Skip to Main content Skip to Navigation
Journal articles

Impact of Modeling Abstractions When Estimating Leaf Mass per Area and Equivalent Water Thickness Over Sparse Forests Using a Hybrid Method

Abstract : Equivalent water thickness (EWT) and leaf mass per area (LMA) are important indicators of plant processes, such as photosynthetic and potential growth rates and health status, and are also important variables for fire risk assessment. Retrieving these traits through remote sensing is challenging and often requires calibration with in situ measurements to provide acceptable results. However, calibration data cannot be expected to be available at the operational level when estimating EWT and LMA over large regions. In this study, we assessed the ability of a hybrid retrieval method, consisting of training a random forest regressor (RFR) over the outputs of the discrete anisotropic radiative transfer (DART) model, to yield accurate EWT and LMA estimates depending on the scene modeling within DART and the spectral interval considered. We show that canopy abstractions mostly affect crown reflectance over the 0.75–1.3 μm range. It was observed that excluding these wavelengths when training the RFR resulted in the abstraction level having no effect on the subsequent LMA estimates (RMSE of 0.0019 g/cm2 for both the detailed and abstract models), and EWT estimates were not affected by the level of abstraction. Over AVIRIS-Next Generation images, we showed that the hybrid method trained with a simplified scene obtained accuracies (RMSE of 0.0029 and 0.0028 g/cm2 for LMA and EWT) consistent with what had been obtained from the test dataset of the calibration phase (RMSE of 0.0031 and 0.0032 g/cm2 for LMA and EWT), and the result yielded spatially coherent maps. The results demonstrate that, provided an appropriate spectral domain is used, the uncertainties inherent to the abstract modeling of tree crowns within an RTM do not significantly affect EWT and LMA accuracy estimates when tree crowns can be identified in the images.
Document type :
Journal articles
Complete list of metadata
Contributor : Laurine Wibaux Connect in order to contact the contributor
Submitted on : Tuesday, August 24, 2021 - 1:52:48 PM
Last modification on : Tuesday, January 4, 2022 - 5:59:58 AM
Long-term archiving on: : Friday, November 26, 2021 - 9:21:51 AM


Publisher files allowed on an open archive




Thomas Miraglio, Margarita Huesca, Jean-Philippe Gastellu-Etchegorry, Crystal Schaaf, Karine Adeline, et al.. Impact of Modeling Abstractions When Estimating Leaf Mass per Area and Equivalent Water Thickness Over Sparse Forests Using a Hybrid Method. Remote Sensing, MDPI, 2021, 13 (16), pp.3235. ⟨10.3390/rs13163235⟩. ⟨hal-03324201⟩



Les métriques sont temporairement indisponibles