ = 0, (29)

where vn = −a(s) nγ is the normal velocity associated to the motion of Γ. As Γ

can move, variations of displacement should be compatible with possible motion

of Γ defined by δa ∣∣[ δu ]∣∣
Γ
− δa

∣∣[ ∇u ]∣∣
Γ
.nγ = 0. (30)
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Any variations δu of the displacement must be also compatible with the bound-

ary conditions (BC.3.3) : δu(x) = 0, x ∈ ∂Ωu.

Variations of the potential energy. The variations of E becomes:

∂E
∂u

.δu +
∂E
∂Γ

δΓ =
∑
i=0,1

∫
Ωi

σi : ∇δu dΩ−
∫
∂ΩT

Td.δu dS −
∫

Γ

∣∣[ w ]∣∣
Γ
δa dS.

after integration by parts, we obtain two contributions: one inside the domain

and another over the surface Γ

δE =
∑
i=0,1

∫
Ωi

−div σi.δu dΩ−
∫
∂Ω

n.σ.δu dS −
∫
∂ΩT

Td.δu dΩ

+

∫
Γ

nγ .
∣∣[ σ.δu ]∣∣

Γ
dS −

∫
Γ

∣∣[ w ]∣∣
Γ
δa dS.

(31)

Taking account of the compatibility of δu (30), two independent contributions

are obtained:∫
Γ

nγ .
∣∣[ σ ]∣∣

Γ
.δuo dS −

∫
Γ

(
∣∣[ w ]∣∣

Γ
− nγ .σ1.

∣∣[ ∇u ]∣∣
Γ
.nγ) δa dS. (32)

Variations with respect to displacement. For given Γ, the potential energy is

those of a two-phase linear composite, then for an equilibrium state, the energy

is minimum among the set of admissible displacements:

u ∈ K.A = {u∗/
∣∣[ u∗ ]∣∣

Γ
= 0, u∗ = ud over ∂Ωu}. (33)

The solution u for this minimum satisfies
∂E
∂u

δu = 0, which is exactly:

2ε(u) = ∇u +∇tu, σi =
∂wi
∂ε

= Ci : ε(u), div σi = 0, over Ωi,∣∣[ σ ]∣∣
Γ
.nγ = 0, over Γ, n.σ = Td, over ∂ΩT.

(34)

Hill’s orthogonality conditions.. As
∣∣[ u ]∣∣

Γ
= 0, a vector U(s) exists such that∣∣[ ∇u ]∣∣

Γ
= U⊗ nγ , then Hill’s orthogonality conditions [27] are fulfilled:

∣∣[ σ ]∣∣
Γ
.nγ = 0,

∣∣[ u ]∣∣
Γ

= 0,
∣∣[ σ ]∣∣

Γ
:
∣∣[ ε ]∣∣

Γ
= 0. (35)

9



Variations with respect to Γ. The variations of the potential energy with respect

to Γ are described by motion with normal velocity δa(s):

∂E
∂Γ

δΓ = −
∫

Γ

G(s)δa(s) dS. (36)

Using (32,35) the driving force associated to the Γ motion is obtained as the

local energy release rate G:

G =
∣∣[ w ]∣∣

Γ
− σ :

∣∣[ ε ]∣∣
Γ
. (37)

as proposed in [28, 29, 30, 31]. When interface is moving, the properties of

sound material change to those of transformed material, and a dissipation can

occur.

Dissipation and evolution of Γ. The total dissipation due to the motion of Γ is

Dm =

∫
Γ

G(s)a(s) dS. (38)

The motion a(s) can be defined by a kinetic relation given by a function φ(G)

such that a(s) =
dφ

dG
([28, 31]). Here, we consider non regular kinetic function.

The motion is governed by a normality law based on the driving force G

s ∈ Γ, a(s) ≥ 0, G(s) ≤ Gc, (G−Gc)a(s) = 0, (39)

then a(s) is defined on the set KΓ

KΓ = {a∗(s), s ∈ Γ/a∗(s) ≥ 0 if G(s) = Gc, a
∗(s) = 0 otherwise}. (40)

In these framework, two families of models are now considered : models without

or with dissipation.

Reversible behaviour. When there is no dissipation, whatever is the loading

history, contribution over Γ vanishes, this is realized for two cases

• Gc = ∞, then a = 0, the surface Γ is always fixed. There is no

transformation.

• Gc = 0, then G = 0 and a can be positive. Two situations are

possible depending on the constant H.
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– H = 0, a can be positive and the transformation is uncontrolled

by the loading;

– H > 0, the change of energy between the two phases controls the

transformation as in phase transformation occurring in memory

alloy or in pseudo-elasticity, examples can be founded in [32, 33].

A model with dissipation. The critical value Gc is finite. The surface Γ is

a moving surface whose velocity a is governed by the normality law. The

surface is defined by the implicit equation

G(XΓ, t) ≤ Gc, XΓ ∈ Γ. (41)

For this particular behaviour, the rate boundary value problem has been

presented in [15, 29] and criterion of stability and of bifurcation of evo-

lution problems have been proposed based on discussion of existence and

uniqueness.

Remark. When the dissipated energy depends only on the actual state, we can

introduce Wd =
∫

Ω1
Gc dΩ and add this term to the potential energy

Ed = E +Wd. (42)

The problem of evolution is governed by

∂Ed
∂Γ

(Γ∗ − Γ) =

∫
Γ

(
∣∣[ w ]∣∣

Γ
− σ :

∣∣[ ε ]∣∣
Γ
−Gc)(a− a∗) dS ≥ 0,∀a∗ ∈ KΓ. (43)

This point of view can be employed, but the separation between dissipated

energy Wd and stored energy
∫

Ω1
H dΩ must be specified.

3.4. Examples on a bar

A bar is decomposed into two domains, one [0,Γ] with Young’s modulus E1,

and the complementary part [Γ, L] made with sound material (E0). The bar is

loaded by applying displacement: u(0) = 0, u(L) = ∆L, ∆ is the global strain.

The local stress σ(x) is uniform. We discuss models without or with dissipation.
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3.4.1. Reversible behaviour with H > 0

The stress is uniform, then the strain is piecewise uniform. Consider ∆ the

total strain, ε0 the strain in initial phase with modulus E0, ε1 the strain in the

transformed phase, with modulus E1, E0 > E1. The proportion of transformed

phase is denoted by z. The bar is a composite, where the two phases are

separated by a boundary Γ with position zL. The total strain satisfies

∆ = zε1 + (1− z)ε0. (44)

The condition 0 ≤ z ≤ 1 is taken into account by a Lagrange multiplier γ:

z(z − 1) ≤ 0, γ ≥ 0, γz(z − 1) = 0. (45)

The total strain is imposed by a Lagrange’s multiplier γ∆ associated to the

relation (44). The potential energy of the bar is given by unit length ([32]):

E(z, ε0, ε1, γ∆, γ; ∆) = zw1(ε1) + (1− z)w0(ε0)

+ γ∆(∆− zε1 − (1− z)ε0) + γz(z − 1).
(46)

This energy is stationary with respect to all unknowns (z, ε0, ε1, γ, γ∆)

∂E
∂γ
δγ = z(z − 1)δγ = 0,

∂E
∂γ∆

δγ∆ = (∆− zε1 − (1− z)ε0)δγ∆ = 0,

∂E
∂ε1

= z(E1ε1 − γ∆) = 0,
∂E
∂ε0

= (1− z)(E0ε0 − γ∆) = 0,

G = −∂E
∂z

= −1

2
E1ε

2
1 −H +

1

2
E0ε

2
0 + γ∆(ε1 − ε0)− γ(2z − 1) = 0.

(47)

Taking account of (45): γ ≥ 0 and δγ 6= 0 if and only if z = 0 or z = 1; otherwise

γ = 0 and δγ = 0. This defines the potential value of z.

The reaction associated to ∆ is given by

∂E
∂∆

= γ∆ = Σ. (48)

The Lagrange’s multiplier γ∆ is the global stress.

Consider now an increasing strain ∆ from initial stress free state, the re-

sponse undergoes three main phases.
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Phase I- z = 0. At the beginning only phase (0) exists, then γ ≥ 0 and G = 0.

z = 0,
1

2
E1ε

2
1 +H +

1

2
Σε0 − Σε1 − γ = 0. (49)

For z = 0, ε1 is not determined, this phase does not exist yet. Hence

γ must be positive for all ε1, the minimum value for ε1 determines the

minimum value for γ, then

E1ε1 = Σ, γ = H +
1

2
Σ(ε0 − ε1) = H +

1

2
Σ2(

1

E0
− 1

E1
) ≥ 0. (50)

The transformation begins when the stress Σ reaches critical value Σc

defined by γ = 0.

Phase II-Transformation, 0 ≤ z ≤ 1. When ∆ is increasing from the state

(Σ = Σc), the two phases coexist and γ = 0. The stress being uniform,

we have

0 =
1

2
Σ(ε0 − ε1) +H = 0, Σ = E0ε0 = E1ε1. (51)

During the transformation we have

1

2
Σ2(

1

E0
− 1

E1
) +H = 0, (52)

and therefore

Σ = Σc, ∆ = Σc(
z

E1
+

1− z
E0

). (53)

The last equation defines the state z: when ∆ is increasing, z grows to

one.

Phase III-Total transformation, z = 1. Now, the phase 0 has disappeared,

γ ≥ 0, the condition of no dissipation is now

0 = −1

2
Σε2

1 +H − 1

2
E0ε

2
0 + Σε0 + γ, (54)

ε0 is now not defined, γ ≥ 0 implies

γ = −H +
1

2
Σ2(

1

E1
− 1

E0
). (55)

Then, the relation is true when Σ > Σc, and ∆ =
Σ

E1
so this is satisfied

when ∆ is increasing from the end of the previous state.
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Figure 3: Reversible Phase transformation,(Left) ; with dissipation (Right) ; < − > reversible

path

Unloading path from the end of phase III. From such a final point, assume now

that ∆ is decreasing, then γ ≥ 0 until Σ equal to Σc, at this stage γ = 0 ;

from that state, the equations are those of step II, then the relations between

∆(z) is recovered, z is decreasing as ∆ did, until z = 0. From that point, the

relations of step one are recovered, until ∆ = 0. The response is plotted on

Figure 3 (left). Some more general models corresponding to this framework can

be found in [32, 33, 34, 35].

3.4.2. A model with dissipation : a quasi-brittle material

Assume H = 0 and consider now that Γ is a moving surface. As previously,

the bar is loaded by applying displacement: (u(0) = 0, u(L) = ∆L). The local

stress σ is uniform with value Σ. Under increasing global strain ∆ the response

of the bar is decomposed in three phases.

Phase I- Elastic behaviour. The position Γ being known, the bar is an uni-

axial composite with a a global stiffness defined by

1

Ehom
=

Γ

LE1
+ (1− Γ

L
)

1

E0
. (56)

There is no propagation if

Σ2

2
(

1

E1
− 1

E0
) ≤ Gc, Σ ≤ Σc, (57)

with
Σ2
c

2
(

1

E1
− 1

E0
) = Gc. (58)

14



Phase II- Propagation. When G = Gc, Σ = Σc and the propagation is pos-

sible. With respect to the normality law, the interface is moving if and

only if Σ = Σc, and the definition of the global strain imposed

∆̇ =
a

L
(

1

E1
− 1

E0
)Σc, (59)

where a is the normal velocity of the moving surface. This relation is due

to the continuity of the displacement at the interface Γ.

Phase III - Total transformation. When the bar is totally transformed, the

material is now homogeneous with modulus E1

Note the main differences between the two examples. For phase transforma-

tion, with no dissipation, paths for loading and unloading are always the same.

For transformation with dissipation, the unloading path depends on the state

of transformation and the modulus of elasticity is always decreasing with the

irreversibly of the transformation, that is a damage model, (see figure 3).

4. Models with damage gradient

To avoid sharp interface, more regular description is proposed now. The

damage is now continuous and the sharp interface is replaced by a continuous

transition zone. In this zone, damage is continuous but its gradient is determined

by additional relations. In the same spirit of gradient damage models are phase-

field models. They are motivated from the elliptic regularization [36] of the

Mumford-Shah functional used for image segmentation [37]. This point of view

is generally used for initiation and propagation of cracks. We introduce in the

same spirit a stored energy function of d and a quadratic terms on ∇d :

ψ(d,∇d) = H(d) +
1

2
gc||∇d||2. (60)

Such descriptions have been used in [11, 12, 14, 20]
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4.1. The total potential energy and its variations

Now, the potential energy has the value

E(u, d) =

∫
Ω

w(ε, d) + ψ(d,∇d) dΩ−
∫
∂ΩT

T.u dS. (61)

Along Γ bonding is perfect, then displacements and stress vectors are contin-

uous. We consider now that damage is continuous too, then the moduli of

elasticity are continuous and hence the strain energy is also continuous.

Possible discontinuities are derived only from the energy ψ. Consider Γ a

surface with normal vector nγ where ∇d is discontinuous. Then variations of

potential energy with respect to u are unchanged, and due to the compatibility

on the discontinuity of ∇d we have

∂E
∂d
δd+

∂E
∂Γ

δΓ = −
∫

Ω

Y∗δd dΩ +

∫
∂Ω

gc∇d.n δd dS + gc

∫
Γ

nγ .
∣∣[ ∇d ]∣∣

Γ
δd0 dS

gc

∫
Γ

(nγ .∇dd
∣∣[ ∇d ]∣∣

Γ
.nγ −

1

2

∣∣[ ||∇d||2 ]∣∣
Γ
)δa dS,

with

Y∗ = Y − h(d) + gc∆d. (62)

Using now the normality rule,

ḋ ≥ 0, Y∗ −Yc ≤ 0, (Y∗ −Yc)ḋ = 0. (63)

The domain Ω is then decomposed into two sub-domains

• Ω− where Y∗ −Y < 0, then ḋ = 0,

• Ω+ where Y∗ −Y = 0, then ḋ ≥ 0.

For a distribution of damage d(x) over Ω, the decomposition (Ω−,Ω+) is known,

and the variations δd ≥ 0 are defined only on Ω+:

ḋ ∈ K, δd ∈ K = {ḋ∗/ḋ∗ ≥ 0, over Ω+, ḋ = 0, otherwise}. (64)

This implies that

• discontinuities can appear only on the boundary ∂Ω+ ; if Γ is inside Ω+,

δd0 6= 0, if Γ ⊂ ∂Ω+ ∩ Ω−, δd0 = 0,

16



• ∇d.n = 0 on ∂Ω+ ∩ ∂Ω.

The last properties shows that ∇d.n = 0 on ∂Ω, this is true for the initial

value. the evolution of d and ∇d are depending on the evolution of Ω+ and on

∂Ω+ ∩ ∂Ω, δd 6= 0.

Then if there is a discontinuity an additional term along Γ = ∂Ω+ appears

G = gc(
1

2

∣∣[ ∇d2
]∣∣

Γ
− nγ .∇d+

∣∣[ ∇d ]∣∣
Γ
.nγ). (65)

The total dissipation is then

D =

∫
Ω

Y∗ḋ dΩ +

∫
Γ

G a dS. (66)

As for volume term, we adopt a normality rule for the evolution of Γ

s ∈ Γ, a(s) ≥ 0, G ≤ Gc, a(s) (G−Gc) = 0. (67)

A transition zone without surface dissipation.. We have several possibilities to

have only volume dissipation.

• Gc = ∞ then a = 0, Γ is fixed, if Gc is inside Ω+, δd 6= 0 then ∇d.nγ
is continuous. the only possibility to have gradient discontinuity is on

Γ = ∂Ω+ ∩ Ω−.

• Gc = 0 then G = 0. For an iso-d,
∣∣[ ∇d ]∣∣

Γ
= Gnγ and G = 0 implies∣∣[ ∇d ]∣∣

Γ
.nγ = 0, that is the continuity of ∇d.

In the first case, the damage zone seems to be fixed, then the damage zone does

not evolved ; then to ensure an evolution the best choice is to consider that∣∣[ ∇d ]∣∣
Γ

= 0.

4.2. On the bar in extension

On a uni-axial bar, consider a continuous transition zone, of thickness l.

The bar is fixed in x = 0 the displacement is imposed at extremal point x = L.

Along the bar, the state of stress is uniform. The evolution of damage is given

by the normality law

ḋ ≥ 0, Y∗ −Yc ≤ 0, (Y∗ −Yc)− h)ḋ = 0. (68)
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The uniform solution is always possible during the phase of loading until the

maximum value is reached see Fig.1. But from this point another solution is

proposed. The bar is decomposed into two domains Ω+ = [0, xm],Ω− = [xm, L]

As dissipation occurs only inside the volume, the respect to normality law gives

the damage distribution:

Σ2

2Eω(d)
−Ycd−H(d) +

1

2
gc(

dd

dx
)2 = Cst, over Ω+. (69)

The constant Cst is defined by the boundary condition in dm = d(0), d(xm) = 0

Σ2

2Eω(dm)
−Ycdm −H(dm) =

Σ2

2E
. (70)

Then Σ(dm) is determined, integration of (68) gives the profile d(x). Such a

profile is given on figure 7, for the curve where xa = xb. When dm tends to 0,

the respect to the normality rule defines a critical value Σc for which appears a

damaged zone. This can be considered as the critical value for the initiation of

a defect.

This shows a possible bifurcation from the equilibrium path associated to the

homogeneous solution. When d(0) = 1 the bar is broken, this gives a condition

on the critical loading for an apparition of rupture. Initiation of defect can also

be defined at the critical value for bifurcation point along the equilibrium path.

5. A model of graded damage

This model is based on convex analysis and an internal constraint is imposed

such that the damage gradient is finite. The damage variable is submitted to

two internal constraints.

• To take into account of 0 ≤ d ≤ 1 a convex constraint can be introduced

φ1(d) = d(d− 1) ≤ 0. (71)

• In the case of graded damage materials [16, 17] a second convex constraint

is imposed to control the gradient

φ2(d,∇d) = ||∇d|| − f(d) ≤ 0. (72)
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this function is convex if f is concave, with f(d) > 0.

These convex constraints are imposed by introduction of Lagrange’s multipliers

γi or by indicators functions, these formulations are equivalent.

γi ≥ 0, φi ≤ 0, γiφi = 0. (73)

5.1. The generalized model

In such description the generalized model has a local augmented free energy

L(ε, d,∇d, γi) = w(ε, d) +H(d) + γ1φ1(d) + γ2φ2(d,∇d), (74)

and we define the local state equations

σ =
∂w

∂d
, Y = −∂w

∂d
. (75)

5.2. The equilibrium problem

Consider a body Ω. The external boundary is submitted to the boundary

condition (BC. 3.3). The unknowns of the equilibrium problem of body Ω are

displacement u, damage d, the domain of sound material with boundary Γ.

5.3. On the regularity of the fields

Inside Ω, the displacement is continuous, but the other mechanical fields can

be discontinuous. The bonding is perfect, then the displacement is continuous

as well as the stress vector, and we assume that damage is continuous too. As

damage is continuous, the moduli C(d) are continuous, the strain energy and

∇u are continuous anywhere, but ∇d can be discontinuous.

5.4. The total potential energy

The total potential energy is given by

E(u, d, γi) =

∫
Ω

L(ε(u), d,∇d, γi) dΩ−
∫
∂ΩT

Td.u dS. (76)
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Due to continuity conditions of the fields, it is obvious that the strain energy

is continuous,
∣∣[ w ]∣∣

Γ
= 0. The variations of the potential energy are given in

terms of δu, δd, δa, δγi, then

δE =

∫
Ω

(σ : ε(δu)−Yδd) dΩ−
∫
bdV t

Td.δu dS +

∫
Ω

γ1(2d− 1)δd dΩ

+

∫
Ω

γ2(
∇d.∇δd
||∇d||

− f ′δd) dΩ +

∫
Ω

φ1δγ1 + φ2δγ2 dΩ.

(77)

After integration by parts we obtain (δu = 0, over ∂Ωu):

δE = −
∫

Ω

div σ.δu dΩ +

∫
∂ΩT

(n.σ − Td).δu dS +

∫
Ω

φ1δγ1 + φ2δγ2 dΩ

−
∫

Ω

Y∗δd dΩ +

∫
Γ

∣∣[ y∗Γδd ]∣∣
Γ

dS +

∫
∂Ω

y∗δd dS.

(78)

Variations with respect to displacement. For a given distribution of d, the system

is in equilibrium, this implies that

σ =
∂w

∂ε
, div σ = 0 in Ω,n.σ = Td, over ∂ΩT. (79)

Variations with respect to multipliers. The variations with respect to γ1 and γ2

define a partition of Ω: Ω = Ω− ∪ Ω−2 ∪ Ω+
2 :

x ∈ Ω−, φ1 = 0, γ1 ≥ 0, φ2 ≤ 0, γ2 = 0,

x ∈ Ω+, φ1 < 0, γ1 = 0,

x ∈ Ω−2 , φ2 < 0, γ2 = 0,

x ∈ Ω+
2 , φ2 = 0, γ2 ≥ 0.

(80)

5.4.1. Variations with respect to d and to Γ

We obtain three contributions∫
Ω

−Y∗δd dΩ +

∫
Γ

∣∣[ y∗δd ]∣∣
Γ

dS +

∫
∂Ω

y∗δd dS. (81)

Along the surface Γ, damage is continuous, then

∣∣[ δd ]∣∣
Γ

+ δa
∣∣[ ∇d ]∣∣

Γ
.nγ = 0. (82)

Consider now each term:
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• Inside the volume : the definition of the driving force Y∗ is obtained and

due to the normality law we have:

x ∈ Ω, Y∗ = Y − h+∇(γ2∇d)
1

f
− γ1(2d− 1) ≤ Yc. (83)

On Ω+, the variations must be compatible with the normality rule. The

damage can evolve only on Ω+,

ḋ ∈ K, δd ∈ K. (84)

Then on Ω+, γ1 = 0.

• Along Γ, using (82) we have
∣∣[ y∗δd ]∣∣

Γ
=
∣∣[ y∗ ]∣∣

Γ
δd− −Gδa,

x ∈ Γ, y∗ = γ2nγ .
∇d
||∇d||

, G = γ+
2 nγ .

∇d
||∇d||

+∣∣[ ∇d ]∣∣
Γ
.nγ . (85)

• Along ∂Ω, y∗ = n.γ2
∇d
||∇d||

.

Study of possible discontinuities. Over Ω−, we have γ2 = 0. If Γ ⊂ Ω+ then

δd ≥ 0 and

• Γ ⊂ Ω−2 , then y∗ = 0 because γ2 = 0.

• Γ ⊂ Ω+
2 , γ+

2 ≥ 0, γ−2 ≥ 0 ;
∣∣[ d ]∣∣

Γ
= 0 then

∣∣[ φ2

]∣∣
Γ

= 0, consequently∣∣[ ||∇d|| ]∣∣
Γ

= 0.

The point x belongs to an iso-damage curve ; at that point, the normal

vector to this level-set is nγ . Then ∇d+ = ±f(d)nγ ,∇d− = ±f(d)nγ . As

Γ ⊂ Ω+
2 , δd− ≥ 0, as

∣∣[ ||∇d|| ]∣∣
Γ

= 0, and consequently we have:

–
∣∣[ γ2∇d

]∣∣
Γ
.nγ = 0 , (∇d+ −∇d).nγ = 0 then γ+

2 = γ−2 ,

–
∣∣[ γ2∇d

]∣∣
Γ
.nγ = 0 with (∇d+ +∇d−).nγ = 0 then γ+

2 = γ−2 = 0.

The last possibility is when Γ ⊂ ∂Ω+ ∩ Ω−. In this case γ−2 = 0, the

contribution on Γ is reduced to Gδa or equivalently y∗+δd
+.

Then, some additional terms must be added to define the dissipation and

the evolution of the boundary Γ. This can be made by introducing a normality

law (67), then a(s), δa(s) are fields belonging to the set KΓ.
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The model of graded damage. For the model of graded damage, we have no

contribution on Γ, the dissipation occurs on the volume only. This implies that

γ+
2 = 0 along Γ.

On external boundary. On the external boundary, we have γ2∇d.n = 0,

x ∈ ∂Ω,

φ2 < 0 γ2 = 0,

φ2 = 0 γ2 ≥ 0.

(86)

When φ2 = 0 then ||∇d|| > 0, the condition γ2∇d.n does not imply ∇d.n = 0,

but γ2 = 0. This condition is one of the main difference with models of section

4.

5.5. The bar under uni-axial extension

We study now the bar with this new constitutive law. Assuming that a

lcL x(t)

d(X, t)
1

0

ΩcΩ2 Ω1

E(d)E2 E1

a

Γ(t)

X

Σ

Figure 4: A model of continuous transition; profile of damage along a layer of finite thickness.

damaged zone is established from 0 to xm = Γ− l, the common boundary with

the sound material is on xm = Γ. Then the Young modulus is a decreasing

function of x, E(xo) = E1, E(Γ) = E0 As the Young modulus depends on

d(Γ(t)− x), then

ḋ+ a∇d.ex = 0. (87)

The dissipation is given as

Dm = a

∫
lc

1

2
Σ2(−

E′,d
E2

) d′,x dx = aΣ2

∫ 0

1

(−
E′,d
2E2

) dd =
∣∣[ w ]∣∣

Γ
a. (88)
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The dissipation does not depend on the profile d(Γ − x). This is due to the

absence of curvature of the front and to the hypothesis of local steady state.

Consider now that the damage initiates at x = 0, the damage propagates inside

Σ

Σc

∆

∆c

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Figure 5: The bar in extension : ω = 1 − d, h = 0, depending on L : L = lc, ” − ”;L =

2lc, ”−−”, L = 3lc, ”.”

the bar and its value at x = 0 becomes d(0) = dm at a moment.

Consider φ2 = 0 with f(d) =
1

lc
, damage profile is

d(x) = dm −
x

lc
, Ω2 = [0, xm = lcdm]. (89)

The Lagrange multiplier γ2 satisfies the normality law

Y −Yc − h(d))− 1

lc

dγ2

dx
= 0. (90)

Taking account of the relation x = lc(dm − d), by integration of this equality

with respect to d one obtain:

Σ2

2Eω(d)
−Ycd−H(d)− 1

l2c
γ2 = Cst, (91)

where the constant is determined by the boundary conditions d(0) = dm,

d(xm) = 0 and γ2(0) = γ2(xm) = 0. This defines the tension Σ compatible
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γ2
Yclc

x

lc
0

0.15

0.30

0.45

0 0.2 0.4 0.6 0.8 1.0

Figure 6: The Lagrange’s multiplier γ2 is increasing with increasing values of d(0) = dm =

xm/lc : .2, .4, .6, .8, .9

with the damage profile:

Σ2

2E
(

1

ω(dm)
− 1) = Yc(dm)−H(dm). (92)

and also the value of the Lagrange’s multiplier γ2, For ω = 1− d, h(d) = 0, we

obtain

γ2 = Ycl
2
c

d(dm − d)

1− d
≥ 0. (93)

see figure 6. By integration of the constitutive law,

ε =
Σ(dm)

ω(d)
, L∆ =

∫ L

0

ε(x) dx, (94)

we obtain the global response of the bar: (Σ(dm),∆(dm)). The corresponding

curves are presented on figure 5, for different length L = lc, 2lc, 3lc.

For the same functions ω(d),H(d) and the same values of dm, the obtained

profiles of damage, for the modelling with the damage gradient or the graded

damage, are distinct, the global responses too.(See later comment on figure 7

at the end of Sec. 6).

6. A regularized graded damage model

For practical application it can be useful to regularized the graded damage

model. It can be done by addition of a quadratic term ||∇d||2 as previously
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or by using a Moreau-Yosida approximation of the convex constraint φ2 on the

form:

IC =
1

2η
|φ2|2+. (95)

Addition of a functional ψ(d,∇d) = H(d) +
c

2
(||∇d||)2 can be used also and a

discussion on the possible discontinuity on the damage gradient must be inves-

tigated. The reasoning is exactly the same as previously.

We consider that the dissipation occurs only in the volume, then ∇d has no

discontinuity, this is a regularization of graded damage model. For this simple

example, the problem of the bar is revisited.

6.1. On the bar in extension

We reconsider a one-dimensional bar of length L subject to an increasing

elongation. The free energy density is now

wc =
1

2
(1− d)Eoε

2 +
1

2
c||∇d||2, (96)

where c > 0 is a parameter of regularization. The constraint φ2 ≤ is chosen as:

φ2(d) = ||∇d|| − 1

lc
≤ 0. (97)

The variation of the potential energy with respect to d implies that the driving

force associated to d is now

Y∗ =
Σ2

2Eo(1− d)2
− 1

lc

dγ2

dx
+ c∆d. (98)

with the boundary condition:

∇d.n = 0, over ∂Ω. (99)

We obtain two families of solutions. The first one is homogeneous solution,

whereas the second gives initiation and growth of a defect. We consider the

second family with initiation of a defect at x = 0. During damage evolution,

two phases are distinguished, first during which φ2 < 0 and γ2 = 0, a second

phase during which the constraint is satisfied, and the regularization term as no

contribution.
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Actually condition Y∗ = Yc with γ2 = 0 allows us to obtain the damage

distribution along the bar, by integration

Σ2

2Eo(1− d)
−Ycd+

1

2
c||∇d||2 = Cst. (100)

The boundary conditions ∇d(0).n = 0,∇d(L).n = 0, d(L) = 0 determine the

constant as Cst = Σ/2Eo assuming d(0) = dm, the value of the stress is given

by

Σ2 = 2EoYc(1− dm) = Σ2
c(1− dm). (101)

This solution is valid until φ2 < 0, to obtain a value for which this condition is

violated it is necessary that

K =
c

2l2cYc
< 1 (102)

Under this condition, a domain [xa, xb] where φ2 = 0 appears and

d = d(xa) +
xb − x
lc

, x ∈ [xa, xb], (103)

and γ2 satisfies the conditions:

• For x ∈ [xa, xb] ,

γ2 ≥ 0, γ2(xa) = γ2(xb) = 0,

Cst =
Σ2

2E(1− d)
− 1

lc
γ2 +

c

2l2c
−Ycd,

(104)

• Γ ∈ {xa, xb} ∣∣[ ∇d ]∣∣
Γ

= 0,Γ ∈ {xa, xb}, ∇d(0) = 0. (105)

Finally we obtain K = d(xa)d(xb) and x+ = xa, x
− = xb

d(x±) =
1

2
(dm +K)(1±

√
1− 4K

(dm +K)2
). (106)

For a given K the first value of damage do for which φ2 = 0 is fulfilled at the

point xa = xb is given by

do = 2
√
K −K. (107)
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0.0
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Figure 7: The damage profile (x, d(x)) for different d(0) = dm, (xa, d(xa)) : ”+”, (xb, d(xb))

:”o”

The smaller is K, the more localized is damage near x = 0 during the first

phase. The global response is depending of the length of the bar, and the profile

of damage depends on the K value. We recognise on figure 7 the progression of

damage inside the bar, for increasing value of dm from do. The profile is linear

with slope 1/lc on segment [xa(dm), xb(dm)].

On figure 7, when xa = xb the damage profile corresponds to the response

without φ2. This indicates that the damage profiles are identical for the same

laws (70) ω(d),H(d),Yc until φ2(d,∇d) = 0.

7. On the role of the curvature: example on a sphere

The role of the curvature of the front of damage is investigated, solving the

evolution problem of sharp interface and graded damage for a sphere under

radial loading.

7.1. The inhomogeneous sphere under radial loading

Consider a sphere with external radius Re composed by elastic linear mate-

rials with same shear modulus µo and bulk modulus K(r) depending on radius

r. Under radial loading the displacement is u = u(r)er, the strain becomes

ε =
du

dr
er ⊗ er +

u

r
(eθ ⊗ eθ + eφ ⊗ eφ), (108)
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the stress is reduced to

σ = σrrer ⊗ er + σθθeθ ⊗ eθ + σφφeφ ⊗ eφ, (109)

where σθθ = σφφ. Using the local constitutive law, the displacement u satisfies

the conservation law of momentum

d

dr

(
Λ(r)(

du

dr
+ 2

u

r
)
)

= 0, (110)

where Λ(r) = λ(r) + 2µo ; λ, µ are the Lamé’s moduli of elasticity. 3Λ(r) =

3K(r) + 4µo. At the center of the sphere (r = 0) the displacement vanishes,

then the solution is

r2u(r) = A I(r), I(r) =

∫ r

0

t2

Λ(t)
dt. (111)

A is determined by the boundary condition at surface (r = Re):

u(Re) = ∆ Re, R3
e ∆ = A I(Re). (112)

The total strain energy of the sphere is given by

E = 2π

∫ Re

o

σ : ε r2 dr =
1

2

∫
r=Re

σ(Re).u(Re) dS = πR2
eσrr(Re)u(Re). (113)

As the radial stress (σrr) is

σrr = λ(
du

dr
+ 2

u

r
) + 2µo

du

dr
= A− 4µo

u

r
, (114)

the value of the total strain energy becomes

E = 4πR3
e ∆2 (

R3
e

I(Re)
− 2µo). (115)

At point r = Re, σrr(Re) = A − 4µo∆ = Σ. The above equations are valid for

any distribution of the elastic modulus Λ(r). We consider now two examples,

one with a sharp interface, another for graded damage modelling.

7.2. The sharp interface

For a sharp interface, the sphere is composed with two elastic materials with

properties Λo = λo + 2µo,Λ1 = λ1 + 2µo. Then the integral I depends on the

position of the interface Γ between the two materials

J(Γ) = I =

∫ Γ

o

t2

Λ1
dt+

∫ Re

Γ

t2

Λo
dt. (116)
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The volume fraction c of phase 1 is c = (Γ/Re)
3. The boundary condition

implies that

4µo∆ = A(3Koco + 4µo). (117)

When K1 = 0, the solution is solution for a cavity, because we have σrr(Γ) = 0

in this case. We consider now this case.

The energy release rate. When the interface is moving, with velocity a = Γ̇, the

total strain energy changes when ∆ is fixed. Then the dissipation is

Dm = −∂E
∂Γ

Γ̇ = 4πA2 ∂J

∂Γ
a = 4πΓ2G Γ̇. (118)

The energy release rate associated to the interface motion is then

G(∆,Γ) = A2 Λo − Λ1

ΛoΛ1
. (119)

Evolution of the cavity. The evolution of Γ is governed by the normality law

a ≥ 0, G−Gc ≤ 0, a(G−Gc) = 0. (120)

The inequality G(∆,Γ) ≤ Gc gives an implicit equation of the moving surface

taking account of the definition of A.

The critical state. When G = Gc, A = Ac and we define the critical strain Ec

and a critical stress Σc

A2
c = Gc

ΛoΛ1

Λo − Λ1
, 9∆c =

Gc

Λo − Λ1

Λ1

Λo
, Σc = σrr(Re) = 3Ko(1− c)Ac.

(121)

The evolution of the composite sphere. The initial value Γ is given. Consider

the global strain ∆ is increasing. The global response is those of a composite

sphere with linear elastic behaviour, until the ∆c value is reached.

From that state, if the radial expansion ∆ is imposed, the interface moves,

and the global response is

∆(Γ) =
Ac
4µo

(3Koc(Γ) + 4µo) Σ = σrr(Re) = 3KoAc(1− c(Γ)). (122)
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Figure 8: The sharp interface : the global response

This value is valid until Γ = Re. The material is totally broken.

The response is obtained also for 0 < K1 < Ko for which the energy release

rate is

G = 9L2(Ko −K1)(3K1 + 6µo)(3Ko + 4µo),

L =
∆

3K1 + 4µo + 3c(Ko −K1)
.

(123)

Initiation of a defect. On figure 8, the value ∆o
c is the value of ∆c(Γ) when

the radius Γ vanishes. This is the critical value of evolution for an infinitesimal

spherical defect.

This point can be viewed as a bifurcation point, or an analysis of imperfection

for the problem of evolution of an homogeneous sphere with compressibility Ko

and the evolution of a perturbed system by a vanishing spherical defect. This

analysis of bifurcation gives a condition of initiation of defect which depends on

the geometry of the imperfection [8].

7.3. Case of a cavity

The case af a cavity is obtained with K1 = 0. The evolution of the radial

stress σrr(r) is shown on figure 9. We see the propagation of damage regarding

the value R, σrr(R) = 0 as function of ∆.
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Figure 9: The sharp interface for a cavity : σrr(R), for R/Re = .2, .4, 1, Ri/Re = .1

7.4. A graded damaged sphere

Consider now the graded damage behaviour. For a given distribution d(r),

∇d = d′(r)er, ||∇d|| = 1/lc, d(r) = d(a) ± (r − a)/lc. We consider particular

evolution of the elastic modulus Λ(d).

1

Λ
=

1− d
Λo

+
d

Λ1
, (124)

The integrals I(r) are now depending on the definition of d and on the local

distribution Λ(r) which evolves with the position of the interface Γ.

Under increasing loading, after a critical value, a damaged zone appears and

develops until a finite thickness lc is reached. After this phase of elaboration,

the damage zone propagates as a layer with constant thickness lc. This point

of view implies that d varies from 0 to 1 on the distance lc. Under the radial

loading, we consider that d depends on r and d(r) =
Γ− r
lc

.

Formation of a transition zone. During the formation of the transition zone,

Γ ≤ lc and the damage parameter takes the values:
r ≤ Γ, d(r) =

Γ− r
lc

,

r ≥ Γ, d(r) = 0.

(125)
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Propagation of the transition zone. When the transition zone has a thickness

equal to lc, Γ ≥ lc and the damage parameter satisfies:
0 ≤ r ≤ Γ− lc, d = 1,

Γ− lc ≤ r ≤ Γ, d =
Γ− r
lc

,

Γ ≤ r ≤ Re, d = 0.

(126)

With these definitions, we can study the initiation of a small defect in an ho-

mogeneous sphere.

The total dissipation.. The total dissipation is reduced to the volume term∫
Ω

Yḋ dΩ, where Y = −∂w
∂d

is the local energy release rate:

Y = −1

2
tr2(ε)

∂Λ

∂d
= − A2

2Λ2(d)

dΛ

dd
≤ Yc, (127)

and

Dm =

∫
Ω

Yḋ dΩ = −2πA2

∫ Re

0

1

2Λ2lc

dΛ

dd
r2 dr Γ̇o, (128)

which is nothing that:

Dm = 2πA2 d

dΓ

(∫ Re

0

ρ2

Λ(d)
dρ
)

Γ̇o ≤ 2πYc

∫ Re

o

ρ2

lc
dρΓ̇, (129)

taking account of the relation between d and Γ.

The equilibrium solution is given by

r2u(r) = A

∫ r

0

ρ2

Λ(ρ)
dρ = A I(r). (130)

We study now, the evolution of the damage during an increasing loading ∆.

Phase I. Initiation of the transition zone Γ ≤ lc.

J(Γ) =

∫ Γ

o

(d(ρ)

Λ1
+

1− d(ρ)

Λo

)
ρ2 dρ+

∫ Re

Γ

ρ2

Λo
dρ =

R3
e

3Λo
+

Λo − Λ1

ΛoΛ1

Γ4

12lc
.

The boundary condition imposes that R3
e∆ = AJ(Γ). The dissipation gives the

definition of the equivalent energy release rate G

G = A2 ∂J

∂Γ
= A2 Λo − Λ1

ΛoΛ1
≤ Yc. (131)
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During this phase (b Λ1Λolc = Λ1 − Λo), the displacement is
r ≤ Γ, r2u = A

(
(

1

Λo
− bΓ)

r3

3
+ b

r4

4

)
,

r ≥ Γ, 12r2u = A
(4r3

Λo
− bΓ4

)
,

(132)

and

R3
e∆ = A(

R3
e

3Λo
− bΓ4

12
), Σ = A(

Ko

Λo
+ bµo

Γ4

3R3
e

) = A− 4µo∆. (133)

During the formation of the transition zone, the value of A = Ac is constant,

this gives the same value than the composite sphere with sharp interface at the

limit d(0) = 0+, but for the initiation of a kernel of damaged material with

modulus Λ1, the damage parameter is d = 1. For this state, the strain critical

value is determined when Γ = lc and we obtain ∆1
c :

Σ = A− 4µ∆1
c , ∆1

c = A
J(lc)

R3
e

. (134)

This strain critical value is greater than the value for the composite sphere with

the sharp interface because

J(lc) = J(0+) +
Λo − Λ1

ΛoΛ1

l3c
12
. (135)

The value for the sharp interface is recovered with lc = 0, this is natural, the

moving layer being reduced to a sharp interface.

Here, the solution of homogeneous sphere gives a critical load for bifurcation

at point A(∆) = Ac, then from this point a kernel of damaged material is

initiated and a moving layer begins to propagate from the center. When the

value of damage d(0) at the center reaches the value d(0) = 1 a cavity appears

and after grows. This describes initiation of a defect. The critical value for

initiation of a defect obtained with (Y(0) = Yc) or of a cavity d(0) = 1 are not

the same, if the first one is local and depend only on mechanical characteristic,

the second depends on the loading history. This has been discuss in [8].

8. Conclusion

The discussion of the regularity of damage parameter implies different mod-

elling of damage evolution associated to different concepts of dissipation, with
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Figure 10: The local stress σrr(r), r/Re ∈ {.2, .3, .5, .7, .9, 1}

distinction between volume dissipation, and dissipation according to moving

surface of mechanical discontinuities.

In this case, the propagation of the damage zone is described by the position

of this interface and discontinuities of mechanical fields are present. To avoid

such strong discontinuities, the model is related to a moving layer as in gradient

damage modelling without discontinuities of damage. In this case, damage

gradient can be discontinuous, and the damage gradient can be regularized

by additional quadratic terms as in phase field, or by a convex constraint on

his norm. The last description gives a physical parameter lc which is directly

connected to the thickness of the moving layer.

As well as the phase field, the graded damage model can be used to describe

in the same framework initiation of defect and its propagation. Problem of

stability and bifurcation of solution must be also investigated. In the model of

uni-axial, after a maximum load, the solution loses its uniqueness, bifurcation

occurs. In this case, additional complementary constraint on volume of the

damaged zone is a potential way to control damage evolution.
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