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Abstract

We introduce and study an extension of the classical elapsed time equation in the context of neu-
ron populations that are described by the elapsed time since the last discharge, i.e., the refractory
period. In this extension we incorporate the elapsed since the penultimate discharge and we obtain
a more complex system of integro-differential equations. For this new system we prove convergence
to stationary state by means of Doeblin’s theory in the case of weak non-linearities in an appropri-
ate functional setting, inspired by the case of the classical elapsed time equation. Moreover, we
present some numerical simulations to observe how different firing rates can give different types of
behaviors and to contrast them with theoretical results of both classical and extended models.

2010 Mathematics Subject Classification. 35B40, 35F20, 35R09, 92B20
Keywords and phrases. Structured equations; Renewal equation; Mathematical neuroscience; Neural
networks; Doeblin theory.

1 Introduction

In the study and modelling of neural processes, population density models have proved to be a useful
approach to understand brain phenomena at different scales. Among these models we mention for
example the well-known integrate-and-fire model which describes the dynamics of the membrane
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potential and has been studied by several authors such as Carrillo et al. [3, 6], Perthame et al. [32,
31, 30] and Zhou et al. [21] in different variants and approaches. Another class of population-based
model is the elapsed time model, which has attracted the attention of many researchers. In this
model we consider a neural network where neurons are described by their refractory period as the
key variable, i.e. the elapsed time since the last discharge. After receiving some stimulation, neurons
spike and interact with other neurons leading them to spike as well.

Like the integrate-and-fire model, the elapsed time model is closely related to the limit of stochastic
processes at microscopic scale and the connection with Poisson processes was established in the work
of Chevalier et al. [8, 7]. Other important works on spiking neurons include Brunel [2], Gerstner et
al. [16], Ly et al. in [22] and Pham et al. [33]. A recent survey is available by Schwalger et al. [34].
Moreover, the elapsed time model has been studied from a mathematical and analytical point of view
by several authors using different techniques such as Cafiizo et al. in [5], Kang et al. [20], Mischler
et al. in [25, 24] and the pioneer works of Pakdaman et al. in [26, 27, 28]. The relation between
integrate-and-fire and the elapsed time model was studied in Dumont et al. [11, 12].

Different extensions of the elapsed time model have been considered by incorporating new variables
such as spatial dependence and a connectivity kernel in Salort et al. [35] or a leaky memory variable
in Fonte et al. [13]. The aim of the present work is to extend the classical elapsed time model by
taking into account the elapsed time since the penultimate discharge in addition to the last one. In
this context we study a multiple time renewal equation, which implies a more difficult analysis than
that of the classical elapsed time equation.

The extended model is described as follows. Let n = n(t, s,a) the probability density of finding a
neuron at time ¢, such that the elapsed times since its last and penultimate discharge are respectively s
and a. For simplicity, we simply call s as the first elapsed time and a as the second one. Moreover,
we assume that for all ¢ > 0 the domain of definition of n in the elapsed time variables is contained
in the domain

D :={(s,a) e R*: 0 < s < a}.

Neural dynamics are modelled through the following nonlinear renewal system

n + 0sn + Ign + p(s,a, X (t))n =0 t>0,a>s>0,

n(t,s =0,a) = N(t,a) = [ pla,u, X(t))n(t,a,u)du t>0,a >0, O
X(t)=[,° N(t,a)da t >0,

n(t=0,s,a) = no(s,a) a>s>0.

As in the classical elapsed time model the function p: D x R — R is the firing rate of neurons, which
depends on the total activity X (¢). Furthermore, for the firing rate function p, we assume that there
exist g, pg, poo > 0 such that

Polia>s>0) <P < Poo- (2)

Thus, we get
0<X(t) <peo, VE>0. (©)

We assume for simplicity that p € WH°(D x R), although most of the theoretical results are also
valid for firing rates with simple jump discontinuities and the behavior of solutions does not depend
on this regularity assumption as we show in the numerical simulations. Furthermore, we say that
the network is inhibitory if p is decreasing with respect to the total activity X and excitatory if p is



increasing. If in addition ||0xp||~ is small, we say that System (1) is under a weak interconnection
regime.

The function N (¢, a) represents the flux discharging neurons conditioned to elapsed time since penul-
timate discharge, so that the total activity X (¢) corresponds to integrate with respect to all penulti-
mate times. The boundary condition of n at s = 0 states that the second elapsed time resets to the first
elapsed time.

We assume that the initial data ny € L' (D) is a probability density so that System (1) formally verifies

//n(t,s,a)dads://no(s,a)dads:1, nt,s,a) >0  Vt>0. (4)

The multiple time renewal equation has been investigated in Fournier et al. [14] in the linear case,
where a non-expanding distance was introduced via a coupling argument.

In the study of age-structured models, the entropy method has been a useful tool for proving con-
vergence to the steady state. The main idea consists in finding a Lyapunov’s functional #[n] and a
dissipation functional D¢ [n] such that the solutions of the system satisfy

%H[n] = —DyJn] <0.

Thus if we can find a Poincaré inequality of the type AH[n] < Dy [n] for some A > 0, we can deduce
the exponential decay of [n] by using the classical Gronwall’s inequality, which eventually allows to
deduce convergence to the steady state in some convenient norm. This method was developed in the
works of [23, 29] with extensions to measure initial data in [17], and it has been applied to different
types of models. However, when such inequalities are not available the study of asymptotic behavior
becomes more complex.

Another important approach is Doeblin’s theory, which was first introduced in the context of Markov
chains [9] and later developed in the works of Harris [19]. This theory is an alternative to the classical
entropy methods to prove convergence to the steady state for a wider class for firing rates. The main
argument consists in proving that after a fixed time the solutions are uniformly bounded from below,
implying the exponential convergence to equilibrium. We extend the ideas of Cafiizo et al. [5] on the
application of Doeblin’s theory in the classical elapsed time model.

For a reference on Doeblin’s theory, see for example Gabriel et al. [15]. A well-known extension of
this theory is the Harris” theorem [19], which has inspired several works such as Bansaye et al. [1],
Canizo et al. [4] and Hairer & Mattingly [18]. Moreover, convergence for the integrate-and-fire model
has been proved in Perthame et al. [30] and Dumont et al. [10] by means of Doeblin’s theory.

Finally, we also remark that when p does not depend on a, the probability density m(t, s) = [ n(t, s, a) da
satisfies the equation

Oym + Osm + p(s, X (t))m =0 t>0,s>0,
m(t,s =0) = X(t) = [y plu, X(t))m(t,u)du t >0, (5)
m(t=0,s) = [ n(s,a)da s> 0.

In other words, the probability with respect to the last elapsed time is a solution of the classical
elapsed time equation. If in addition we consider a the firing rate of the form

P =X s>0y,



with ¢ € W1 >°(R) strictly positive and ¢ > 0 a constant, we know from Caceres et al. [35] that the
total activity X (¢) satisfies the integral equation

' X()
X(s)ds + =1, vVt > o. (6)
JL X ety
Moreover, we know that the solutions of this integral equation may have different behaviors such as
periodic solution and jump discontinuities. This gives us an idea of possible asymptotic behaviors
that solutions of System (1) may exhibit.

The article is organized as follows. In Section 2 we prove that System (1) is well-posed in a suitable
space for weak non-linearities. Starting with the asymptotic analysis for the linear case, we prove in
Section 3 the existence of a stationary state and exponential convergence via Doeblin’s theory. For
the non-linear problem in the case of weak interconnections, we show in Section 4 the uniqueness of
the steady state and in Section 5 we prove the exponential convergence via a perturbation argument.
Finally in Section 6 we present some examples of numerical simulations for different initial data and
firing rates.

2  Well-posedness for weak non-linearities

We prove that System (1) is well-posed under the weak interconnection regime. In order to do so,
we start by studying an auxiliary linear problem where total activity is fixed and then we proceed to
prove well-posedness of system (1) via a fixed point argument by contraction.

2.1 The linear problem

Given X € ([0, 00), we consider the following linear problem

On + 9sn + Ogn + p(s,a, X(t))n =0 t>0,a>s>0,
n(t,s =0,a) = N(t,a) == [, pla,u, X ())n(t,a,u)du t>0,a>0, (7)
n(t=0,s12) =no(s,z) >0 a>s>0.

We look for weak solutions satisfying n € Cy([0,0), L*(D)), so that N € C,([0, 00), L' (0, 0)) and
X e [0, OO)

Lemma 1. Assume that ng € L'(D) is a probability density and p € W((0,00) x R) satisfies (2).
Then for a given X € Cy[0,00), Equation (7) has a unique weak solution n € Cy([0,00), L*(D)) with N €
Cp([0,00), L1(0, 00)) and X € Cp[0, 00). Moreover n is non-negative and verifies the property (4).

In particular this lemma proves the property (4) for the non-linear System (1).

Proof. From the method of characteristics, we start by noticing that a solution of the linear System (7)
satisfies the following fixed point equation

n(tv S, :E) = \Ij[n} (tv S, SIJ) = n()(S - t7 a — t)e_ fJ p(t/+S_t7t/+a_t7x<t/))dt/]l{a>s>t}

+ N(t—s,a—s)e” 3 p(s’ 8" fa—s,X (s"+t—s))ds’

(8)
]l{t,a>s}7



with N(t,a) = [ p(a,u, X (t))n(t, a,u) du depending on n.

Let T > 0 and X1 == {n € C([0,7],L*(D)): n(0) = ng}, it readily follows that ¥ maps X7 — Xr.
We prove by the Picard contraction theorem that ¥ has a unique fixed point in X7 for T > 0 small
enough, i.e., there exists a unique weak solution of (7) defined on [0, T]. Consider ni,ny € Xr, we
compute

/|\I/n1 n2|(tsa)dsda<// |INy — No|(t — s,a — s)dads

<7 sup [Ny = Nal(t,)da ©)
t€[0,T] JO

STpoo sup Hnl(tasaa) _n2(t787G)||L1(D)7
te[0,T]

thus for T' < 1%, we have proved that U is a contraction and there exists a unique n € X such that

U[n] = n. Since the choice of T is independent of ngy, we can reiterate this argument to get a unique
solution of (7), which is defined for all ¢ > 0.

From Formula (8) we can extend the notion of a weak solution for Equation (7) for an initial data
ng € (M(D),] - ||a), the space of finite regular measures on D with the norm of the total variation
(24). Therefore we can redo the same argument to prove existence and uniqueness of a weak solution
n € Cp([0,00), M(D)) with N € Cy([0, 00), M(0,0)) and X € C;[0, o).

Next we prove the mass conservation property. For all ¢ > 0, consider S;: M(D) — M(D) the
semi-group given by
St[.ﬂ(sa a) = f(S —ta— t)]l{a>s>t}a

whose infinitesimal generator is the operator L f = —0; f—0, f. From Duhamel’s formula, the solution
of the fixed point problem (8) also verifies the following equality

ot t
n(t7 S a) =S [no](s, a) + / St—T[(;{s:O}(Sa a)N(T7 a)} dr — / St—‘l'[p(sa a, X(T))H(T, S, a)] dr, (10)
0 0
where d;,—0y (s, a) is the measure along the line {(0,a): a > 0}. This formula is translated as
n(ta S, ’I) - 77,0(8 —ta— t)]l{a>s>t} + N(t —S5a— S)H{t,a>s}

t (1)
_ / p(s—t+ra—t+7,X(1))n(r,s —t+7,a —t+7)l{g5ssi—ry dT,
0

and we get the mass conservation property by integrating with respect to (s, a) on the domain D.

Finally, since ng is non-negative then ¥ preserves positivity, so by uniqueness of fixed point the cor-
responding solution n must be non-negative. O

2.2 The non-linear problem

We are now ready to prove that System (1) is well-posed in the case of weak interconnection.



Theorem 1 (Well-posedness for weak interconnections). Assume that ng € L (D) is a probability density
and that p € WH°°(D x R) satisfies (2). Then for

10xplleo <1,

System (1) has a unique solution with n € Cy([0, ), L*(D)), N € Cp([0, 00), L1(0,00)) and X € Cp[0, o).
Moreover n verifies Condition (4) for all t > 0.

Proof. Consider T' > 0. We fix a function X € C,[0, c0) and define the functions n € C,([0, ), L*(D))
and N € C,([0, 00), L' (0, 00)) which are solutions of System (7) by Lemma 1. Furthermore, the solu-
tion of this linear equation satisfies (4).

So we have a solution of System (1) defined on [0, 7] if X satisfies forall 0 < ¢ < T and z € €, the
following fixed point condition

X(t) = T[X](t) = /0 ~ NIX|(t 0) da. (12)

We prove that 7 defines for all T > 0 an operator that maps Xp — Xr with X7 = C([0, T). First, we
observe the following estimate
‘ / N(t,a)da

and it is immediate that 7[X] € Xp.

<oy VEE[0,T], (13)

We now prove that for T small enough, 7 is a contraction. Let X1, Xo € X with their respective
solutions (n1, N1), (n2, N2) of System (7). For the difference between N; and N, we have

/\Nl—N2|(t,a)da§//|p(a,u,X1)n1(t,a,u)—p(a7u,X2)n2(t,a,u)|duda

< // Ip(a,u, X1) — p(a, u, X2)| nq duda+//p(a7u,X2)|n1 —nal(t,a,u) duda

< [[0xplloo [ X1 — Xalloo + Poollna — nalL1(p)-

(14)
Now we have to estimate the difference between n; and n,. From (11) and estimate (14), we get
71 —nallLypy < 2T [|0xplloo [ X1 — Xalloo + 2T oot — N2l L1 (D)
Then, for T < 21%% we obtain
I = maloaoy < LB, — Xl 15)
Finally by using again estimate (14), the operator 7 satisfies
IT060] = Tl < 0xpll (14 12 ) 10 = Kol (16
1—2Tp

Hence for ||0xpllec < 1 and T small enough, 7 is a contraction.



From Picard’s fixed point we get a unique X € X7 such that 7[X] = X, and this implies the existence
of a unique solution of (1) defined on [0, T]. Since estimate (13) is uniform in T, we can iterate this
argument to get a unique solution of (1) defined for all ¢ > 0.

Furthermore, we conclude from this construction that the non-linear System (1) satisfies (4) like the
linear System (7). O

3 Asymptotic behavior for the linear case

In order to study the behavior of System (1), we start by studying the case when X > 0 is a fixed
constant. Thus we consider the linear problem given by

&gn—i—asn—i—@n—&—p(saX) =0 t>0,a>s>0,
n(t,s =0,a) = = [ pla,u, X)n(t,a,u)du t>0,a>0, (17)
n(t=0,s,a) —no(s,a) a>s>0.

To determine the behavior of System (17), we consider (nx, Nx) as the solution of the steady state
problem given by

(18)

8n+3n+p(saX)n:O a>s>0,
n(s=0,a) = =[5 pla,u, X)n(a,u)du  a> 0,

In the classical elapsed time model the generalized relative entropy inequality is a well-known prop-
erty of this class of age-structured models. In the same way, we can prove this property for the linear
System (17).

Proposition 1 (Generalized relative entropy). Assume there exists a steady solution of the linear System
(17) with nx, Nx > 0. Then for all convex functions H : [0,00) — [0, 00) with H(0) = 0, the solution n of
the linear System (17) satisfies

dt //"X 5,0) (nf(z Z;) dads = —Dg[n(t,s)] <0 ¥Vt >0,
st s 1 (220 st o (33

and in particular the steady state is unique.

(19)

Proof. In order to prove the relative entropy property, we follow the arguments in [3]. We start by
noticing the following identities

asn = nxas (n

nx

> + iasnX; aan - nXaa <n> + iazz'anv (20)
nx

nx nx

and for simplicity we reformulate Equation (17) as follows



On + Osn + Ogn + p(s,a, X)n = dg5—0y(s,a)N(t,a) t>0,a>s>0,
n(t,s =0,a) =0 t>0,a>0, (21)
n(t=0,s,a) =ng(s,a) a>s>0,

where 7,03 (s, a) is the measure along the line {(0,a): a > 0}. In the same way, we reformulate the
corresponding steady state problem (18).

{asnx + 0anx +p(s,a, X)nx = 6501 (s,a)Nx(a) t>0,a>s5>0,
(22)

nx(t,s =0,a) =0 a> 0.

Hence by using the identities (20) along with Equations (21) and (22), we get the following equation

for%
n NX N n

and if we multiply this equality by H’ (%) , we get

O, H (") L O H (”) +O.H (”> = Sae0y (5, o x (N - ”) H' <”) .
nx nx nx nx \Nx nx nx

Therefore, by multiplying the latter equality by nx and using Equation (22), we have the correspond-

ing equation for u = nx H { ;-

Oyt + 05t + Oqu + p(s, a, X )u = dg5—0}(s,a) Nx [(N - n) o <n> +H (nn)] . (23)
X

Nx nx nx

Finally, by noticing the following limit

lim n(t7 570’) _ N(t? a)

= forae. ¢ 0
I eG.a) ~ Nx(@)’ orae. t,a>0,

we conclude the generalized relative entropy property (19) by integrating Equation (23) with respect
to (s,a) on the domain D. Moreover, we observe that D[] is non-negative by applying Jensen’s

inequality with the probability measure du = p(a, y) 5~ (‘Zay dy for each a > 0. In particular when H is
strictly convex and Dy [n] = 0, we deduce that - is constant and subsequently we get n = nx, since
both n,nx are probability densities. Therefore, the steady state is unique. O

If we consider the entropy method to prove exponential convergence for the linear Equation (17) in
L'(D), we have following equality for H(-) = | - |
ds — //p\n—n;ddads <0,

jt//n—n;ddadsz/‘/p(n—nx)da

and the L' Poincaré inequality for the right-hand side is not available since the condition
[ (n = nx) da = 0 is not fulfilled.




Furthermore, in Theorem (1) we assumed that nx and Nx are strictly positive, which is not necessar-
ily true. Unlike the classical elapsed time model, there exist solutions where nx and Nx vanish for
some values of (s, a). Indeed, consider for example p(s, a, X) = 1,1} which satisfies the bounds (2)
and observe that Nx satisfies Equation (31), implying that Nx (a) vanishes for a < 1 and subsequently
we see from Formula (30) that nx vanishes whena — s < 1.

Due to the limitations of the entropy method approach we will make use of Doeblin’s theory, which
will be the key ingredient in proving convergence to steady state. In this context we start by remind-
ing the useful concepts in order to apply Doeblin’s theorem. Consider (M(X), || - ||as1) the space of
finite signed measures with the norm of the total variation

[l e 32/ /~L+/ P (24)
X X

where p = pi4 — p— is the Hahn—Jordan decomposition of the measure p into its positive and negative
parts. For simplicity of the computations, we will treat measures as if they were L' functions and we
simply write the L!-norm instead of M!-norm.

We now recall the definition of a Markov semigroup and Doeblin’s condition.

Definition 1 (Markov semi-group). Let (X,.A) be a measure space and P,: M(X) — M(X) be a linear
semi-group. We say that P; is a Markov semi-group if Py > 0 for all p > 0 and [ Py = [ p for all
w € M(X). In other words, (P;) preserves the subset of probability measures P(X).

Definition 2 (Doeblin’s condition). Let P;: M(X) — M(X) be a Markov semi-group. We say that (P;)
satisfies Doeblin’s condition if there exist to > 0, a € (0,1) and v € P(X) such that

Py >av YueP(X).

Under this functional setting, we are now ready to state Doeblin’s theorem as follows.

Theorem 2 (Doeblin’s Theorem). Let P;: M(X) — M(X) be a Markov semi-group that satisfies Doeblin’s
condition. Then the semigroup has a unique equilibrium p* € P(X'). Moreover, for all ;1 € M(X) we have

[ Pepe = (e larr < e Mg = (ptllan V>0,

T 1l-a
with(u>:fxuand/\:—m(170_“)>0.

For a proof of Doeblin’s Theorem, see for example [15].

From Lemma 7, the solution of the linear problem (17) determines a Markov semi-group acting on
L'(D). By means of Doeblin’s theory, the solutions of linear Equation (17) converge exponentially to
a unique steady state, as we assert in the following theorem.

Theorem 3. Let ng € L'(D) be a probability density and assume that p smooth satisfies Assumption (2).
Then for a fixed X > 0, there exists a unique stationary solution nx (s,a) € L' (D) of the linear Equation (17)
satisfying [[ nx(s,a)dads = 1. Moreover, the corresponding solution of Equation (17) satisfies

1
1—

In(t) —nx|pr < eiAt||n0—nX|L1‘ Vvt >0,
s,a o s,a

with o = Lp2o2e =37 and ) = —1080=2)



In order to obtain the result, we show that after some time the solution of the linear problem is
uniformly bounded from below for all probability densities. Thus from Doeblin’s theorem we get the
exponential convergence to equilibrium.

Lemma 2. Assume (4) and (2). Let n(t, s, a) be a solution of (17), then there exist to > 0, a € (0,1) and a
probability density v € L' such that
n(to, s,a) > av(s,a).

Proof. The main idea of the proof is to control the mass transported along the lines of direction (1,1).
Firstly, we observe the transport of the initial data ng. From Assumption (2) and the characteristics
Formula (8) the following inequality holds

/ / n(t,s,a)dads > e P>t vVt > o. (25)
t s

Secondly, we see the mass that returns at s = 0. From (25) we get forallt > ¢

o) (o) o0 (o)
/ n(t,s =0,a)da = / N(t,a)da > po/ / n(t,a,u) duda > poe P>t (26)
t t t Ja

This means that we reduced by one dimension the problem of finding the uniform lower bound. For
t > o the mass of the region {(s,a): a > s > t} concentrates in the line {(0,a): a > t}, as we see in
Figure 1.

»
»

|
|
|
|
|
|
|
Py
t>o S

Figure 1: First reduction of dimension. For a t > ¢, all points in D are transported to the red region,
which has a total mass of at least e P>*. Then a mass of at least ppe P=" returns to the green line.

Thirdly, in order to control the point values of n(t, s, a), we regard the values of N(¢,a). Observe that
from Formula (8) we have

- p(s’,s’—o—a—s,X)ds’]l
)6 {t,a>s} (27)

10



thus for @ > o and ¢ — a > 0, we obtain by using again Assumption (2) that

N(t,a) > po / n(t,a,w) du

zpoe_p‘x’“/ N({t—a,u—a) du:poe_p‘”a/ N(t —a,u)du (28)
a 0
o0
> poe” P N(t — a,u) du > pie P>t
t—a

This means we reduced the problem of finding the uniform lower bound by one dimension again, as
we see in Figure 2.
[T

»
>

o S

Figure 2: Second reduction of dimension. For ¢ € [0, 20] the green lines are transported to the region
where s > ¢ and their mass is of at least ppe~2P><?. Then the mass of each green line is concentrated
in the orange points, whose values are at least p3e™2P=°.

Finally, once we have estimated N (¢, a) from below, we come back to estimate (27) to conclude that
fora —s>ocandt —a > o we have

n(tv a, S) > N(t - $5a-— 8)e_poo8]l{tva>5}

> phe P 1 —gams>o)s *)
so that we can choose ¢ = 30 and conclude that
n(3o,a,s) > pgeigpooal{2o>a>s+a}-
Therefore we get the desired result with ¢y = 30, a = $0%pie™3P=7 € (0,1) and v given by
v(s,a) = ;ﬂ{2a>a>s+a}7
whose support is contained in orange region of Figure 3.
a

11
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Figure 3: Finally for ¢ € [20, 30] the orange dots are transported to region where s > ¢, which allows
to construct a minorization function for Doeblin’s Theorem.

From Lemma 2 the hypothesis of Doeblin’s theorem are verified and Theorem 3 readily follows.

Concerning the conditioned activity N in System (18), we conclude from Theorem 3 that for X fixed,
there is a unique stationary Ny € L'(0, 0o) determined by the method of characteristics through the
formula

nx(s,a) = Nx(a — s)exp <—/ p(s',a—s—&—s/,X)ds’), a>s. (30)
0

Replacing this expression in the boundary condition at s = 0, we obtain the following integral equa-
tion for Nx (a)
Nx(a) = Tx[Nx](a), 31)

with Tx : L'(0,00) — L*(0, 00) given by

Tx[Nl(a) == /Ooop(a,u—i-a,X)exp (—/Oap(8/7u+8/7X)d8) N(u)du

_ _2/ exp <_/ (s’ u+ s, X) ds’> N(u) du.
da J, 0

Moreover, by integrating Equation (30) we get

/OO/OONX(a)exp (—/Sp(s’,a—i—s’,X)ds’) dads = 1. (32)
o Jo 0

Therefore we conclude that finding a function N € L'(0, co) satisfying Equation (31) and Condition
(32) is equivalent to finding a steady state nx (s, a) in Equation (18). The integral Equation (31) will
play an important role in the analysis of the non-linear System (1), thus we prove the following two
lemmas on the operator Tx that will be useful in the sequel.

Lemma 3. Assume that p Lipschitz satisfies Assumption (2). For each X > 0 the operator Tx is compact and
it satisfies that dimker(I — Tx) = 1, which is generated by a non-negative function, and

ran(l — Tx) = {f € L'(0,00): /OOO f(z)dz = 0}.

12



Proof. The first step is to prove that Tx is a compact operator. This means we have to prove that the
set A= {Tx[f]: ||f|l1 <1} is relatively compact in L'.

First observe that || 7x[f]|l1 < peo for all f with ||f||; < 1, so A is bounded.

Second, we prove that

/ |Tx[f](a)|da — 0  uniformly when r — oo.

r

Indeed for r > o we have

/ 'TXW‘”'d“SPW/ / | ()6~ I8 Pt X) s gy, g
r r 0
S1"°°/ / £ (W)@ duda

<poer® [ If)ldu [ e oda

—Por

< PooeP?? — 0.

Po

Now we prove the equicontinuity property. Observe that
d > a ’ 7 ’
LT = [ @+ 0up) o+ 0, X)e 0 )
0
B / pla,u+a, X)%e™ o 0t 0 f(u)du,
0
thus for f with || f||; < 1 we have
<l d
[ |l

Therefore by the Kolmogorov-Frechet theorem we conclude that A is relatively compact so the oper-
ator Tx is.

da < ||[Vp|le + P2

Furthermore, since nx is the unique steady state of Equation (17) that is a probability density, from
the linearity we deduce that any other function in ker(/ — 7x ) is a multiple of Nx and thus dim ker(I —

Tx) =1
Next, we proceed to determine ran(f — 7x ). Observe that adjoint operator 75 : L> — L is given by
Tilalt@) = [ ptuuta e (= [ oot s 0 ) gt
0 0
and from Fredholm's alternative we get dimker(I — 73) = dimker(I — Tx) = 1. Since T¥[g] = 0 for

any constant function, we deduce that ker(/ — 75 ) is the subspace of constant functions. Finally from
orthogonality conditions we conclude that

ran(I — Tx) = {f € L'(0,00): /Ooof(x)dx = 0}.

13



A direct consequence of Lemma 3 is the following result

Lemma 4. Assume that p is smooth respect to variable X, then Nx (a) is also smooth with respect to X.

Proof. Define the F': L'(0,00) x (0,00) — ran(I — Tx) x R given by
F(N.X) = (I =Tx)IN], [ N(@)e™ Ji ot X)d' g ds — 1)
so that for each X we have F'(Nx(a), X) = 0. Observe that Dy F' is given by
DyFIh] = (I = Tkl [ hla)e™ J5 #0500 o )

Thus by Lemma 3 this operator is an isomorphism and from the implicit function theorem we con-
clude that Nx (a) depends smoothly on X. O

Remark 1. The lower bound condition (2) on the firing rate p is important to verify the existence of a steady
state for System (1) and Doeblin’s condition. For example, when we consider X > 0 and

p(s,a,X) = IL{0,7.9>X}a

then there are no steady states of the linear Equation (17), besides the zero solution. Indeed, from Equation (31)
we deduce that the discharging flux N should satisfy

_G/XOON(u)du

whose unique non-negative solution in L'(0, 00) is N = 0.

4 Steady states

Consider n* = n*(s, a) with support in the set {s < a}. We are interested in the stationary solutions
of the non-linear System (1) given by

8n+8n+p(saX)n:O a>s>0,

n(s =0,a) (a,u, X)n(a,u)du a >0,

( =y p )n(a, u) 33)
X = [y N(a)da,

[ n(s,a) dads-l n(s,a) > 0.

We define Nx as the respective conditional activity in terms of X. In order to have a steady state of
the non-linear Problem (1), we must find X > 0 such that

= /000 Nx(a) da. (34)

In the general case this equation has always a solution since the right-hand side is uniformly bounded
thanks to estimate (3) and Nx (a) depends continuously on X. By using the properties of the operator
Tx, we prove that under the weak interconnections regime the non-linear System (1) has a unique
steady state.

14



Theorem 4. Assume (4) and that p smooth satisfies Assumption (2). Then for ||0x p||eo small enough, System
(1) has a unique steady state (n*, N*, X*).

Proof. The goal is to prove that ® is a contraction in order to obtain a unique fixed point. In order to
estimate 0x N we make use of the implicit function theorem. By differentiating Equation (32) we get

/ dx(Nx)e~ Jo p(sats’ . X)ds" g0 de — / Nye™ Jg p(s",a+s",X) ds’ (/ Axp(s' i + 8, X) ds/) da ds.
0
(35)
Furthermore, if we differentiate with respect to X the Equation (31), we get

8XNX (a) = / <—aa6_ f(jl p(s/7u+5’7X) dsl) BXNX (u) du
0

+/ (—&ﬂxe*foa”(s"““"x)dsl) Nx (u) du,
0

i.e. dx Nx(a) satisfies the equation
(I — TX)[aXN](a> = / p(a7 u + a, X)e— fo’” p(s”u-‘rs”X) ds/NX (u) du
0

- / pla,u+a,X) (/ Oxp(s,u+s',X) ds’) e Jo' p(shuts X0 ds" () du.
0 0
(36)
By using the implicit function theorem and the Condition (35) we can define an inverse of I — Tx

which depends continuously on X. Observe that ||(I — 7x)™!| is uniformly bounded on X in the
operator norm, since X is uniformly bounded. Thus, for the function ® we get

' (X)| = ‘/aXNX(a) da

<1 = T) | 10xplloo ( / / (1 + poca)e™ I P02 X) s N () da du)
< C|0xplloo (//(1 + poa)e P Nx (u) da du)
< C0xpllwopoc ( / a +pooa)emada> 7

so that for ||0xpl|/« small enough @ is a contraction and we conclude the result. O

5 Convergence to equilibrium

After studying the linear case, we are now ready to prove convergence to the steady steady under the
weak interconnection regime, i.e. ||0xp||o small enough, by a perturbation argument.

15



Theorem 5 (Convergence to equilibrium). Assume that ng € L'(D) satisfies Assumption (4) and that p
Lipschitz satisfies Assumption (2). For ||0xp||oc small enough, let (n*, N*, X*) be the corresponding station-
ary state of System (1). Then there exist C, A > 0 such that the solution n of System (1) satisfies

[n(t) —n|

L, < Ce M||ng — n*||py ., Yt > 0.

Moreover | N(t) — N*|| 1 and | X (t) — X*| converge exponentially to O when t — oco.

Proof. Observe that n satisfies the evolution equation
Oy = Lx[n] == —0sn — Jan — p(s,a, X (t))n + 0(s—0} (s, a) / p(a,u, X (t))n(t, a,u) du,
0

where d¢,—0y (s, a) is the measure along the line {(0,a): a > 0}. We can rewrite the evolution equation
as
ﬁtnzﬁx*[n]+(ﬁx[n]—LX*[n}):LX*[n]+h. (37)

with h(t, s, a) given by
h= (p(s,a,X*)—p(s,a,X(t))n(us7a)+6{520}(s7a)/0 (p(a,u, X(t))—p(a,u, X*))n(t,a,u) du. (38)

Let P,: L'(D) — L'(D) be the linear semi-group associated to operator Lx~. As in the proof of
Lemma 1, P, is extended to space (M(D), || - ||ar1) in order to be able to evaluate at the measure h.
Since P;n* = n* for all ¢ > 0, we get that n satisfies

t
n—n*= BPi(ng —n") —|—/ Pi_-h(t,s,a)dr, (39)
0

so we need find an estimate for the function k. Observe that we have the following inequalities:
IR(®)lIzz, < 2[10xplloc X (£) — X1,
(X (1) = X[ < IN(8) = N7,
IN() = N* Iy < 15 o X (8) = X | + poclln(t) = n*|ze .

and since ||0xpllc < 1 we get

2P0 || 0. 0o
()]s, < Zsfoxbles fin(t) —n*||

| X(t) = X*| < == In() =72y,
* Oxpllc *
ING = Nl < poo (20522 1) () — )1y,

thus by taking norm in Equality (39) and applying Doeblin’s Theorem we obtain

IN

t
() = nller, < [1Pi(no —na)llLs, +/ [1Perh(T)l| 2, dT
0

—\t t
1
< - [lno — n*”L;ﬂ + 1o /0 67>‘(t77)||h(7')||L;a dr
—\t t
< 7 e =l +c/ M=) n(r) = || dr,
1— a sa 0 sa
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with C' = ﬁ%. By using Gronwall’s inequality with respect to the function e ||n(t) —

n*||1  we conclude

e~ (A=O)t
In®) = nley, < S llmo sy .
so that for ||0xpllc small enough we have C' < X and we deduce the exponential convergence of
n(t,-, ), N(t,-) and X (t) when t — oc. O

6 Numerical simulations

In order to illustrate the theoretical long time results and other possible behaviors of System (1), we
present numerical simulations for different firing rates and initial data. The numerical illustrations
below are obtained by solving the equation (1) with a classical first-order upwind scheme.

We focus in displaying the discharging flux N (¢, a) and the total activity X (¢) since these two elements
determine the general behavior of system (1).

6.1 Example 1: Convergence to equilibrium

For our first example, we choose as initial data n¢(s, a) = e~ and the firing rate is given by

p=1esxy + Ls—a>x)s

which corresponds to an inhibitory case since p is decreasing with respect to X. Moreover, this par-
ticular form of p is decomposed as the sum of two simple threshold functions with the first one
depending only on the first elapsed time and the second one depending on the difference between
the last two discharges.

0.87

1 0865 -
086 |
o855 |

0.85 f

0.845 -

10

X 5 0.84 . . . .
Time t 10 o Time a 0 2 4 6 8 10

Time t

(a) Activity N(t,x). (b) Total Activity X (t).

Figure 4: Example 1. Case ng(s,a) = e and p = ;> xy + Ls—a>x)-
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In this case the solution simply converges to a steady state, as we see in Figure 4 for the discharging
flux N and the total activity X. From Equation (31) we note that the discharging flux at equilibrium
N* has a jump discontinuity at X *, which is consistent with the numerical solution. This convergence
is compatible with Theorem 5.

6.2 Example 2: Jump discontinuities

We now consider the initial data no(s,a) = 2 - 1{254>s+1} and the firing rate is given

p= ]1{s>e*X} + ]l{sfa>efx}a

which corresponds to an excitatory case since p is increasing with respect to X.

1.66

164
4
162

N(t,a)

Time t 10 o Time a 0 2 4 6 8 10
Time t

(a) Activity N(t,x). (b) Total Activity X (t).

Figure 5: Example 2. Case ng(s,a) =2 Ligsqssr1y and p = Lo o-xy + Lg_gse-x)-

Like the previous example the solution converges to the steady state, but the total activity X shows
three jump discontinuities as we see in Figure 5. The multiple jump discontinuities are consequence
of the contribution of the term depending on the difference between the two elapsed times. Further-
more, solutions convergent to the steady state that present a single jump discontinuity were already
observed in Caceres et al. [35] for the classical elapsed time model. The phenomenon of multiple
jumps discontinuities in Figure 5 is an extension for the case of Equation (1).

6.3 Example 3: Periodic solutions and stabilization

Next, we choose initial data ng(s,a) = %e_(a_l)]l{wmax(s)l)} and the firing rate is given by

10u?
u? 41
which corresponds to an excitatory case since ¢'(u) > 0. Since p does not depend on a, we take

advantage by solving the classical elapsed time Equation (5) after integrating with respect to a, as we
remarked in the introduction.

p= ¢(X)l{s>1}a QD(U) - + 0.5,
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Time t 10 o Time a 0 2 4 6 8 10
Time t

(a) Activity N(t,x). (b) Total Activity X (t).

Figure 6: Example 3.1. Case ny(s,a) = %e_(“_l)]l{wmax(s,l)} and p = o(X)1 51}

For these data, both the discharging flux N and the total activity X are asymptotic to a periodic
pattern as we see in Figure 6. Similar examples on periodic solutions were found in Caceres et al. [35]
in the classical elapsed time model for the same type of firing rates.

However, when we incorporate the effects of the difference between the elapsed times the periodic
regime changes. For the same initial data and

p=@(X) o1y + Lsasxy,

we observe in Figure 7 that, with the term depending on the difference between the two elapsed
times, the solution of System (1) converges to the steady state.

0 2 4 6 8 10
Time t

(a) Activity N (¢, ). (b) Total Activity X (t).

Figure 7: Example 3.2. Case ng(s,a) = %e*(afl)]l{@max(s,l)} and p = o(X)1s>1y + Lieasxy-
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7 Perspectives

By means of Doeblin’s theory applied to a more complex problem that the classical elapsed time
model, we managed to understand the dynamics of System (1) for weak non-linearities by adapting
the ideas of Cafiizo et al. [5]. However, aspects such as well-posedness and the asymptotic behavior
for strong interconnections are still an open problem as in the classical elapsed time model.

Concerning the strongly inhibitory case, it remains pending to prove uniqueness of the steady state.
Whilst in the classical elapsed time model this problem is reduced to a simple equation, for the model
with two elapsed times we have to prove uniqueness for the integral Equation (34). Moreover, we
conjecture in the general case that the speed of convergence to a steady state must be exponential like
it is expected for the classical elapsed equation.

With respect to the existence of periodic solutions, we still have to find or construct a non-trivial
example relying on dynamics for two elapsed times. The only examples we have found so far are
adaptations of solutions of the classical elapsed time equation that were obtained in Caceres et al. [35]
and these types of solutions presents jump discontinuities, making them difficult to analyze. Further-
more, it remains as an open problem to find continuous periodic solutions as in the classical elapsed
time model.
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