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The present paper is a companion of two translated articles by Alfred Clebsch, titled “On a general
transformation of the hydrodynamical equations” and “On the integration of the hydrodynamical
equations”. The originals were published in the Journal für die reine and angewandte Mathematik”
(1857 and 1859). Here we provide a detailed critical reading of these articles, which analyzes
methods, and results of Clebsch. In the first place, we try to elucidate the algebraic calculus used
by Clebsch in several parts of the two articles that we believe to be the most significant ones. We
also provide some proofs that Clebsch did not find necessary to explain, in particular concerning
the variational principles stated in his two articles and the use of the method of Jacobi’s Last
Multiplier. When possible, we reformulate the original expressions by Clebsch in the language
of vector analysis, which should be more familiar to the reader. The connections of the results
and methods by Clebsch with his scientific context, in particular with the works of Carl Jacobi,
are briefly discussed. We emphasize how the representations of the velocity vector field conceived
by Clebsch in his two articles, allow for a variational formulation of hydrodynamics equations
in the steady and unsteady case. In particular, we stress that what is nowadays known as the
“Clebsch variables”, permit to give a canonical Hamiltonian formulation of the equations of fluid
mechanics. We also list a number of further developments of the theory initiated by Clebsch,
which had an impact on presently active areas of research, within such fields as hydrodynamics
and plasma physics.

I. INTRODUCTION

The two articles, which are commented here, present early results by Alfred Clebsch with
relatively little immediate impact on the development of hydrodynamics. Besides the little
known work — at that time — by Hankel, some results by Beltrami and remarks in articles
by Basset, Hicks, Lamb and Duhem, which were based on the two articles by Clebsch,
the results of the German mathematician on the variational formulation of hydrodynamics
equations, did not lead to any major development, in the decades immediately following the
years of their publication.1

Since the years 1929-30, a few related articles appear, namely those by Bateman, and
by Herivel. A renewed interest in the works by Clebsch occurs then in the 1960s, not only
in connection with hydrodynamics, as done by Lin, and also by Bretherton, but also with
regard to magnetohydrodynamics and electromagnetism, as in the work by Calkin, and in
the article by Seliger and Whitham.2

Finally, starting from the 1980s, we observe a much more important number of results
related to the two articles by Clebsch and, in particular, to the representation of vector
fields in terms of the variables that Clebsch introduced in his 1859 paper. It is practically
impossible to provide an exhaustive list of the results obtained during the last four decades
and stemming from the introduction of Clebsch variables. In Sec. V, we attempt to pro-
vide, however, a number of references exemplifying various recent applications of Clebsch
variables, and of their extensions, to theoretical and mathematical physics, in particular,
concerning hydrodynamics and plasma physics.

In the two papers under consideration, regarding historical reasons for the motivations
and the methods adopted (in particular under the influence of Carl Jacobi’s work), it is

∗ e-mail : etassi@oca.eu
1 Hankel 1861, Beltrami 1871, Basset 1888, Hicks 1882, Lamb 1895, Duhem 1901.
2 Bateman 1929, Herivel 1954, 1955, Calkin 1963, Lin 1963, Bretherton 1970, Seliger 1968.
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worth summarizing here a few biographical notes about Clebsch’s childhood and youth.
During his childhood, Clebsch became friend with Karl Neumann, the son of Franz Neu-

mann. In her biography on Peter Gustav Lejeune Dirichlet, Uta Merzbach, who reports
about the visit of Dirichlet to Carl Jacobi in 1843, mentions the presence of Clebsch (who
was 10 years old at that time) and of his friend Karl at family meetings. At the univer-
sity, Clebsch took the Physics course taught by Franz Neumann (friend and collaborator
of Jacobi), as well as other courses taught by Jacobi’s disciples, namely Friedrich Julius
Richelot (Advanced Geometry, Partial Differential Equations, Mechanics) and Otto Hesse
(Mechanics, Integral Calculus and Variational Calculus ).3

When Clebsch completed his doctoral thesis at the University of Königsberg in 1954, he
was just 21 years old. His supervisor is the previously mentioned physicist Franz Neumann.
Clebsch’s doctoral thesis concerns the motion of an ellipsoid in an incompressible fluid with
a potential velocity field. Clebsch treated two separate cases, corresponding to the situations
when the body executes a translational or a rotational motion, respectively. This work is
published, with some modifications, in Crelle’s journal, in German, and is followed by a note
published one year later. The authors that Clebsch cites (Siméon-Denis Poisson, Dirichlet,
Gabriel Lamé, Jacobi) and the methods that he adopts, show that he is aware of the most
recent works on the subject and that hydroynamics is at center of his scientific interests
during the years immediately following his thesis.4

In 1855 Clebsch moves to Berlin, where he writes his Habilitation thesis, which he defends
in 1858. During this period Clebsch publishes several articles in Crelle’s Journal that, since
1855, is edited by Borchardt, former student of Dirichlet and Jacobi. After Jacobi’s death
in 1851, Dirichlet, who inherits all Jacobi’s manuscripts, takes care of their publication,
in collaboration with Carl Borchardt. Some of these articles, including from Clebsch, are
published in Crelle’s Journal. In 1862 he edits, in Crelle’s Journal, the famous manuscript
of Jacobi about Pfaff’s problem (where the Jacobi identity appears, in relation with the
Poisson bracket) and, a little later, in 1866, according to Borchardt’s notes, the Vorlesungen
über Dynamik, which consist of courses given by Jacobi at the university of Königsberg in
winter 1842 -1843. In the following year, Jacobi, ill, leaves Königsberg and will never come
back. However, we can suppose that the content of his Vorlesungen made use of courses
taught by Jacobi and written down by Clebsch and also taught by Richelot and Hesse. Also,
thanks to the Crelle’s journal and the publication, in two volumes, of the most important
mathematical articles by Jacobi, Clebsch becomes familiar with the main results by Jacobi.5

We finally remark that, during the period from 1856 to 1859, Clebsch published in Crelle’s
Journal seven articles and one in Monatsberichte der Königlichen Preussische Akademie des
Wissenschaften zu Berlin, related to the subject of interest for the present paper. Four of
them concerned hydrodynamics and four deal with calculus of variations. Also connected
with the two articles that we are considering, are the articles on Pfaff’s problem belonging
to the period from 1861 to 1863.6

Our paper is organized as follows. Section II describes the context of Clebsch 1857 and
1859 papers, and their key results.

Sections III and IV describe the results and methods of the article of 1857 and 1859,
respectively. Besides elucidating and commenting a number of algebraic steps of Clebsch’s
papers, we explain and emphasize in particular, the use of the method of Last Multiplier
and recall the canonical Hamiltonian formulation of Euler’s equation for an incompressible
fluid, which emerges from the introduction of Clebsch variables.

Concluding remarks are presented in Section V, with some observations, in particular,
about more recent developments and applications of the vector field decomposition that
Clebsch introduced in his 1859 paper.

3 Merzbach 2018:136, Clebsch 1854:17-18.
4 Clebsch 1854, 1856, 1857a.
5 Jacobi 1846, 1851.
6 Clebsch 1856, 1857a, 1857b, 1858a, 1858b, 1858c, 1859a, 1859b, 1861, 1862, 1863. For detailed biographical

information on Clebsch, see Burau, 1970–1980 and Various Authors, 1873a; 1873b.
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II. CONTEXT OF CLEBSCH’S 1857 AND 1859 ARTICLES ON HYDRODYNAMICS AND
MOST IMPORTANT RESULTS

It is particularly interesting to consider in a somewhat detailed manner the results by
Jacobi that Clebsch applies to hydrodynamics. One of the fundamental articles in this
context is Theoria Novi Multiplicatoris ad varia exempla applicata, published by Jacobi in
1844, which describes his method of the Last Multiplier. Jacobi and two of his disciples,
Kummer and Clebsch, had a way to denote what we now call n-dimensional (vector) spaces,
using, one scalar field and n− 1 vector fields. There some cases where the notation has an
interesting geometric interpretation.7

Anyway, we find it more convenient to switch to modern notation. We shall return to
this matter when presenting the Clebsch notation for multi-dimensionl problems (see Sec.
III.A). Jacobi’s method is based on a lemma and on a theorem. The “Fundamental Lemma”
by Jacobi can be stated in the following way: Let f1, f2, · · · , fn be n functions of n variables
x1, x2, · · · , xn. The co-factors Aij , with i, j = 1, . . . , n, of the terms ∂xj

fi of the Jacobian

matrix
∂ (f1, f2, · · · , fn)

∂ (x1, · · · , xn)
satisfy

∑n
j=1 ∂xj

Aij = 0 for i = 1, · · · , n.

This lemma allows Jacobi to prove the following theorem: let X = (X1, · · · , Xn) be a
vector field where X1, · · · , Xn are n functions of x1, · · · , xn. The (n − 1)th integral of the

system
dx1

X1
= · · · =

dxn

Xn
can be found by a simple quadrature, once n− 2 integrals fi = αi,

(with i = 1, . . . , n − 2 and constants α1, · · · , αn−2) are known. Jacobi remarks that, if a
function M satisfies ∇ · (MX) = 0, by means of the change of variables V : (x1, · · · , xn)→
(α1, · · · , αn−2, xn−1, xn) then one can find the (n − 1)th integral by a quadrature, and the
solution is given by ∫

MXn−1oV
−1dxn−1 −XnoV

−1dxn

∆
= constant, (1)

where ∆ is what is nowadays referred to as the Jacobian determinant of the change of
variables.8

Jacobi applies his method of the Last Multiplier to Pfaff’s problem and to different prob-
lems in mechanics. This includes Lagrange’s equations, where he takes as auxiliary un-
knowns the velocity components in order to obtain a first order equation, and applied it also
to Hamilton’s equations.9

Jacobi took a particular interest in Hamilton’s theory and contributed to several devel-
opments thereof. Hamilton’s equations are discussed by Jacobi, in 1837, as a special case
of Pfaff’s problem. In this context, Jacobi also developed variational methods for different
problems in solid mechanics and celestial mechanics. He also developed new methods of
resolution of Pfaff’s problem, the most important part of which will be published only after
his death (in Crelle’s Journal 1862, Vol. 60 and in a book based on his lectures in 1866).10

The articles written by Clebsch from 1855 to 1860 lay in the perspective opened by the
work of Jacobi. Clebsch indeed shows that the equations determining the velocity vector
field of a fluid are related to Pfaff’s problem. The results of Clebsch about Pfaff’s problem
were certainly inspired by Jacobi’s methods, but can also be considered as a by-product of
Clebsch’s results on hydrodynamics.11

It is namely the methods developed by Jacobi for Pfaff’s problem that Clebsch apply in
his two articles devoted to hydrodynamics. Clebsch himself will focus on Pfaff’s problem in
later articles. We keep in mind that the history of Mechanics, during the 19th century, can
be seen through the different steps that were required to find the general solution of Pfaff’s

7 Kummer 1847.
8 Jacobi, 1844:251.
9 Jacobi 1844:222, 266, 1845:262, 266.

10 Hamilton 1834, 1835, Jacobi, 1837:128-136, 1862, 1866. For the genesis of Hamilton–Jacobi equations see
Nakane-Frazer 2002.

11 Clebsch, 1861, 1862, 1863.
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problem, beginning with the work of Jacobi until those of Elie Cartan, including of course
the results of Clebsch, Ferdinand Georg Frobenius, Sophus Lie and Jean Gaston Darboux.
We do not intend to rediscuss here this process, which is described in detail in the work of
Hawkins. We would just like to point out that the articles of Clebsch on hydrodynamics
were certainly a source of inspiration for his later works on Pfaff’s problem.12

We mention, nevertheless, that in his article on Pfaff’s problem of 1862, Clebsch develops
a method that he names indirect. In his subsequent article on the subject, he gives up this
method and finds inspiration from the methods developed by Jacobi in his Nova methodus
(Clebsch himself took care of the publication of the latter article by Jacobi in the preceding
issue of the Crelle’s Journal). In his second paper on Pfaff’s problem, Clebsch gives the
solution of the problem in dimension 2n, stating the integrability conditions. This method
by Clebsch, that Elie Cartan will qualify as “very elegant”, makes use of the famous brackets
introduced by Jacobi. Also on this point, Clebsch can be seen as the direct descendant of
Jacobi. A further evidence of the influence of Jacobi on Clebsch’s works on hydrodynamics is
provided (see Sec. IV.B) by the application, in the 1859 paper, of a canonical transformation
in order to set equal to zero a function playing the role of “Hamiltonian”. This procedure
clearly reminds of what is now known as the Hamilton–Jacobi method.13

At the time of Clebsch’s two papers on hydrodynamics, work on the fluid dynamics were
formulated mainly in Eulerian coordinates. Exceptions were the work of Cauchy of 1815 and
of Hankel in 1861, where results on the vorticity are presented in Lagrangian coordinates.14

Also, we remark that, after the works of Joseph-Louis Lagrange in 1761-62, the variational
approach to hydrodynamics was for a while abandoned.15

The purpose of Clebsch in his 1857 paper is to find a variational principle characterising
the steady motion of an incompressible fluid. In his second paper of 1859, Clebsch addresses
the problem of a variational principle for the unsteady case.

Following an approach typical of pure mathematics and in the tradition of Jacobi, Clebsch,
in both papers, considers initially partial differential equations in a generic dimension (n for
the 1857 paper and 2n+1 in the 1859 paper) and later investigates the applications to fluids
in dimension 3. In particular, Clebsch is the first to follow this approach for hydrodynamics.

One has to observe that the practice of treating problems in an arbitrary number of di-
mensions becomes quite common in the years 1840–50s. For instance, since 1843, Arthur
Cayley investigates some problems of analytical geometry in dimension n. The first results
in the theory of invariants by James Joseph Sylvester and Cayley are disseminated in Ger-
many by means of several articles published by Cayley in Crelle’s Journal. The subject of
these articles are homogeneous polynomials of several variables. In these articles, Cayley
does not restrict the number of variables to three. Moreover, in connection with the the-
ory of invariants, we observe an increased usage of determinants for expressing properties
of homogeneous polynomials, and in particular quadratic forms and the associated bilinear
forms. Hesse publishes an article about the use of determinants in geometry, where he in-
vestigates determinants of order n of symmetric matrices and expresses, in terms of such
determinants, what we nowadays refer to as scalar and vector products, namely operations
that Clebsch uses in his articles. This is also the time where the Ausdehnungslehre by Her-
mann Grassmann, which goes unnoticed for a long time, lays the foundations of a geometry
in dimension n. Finally, the Habilitation thesis by Bernhard Riemann, which will appear
only in 1868, defines a local metric on a manifold (although the term Mannigfaltigkeit is due
to Carl Friedrich Gauss) of dimension n.16

For the variational formulation of the paper of 1857, Clebsch introduces a set of variables
a1, a2, · · · , an, (note that, as detailed below, we use a different notation, with respect to
Clebsch, for the functions ai), alternative to the set of variables given by the n components of
the velocity field. Clebsch expresses the components of the velocity field of an incompressible
fluid as the co-factors of the element ∂a1/∂xj of the Jacobian matrix of elements ∂ai/∂xj .

12 Hawkins 2005, 2013, Clebsch 1861, 1862, 1863.
13 Hawkins, 2005:395–396, Cartan 1899:240.
14 Cauchy, 1815, Hankel 1861, Frisch–Villone 2014, Frisch–Grimberg–Villone 2017.
15 Lagrange 1760-61:462, where he derives Euler equations for the case of a barotropic fluid.
16 Cayley 1845, 1847, 1851, 1857, Hesse 1855, Grassmann, 1844, Riemann 1854.



5

This formulation guarantees automatically that the divergence of the velocity field be zero.
In particular, in the case n = 3, the velocity field is expressed as u = ∇a2 × ∇a3. In the
steady case, considered in the paper of 1857, the streamlines turn out to be located at the
intersection of the hypersurfaces ai = constant, for i = 2, ..., n. These also correspond to
integrals of the equations of motion. This kind of representation of the velocity field as the
vector product of gradients of scalar functions appears in an article by Euler. In this way
Leonhard Euler obtained Bernoulli equation in terms of the streamlines.17

In the article of 1859, Clebsch introduces a different expression for the velocity field,
which is based on what we now call the celebrated Clebsch variables. In this case Clebsch,
in the three-dimensional case, expresses the vorticity field as the product of gradients of
such variables. Vorticity lines thus lie at the intersection of hypersurfaces identified by the
condition that the “Clebsch variables” be constant. In this representation, the equations of
motion for an incompressible fluid can be cast in a form that is reminiscent of the canonical
Hamilton’s equations of motion. By means of a transformation of variables, Clebsch also
shows that the arbitrary function Π, emerging as a new and undesired degree of arbitrariness
in his variational formulation, can be set equal to zero without loss of generality. We remark
that Clebsch variables are sometimes referred to as “Monge potentials”, following Clifford
Truesdell, who credits Gaspard Monge and Johann Friedrich Pfaff for having introduced
them, although implicitly, as Truesdell himself points out. Truesdell also establishes the
aforementioned connection between Clebsch variables and Pfaff’s problem. This connection
will be described more in detail later in the paper.18

III. CLEBSCH’S ARTICLE OF 1857 : RESULTS AND METHODS

Before considering the content of Clebsch’s 1857 paper, we find it useful to observe that
one of the main difficulties in reading the texts by Clebsch is related to the absence of the
concept of vector and of vector analysis. Some of the operations that are nowadays carried
out by means of vector analysis, are expressed by Clebsch making use of determinants, and
it is not always straightforward to find the corresponding formulation of Clebsch expressions
in terms of vector analysis. Therefore, for the sake of a better understanding of the text,
we believe it might be useful to follow some parts of Clebsch’s article step by step and to
reformulate, where possible, his expressions, with the help of vector analysis.

Before proceeding further, it is appropriate to explain the system we adopt in the present
paper for referring to equations. Indeed, in the following, we will frequently refer to equa-
tions contained in the accompanying articles providing the translation of the two papers by
Clebsch. An equation, present in the accompanying articles, which was numbered also in
Clebsch original papers, will be referred to as Eq. CT (n), [57.p] if it belongs to the 1857
paper, or as Eq. CT (n), [59.p] if it belongs to the 1859 paper. In these expressions CT is
an acronym for “Clebsch Translation”. The number (n) indicates the equation number in
the original Clebsch paper and the number p corresponds to the additional number adopted
in the accompanying paper. So, for instance, Eq. CT (19), [59.35] indicates that we are
referring to the equation of the 1859 paper, that Clebsch denoted with the number (19), and
that the authors of the accompanying papers denote with [59.35]. Equations that were not
numbered by Clebsch will be referred to simply as to Eq. CT [57.p] or CT [59.p], depending
on whether they belong to the 1857 or 1859 paper, respectively. Finally, when we refer to
equations of the present paper, we use the standard notation Eq. (n), where n is the number
of the equation in the present paper.

A. n-dimensional system of equations

The starting point of Clebsch’s analysis consists of a set of partial differential equations
in dimension n. Clebsch considers the following system (corresponding to CT (1), [57.1])

17 Euler 1757, Truesdell 1954b:XCI–C.
18 Truesdell 1954a:27.
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∇V =
∂u

∂t
+ u · ∇u, (2)

completed by the following divergence-free condition (corresponding to CT (2), [57.2]), ex-
pressing incompressibility in the fluid context:

∇ · u = 0. (3)

We do not know if the initial purpose of Clebsch was to treat Euler’s equations in dimension
n. Clebsch of course is aware of the fact that, for n = 3, one obtains Euler’s equations for an
incompressible fluid, and this is in particular the case that he considers in the second part
of the article. However, such n-dimensional systems are typical of a line of research initiated
by Pfaff in 1814 and characterized namely by considering system of equations in a generic
dimension n. Jacobi also follows this procedure. Indeed, in his articles Jacobi begins with
treating systems of differential equations in dimension n, before considering the applications
to mechanics in dimension n = 3 (or less).19

For the case n = 3, the vector field u in Eqs. (2)-(3) corresponds to the fluid velocity field.
We remark that the function V includes the pression as well as the potential U associated
with external forces which, at that time, were related by F = ∇U , whereas nowadays it is
customary to place a minus sign in front of the gradient.

Clebsch introduces an alternative set of variables20

a1, a2, · · · , an

which allows him to express the components of the velocity vector field as the cofactors of
the components of the gradient of the variable a1 in the Jacobian matrix associated with
transformation

(x1, x2, · · · , xn) 7→ (a1, a2, · · · , an).

In order to express the velocity vector in modern language, in the form a single determinant,
we can consider a basis (ei) of the Euclidean space of dimension n and write:

u =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en

∂a2
∂x1

∂a2
∂x2

· · · ∂a2
∂xn

· · · · · · · · · · · ·

∂an
∂x1

∂an
∂x2

· · · ∂an
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4)

Making reference to a theorem by Jacobi, Clebsch remarks that this expression for the
velocity vector field automatically verifies the equation ∇ · u = 0. Indeed, the components
of the vector u so defined, are determinants of (n − 1) × (n − 1) matrices whose rows are
gradients.21

From the variation of the total energy and indicating, as above, with uk = ∆k the k-th
component of the velocity vector, Clebsch obtains Eq. CT (10a), [57.11]:

δ (V − T ) =

k=n∑
k=1

(
∂∆k

∂t
+Mk

)
δxk, (5)

19 Pfaff 1814.
20 Clebsch uses the index notation of Jacobi, a, a′, a(2), ...a(n−1). Here we deviate slightly from the original

notation by Clebsch and prefer to let the values of the index of the variables go from 1 to n.
21 Jacobi 1844:203.
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where (see Eq. CT (10), [57.10]):

Mk =

i=n∑
i=1

∆i

(
∂∆k

∂xi
− ∂∆i

∂xk

)
. (6)

The vector field M of components Mk, is the product of an antisymmetric matrix N = (ckj)
with the velocity vector, so that

M = Nu (7)

with

ckj = −cjk =
∂uk
∂xj
− ∂uj
∂xk

. (8)

Clebsch realizes also that

utM = utNu = 0. (9)

From which it follows that, the vector M being orthogonal to the vector u, it is a linear
combination of the vectors ∇ai for i = 2, · · · , n. This yields Eq. CT (11), [57.13] and the
system CT (15), [57.18], which is a reformulation of the n-dimensional Euler equations in
the unsteady case.

We find it also useful to anticipate that, for n = 3, one has M = (∇×u)×u. The vector
field M then physically corresponds to the cross product of the vorticity with the velocity.

Eqs. CT (11), [57.13] and CT (15), [57.18] by Clebsch, expressed in vector form, read as
follows :

M =

n∑
i=2

Ai∇ai.

∇(V − T ) =

n∑
i=2

Ai∇ai +
∂u

∂t
·

The latter equation can be written in terms of variations, which corresponds to the form
given in Eq. CT (12), [57.14]:

δ(V − T ) =
∂u

∂t
· δx +

n∑
i=2

Aiδai. (10)

In the steady case, it reduces to Eq. CT (13), [57.15]. Namely considering the steady
case, Clebsch obtains the identity

δ(V − T ) =

n∑
i=2

Aiδai = δΠ, (11)

where Π = Π(a2, · · · , an) is an arbitrary function. Upon integration, one may write

V − T = Π(a2, . . . , an). (12)

and for i = 2, 3, · · · n, one has Ai =
∂Π

∂ai
.

Clebsch has thus shown that, in the time-independent case, the sum of the kinetic (T )
and of the potential (V ) energy is a function of the quantities a2, · · · , an only. In particular,
for n = 3, given that, as above mentioned, streamlines lie at the intersection of surfaces
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ai = constant, it follows that the total energy is constant along the streamlines. Indeed,
from the relation

∇(V − T ) = A2∇a2 +A3∇a3,

one obtains ∇(V − T ) · ∇a2 × ∇a3 = 0, implying that, with respect to the variables
(a1, a2, a3), the function V − T is a function of a2 and a3 only. This function is denoted,
following Eq. (12), as Π(a2, a3). The streamlines of the velocity field u = ∇a2 × ∇a3 lie
at the intersections of the surfaces a2 = constant and a3 = constant, which implies that
Π(a2, a3) (and, in turn, the total energy T − V ) is constant along the streamlines.

When analyzing his Eq. CT (15), [57.18], Clebsch considers determinants that remind of
Cramer’s formula: the term Smh of the expression CT [57.19] is the hth component of the
vector Sm.

Sm =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en

∂a2
∂x1

∂a2
∂x2

· · · ∂a2
∂xn

∂am−1

∂x1

∂am−1

∂x2
· · · ∂am−1

∂xn

∂(V−T )
∂x1

∂(V−T )
∂x2

· · · ∂(V−T )
∂xn

· · · · · · · · · · · ·

∂an
∂x1

∂an
∂x2

· · · ∂an
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (13)

Because this expression is a multilinear form composed by gradients only, the divergence of
the vector field Sm is zero.

When replacing, in the expression for Sm, the term ∇(V − T ) by

∇(V − T ) =

n∑
i=2

Ai∇ai +
∂u

∂t
,

Clebsch makes use of the property according to which, when a matrix possesses two identical
rows, its determinant vanishes, and obtaines, by linearity of the divergence operator:

0 = ∇ · Sm = ∇ · (Amu) +∇ · v, (14)

where the vector v is equal to

v =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en

∂a2
∂x1

∂a2
∂x2

· · · ∂a2
∂xn

∂am−1

∂x1

∂am−1

∂x2
· · · ∂am−1

∂xn

∂∆1

∂x1

∂∆2

∂x2
· · · ∂∆n

∂xn

· · · · · · · · · · · ·

∂an
∂x1

∂an
∂x2

· · · ∂an
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (15)

The last line in the above expression is namely Eq. CT (17), [57.24] by Clebsch.
Because the divergence of the velocity vector field vanishes, one obtains Eq. CT (18),

[57.26] :

0 = u · ∇Am +∇ · v.
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The term Qm of Clebsch is the last term in this equation. The equations at the end of Sec.
2 of Clebsch’s paper are rather simple consequences of Eq. CT (15), [57.18]. In particular,
Eq. CT (19), [57.30] extends Eq. CT (14a), [57.17] to the time-dependent case.

Section 3 of Clebsch’s article is devoted, on the one hand, to obtaining an expression for
the coefficients Am and, on the other hand, to the formulation of a variational principle
characterizing the steady state of a fluid. Hereafter we provide a somewhat detailed dis-
cussion of some of the steps of Clebsch’s calculations, in particular, given that, as already
mentioned, his repeated use of determinants, might be unusual for a contemporary reader.

We first remind that Eqs. CT (21), [57.32] correspond to the equations of the system CT
(11), [57.13]:

M =

n∑
i=2

Ai∇ai.

Making use of our notation for the indices, Eq. CT (22), [57.32] becomes:

Sk =

i=n∑
i=1

h=n∑
h=1

m=n∑
m=2

∂∆h

∂xi
· ∂am
∂xk

· ∂∆h

∂ ∂am∂xi

· (16)

Clebsch shows that the term Sk is equal to −Mk, where Mk is the kth component of the
vector M in Eq. CT (11), [57.13].

In order to understand Clebsch’s procedure, one has to note that the term ∂∆h/∂
∂am
∂xi

is

the cofactor of ∂am∂xi
in the determinant ∆h. Also, the terms ∂am

∂xk
·∂∆h/∂

∂am
∂xi

can be obtained

by replacing the column ∂am
∂xi

in the determinant ∆h, by the term ∂am
∂xk

, as one calculates the
determinant along this column.

Clebsch considers then the result of the sum

m=n∑
m=2

∂am
∂xk

· ∂∆h

∂ ∂am∂xi

,

as one varies the indices i and h:
- when i 6= k and h 6= k, the matrix contains two identical columns, which cancels the

determinant;
- when i = k, one obtains the determinant ∆h;

- when h = k, the determinant ∆k no longer contains the column
∂am
∂xk

and adding

it amounts to obtaining −∆i, because, as Clebsch says, removing the ith column in ∆k

amounts to removing the kth column in ∆i, up to the sign.
The above triple sum then yields : Sk = −Mk.
Because the term Sk and the kth line of Eq. CT (21), [57.32] are both linear combinations

of terms of the form
∂am
∂xk

, it is sufficient to compare the coefficients in order to identify the

expression for the Am.
One then obtains, using Clebsch’s formulation (see Eq. CT (23), [57.37]):

Am = −
i=n∑
i=1

h=n∑
h=1

∂∆k

∂xi
· ∂∆h

∂ ∂am∂xi

·

Moreover, given that the divergence of the velocity vector field u is zero, one has

Am = −
i=n∑
i=1

∂

∂xi

{
h=n∑
h=1

∆h
∂∆h

∂ ∂am∂xi

}
,

which yields Eq. CT (24), [57.41]:
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Am = −
i=n∑
i=1

∂

∂xi

{
h=n∑
h=1

∂T

∂ ∂am∂xi

}
,

providing the expression for the coefficients Am.
After this equation, Clebsch formulates his variational principle : the n-dimensional steady

Euler equations correspond to the conditions that make the integral∫
(T −Π)dx1dx2 . . . dxn

a minimum.We remark that, although the symbol Π was previously introduced to in-
dicate a function of the variables a2, a3, · · · , an, in the latter integral, the function Π
has to be intended as a function of the variables x1, x2, · · · , xn, according to Π =
Π(a2(x1, x2, · · · , xn), a3(x1, x2, · · · , xn), · · · , an(x1, x2, · · · , xn)).

Minimizing the integral
∫

(T −Π)dx1dx2 . . . dxn amounts to show that the equations fol-
lowing from the condition

δ

∫
(T −Π)dx1dx2 . . . dxn = 0

correspond to

Ai =
∂Π

∂ai
, for i = 2, · · · , n.

Clebsch does not prove this principle as, most probably, according to him, its validity
follows immediately from Eq. CT (24), [57.41]. A reader familiar with calculus of variations
would also find the derivation of this result rather straightforward.

Nevertheless, we provide explicitly some intermediate steps that lead to the result. Ac-
tually, one can find an explicit proof (which we follow hereafter) in dimension n = 3, but
easily extendable to an arbitrary dimension n. Indeed, here is the argument of Basset.22

Given that the kinetic energy density T only depends on the derivatives ∂ai/∂xj , we write

δT = δT2 + δT3 + · · · δTn
where

δTi =

n∑
j=1

∂T

∂ ∂ai∂xj

δ

(
∂ai
∂xj

)
, for i = 2, · · · , n.

We consider then the term

δT2 =
∂T

∂ ∂a2∂x1

δ

(
∂a2

∂x1

)
+

∂T

∂ ∂a2∂x2

δ

(
∂a2

∂x2

)
+ · · ·+ ∂T

∂ ∂a2∂xn

δ

(
∂a2

∂xn

)
.

We focus on the first term on the right-hand side of this expression. Carrying out an inte-
gration by parts, its contribution to δT2 to the integral δ

∫
(T−Π)dx1dx2 . . . dxn, corresponds

to ∫ n ∂T

∂ ∂a2∂x1

δ

(
∂a2

∂x1

)
dx1dx2 · · · dxn

=

∫ n−1 ∂T

∂ ∂a2∂x1

δa2dx2 · · · dxn−1 −
∫ n ∂

∂x1

(
∂T

∂ ∂a2∂x1

)
δa2 dx1dx2 · · · dxn,

(17)

22 Basset 1888:34–38.
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where we added an index n or n − 1 to the integral symbol, to emphasize that one is
integrating over an n or n− 1 dimensional domain, respectively.

The first term on the right-hand side vanishes, if appropriate boundary conditions are
chosen. This is the case, for instance, if one assumes that the variation δa2 vanishes on
the boundary. Although Clebsch does not comment explicitly on the boundary conditions
adopted for his variational principles, it appears as if he systematically assumes conditions
such that boundary terms vanish when integrating by parts.

Integrating by parts and summing the contributions coming from the other terms in the
expression of δT2, one obtains∫

δT2dx1dx2 · · · dxn = −
∫ (

∂

∂x1

∂T

∂ ∂a2∂x1

+
∂

∂x2

∂T

∂ ∂a2∂x2

+ . . .+
∂

∂xn

∂T

∂ ∂a2∂xn

)
δa2 dx1dx2 · · · dxn

=

∫
A2δa2 dx1dx2 · · · dxn.

(18)
Repeating this procedure for the other terms δT3, · · · , δTn, one can eventually obtain

δ

∫
(T −Π)dx1dx2 . . . dxn =

n∑
i=2

∫ (
δTi −

∂Π

∂ai
δai

)
dx1dx2 . . . dxn

=

n∑
i=2

∫ (
Ai −

∂Π

∂ai

)
δai dx1dx2 . . . dxn

(19)

Consequently, imposing δ
∫

(T −Π)dx1dx2 . . . dxn = 0 leads to

Ai =
∂Π

∂ai
, for i = 2, · · · , n,

which completes the proof.

B. 3D equations

In the case n = 3, the velocity field in terms of the variables

(a1, a2, a3)

introduced by Clebsch, is expressed by

u = ∇a2 ×∇a3.

Euler equations of motion for a fluid, on the other hand, read

∇V = ∂tu + u · ∇u; (20)

Replacing, in Euler equation, u · ∇u by (∇× u)× u +∇(u2/2) one obtains the expression

∇(V − T ) =
∂u

∂t
+ (∇× u)× u.

As above anticipated, the quantity Mi introduced by Clebsch, corresponds, in the case
n = 3, to the ith component of the vector field (∇× u)× u.

We also have

(∇× u)× u = A2∇a2 +A3∇a3,

which makes it possible to calculate directly the following expressions for the coefficients A2

and A3:
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A2 = (∇× u) · ∇a3 = ∇ · (u×∇a3), A3 = −∇a2 · (∇× u) = ∇ · (u×−∇a2). (21)

Such expressions for the coefficients A2 and A3 actually appear for the first time already
in Euler’s works.23

Finally, the expressions for the quantities R2 and R3 by Clebsch, in the case n = 3,
correspond to

R2 =
dA2

dt
= (∇× u) · ∂∇a3

∂t
R3 =

dA3

dt
= −(∇× u) · ∂∇a2

∂t
. (22)

1. Resolution of the system CT (38), [57.63] by the method of Jacobi’s Last Multiplier.

The equations determining the streamlines of the fluid are reported by Clebsch in his Eq.
CT (38), [57.63] and read

dx1

dt
= ∆1,

dx2

dt
= ∆2,

dx3

dt
= ∆3.

This system can also be cast in the form

dx1

∆1
=
dx2

∆2
=
dx3

∆3
=
dt

1
. (23)

Clebsch remarks that if, for instance, a3(x1, x2, x3, t) = constant is an integral of the
system, then

da3

dt
=
∂a3

∂t
+

3∑
1

∆i
∂a3

∂xi
=
∂a3

∂t
+ u · ∇a3 = 0.

However, the term ∇a3 · u vanishes because a3 is constant along streamlines. Thus, the
partial derivative of a3 with respect to time has also to be zero, which implies R2 = 0 or,
equivalently, that also A2 = constant is an integral of the system.

The system CT (38), [57.63] involves four variables. Thus, as one knows three independent
solutions, one knows also the general solution, which is a function f such that the Jacobian
of the transformation of f and of the three solutions with respect to the four variables
x1, x2, x3, t be zero.

Clebsch then considers two solutions as known and finds the third one by means of the
method of Last Multiplier.

More precisely, he supposes to have two solutions A1 = constant and a2 = constant and
wants to determine a third solution ϕ,verifying the condition W = 0, where (see Eq. CT
[57.68])

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψ
∂x1

∂ϕ
∂x1

∂a2
∂x1

∂A1

∂x1

∂ψ
∂x2

∂ϕ
∂x2

∂a2
∂x2

∂A1

∂x2

∂ψ
∂x3

∂ϕ
∂x3

∂a2
∂x3

∂A1

∂x3

∂ψ
∂t

∂ϕ
∂t

∂a2
∂t

∂A1

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(24)

23 Euler 1757:347.
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is the Jacobian determinant of the transformation and ψ is the general solution.
On the other hand, upon carrying out a change of variables from (x1, x2, x3, t) to

(a2, A1, v, t
′), where t′ = t and where v is a fourth independent variable, also the condi-

tion

W =
dψ

dt
=
∂ψ

∂t
+
∂ψ

∂a2

da2

dt
+

∂ψ

∂A1

dA1

dt
+
∂ψ

∂v

dv

dt
= 0. (25)

must hold (note that in this expression we replaced t′ with t and kept the same symbol ψ
for the function ψ written in terms of the the new independent variables).

Because
da2

dt
= 0 and

dA1

dt
= 0, this equation reduces to

W =
dψ

dt
=
∂ψ

∂t
+
∂ψ

∂v

dv

dt
= 0. (26)

Expressing the Lagrangian derivative dv/dt in terms of the original variables (x1, x2, x3, t),
Clebsch obtains

W =
dψ

dt
=
∂ψ

∂t
+
∂ψ

∂v

{
∂v

∂t
+ ∆1

∂v

∂x1
+ ∆2

∂v

∂x2
+ ∆3

∂v

∂x3

}
= 0. (27)

The expression for the Jacobian determinant W can also be written in terms of the new
variables. Taking into account that ∂a2/∂t

′ = ∂A1/∂t
′ = 0, this leads to

W =D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψ
∂a2

∂ϕ
∂a2

1 0

∂ψ
∂A1

∂ϕ
∂A1

0 1

∂ψ
∂v

∂ϕ
∂v 0 0

∂ψ
∂t

∂ϕ
∂t 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (28)

where Clebsch indicates with D the Jacobian determinant of the transformation between
the variables (x1, x2, x3, t) and (a2, A1, v, t

′).
In this way Clebsch obtains the identity

(
∂ψ

∂t

)
+

(
∂ψ

∂v

)(
∂v

∂t
+ ∆1

∂v

∂x1
+ ∆2

∂v

∂x2
+ ∆3

∂v

∂x3

)
= D

∣∣∣∣∣∣
∂ψ
∂v

∂ϕ
∂v

∂ψ
∂t

∂ϕ
∂t

∣∣∣∣∣∣ . (29)

Because this identity must hold for every solution ψ, equating the coefficients of ∂ψ/∂t and
∂ψ/∂v leads to Eq. CT [57.71]

−1 = D
∂ϕ

∂v
, w = D

∂ϕ

∂t
,

where

w =
∂v

∂t
+ ∆1

∂v

∂x1
+ ∆2

∂v

∂x2
+ ∆3

∂v

∂x3
.

The third integral can then be found, as expected when using the method of Last Multi-
plier, by quadrature, which yields Clebsch’s solution CT (40), [57.72]:

ϕ =

∫
wdt− dv

D
= constant.
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2. Formulation in an arbitrary system of coordinates and applications.

Sections 6 and 7 of Clebsch’s article of 1857 refer to the case n = 3 and are devoted to
the formulation of his variational principle in an arbitrary system of coordinates and to its
application to some special cases, respectively.

At the beginning of Sec. 6 Clebsch introduces a new arbitrary system of time-independent
variables denoted as (y1, y2, y3) and later in the Section derives the expressions required to
apply his variational principle in this new system of coordinates. In particular, this amounts
to minimize the integral CT [57.83]:

∫ ∫ ∫
(T −Π) ·Ddy1dy2dy3

where T and Π are expressed in the new coordinates and, according to Eq. CT (44), [57.79],

D =

√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣

u11 u12 u13

u21 u22 u23

u31 u32 u33

∣∣∣∣∣∣∣∣∣∣∣
. (30)

In the latter expression, the elements u11, u22, u12, · · · are defined in Eq. CT (52), [57.95] ,
in terms of the (invertible) coordinate transformation (y1, y2, y3) 7→ (x1, x2, x3), by

i=3∑
i=1

∂xi
∂yk

∂xi
∂yh

= ukh.

Clebsch actually introduces the elements u11, u22, u12, · · · already at the beginning of the
Section through the formula CT (43), [57.78]

ds2 = u11dy
2
1 + u22dy

2
2 + 2u12dy1dy2 · · · ,

providing the expression for the square of the line element in the new coordinates.
In our opinion, Sec. 6 contains a detailed derivation, for an arbitrary system of coordinates,

of most of the formulas derived by Clebsch in previous Sections, but in general presents no
elements of particular historical relevance neither in the methods nor in the results. We
nevertheless find it useful to clarify, in the following lines, the derivation of the quantity P
in Eq. CT (45), [57.81], by using a more modern approach.

Denoting by J =
D(x1, x2, x3)

D(y1, y2, y3)
the Jacobian matrix associated with the change of coor-

dinates, we remark that the matrix of elements (uij) corresponds to the product JT J . In
fact, upon defining

M =


u11 u12 u13

u21 u22 u23

u31 u32 u33

 , (31)

the scalar product of the vector dx with itself is equal to

dx · dx = dyTMdy.

We also have dx = Jdy, so that

dx · dx = (Jdy)T (Jdy) = dyTJTJdy,
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yielding M = JTJ .
Considering the function a = a(x1, x2, x3) and denoting by ā(y1, y2, y3) its expression in

the coordinates (y1, y2, y3), we have

∇xa = (∇ya)TJ−1 =
(
J−1

)T ∇yā.
where we denoted by ∇x and ∇y the gradient with respect to the (x1, x2, x3) and (y1, y2, y3)
coordinates, respectively.

With our notation, the expression for the quantity P introduced by Clebsch in Eq. CT
(45), [57.81], reads

P = ∇xa1 · ∇xa2

=
((
J−1

)T ∇yā1

)T (
J−1

)T ∇yā2

= (∇yā1)T J−1(J−1)T∇yā2.

Denoting by ComU the co-matrix of a generic matrix U , we have J−1 =
1

det J
(Com J)T .

It follows then that

J−1(J−1)T =
1

D2
ComM

and finally

P =
1

D2
(∇ya1)TComM∇ya2.

The latter expression is consistent with the expression CT (45), [57.81] given by Clebsch, in
the form of a determinant.Indeed, when calculating such determinant, the elements of the
co-matrix of M appear.

The expression CT (45a), [57.82] for 2T given by Clebsch is based on the work by Hesse
cited by Clebsch who expresses, in terms of determinants, the identity24

‖u× v‖2 = ‖u‖2 ‖v‖2 − ‖u · v‖2 .

The two applications considered by Clebsch in Sec. 7 concern cases in which the fluid
particle motion is independent on one coordinate. In the first case Clebsch considers a
velocity field identified by the two functions (again, adopting our notation):

a3 = x3, a2 = f(x1, x2, t).

The components of the velocity field are given by

u1 = ∆1 =
∂a2

∂x2
, u2 = ∆2 = −∂a2

∂x1
, u3 = ∆3 = 0.

The system is invariant with respect to the x3 coordinate. In this case one has, following
Eq. CT (57), [57.101], A3 = 0 and

−A2 =
∂2a2

∂x2
1

+
∂2a2

∂x2
2

·

24 Hesse 1855:248.
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Therefore, the quantity A2 turns out to correspond, in this case, to the fluid vorticity,
which, in the two-dimensional limit, has only one finite component, that we denote with ω,
given by

ω = ∇x3 · (∇× u) = −
(
∂2a2

∂x2
1

+
∂2a2

∂x2
2

)
·

The function a2, on the other hand, plays the role of what is referred to as a stream
function for an incompressible two-dimensional fluid.

The equation describing the dynamics of the fluid, that Clebsch obtains from his Eq. CT
(37), [57.61] and that he writes in his Eq. CT (59), [57.103], reads

∂a2

∂x2

∂A2

∂x1
− ∂a2

∂x1

∂A2

∂x2
+
∂A2

∂t
= 0.

This corresponds to the vorticity equation for a two-dimensional incompressible fluid,
where the first two terms are nowadays often written with the help of a canonical Poisson
bracket [ , ] as [A2, a2].

With Eq. CT (60), [57.104] Clebsch remarks that, in the steady case, his variational
principle yields

∂2a2

∂x2
1

+
∂2a2

∂x2
2

+ Π′(a2) = 0,

where Π′(a2) = ∂Π
∂a2

. This translates into the fact that, the vorticity being equal to an

arbitrary (invertible) function of the stream function, corresponds to a steady solution for
a two-dimensional incompressible fluid. This result was already known to Lagrange and
George Stokes . It is however remarkable to note that Clebsch obtains this result from a
variational principle. Moreover, making reference to modern Hamiltonian fluid mechanics,
the same result can be obtained from the variational principle involved in the Energy-Casimir
method W, where one extremizes the functional F = H +C, with H being the Hamiltonian
functional and C the Casimir invariant. In the case of the two-dimensional Euler equation
one has H = (1/2)

∫
|∇a2|2 dx1dx2 and C =

∫
C(ω) dx1dx2, with C an arbitrary function.

Extremizing the functional F , while assuming that the first derivative of the function C be
invertible, leads to

∂2a2

∂x2
1

+
∂2a2

∂x2
2

+ C′−1
(a2) = 0,

where C′−1
indicates the inverse function of the first derivative of C with respect to its

argument. Thus, one sees that the arbitrary function Π introduced by Clebsch, in the case
when the system is invariant along one direction, is related to the arbitrary function C
associated with the Casimir invariant of the two-dimensional Euler equation.25

The second application of Sec. 7 also deals with a system possessing a symmetry along
one direction. More precisely Clebsch considers the axisymmetric system in cylindrical
coordinates, which allows him also to illustrate the procedure for the change of coordinates
that he described in Sec. 6.

IV. CLEBSCH’S ARTICLE OF 1859 : RESULTS AND METHODS

This article by Clebsch is published after the celebrated article by Hermann von Helmholtz
of 1858, which motivated Clebsch to look for a convenient expression for the vorticity.

25 For the two-dimensional case, see Lamb 1895:263. For the Casimir invariant, see Morrison 1998, Holm et
al. 1985.
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In particular, Clebsch, whose 1857 article provided a variational principle for the steady
case, looks for a new set of variables, in terms of which the condition for the vorticity
to be divergence-free is automatically satisfied. This is suitable to provide a variational
formulations for the time-dependent equations of motion for an incompressible fluid. This is
how Clebsch introduces his new variables, corresponding to those that are nowadays referred
to as “Clebsch variables”.). In an earlier article, part of Clebsch’s 1859 paper was discussed
by Frisch–Grimberg–Villone.26

Before addressing the general problem in dimension 2n + 1, in Sec. 1, Clebsch presents,
in dimension 3, a change of variable (Eq. CT [59.1]) (u, v, w) 7→ (ϕ,m,ψ) where u, v and w
are the x, y and z components of the velocity vector field, respectively. The transformation
to the new variables (ϕ,m,ψ) is such that udx+ vdy+wdz = dϕ+mdψ. As a consequence,
it turns out that the vorticity vector field is given by ∇m×∇ψ.

As Clebsch remarks in Sec. 1, the variational formulation presented in the article of 1859,
permits to cast the Euler equations for an incompressible fluid into a system consisting of
two partial differential equations of first order and of a third partial differential equation of
second order.

After the introduction Section, Clebsch organizes the presentation of his results in three
Sections, which concern: the introduction of the new variables in dimension 3, the derivation
of the variational principle in dimension 2n+ 1 and its application to the motion of a fluid
(case n = 1), respectively.

A. Clebsch variables in dimension 3

As mentioned in our previous Section, Clebsch introduces the change of variables
(u, v, w) 7→ (ϕ,m,ψ) such that udx + vdy + wdz = dϕ + mdψ. It is however, in a foot-
note that he explains how the problem of determining the variables m, ψ and ϕ, for given
u, v and w, is related to Pfaff’s problem. In Jacobi’s 1844 paper, it is explained how to use
the last multiplier method for the n-dimension problems. On pp. 255–256 this method is
reduced to the case of three and four dimensions. Clebsch is not directly quoting from the
1844 paper but from another paper of Jacobi, published in 1846, in which the 1844 paper
and various later companion papers were republished. However a minor mistake happened
(either to Clebsch or to his printer): the three and four-dimensional cases, which in 1846 had
been moved to p. 104, are misquoted as being on p. 144. Later, after the death of Jacobi,
the three and four-dimensional cases were republished in 1866 directly by Borchardt notes
from Jacobi’s oral lectures on Vorlesungen über Dynamik.27

If we consider the particular case (M = 1) treated by Clebsch, the theorem is the following:

In the case where one can take M = constant, for instance M = 1, we have
the following theorem:
Given a system

dx

X
=
dy

Y
=
dz

Z
,

with X, Y , Z satisfying

∂X

∂x
+
∂Y

∂y
+
∂Z

∂z
= 0,

if a solution ψ = β is known and if one considers z as a function of x, y, and β
in the expressions for X,Y and Z one obtains the total differential

dm =
1
∂ψ
∂z

(Xdy − Y dx).

26 Helmholtz 1858, Frisch–Grimberg–Villone 2017.
27 Jacobi 1844:255–256, 1846:104, Jacobi 1866:77–78.
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One can then determine, by a simple quadrature, the second integral of the sys-
tem, m = α.

We find it useful to provide, hereafter, some details about Jacobi’s proof.28

For the sake of uniformity in the notation, we adopt, in the following, the symbols used
by Clebsch, and not those adopted originally by Jacobi.

First we remark that the case studied by Clebsch corresponds to a case where the multiplier
is equal to 1, because the vector field of components (X,Y, Z), i.e. the vorticity field, is the
curl of a vector field and, consequently, its divergence is zero.

Jacobi supposes that ψ(x, y, z) = β be an integral of the system

dx

X
=
dy

Y
=
dz

Z
,

and looks for a function m = m(x, y, z) such that m = α be a second integral. He performs
a change of coordinates (x, y, z) 7→ V (x, y, z) = (x, y, ψ) and expresses the gradient of m
with respect to the old coordinates, in terms of the new coordinates, which yields:

∂m

∂x

∂m

∂y

∂m

∂z


=



1 0
∂ψ

∂x

0 1
∂ψ

∂y

0 0
∂ψ

∂z





∂(m ◦ V )

∂x

∂(m ◦ V )

∂y

∂(m ◦ V )

∂ψ


, (32)

Jacobi had previously remarked that, if ψ = β and m = α are two solutions of the system,
then the curl of the vector field associated with the system, i.e. the vorticity field (X,Y, Z)
in this case, can be expressed as ∇m×∇ψ. In terms of the new coordinates, this yields

X =
∂(m ◦ V )

∂y

∂ψ

∂z
, Y = −∂(m ◦ V )

∂x

∂ψ

∂z
, Z =

∂(m ◦ V )

∂x

∂ψ

∂y
− ∂(m ◦ V )

∂y

∂ψ

∂x
. (33)

Therefore one obtains:

∂(m ◦ V )

∂y
=

X

∂ψ

∂z

,
∂(m ◦ V )

∂x
= − Y

∂ψ

∂z

.

Because dψ = 0, the differential of m, in terms of the new coordinates, reads

d(m ◦ V ) =
∂(m ◦ V )

∂x
dx+

∂(m ◦ V )

∂y
dy.

Replacing the partial derivatives of m ◦ V by the above expressions, we finally obtain:

d(m ◦ V ) =
Xdy − Y dx

∂ψ

∂z

.

The solution is then given by

m ◦ V = constant = α =

∫
Xdy − Y dx

∂ψ

∂z

.

28 Jacobi 1866:77.



19

Clebsch proceeds in a similar manner in order to determine the functions m,ψ and ϕ such
that, for a given velocity vector field of components u, v an w, one has udx+ vdy + wdz =
dϕ+mdψ. With regard to m and ψ, Clebsch points out that, if one assumes that an integral
ψ of the problem

dx

X
=
dy

Y
=
dz

Z
, (34)

with

X =
∂v

∂z
− ∂w

∂y
, Y =

∂w

∂x
− ∂u

∂z
, Z =

∂u

∂y
− ∂v

∂x
, (35)

a second integral m can be found by the method of Last Multiplier. We remark that Eqs.
(34) and (35) correspond to Eq. CT [59.3]. Because the vorticity field of components
X,Y and Z is divergence free, the above described theorem by Jacobi applies. As far as
the solution for ϕ is concerned, Clebsch remarks that, because the vector field m∇ψ is
orthogonal, at each point, to the vorticity vector field, it follows that

u · (∇× u) =
∂ϕ

∂x
X +

∂ϕ

∂y
Y +

∂ϕ

∂z
Z = uX + vY + wZ,

which corresponds to Eq. CT [59.5].
Recalling that the components of the vorticity fields can be written, in terms of the

variables m and ψ, as

X =
∂m

∂y

∂ψ

∂z
− ∂m

∂z

∂ψ

∂y
, Y = −∂m

∂x

∂ψ

∂z
+
∂m

∂z

∂ψ

∂x
, Z =

∂m

∂x

∂ψ

∂y
− ∂m

∂y

∂ψ

∂x
,

the above expression can be reformulated as∣∣∣∣∣∣∣∣∣∣

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

∂m
∂x

∂m
∂y

∂m
∂z

∂ψ
∂x

∂ψ
∂y

∂ψ
∂z

∣∣∣∣∣∣∣∣∣∣
= uX + vY + wZ. (36)

Clebsch then carries out a change of coordinates (x, y, z) 7→ (m,ψ, θ), where θ is a third,
independent coordinate.

We denote by

D =

∣∣∣∣∣∣∣∣∣∣

∂m
∂x

∂m
∂y

∂m
∂z

∂ψ
∂x

∂ψ
∂y

∂ψ
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∣∣∣∣∣∣∣∣∣∣
(37)

the determinant of the Jacobian matrix associated with this change of variables. Because

∣∣∣∣∣∣∣∣∣∣

∂ϕ
∂m

∂ϕ
∂ψ

∂ϕ
∂θ

∂m
∂m

∂m
∂ψ

∂m
∂θ

∂ψ
∂m

∂ψ
∂ψ

∂ψ
∂θ

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∂ϕ
∂m

∂ϕ
∂ψ

∂ϕ
∂θ

1 0 0

0 1 0

∣∣∣∣∣∣∣∣∣∣
=
∂ϕ

∂θ
, (38)
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the above expression, descending from u · (∇× u), in terms of the new coordinates reads

D
∂ϕ

∂θ
= uX + vY + wZ.

From this expression one obtains, by integration:

ϕ =

∫ u
(
∂v
∂z −

∂w
∂y

)
+ v

(
∂w
∂x −

∂u
∂z

)
+ w

(
∂u
∂y −

∂v
∂x

)
∂θ
∂x

(
∂v
∂z −

∂w
∂y

)
+ ∂θ

∂y

(
∂w
∂x −

∂u
∂z

)
+ ∂θ

∂z

(
∂u
∂y −

∂v
∂x

) dθ (39)

which corresponds to the expression CT [59.6] for ϕ, given by Clebsch at the end of his
footnote.

B. Clebsch variables in dimension 2n + 1

In Sec. 2 Clebsch considers what we would call today as the system of Euler equations
in dimension 2n + 1. Clebsch begins with determining, from this system of equations, an
expression for V − T , (see Eq. CT (6), [59.12]), that can also be obtained by making use of
an expression that he derived in his article of 1857. Upon setting

cki = −cik =
∂uk
∂xi
− ∂ui
∂xk

, (40)

the expression used by Clebsch, taken from his 1857 paper (see Eq. CT (10a), [57.11]) is

δ (V − T ) =

k=2n+1∑
k=1

(
∂uk
∂t

+

i=2n+1∑
i=1

ckiui

)
δxk. (41)

The term involving spatial derivatives can be written in two different ways:

i=2n+1∑
i=1

k=2n+1∑
k=1

ckiuiδxk =

i=2n+1∑
i=1

k=2n+1∑
k=1

ckiukδxi. (42)

This yields Eq. CT (6), [59.12]:

δ (V − T ) =
2n+1∑
k=1

∂uk
∂t

δxk +
1

2

i=2n+1∑
i=1

k=2n+1∑
k=1

cki (uiδxk − ukδxi) . (43)

It is at this point that Clebsch, with his Eq. CT (7), [59.13], introduces n pairs of variables
(mi, ϕi) in order to represent the velocity field:

u = ∇ϕ+

i=n∑
i=1

mi∇ϕi. (44)

This makes it possible for Clebsch to express, in Eq. CT [59.15], the term involving spatial
derivatives in δ(V − T ) as a sum of n determinants of the form∣∣∣∣∣∣∣

u · ∇mr ∇mr · δx

u · ∇ϕr, ∇ϕr · δx

∣∣∣∣∣∣∣ . (45)
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Upon replacing the velocity vector field using u =
dx

dt
, in the determinants of the form (45),

the term involving spatial derivatives becomes, as in Eq. CT [59.16]:

1

2

i=2n+1∑
i=1

k=2n+1∑
k=1

cki (uiδxk − ukδxi)

=

r=n∑
r=1

[(
dmr

dt
− ∂mr

∂t

)
δϕr −

(
dϕr
dt
− ∂ϕr

∂t

)
δmr

]
.

(46)

Using again the change of variables (44), the term involving the time derivative in Eq. (43)
becomes

k=2n+1∑
k=1

∂uk
∂t

δxk = δ
∂ϕ

∂t
+

r=n∑
r=1

(
mrδ

∂ϕr
∂t

+
∂mr

∂t
δϕr

)
, (47)

which corresponds to Eq. CT [59.17].
Finally, by combining the relations (46) and (47) with Eq. (43), Clebsch derives the

following relation CT (8), [59.18], which is crucial for establishing his variational principle
in the unsteady case:

δ

(
V − T − ∂ϕ

∂t
−
r=n∑
r=1

mr
∂ϕr
∂t

)
=

r=n∑
r=1

(
dmr

dt
δϕr −

dϕr
dt

δmr

)
.

The quantity on the left-hand side is a total variation. Therefore, the same holds
for the right-hand side. More precisely, Clebsch sets the right-hand side equal to
δΠ(ϕ1, · · · , ϕn,m1, · · · ,mn), where Π is an arbitrary function. From this, Clebsch con-
cludes that the system of Euler’s equations in dimension 2n+ 1 can be recast (Theorem 1)
in the form given by his Eq. CT (9), [59.19], i.e.

∂mr

∂t
+ u

∂mr

∂x
+ u1

∂mr

∂x1
+ · · · = ∂Π

∂ϕr
, (48)

∂ϕr
∂t

+ u
∂ϕr
∂x

+ u1
∂ϕr
∂x1

+ · · · = − ∂Π

∂mr
, (49)

∂u

∂x
+
∂u1

∂x1
+ · · · ∂u2n

∂x2n
= 0, (50)

where

uk =
∂ϕ

∂xk
+m1

∂ϕ1

∂xk
+m2

∂ϕ2

∂xk
+ · · ·mn

∂ϕn
∂xk

and with r = 1, · · · , n.
In the new formulation, the system consists of 2n first order partial differential equa-

tions evolving mr and ϕr, and of a second order partial differential equation expressing
the divergence-free condition. Once the system is solved, the potential energy V can be
determined from Eq. CT (10), [59.21], which reads

V =

(
∂ϕ

∂t
+
∑
r

mr
∂ϕr
∂t

)
+

1

2

∑
k

(
∂ϕ

∂xk
+
∑
r

mr
∂ϕr
∂xk

)2

+ Π. (51)

In Eq. CT (11), [59.22] Clebsch points out that the evolution equations for ϕr and mr,
presented in Eq. CT (9), [59.19], can be written as

dϕr
dt

= − ∂Π

∂mr
,

dmr

dt
=

∂Π

∂ϕr

which is what he calls —- at the beginning of Sec. 3 —- as the canonical form of the
equations.
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1. The variational principle

In Theorem 2, Clebsch presents his variational principle, which states that Eqs. CT (9),
[59.19] makes the following integral to be a minimum or a maximum:∫ 2n+2

V dx1 dx2 . . . dx2n+1dt. (52)

Here V is given by the above expression (51), corresponding to Eq. CT (10), [59.21].
We observe that Clebsch does not find it necessary to provide a proof of this result, as

he considers it an immediate consequence of previous calculations. Nevertheless, as we did
in the case of the variational principle of 1857, we believe it might be useful to give some
details about its derivation.

From Eq. CT (8), [59.18], one can derive:

δ(V − T ) =

r=n∑
r=1

[(
dmr

dt
− ∂mr

∂t

)
δϕr −

(
dϕr
dt
− ∂ϕr

∂t

)
δmr

]
, (53)

from which the following identity is readily derived:∫ 2n+2

δV dx1 dx2 . . . dx2n+1dt =

∫ 2n+2

δTdx1 dx2 . . . dx2n+1dt

+

∫ 2n+2 r=n∑
r=1

[(
dmr

dt
− ∂mr

∂t

)
δϕr −

(
dϕr
dt
− ∂ϕr

∂t

)
δmr

]
dx1 dx2 . . . dx2n+1dt.

(54)

In order to prove the variational principle, it is then required to integrate the variation of
the kinetic energy.

One has

δT =

2n+1∑
i=1

uiδui.

If we now consider the first component of the velocity field expressed in terms of Clebsch
variables, we obtain

δu1 =
∂δϕ

∂x1
+

n∑
i=1

mi
∂δϕi
∂x1

+

n∑
i=1

∂ϕi
∂x1

δmi.

Upon multiplying by u1, integrating over the whole domain in space and time and carrying
out an integration by parts, with respect to the coordinate x1, of the first two terms on the
right-hand side, we obtain∫ 2n+2

u1δu1dx1dx2 · · · dx2n+1dt =

∫ 2n+1

u1

(
δϕ+

n∑
i=1

miδϕi

)
dx2 · · · dx2n+1dt

+

∫ 2n+2
[
u1

n∑
i=1

∂ϕi
∂x1

δmi −
∂(miu1)

∂x1
δϕi −

∂u1

∂x1
δϕi

]
dx1dx2 · · · dx2n+1dt.

The first integral on the right-hand side vanishes with appropriate boundary conditions.
Thus one has∫ 2n+2

u1δu1dx1dx2 · · · dx2n+1dt (55)

=

∫ 2n+2
[
u1

n∑
i=1

∂ϕi
∂x1

δmi − u1

n∑
i=1

∂mi

∂x1
δϕi −

n∑
i=1

∂u1

∂x1
(miδϕi + δϕ)

]
dx1dx2 · · · dx2n+1dt.

(56)
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Repeating the same calculation for all the terms uiδui and summing up the results, one
obtains∫ 2n+2

δTdx1 dx2 . . . dx2n+1dt =∫ 2n+2
[

n∑
i=1

(
n∑
i=1

ui
∂ϕi
∂xi

)
δmi −

n∑
i=1

(
n∑
i=1

ui
∂mi

∂xi

)
δϕi

]
dx1 dx2 . . . dx2n+1dt

−
∫ 2n+2

[
∇ · u

n∑
i=1

(miδϕi + δϕ)

]
dx1 dx2 . . . dx2n+1dt.

(57)

The last term vanishes because the divergence of the velocity fields is zero. The two remain-
ing terms let appear the difference between the total Lagrangian derivative and the partial
time derivative of the functions ϕi e mi. Thus one has∫ 2n+2

δTdx1 dx2 . . . dx2n+1dt =∫ 2n+2 n∑
i=1

[(
dϕi
dt
− ∂ϕi

∂t

)
δmi −

(
dmi

dt
− ∂mi

∂t

)
δϕi

]
dx1 dx2 . . . dx2n+1dt. (58)

This expression cancels exactly the right-hand side of the above expression for∫ 2n+2
δV dx1 dx2 . . . dx2n+1dt, showing that the latter functional is extremized when Eqs.

CT (9), [59.19] are satisfied. This variational principle is cited, among others, in works by
Hicks, Basset, Truesdell and Toupin.29

We already remarked, similarly to what done in the case of the variational principle of
1857, that Clebsch most probably finds such algebraic steps rather evident and consequently
does not illustrate them. On the other hand, we found that Basset offers a rather detailed
derivation of Clebsch’s variational principle. In particular, Basset uses also the fact that
the arbitrary function Π can be taken to be the zero function, provided one carries out the
appropriate canonical transformation.

This property is demonstrated by Clebsch in Sec. 3, where he introduces a new set of n
variables a1, · · · , an and a function (W ) = (W )(ϕ1, · · · , ϕn, a1, · · · , an, t) such that

Π =

(
∂W

∂t

)
and that

mr =

(
∂W

∂ϕr

)
, −αr =

(
∂W

∂ar

)
are integrals of

dmr

dt
= − ∂Π

∂ϕr
,

dϕr
dt

=
∂Π

∂mr
.

The last two expressions correspond to Eqs. CT (13), [59.25] and CT (12), [59.24],
respectively. The symbols α1, · · ·αn indicate new constants. Here we also followed the
notation adopted by Clebsch, who encloses between parentheses ( ) the function W , and its
derivatives, when these are considered as functions of the variables ϕ1, · · · , ϕn, a1, · · · , an, t,
in order to distinguish them from W , and its derivatives, considered as functions of the
variables x1, · · · , x2n, t. In the latter case, the standard notation W , ∂W/∂xr, · · · is used,
to indicate W and its derivatives.

29 Hicks 1882:59, Basset 1888:30, Truesdell–Toupin 1860:427.
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In terms of the new variables, the potential V reads, according to Eq. CT (15), [59.30]:

V =
∂(ϕ+W )

∂t
+ α1

∂a1

∂t
+ α2

∂a2

∂t
+ . . .+

1

2

r=n∑
r=1

(
∂(ϕ+W )

∂xr
+ α1

∂a1

∂xr
+ α2

∂a2

∂xr
+ . . .

)2

.

(59)
Comparing this expression with the previous expression, given in Eq. (10), one sees that,
by carrying out the replacements

(ϕ, ϕi, mi) 7−→ (ϕ+W, ai, αi),

the expression for V no longer depends on the arbitrary function Π, which can then be set
equal to zero, without loss of generality. Such transformation that eliminates the arbitrary
function in equations in canonical form appears also in other contexts, and can be related
to what is nowadays referred to as the Hamilton–Jacobi method.30

Clebsch concludes then with Eq. CT (16), [59.31], that the variables ai and αi satisfy the
equations

dai
dt

= 0,
dαi
dt

= 0.

In his Theorem 3 Clebsch provides, by renaming the variables according to the above
replacements, a new reformulation of the Euler’s equations in dimension 2n + 1, which is
equivalent to the previous one, but where Π = 0. It follows that 2n integrals of motion are
given by

mr = constant, ϕr = constant

and the remaining integral can be found by the method of Last Multiplier. In his Theorem
4 he states the variational principle associated with this new formulation.

Section 5 is finally devoted to an application of the general results to the three-dimensional
case (n = 1), where, as seen above, udx + vdy + wdz = dϕ + mdψ. In particular, Clebsch
concludes that the system

dx

dt
= u,

dy

dt
= v,

dz

dt
= w

admits

m = constant, ψ = constant

as integrals, as stated in Eq. CT (23), [59.41]. We recall that the intersections of the surfaces
m = constant and ψ = constant identify vortex lines. The third integral, as above stated,
can be found by the method of Last Multiplier.

The functions m,ψ and ϕ satisfy the following system CT (24), [59.42]

∂m

∂t
+

(
∂m

∂x

∂ϕ

∂x
+
∂m

∂y

∂ϕ

∂y
+
∂m

∂z

∂ϕ

∂z

)
+m

(
∂m

∂x

∂ψ

∂x
+
∂m

∂y

∂ψ

∂y
+
∂m

∂z

∂ψ

∂z

)
= 0, (60)

∂ψ

∂t
+

(
∂ψ

∂x

∂ϕ

∂x
+
∂ψ

∂y

∂ϕ

∂y
+
∂ψ

∂z

∂ϕ

∂z

)
+m

(
∂ψ

∂x

∂ψ

∂x
+
∂ψ

∂y

∂ψ

∂y
+
∂ψ

∂z

∂ψ

∂z

)
= 0, (61)

∂

∂x

(
∂ϕ

∂x
+m

∂ψ

∂x

)
+

∂

∂y

(
∂ϕ

∂y
+m

∂ψ

∂y

)
+

∂

∂z

(
∂ϕ

∂z
+m

∂ψ

∂z

)
= 0. (62)

30 Jacobi 1890:137–138, 1890:393, Lanczos, 1970:238, Landau and Lifshitz, 1976:148.
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This system can be rewritten in the following more compact form:

∂m

∂t
= −u · ∇m, (63)

∂ψ

∂t
= −u · ∇ψ, (64)

∇2ϕ = −∇ · (m∇ψ). (65)

As is well known, one of the most remarkable features of Clebsch variables is that they
make Euler’s equations for an incompressible fluid amenable to a canonical Hamiltonian
formulation.31

Indeed, the first two equations of the above system can be written as

∂m

∂t
=
δH

δψ
,

∂ψ

∂t
= −δH

δm
,

where

H =
1

2

∫
|∇ϕ+m∇ψ|2 dxdydz

is the Hamiltonian functional. In the expression for H, ϕ has to be written in terms of
m and ψ using the divergence-free condition, corresponding to the third equation of the
system. The Clebsch variables m and ψ are then canonically conjugate field variables.

V. CONCLUSIONS

The point in common between the articles of Clebsch of 1857 and 1859 is the search
for a variational formulation of Euler equations for an incompressible fluid. In the first
article Clebsch expresses the velocity field as the vector product of two gradients, whereas
in the second paper it is the vorticity field which admits such a representation. The latter
formulation makes it possible for Clebsch to provide a variational formulation for unsteady
cases. The “Clebsch variables” introduced in this case, will also make it possible to cast
Euler’s equations in canonical Hamiltonian form. One of the most striking aspects of both
articles is the intention of Clebsch of placing Euler’s equations for a three-dimensional fluid,
in a more general setting, namely a space of dimension n in the 1857 paper and a space
of dimension 2n + 1 in the 1859 paper. This occurred at a time where some concepts of
differential geometry (differential operators, tangent space) were still at an infant stage.
Thus, with Clebsch, hydrodynamics becomes a particular case of a general setting as it was
the case for solid mechanics in the work of Jacobi.

It is also worth commenting about the influence that the two articles by Clebsch (in
particular, the 1859 one) had later on the research in the 20th and 21st centuries.

Concerning the 1857 paper, the main connection with more recent results is probably
related to the variational principle leading to equilibrium equations for an incompressible
fluid. As already mentioned in Sec. III.B.2, this is related to the variational derivation of
equilibrium equations for noncanonical Hamiltonian systems.32

Much more considerable, in our opinion, are the repercussions, on contemporary research,
of the 1859 article. One of the most relevant references in this respect, as already mentioned
in Sec. I, is the one by Seliger and Whitham, which elucidates the role of Clebsch variables
in formulating variational principles for continuum mechanics and electromagnetism. In
particular, Seliger and Whitham find a connection between Clebsch’s variational principle
and a constrained Hamilton’s variational principle. This can be illustrated more clearly

31 See, for instance, Kuznetsov and Mikhailov 1980, Morrison 1998 and Gallavotti 2010.
32 See, e.g. Morrison 1998 and Holm et al. 1985.
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considering the case of a barotropic compressible fluid (the incompressible case treated by
Clebsch follows in a straightforward way). Indeed, one can consider the functional

S =

∫ [
ρ
u2

2
− ρε(ρ) + φ

(
∂ρ

∂t
+∇ · (ρu)

)
+ ψ

(
∂(ρm)

∂t
+∇ · (ρmu)

)]
dx1dx2dx3dt, (66)

where ρ = ρ(x1, x2, x3, t) is the mass density of the fluid and ε is the internal energy per
unit mass, a given function of ρ. Note that the functional S has the form of a constrained
action functional, such as those used in Hamilton’s principle. Indeed, the sum of the first
two terms is of the form T − V, with the first term indicating the kinetic energy density
T and the second term representing the potential energy density V. The remaining terms
yield the constraints. In particular, setting to zero δS/δφ, i.e. the functional derivative of
S with respect to φ, yields as constraint the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (67)

whereas δS/δψ = 0, combined with Eq. (67), yields

∂m

∂t
+ u · ∇m = 0, (68)

corresponding to Eq. (63), i.e., the evolution equations for the Clebsch variable m. The
remaining relations following from Hamilton’s principle, and corresponding to

δS

δu
= 0,

δS

δm
= 0,

δS

δρ
= 0, (69)

yield

u = ∇φ+m∇ψ, (70)

∂ψ

∂t
+ u · ∇ψ = 0, (71)

u2

2
− ε− ρ dε

dρ
−
(
∂φ

∂t
+ u · ∇φ

)
−m

(
∂ψ

∂t
+ u · ∇ψ

)
= 0, (72)

respectively.
Equation (70) is namely the representation of the velocity field in terms of Clebsch vari-

ables, which is then seen to follow from the constrained Hamilton’s principle (note that,
without the constraints, one would simply get the trivial case u = 0). Equation (71) cor-
responds to the evolution equation for the second Clebsch variable ψ, whereas Eq. (72)
provides a generalized Bernoulli principle. We note that Seliger and Whitham associate the
origin of the constraints in the action functional (66) with the so called Lin’s constraints
, expressing the conservation of the Lagrangian labels along particle trajectories. More-
over, the Lagrangian density appearing under the integral in Eq. (66) is shown by Seliger
and Whitham to correspond, up to the sign, to the pressure for an isentropic fluid (Seliger
and Whitham actually consider the more general case of an adiabatic fluid). By means of
this identification one can retrieve, as above anticipated, the incompressible case originally
treated by Clebsch, given that the function V in CT (10), [59.21] is namely (in the absence
of external forces) the expression for the pressure in the incompressible case.33

In terms of repercussions on the research of the last decades, one of the most remarkable
properties of Clebsch variables is that they make it possible to cast the Euler equation in a
canonical Hamiltonian form. Indeed, if one considers the functional

H =
1

2

∫
u2 dx1dx2dx3 =

1

2

∫
(∇φ+m∇ψ)

2
dx1dx2dx3, (73)

33 Lin 1963.
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corresponding to the total kinetic energy, the evolution equations for the Clebsch variables
m and ψ can be written in the form

∂m

∂t
=
δH

δψ
= −u · ∇m, (74)

∂ψ

∂t
= −δH

δm
= −u · ∇ψ, (75)

where the incompressibility condition ∇ · (∇φ+m∇ψ) = 0 was also used.34

In the early 1980s, canonical Hamiltonian formulations of fluid models in terms of Clebsch
variables (as opposed to the noncanonical Hamiltonian formulation provided for hydrody-
namics and magnetohydrodynamics by Morrison and Greene) are formulated in the work by
Morrison and in that by Kuznetsov and Mikhailov. The canonical formulation in terms of
Clebsch variables plays also a fundamental role for the modern study of nonlinear wave inter-
actions in hydrodynamics and plasma dynamics, as reviewed in the work by Falkovich and
L’vov, in the one by Zakharov, Musher and Rubenchik, and also in the paper by Zakharov
and Kuznetsov.35

Indeed, canonical variables allow for the application of canonical transformations, by
means of which one can systematically obtain Hamiltonian equations describing the evolution
of waves subject to weak nonlinear interactions (this approach actually does not use directly
the variables m and ψ but the Fourier coefficients of the complex conjugate fields a and
a∗, where a = (m + iψ)

√
2). A more recent investigation in this direction concerns the

formulation, in terms of Clebsch variables, of Hall magnetohydrodynamics, for the purpose
of studying weak turbulence theory in space plasmas.36

The connection between the canonical equations (74)-(75) and the variational principle
stated in Theorem 2 by Clebsch is further elucidated by Rund, who also proves a theorem
generalizing such connection. In the case n = 3 such theorem states that the equations

ρ

(
dm

dt
− ∂Π

∂ψ

)
= 0, (76)

ρ

(
dψ

dt
+
∂Π

∂m

)
= 0, (77)

∂ρ

∂t
+

3∑
j=1

∂

∂xj

(
ρ
∂H

∂uj

)
= 0 (78)

are equivalent to the system of equations extremizing the integral
∫
L0dx

1dx2dx3dt, with
Lagrangian density

L0 = ρ

(
∂φ

∂t
+m

∂ψ

∂t
+H(x1, x2, x3, u1, u2, u3, t) + Π(m,ψ, t)

)
. (79)

In Eq. (76)-(78) an auxiliary field ρ(x1, x2, x3, t) was introduced. It clearly corresponds to
the mass density in the above example by Seliger and Whitham, but in general it corre-
sponds to a scalar field satisfying a continuity equation of the form (78). In Eq. (79) H is
the Hamiltonian of a canonical Hamiltonian system with generalized coordinates x1, x2, x3

and momenta u1, u2, u3. Considering x1, x2, x3 as local coordinates of a three-dimensional
manifold, the variables u1, u2, u3 can be seen as the components of a type (0, 1) tensor field
related to the Clebsch variables φ,m,ψ by the Clebsch transformation u = ∇φ + m∇ψ.
Note that, following Rund, we adopted here the lower index notation for the component of
the velocity field, as opposed to the upper index, in order to indicate the geometric nature
of the vector field u which is that of a (0, 1) tensor field. Note that, when the auxiliary field

34 Kuznetsov and Mikhailov 1980.
35 Falkovich and L’vov 1995, Zakharov, Musher and Rubenchik 1985, Zakharov and Kuznetsov 1997.
36 Sahraoui, Belmont and Rezeau 2003.
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ρ is taken as a constant and
∑3
j=1 ∂H/∂uj = 0 (which is the case when the fluid is incom-

pressible and H = (1/2)
∑3
j=1 u

2
j ), the Lagrangian density L0 corresponds to the function

V appearing in Eq. CT (10), [59.21] and present in the Theorem 2 by Clebsch. The general
proof by Rund permits then to extend the result by Clebsch to more general Hamiltonian
systems, by associating them with variational principles. Rund finds applications of this re-
sult also to the dynamics of charged particles in the presence of electromagnetic fields. The
same Author also develops, with the help of Clebsch variables, a variational formulation of
electromagnetism in the presence of magnetic charges.37

Canonical Clebsch variables have also inspired transformations that allow, as explained by
Morrison, to construct canonical variables from a noncanonical Hamiltonian system based
on a Lie–Poisson structure. Following such reference we consider a finite-dimensional Lie-
Poisson system of dimension N .38

If the Lie bracket of the system is of the form

[f, g] = wkc
k
ij

∂f

∂wi

∂g

∂wj
, i, j, k = 1, · · ·N, (80)

with ckij indicating the structure constants of the underlying Lie algebra and w1, · · · , wN
the noncanonical variables, one can construct a canonical description in terms of conjugate
variables q1, · · · , qN , p1, · · · , pN related to the noncanonical variables by

wi = ckijpkq
j . (81)

The Lie–Poisson bracket associated with the variables wi and with the Lie algebra with
structure constants ckij becomes a canonical bracket when expressed in terms of the variables
pk and qj .

This result can be extended to the infinite-dimensional case. One can consider, for in-
stance, Euler equation for an incompressible two-dimensonal fluid expressed in terms of the
vorticity ω(x, y, t) = ẑ · ∇ × u(x, y, t). Such equation reads

∂ω

∂t
+ [ϕ, ω] = 0, (82)

where ϕ is the stream function related to the vorticity by ω = (∂xx+∂yy)ϕ. In this case the
Lie bracket is given by

[f, g] =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
. (83)

The corresponding canonical variables are two fields P and Q, related to the noncanonical
variable ω by

ω = [Q,P ] = ẑ · ∇Q×∇P. (84)

In the case of a three-dimensional fluid, one can take as the noncanonical variables the three
components Mi = ρui, for i = 1, 2, 3, of the fluid momentum M. In this case, the canonical
variables Pi and Qj are related to the noncanonical variables by

Mi =

3∑
j=1

Pj
∂Qj

∂xi
+
∂(PiQ

j)

∂xj
. (85)

The first term on the right-hand side of Eq. (85) is analogous to the term m∇ψ involving
namely the canonical variables in Clebsch representation of the velocity field. The transfor-
mation (85), on the other hand, is clearly more general than that introduced by Clebsch,
for it involves three pairs of canonically conjugate variables and an additional term on the

37 Rund 1977a, 1977b.
38 Morrison 1998.
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right-hand side. However, analogously to the original Clebsch transformation, also the map-
ping (85) is not injective. Such extensions of Clebsch transformation inspired further works.
For instance, by means of an analogous procedure, Morrison and Hazeltine provide the
canonical Hamiltonian formulation for reduced magnetohydrodynamics, whereas Morrison,
Caldas and Tasso extend such formulation to account for gyroviscosity in plasmas. Still in
the context of the relation of Clebsch variables with Lie algebras. Marsden and Weinstein
elucidate the role of Clebsch variables in the geometric formulation of incompressible Euler
equation with applications also to two-dimensional fluids and N -point vortex models. In the
context of geometric mechanics, Marsden, Ratiu and Weinstein also develop the introduction
of Clebsch variables in the reduction of Hamiltonian systems on the dual of a Lie algebra
of a semidirect product, with applications to compressible fluids and elasticity. Cendra and
Marsden propose variational principles based on Clebsch variables and reduction theory,
whereas Holm and Kupershmidt derive noncanonical Poisson brackets for magnetohydrody-
namics, multifluid plasmas and elasticity models starting from canonical brackets in Clebsch
variables. On the other hand, Zakharov derives conserved functionals for the equations of
motion of a two-dimensional incompressible fluid expressed in terms of Clebsch variables.39

An issue that we already briefly mentioned, concerns the injectivity of the map
(u1, u2, u3) → (φ,m,ψ) expressing Clebsch transformation. The representation of a
divergence-free vector field in terms of Clebsch variables is indeed not unique. This is-
sue is discussed by Yoshida, who also discusses the problem of completeness of the Clebsch
variables, i.e. of whether a generic vector field u(x, y, z) with three components, can be
represented as u = ∇ϕ+m∇ψ, with three scalars ϕ,m and ψ. Clebsch representation turns
out not to be complete and a more general representation u = ∇ϕ+

∑ν
j=1mj∇ψj , with ν

pairs of scalars (mj , ψj), is required, where ν = n−1 and n indicates the space dimension.40

To conclude, we mention that Clebsch variables or extensions thereof, found applications
also in further contexts. For instance, Grad and Rubin make use of a modified Clebsch
representation of a magnetic field for investigating nonlinear partial differential equations
describing magnetohydrodynamic equilibria relevant for plasma confinement in fusion de-
vices. Extensions of the Clebsch representation of vector fields are also introduced by Mendes
et al. in order to treat relativistic hydrodynamics, whereas further examples of such exten-
sions are applied to fluid models in field theories, in the work by Jackiw, Nair and So-Young
Pi and also in the work by Jackiw and Polychronakos. Another application of an extension
of Clebsch variables concerns the problem of quantizing Hamiltonian fluid mechanics, as in
the work by Ghosh. Incompleteness of the Clebsch parametrization in relation with vari-
ational principles involving Maxwell and Chern-Simons actions is discussed in the article
by Deser, Jackiw and Polychronakos. Multiple Clebsch variables for the representation of
incompressible fluid velocity fields are also considered in an article by Balkovsky. 41

For further applications of Clebsch variables in the context of fluid dynamics we refer the
reader to the recent review by Scholle, Marner and Gaskell.42

As mentioned in Sec. I, it is an unrealistic task to provide an exhaustive list of all the
papers that make use of Clebsch variables. We hope, however, that the above references will
be sufficient to give the reader at least a flavor of the importance that the variables introduce
by Clebsch in his 1859 paper had and still have on different branches of theoretical physics
and mathematics.
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ingénieur des Ponts et Chaussées. (Concours de 1815). Mémoires présentés par divers savans
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Clebsch, A. 1856. Über die Bewegung eines Ellipsoids in einer tropfbaren Flüssigkeit. J. Reine
Angew. Math. 52: 103–132.
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Clebsch, A. 1858c. Über die Criterien des Maximums und des Minimums in der Variationsrechnung.
Monatsberichte der Königlichen Preuss. Akademie der Wissenschaften zu Berlin Aus dem Jahre
1857, Königlichen Akademie der Wissenschaften, 1858: 618–621.
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Clebsch, A. 1859b. Üeber die zweite Variation vielfacher Integrale. J. Reine Angew. Math. 56:
122–48.
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