Capillary‐size flow of human blood plasma: Revealing hidden elasticity and scale dependence - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Biomedical Materials Research Année : 2021

Capillary‐size flow of human blood plasma: Revealing hidden elasticity and scale dependence

Résumé

The dynamical mechanical analysis of blood generally uses models inspired by conventional flows, assuming scale-independent homogeneous flows and without considering fluid–surface boundary interactions. The present experimental study highlights the relevance of using an approach in line with physiological reality providing a strong interaction between the fluid and the boundary interface. New dynamic properties of human blood plasma are found: a finite shear elastic response (solid-like property) is identified in nearly static conditions, which also depends on the scale (being reinforced at small scales). The elastic behavior is confirmed by the induction, without heat transfer, of local hot and cold thermodynamic states evidencing a thermo-mechanical coupling in blood plasma so far known only in elastic materials. This finding opens new routes for medical diagnosis and device fabrication.

Dates et versions

hal-03320948 , version 1 (16-08-2021)

Identifiants

Citer

Ursula Windberger, Patrick Baroni, Laurence Noirez. Capillary‐size flow of human blood plasma: Revealing hidden elasticity and scale dependence. Journal of Biomedical Materials Research, 2021, 110 (2), pp.298-303. ⟨10.1002/jbm.a.37286⟩. ⟨hal-03320948⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More