First description of nest-decoration behaviour in a wild sub-Antarctic shorebird

Samara Danel, Timothée Zidat, Annick Lucas, Dora Biro, Francesco Bonadonna

To cite this version:

HAL Id: hal-03324982
https://hal.archives-ouvertes.fr/hal-03324982
Submitted on 24 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
First description of nest-decoration behaviour in a wild sub-Antarctic shorebird

Samara Danel a,*, Timothée Zidat b, Annick Lucas c, Dora Biro a,1, Francesco Bonadonna c,1

a Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
b Cardiff University, School of Bioscience, Museum Avenue, Cardiff, Wales, CF10 3AX, UK
c CEFE UMR 5175, CNRS - University of Montpellier - Paul-Valéry Montpellier University EPHE, Montpellier, Cedex 5, France

A wide range of animal species accumulate objects in, on, and/or around structures they build.

Sometimes, these accumulations are purely incidental, while in other cases the materials are deliberately displayed to serve signalling purposes (extended phenotype signals). In this pilot study, we employed systematic in situ observations and camera trapping to describe for the first time that both sexes of a territorial shorebird, the black-faced sheathbill (*Chionis minor* ssp *minor*) collect, carry, and arrange colourful marine shells and dried twigs within and around their nest cavity. Our observations expand the taxonomic breadth of avian extended phenotype signals, by showing that at least one species within a largely understudied group i.e., Aequorlitornithes, exhibits nest-decoration behaviour. Multiple manipulative experiments are needed to explore further the signalling function of these decorations, which opens new exciting avenues for animal communication and cognition research.

Keywords: animal communication · *Charadrius* · extended phenotype · nest decoration · non-bodily ornament · signal
Introduction

From the honeybee waggle dance to the dazzling mating display of cuttlefish, all live animals possess the capacity to convey to others information that is crucial in various biological contexts (Bradbury and Vehrencamp 2011). While numerous species use bodily traits or behavioural displays to communicate, signals can also be expressed externally by animals as an extension of their phenotype (Dawkins, 2016). These ‘extended phenotype signals’ originate from the manipulative action or construction behaviour of the signaller and have the ability to provide information efficiently even in the signaller’s absence (Schaedelin and Taborsky 2009). Recently, extended phenotype signals have received considerable attention in evolutionary and behavioural research as they represent excellent opportunities to study animal communication, and, contrary to bodily traits, are particularly well suited to experimental manipulations (Coleman et al. 2004, Jordan et al. 2016, Madden 2002, Magalhaes et al. 2013, Schaedelin and Taborsky 2009). For instance, a wide range of animal taxa use purely ornamental extended phenotype signals, resulting in the collection of decorative materials (reviewed in Schaedelin and Taborsky 2009). Those materials can be easily experimentally manipulated and thus offer elegant, relevant models for elucidating how they have evolved, what signalling function they serve, and how flexible individuals are in their deployment (Hansell 2000, Keagy et al. 2009, Sergio et al. 2011).

This latter behaviour i.e., the gathering of objects as decorations, has been particularly well described in birds, probably due to high observation effort (Amundsen 2003), ease of observation (Shumaker et al. 2011), and intricate nest-building abilities (Hansell 2000). In most cases, objects are associated with the building of nests or with the manipulative actions involved in nest construction (Borgia, 1986). Such decorations can originate from various types of inorganic (e.g. glass, small stones: Borgia 1995), vegetal (e.g. berries: Gilliard 1969, Forshaw and Cooper 1977, flowers: Borgia 1986), animal (e.g. animal fur: Pruett-Jones and
Pruett-Jones 1988, feathers: Veiga and Polo 2005), or human artefact materials (e.g. toothbrush: Velenga 1970, foil: Jagiello et al. 2018). The diversity of these decorations and their taxonomically widespread use throughout the class Aves has fuelled the debate over their function for decades (Schuetz 2005).

Probably the most famous examples of avian extended phenotype signals are found in the Ptilonorynchidae family (Passeriformes), where males of 15 species build structures – bower – that are often elaborately adorned to attract females during the breeding season (Borgia 1986, Hansell 2000, Doerr and Endler 2015, Endler et al. 2006, Endler et al. 2010, Endler 2012, Kelley and Endler 2012, Endler et al. 2014). In some bowerbirds, decorations coupled with structure building capacity may be associated with a larger brain compared to other related and unrelated non-bower building bird species (Madden 2001), and are hypothesized to be subject to cultural transmission (Madden 2008). Lately, the study of nest decorations has been particularly flourishing and has revealed other nonmutually exclusive functions (e.g. indicators of viability, territory quality, and conflict dominance of the signaller, Sergio et al. 2011, Canal et al. 2016) and factors affecting its expression (e.g. breeding density, Rubalcaba et al. 2017).

So far, only a few bird species – mainly Passeriformes – have been the object of experimental investigations (Schuetz 2005, Sergio et al. 2011, Figure 1). For a better understanding of the factors that drove the evolution of this behaviour, more effort is necessary in exploring nest-decoration activity in a larger range of species (Delhey et al. 2011, Sanz and García-Navas 2011). García-Navas et al. (2015) working on rock sparrows (Petronia petronia) have suggested two major signalling functions of nest decorations in birds: signalling individual and parental quality or advertising social status to other conspecifics. The fact that birds as distantly related as chinstrap penguins (Fargallo et al. 2001) and blue tits (Sanz and García-Navas 2011) might use decorations as a post-mating
sexual display, or that objects deployed by raptors (Sergio et al. 2011) and owls (Penteriani and Delgado 2008) act as reliable threats to conspecifics, lead us to assume that nest decoration is the result of convergent evolution (Delhey et al. 2017). As such, reports on nest decoration in taxonomically distinct species can bring immense opportunities to assess, through comparative evaluation, what socioecological features may have driven the emergence this behaviour.

< Insert Figure 1 about here >

The purpose of the present paper is to contribute to such a broad comparative endeavour, by describing nest-decoration behaviour in the black-faced sheathbill (*Chionis minor ssp minor*, closely related to *Pluvianellidae*, Charadriiformes, Winkler et al. 2020), a small terrestrial shorebird, which inhabits coastal regions of the Subantarctic Kerguelen Islands (Bried and Jouventin 1998, Burger and Kirwan 2020). In these rigorous environments characterized by inclement weathers and high predation levels, sheathbills are the only common land-based birds. To survive in these islands, they adapt their foraging to any form of animal matter and are highly opportunistic (Burger 1979, Blankley 1981, Winkler et al. 2020). They are scavengers, predators, and kleptoparasites, and their diet includes a large variety of food types e.g., algae, invertebrates, carrion, seabirds’ faeces, feather-shafts, eggs, and chicks (Burger 1981). Black-faced sheathbills are monogamous and both sexes vigorously defend their feeding and breeding territories against intruders through ritualized display calls (i.e. the common ‘Bob-call’) and threat postures (Burger 1979, Burger 1980, Verheyden 1988, Bried and Jouventin 1996, Jouventin et al. 1996). The nest consists of a simple cup hidden from view within a natural cavity such as a crevice, small cave, or more occasionally a petrel burrow (Winkler et al. 2020). In the Kerguelen archipelago, we noted that many nests open onto areas covered with conspicuous purple mussel shells. Through systematic observations, we documented this previously undescribed behaviour and
investigated the possibility that these objects located in and around the nest were not incidental accumulations of debris and/or prey remains, but rather served as decorative materials. If so, we expected the birds to engage in the collection of materials and in specific manipulative behaviours targeted at them at the nest area. As incubation is undertaken by both sexes in this species (Burger and Kirwan 2020), we also examined whether only one or both individuals of the breeding pair engaged in these behaviours.

Material and Methods

Study site and subjects

Observations took place at *Ile Verte* (49°30'23''S, 70°02'40''E - 1.5 km²), an island situated within the Morbihan Gulf, Kerguelen archipelago (48°28'–50°S, 68°28'–70°35'E), during the Dec 2019 – Jan 2020 breeding season. At this location, black-faced sheathbills defend and remain in one territory all year (Burger and Kirwan 2020), thus facilitating observations. Three nest-cavities were identified: Nest 1 belonged to breeding pair A1/A2, and Nest 2 & Nest 3 to breeding pair B1/B2. Areas that contained objects consisted of two terrace areas: one below (terrace area 1) and one above (terrace area 2) the nest cavity for Nest 1 and Nest 3 (see example of Nest 1 in **Figure 2**), and one circular area in front of the nest cavity for Nest 2 (**Figure 3**).

< Insert Figure 2 and Figure 3 about here >

Daily observations confirmed that Nest 2 was still maintained but, probably due to the high nest cavity visibility and ease of access that attracted nearby avian predators (e.g., brown skuas *Catharacta antarctica* ssp *lornbergi*), the pair selected another cavity to incubate the eggs, i.e. Nest 3, which was located about 6 meters away from Nest 2.

Set up and materials

Data collection consisted of daily observations supplemented by photographs and video recordings (camera traps). Direct observations, which did not exceed 15 min each, were
conducted every two days between 8 a.m. and 11 a.m. through Dec-Jan 2020. From 12th Jan to 14th Jan 2020, one camera trap with motion detection recording (RECONYX® HL2X HyperFire 2) was set up within each territory in order to collect data on the type, manipulation time, origin, and dropping zone of objects. From 27th Jan to 29th Jan 2020, one camera trap was also used to determine whether both mates contributed simultaneously to collection. We used daily observations and photographs to minimise disturbance to the birds during the breeding period (Jouventin et al. 1996).

Scoring and analysis

Photographs. For each photograph, we quantified (i) the type of objects (from complete and fragment materials), (ii) their position (coloured topside up/down), and (iii) their number and location in their respective areas (circular: Nest 2, and terrace areas: Nest 1 & 3).

Video-recordings. We examined: (iv) which object the bird was manipulating (objects newly collected or already present in the display areas), (v) the total manipulation time (from the time the bird first picks up the object, or first appears in view carrying it, until it drops it on the terrace areas or outside the field of the camera), (vi) the origin of the object (inside the nest, terrace areas, outside the filming zone), and where it was dropped off (inside/outside the nest cavity, high/low terrace area). We also noted whether both mates contributed simultaneously to collection.

Results

Nest-decoration behaviours.

Photographs.

(i) **Type.** Marine mussels (ribbed mussel *Aulacomya ater* and blue mussel *Mytilus desolationis*) and limpets (*Nacella kerguelenensis*) composed the pattern of objects (Figure 4).
(ii) Position. Most shells, irrespective of the species, were placed with their shiny coloured topsides uppermost: 98% across the two terrace areas at Nest 1, 98% in the circular area at Nest 2, and 92% across the two terrace areas in Nest 3.

(iii) Number and location. At Nest 1, terrace area 1 (below the nest cavity entrance) was composed of 96% ribbed mussels, 3% blue mussels, and 1% limpets. Terrace area 2 (above the entrance) contained 92% ribbed mussels, 6% blue mussels, and 2% limpets (Table 1). Across the two terrace areas, Nest 1 thus had 95% ribbed mussels, 4% blue mussels, and 1% limpets. At Nest 2 the main circular area contained 98% ribbed mussels, 1.80% blue mussels, and 0.20% limpets. At Nest 3, terrace area 1 was composed of 96% ribbed mussels, 2% blue mussels, and 2% of limpets, while terrace area 2 contained 95% ribbed mussels and 5% limpets. Across the two terrace areas, Nest 3 thus had 96% ribbed mussels, 1% blue mussels, and 3% limpets.

< Insert Figure 4 and Table 1 about here >

Video recordings (12th - 14th Jan 2020)

(iv) Type. In a total of 299 video recordings (recording time for each video: 30 s), 42% of the objects manipulated were shells (ribbed mussels: 16%, unidentified mussels: 11%, and limpets: 15%), 5% were unknown objects, and 53% were dry Scenecio vulgaris twigs.

(v) Manipulation time. Mean ± SD manipulation time was 5 ± 5 s (n = 2, range 1-20 s) for ribbed mussels, 6 ± 5 (n = 2, range 1-12 s) for unidentified mussels, 7 ± 5 (n = 2, range 2-20 s) for limpets, 7 ± 9 (n = 2, range 1-30 s) for twigs, and 2 ± 2 (n = 2, range 1-6 s) for unknown objects.

(vi) Origin and dropping zones. We never observed birds carrying objects inside the nest cavity, however sheathbills manipulated objects already within the nest cavity in 12% of observations. When objects were moved between areas, the direction of movement most often included bringing objects from beyond the nest area (from outside the filming zone) to terrace
areas (the camera trap was only able to cover terrace area 2, 19% of observations), but we also observed carrying from the nest cavity to terrace area 2 (1%), and from the terrace area to outside the nest area (3%). The manipulation and displacement of objects within the same area (terrace area 2) were noted in 33% of observations. Finally, in 32% of observations, birds arrived with an object from outside the nest area but did not deposit it; i.e. they eventually left the nest area holding the same object.

Contribution to collection.

Video-recordings (27th Jan - 29th Jan 2020)

Neither breeding pair ever manipulated and placed objects simultaneously. However, when an individual contributed to collection and, after some time, took over incubation from the partner, the previously incubating bird also moved and placed objects within the filming zone during its off-duty (object manipulations that occurred during pre- and post-switching event: twice on Jan 27th, once on Jan 28th, and once on Jan 29th). We also observed both partners engaging in object manipulation before and after switching incubation 4 times on Jan 13th.

Discussion

We document for the first time aspects of object transportation, handling, and arranging in the vicinity of the nest, in Aequorlitornithes. Similar nest-decoration behaviour has been reported in relatively distantly related species with different ecological backgrounds, such as kites and bowerbirds (e.g. Sergio et al. 2011, Borgia 1986; respectively). We suggest that sheathbills offer an interesting comparison to investigate which factors drove the evolution of this behaviour among birds.

Most of the material collected was composed of ribbed mussels, followed by, to a lesser extent, blue mussels and limpets. All these materials are highly abundant in the sheathbills’ environment. Video recordings confirmed birds’ direct handling of the shells seen in the photographs and revealed another type of object scavenged from the environment: dry
Scenecio vulgaris dried twigs, also commonly collected. The volatile property of twigs within the windy Kerguelen archipelago might explain why they were missing from the photographs. Although birds’ preference for shells has been ascribed to a need for calcium-rich food items for successful breeding in some bird species (e.g. small passerines Bureš and Weidinger 2001), the sheer quantity of empty mussels within and outside the nest cavity makes this explanation unlikely. Importantly, all objects were predominantly placed with their topsides uppermost on specific platforms, and their origin and displacements within the nest area seemed to indicate a selection of the objects arranged on the terrace areas.

The fact that sheathbills select, carry, and arrange empty shells on nest areas align well with our hypothesis that the configuration of objects is not purely incidental. Materials placed by sheathbills seem rather to be decorations independent of strict survival or reproductive requirements (i.e. not collected in the context of feeding or to serve as insulation, for example). We therefore suggest, for the first time, that the decorations may have a signalling function in sheathbills (Veiga and Polo 2005, Canal et al. 2016).

Similarly to sheathbills, a number of species use materials that they place outside the nest without any apparent purpose in incubation or nestling rearing (e.g. male yellow-breasted bowerbirds *Chlamydera lauterbachi*, Gilliard 1969, Dunning 1993, female spotless starlings *Sturnus unicolor*, Polo et al. 2004, Polo and Veiga 2006, male blue tits *Cyanistes caeruleus*, Sanz and García-Navas 2011, and mated pairs of black wheatears *Oenanthe leucura*, Moreno et al. 1994). Three non-mutually exclusive explanations may be suggested in regard to what information sheathbills convey with these objects: mate attraction before pair formation (e.g. Endler et al. 2005), post-mating sexual selection (e.g. mate fidelity and investment in reproduction, Polo et al. 2004), and territory occupancy (e.g. Sergio et al. 2011).

On Verte Island, sheathbills breed on shores free of penguin colonies and forage mainly on algae, crustaceans, and molluscs (Jouventin et al. 1996). The number of objects displayed at
nesting sites, i.e. the quantity of empty mussels sheathbills are able to collect, may represent reproductive traits indicative of genetic or parental quality, such as feeding effort and foraging ability (Sanz and García-Navas 2011). In polygynous species such as bowerbirds, the number and quality of nest decorations (i.e. blue feathers) reinforce the attractiveness of the males (Haruyama et al. 2013). For instance, Borgia (1985) observed fewer copulations of satin bowerbirds (*Ptilonorhynchus violaceus*) when ornaments were removed (experimental group) than when no manipulation occurred (control group). Yet, selection occurs solely prior to pairing in bowerbirds, and only one sex – the male – invests in nest construction and associated ornamental addition. In sheathbills, however, both partners contribute to breeding and we found that they start to engage in decoration collection approximately two months after they first occupy their territory in October (i.e. laying period, Burger and Kirwan 2020).

Although we cannot rule out the possibility that some form of mate attraction occurs before pairing, nest-decoration behaviour may share other nonmutually exclusive functions. Signalling through nest decoration after pairing may be driven by post-mating forms of sexual selection, for instance through partners’ differential allocation of investment of mates in the clutch (Moreno et al. 1994). Differential allocation after pair bond formation has been shown in several avian species where both sexes contribute to nest decoration and/or nest construction (e.g. black wheatears, Moreno et al. 1994, blue tits *Cyanistes caeruleus*, Sanz and García-Navas 2011, but see Tomás et al. 2006, Lambrechts et al. 2012, magpies *Pica pica*, Soler et al. 2001, buff-breasted wrens *Cantorchilus leucotis*, Gill and Stutchbury 2005).

Longer incubation shifts have been observed in some male sheathbills (mean incubation shift length for males and females = 172 minutes and 90 minutes, respectively; Burger and Kirwan 2020). Females may benefit from increased efforts expanded by males in incubation duration. In turn, male sheathbills that contribute more to nest decoration may prompt a heavier investment in offspring by females. For instance, as hatching is asynchronous in this species
(i.e. eggs in a single clutch hatch sequentially, Burger and Kirwan 2020), females may decide to incubate earlier by allowing greater intervals between egg-laying, thus facilitating brood reduction (Soler et al. 2001).

Another non-mutually exclusive explanation to a sexual component is the use of nest decorations in the context of resource defence (Sergio et al. 2001). Similarly to the sheathbill, on return from its migration, the black kite (*Milvus migrans*) occupies a breeding territory that is highly defended by both individuals within the pair (Bustamante and Hiraldo 1993). Beyond contributing together to nest building, the partners also decorate the nest with various materials that they arrange in a conspicuous fashion (Mazumdar et al. 2017). This latter feature, i.e. conspicuousness, represents a reliable threat indicating viability, territory quality, and conflict dominance of the signaller (Sergio et al. 2011), but also enhances nest visibility to aerial receivers (Canal et al. 2016). Raptors such as black kites are fierce birds (Orta et al. 2020), so natural selection (in the form of, for example, nest predation) is unlikely to have significantly constrained signalling through nest decoration and construction (Moreno et al. 2012). Although the accumulation of objects around the nest is conspicuous in sheathbills, nest-decoration activity and high visibility may attract the attention of predators such as skuas and other sheathbills (Burger and Bonan 2020). If this resource-defence hypothesis is true, a trade-off may therefore exist between elaborate nest decoration to warn off competitors and the need for concealment of the nest from predators (the latter may be modulated by choosing less conspicuous locations during nest-site selection). Best quality mates exhibiting numerous decorations may be more able to cope with (the potential cost of) facing potential predators and conspecific intruders, echoing the handicap principle (Zahavi 1975).

Overall, our findings lead us to suggest that sheathbills’ nest decoration acts as an extended phenotype signal that has evolved due to sexual selection, potentially through differential allocation of investment by partners. Our results also support the nonmutually exclusive
hypothesis of territory defence, potentially traded off against natural selection in the form of predation risk. It is worth noting that nest decoration has not been reported in sheathbills that breed and feed within seabird colonies (e.g. crested penguins or Kerguelen cormorants *Phalacrocorax atriceps verrucosus*, Weimerskirch et al. 1989), which paves the way to future intraspecific comparative studies in order to understand the ecological circumstances favouring the emergence of nest decoration in this peculiar species. We hypothesize that differences attributable to contrasting ecologies and population dynamics (e.g. foraging for mussels in the intertidal zone, predictable and more competitive environment for sheathbills living in localities free of penguins) may play a role in the emergence of nest-decoration behaviour.

While our study provides clear evidence of nest-decoration behaviour in black-faced sheathbills, further manipulative experiments, inspired by well-established studies in other species, will be necessary to address more nuanced questions about the behaviour. These should assess whether the signal is *reliable* in the context of territory defence and sexual competition (e.g. Madden 2002, Sergio et al. 2011), seek correlations between the quantity (or quality) of nest decoration and reproductive success/offspring fitness, and learn more about the decoration process itself (e.g. Borgia, 1985, Borgia et al., 1987, Vellenga, 1986, Maxwell, 1999).

In conclusion, in this observational study we suggest that the materials placed by sheathbills in and around the nest cavity serve a signalling function. This discovery extends the known phylogenetic and geographic spread of this rare behaviour among birds, and supports the hypothesis that nest decoration in sheathbills may represent a case of convergent evolution. Manipulative experiments, with marked individuals of known age, sex, and body condition, need to be conducted before firm conclusions can be drawn about the precise function of these decorations. Despite its broader appeal, so far nest decoration has been
studied in a small range of avian orders, and more particularly in passerine species where
decorations are deployed by one sex solely for mate attraction and courtship (Sergio et al.,
2011). The black-faced sheathbill may represent a new model species for investigating the
function and evolution of ornamental extended phenotype signals – as well as the cognition
underpinning it – thus opening up new promising avenues for future research.

Declarations

Funding – The research was funded by I.P.E.V. grants (to FB, ETHOTAFF 354) and by
the Fyssen Foundation (to TZ and SD).

Conflict of interest – the authors do not have any conflict of interest to declare.

References

Amundsen, T. 2003. Fishes as models in studies of sexual selection and parental care. J. Fish

Cormorants at Marion Island (Subantarctic). Cormorant 9: 77-84.

Burger, A.E. 1979. Breeding biology, moult and survival of Lesser Sheathbills *Chionis minor*

Borgia, G. 1985. Bower quality, number of decorations and mating success of male satin
bowerbirds (*Ptilonorhynchus violaceus*): an experimental analysis. Anim. Behav. 33:
266-271.

decoration and male display in two closely-related bowerbirds *Chlamydera nuchalis* and
C. maculata. Emu 95: 1-12.

Figures and Tables with captions

![Figure 1](image)

Figure 1. Phylogenetic and geographic distribution of avian nest-decoration behaviours for communication purposes between conspecifics. **a** Phylogeny of birds with illustrations of selected species displaying this behaviour (based on the updated phylogeny of Prum et al. 2015) **b** Worldwide distribution of avian species exhibiting nest-decoration behaviour as a signal (examined experimentally in: *Cyanistes caeruleus*, Sanz and García-Navas, 2011; *Milvus migrans*, Sergio et al., 2011; *Oenanthe leucura*, Soler et al. 1996; *Passer domesticus*, García-Lopez de Hierro et al., 2013; *Petronia petronia*, García-Navas et al., 2015; *Ptilonorhynchidae*, Borgia, 1985; *Sturnus unicolor*, Polo et al., 2004, Polo and Veiga, 2006). **Suspected** nest-decoration behaviours serving a signalling function are not shown in **a** and **b** (e.g. *Acrocephalus arundinaceus*, Trnka and Prokop, 2011; *Anumbius annumbi*, Delhey et al. 2017; *Athene cunicularia*, Smith and Conway, 2007; *Bubo bubo*, Penteriani and Delgado, 2008; *Parotia lawesii*, Pruett-Jones and Pruett-Jones, 1988; *Pygoscelis antarctica*, Fargallo et al., 2001). Areas indicated with the coloured circles represent the species’ year-round distribution.
Figure 2. Configuration of the nest and accumulated objects at Nest 1. Terrace areas 1 & 2 contain a large number of objects, mainly *Aulacomya ater* mussel shells. The inset magnifying the inside of the nest cavity shows an incubating bird (a) and accumulated objects (b) [Photo credit: S. Danel].
Figure 3. Circular terrace area at Nest 2, composed of mussel shells and limpets.

[Photo credit: S. Danel].
Figure 4. Three main types of nest-decoration objects documented at black-faced sheathbill nests. a and b are marine mussel shells: ribbed mussel *Aulacomya ater* (a) and blue mussel *Mytilus desolationis* (b); c is the limpet *Nacella kerguelenensis*. Birds were also observed collecting and manipulating twigs (not pictured). [Photo credit: S. Danel].
Table 1. Type and number of decorative objects at each of the studied nests and reported from the photographs. Decorations consist of ribbed mussels, blue mussels, and limpets (twigs were not visible on the photographs). TO = number of shells turned over (top upside down).

<table>
<thead>
<tr>
<th>Nest 1</th>
<th>Ribbed</th>
<th>Blue</th>
<th>Limpets</th>
<th>Total shells</th>
<th>Total TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrace 1</td>
<td>159</td>
<td>5</td>
<td>2</td>
<td>166</td>
<td>3</td>
</tr>
<tr>
<td>Terrace 2</td>
<td>56</td>
<td>4</td>
<td>1</td>
<td>61</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>215</td>
<td>9</td>
<td>3</td>
<td>227</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nest 2</th>
<th>Ribbed</th>
<th>Blue</th>
<th>Limpets</th>
<th>Total shells</th>
<th>Total TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>434</td>
<td>8</td>
<td>1</td>
<td>443</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nest 3</th>
<th>Ribbed</th>
<th>Blue</th>
<th>Limpets</th>
<th>Total shells</th>
<th>Total TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrace 1</td>
<td>54</td>
<td>1</td>
<td>1</td>
<td>56</td>
<td>-</td>
</tr>
<tr>
<td>Terrace 2</td>
<td>18</td>
<td>-</td>
<td>1</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>1</td>
<td>2</td>
<td>75</td>
<td>6</td>
</tr>
</tbody>
</table>
Supplemental material

Video 1. Manipulations of nest materials (shells) *outside* Nest 1.

Video 2. Manipulations of nest materials (twigs) *outside* Nest 1.

Video 3. Manipulations of nest materials (both shells and twigs) *inside* Nest 1.