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Glycolipids are present on the surfaces of all living cells and thereby represent targets for
many protein receptors, such as lectins. Understanding the interactions between lectins
and glycolipids is essential for investigating the functions of lectins and the dynamics of
glycolipids in living membranes. This review focuses on lectins binding to the
glycosphingolipid globotriaosylceramide (Gb3), an attractive host cell receptor,
particularly for pathogens and pathogenic products. Shiga toxin (Stx), from Shigella
dysenteriae or Escherichia coli, which is one of the most virulent bacterial toxins, binds
and clusters Gb3, leading to local negative membrane curvature and the formation of
tubular plasma membrane invaginations as the initial step for clathrin-independent
endocytosis. After internalization, it is embracing the retrograde transport pathway. In
comparison, the homotetrameric lectin LecA from Pseudomonas aeruginosa can also bind
to Gb3, triggering the so-called lipid zipper mechanism, which results in membrane
engulfment of the bacterium as an important step for its cellular uptake. Notably, both
lectins bind to Gb3 but induce distinct plasma membrane domains and exploit mainly
different transport pathways. Not only, several other Gb3-binding lectins have been
described from bacterial origins, such as the adhesins SadP (from Streptococcus suis)
and PapG (from E. coli), but also from animal, fungal, or plant origins. The variety of amino
acid sequences and folds demonstrates the structural versatilities of Gb3-binding lectins
and asks the question of the evolution of specificity and carbohydrate recognition in
different kingdoms of life.
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INTRODUCTION

Glycans are on the surface of all living cells and play a remarkable role in the immune system, cellular
signalling, and host-microbe interactions. With nucleic acids, proteins, and lipids, carbohydrates are
building blocks, which are by far more complex and faster evolving. The stunning diversity of glycans
in branching, length, and linkages is achieved from various monosaccharides assembled by specific
enzymes–glycosyltransferases in the ER and Golgi apparatus (Varki et al., 2017). Glycoproteins,
proteoglycans, and glycolipids at the cell surface present complex glycoconjugates, and their
composition, conformation, and dynamics constitute the glyco-code (Gabius et al., 2004).

Specific proteins, so-called lectins, can decipher the glyco-code. Lectins are sugar-binding proteins
recognizing specific structures of carbohydrates. Differently from glyco-enzymes, transporters, or
antibodies, lectins tend to have shallow but well-established ligand-binding pockets or grooves to
recognize one or few moieties of oligosaccharides at the terminal and subterminal positions, and do
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not present any catalytic activity (Lis and Sharon, 1998). Lectins
are present in all living organisms and can adopt various folds, as
illustrated in the Unilectin3D database (Bonnardel et al., 2019).
They are generally multivalent, with several carbohydrate
recognition domains assembled through oligomerization or
tandem repeats along the peptide sequence.

Lectins play a role in various biological functions in self/non-
self-recognition, being of first importance in developing
interactions of host cells with pathogens. Many microbes, such
as viruses, bacteria, parasites, and fungi, use lectins to bind to
glycans present on target tissues during the infection process. In
many cases, lectins are involved in the adhesion process leading to
infection (Sharon, 1996). This provided the basis for developing
therapeutic strategies where the lectin itself is targeted as an anti-
infectious approach (Chabre et al., 2011; Novoa et al., 2014;
Meiers et al., 2019). Plant and fungal lectins are involved in
defence mechanisms and the establishment of symbiosis.
Moreover, they are very useful for applications in research and
technology. Due to their multivalence, many lectins can bind with
strong avidity to the glycans presented in multiple copies at the
surface of cells (Dam and Brewer, 2010).

Glycolipids represent targets for many lectins, and the binding
of lectins may affect their dynamics in membranes. The
interactions between lectins and glycolipids have been
characterized for a better understanding of biological processes
and investigating the dynamics of glycolipids in living
membranes. Among them, Gb3, the glycosphingolipid
globotriaosylceramide, is utilized by several pathogens as host
cell receptor (Lund et al., 1987; Kirkeby et al., 2006; Gallegos et al.,
2012; Johansson et al., 2020), and it is also overexpressed in
several human cancers. Gb3 plays therefore an essential role in
both human health and disease and can be utilized as target for
drug delivery approaches (Müller et al., 2017).

This review examines the three-dimensional structures of
Gb3-binding lectins to illustrate the structural basis for their
carbohydrate-binding affinity and specificity. We will cover Gb3-
binding lectins from bacteria, but also from fungi, plants, and
animals since they are of potential interest for targeting Gb3.
Typical features for Gb3-binding microbial lectins will be
investigated. We will describe substrate specificities, folds,
binding site topographies, valency, affinity, and intracellular
trafficking.

BACKGROUND AND IMPORTANCEOF THE
GLYCOSPHINGOLIPID GB3

Glycosphingolipids (GSLs) are mainly present in the outer leaflet
of the plasma membrane (Hakomori et al., 1998; Kasahara and
Sanai, 1999; Schnaar and Kinoshita, 2015). They are known to be
involved in embryonic development, apoptosis, cell adhesion,
intercellular coordination, cell differentiation, signal
transduction, and cancerogenesis of multicellular organisms.
However, a more precise characterization of the physiological
role of GSLs was difficult in the past due to the lack of appropriate
tools, such as labelling and detection methods. Among several
classes of GSLs, globosides are defined as neutral glycolipids with

at least two monosaccharides linked to the ceramide backbone.
The carbohydrate moiety of globosides usually includes
combinations of D-glucose (Glc), D-galactose (Gal), and
N-acetylgalactosamine (GalNAc) (Schnaar and Kinoshita,
2015). The most common globosides are globotriosylceramide
(αGal14βGal14βGlc1-Cer, Gb3) and globotetraosylceramide
(βGalNAc13αGal14βGal14βGlc1-Cer, Gb4).

Gb3 is also known as CD77 and Pk blood group antigen
(Figure 1A). The corresponding carbohydrate epitopes are
referred as galabiose for the disaccharide αGal14Gal, and
globotriose for the trisaccharide αGal14βGal14Glc. The highest
Gb3 amount is present in human glomerular microvascular
endothelia and the proximal tubule cells of the kidney
(O’Loughlin and Robins-Browne, 2001). Other Gb3 presenting
cells include the colonic microvascular endothelia (Jacewicz et al.,
1999) and the endothelial vasculature of the cerebellum (Ren
et al., 1999). Also, Gb3 is expressed in B-cells (Mangeney et al.,
1991).

The biosynthesis of Gb3 is catalysed by the Gb3 synthase, an
α1,4-galactosyltransferase encoded by the A4GALT gene, via the
transfer of galactose to lactosylceramide acceptor. Interestingly,
the same enzyme synthesizes the P1 antigen (Iwamura et al.,
2003; Thuresson et al., 2011). The degradation of Gb3 is
performed by α-galactosidase (GLA), cleaving the α-galactose.
Deficiency of GLA hydrolase leads to the intra-lysosomal
accumulation of undegraded Gb3, causing Fabry disease,
which predominantly affects the central nervous system
(CNS), heart, and kidney (Bekri et al., 2006).

In humans and other mammals, the αGal14Gal epitope was
considered to be present only on glycolipids (Gb3 and P1 antigen),
but it was recently demonstrated that the Gb3 synthase can also
produce αGal14Gal-capped N-glycans in transfected CHO cells
(Szymczak-Kulus et al., 2021). This epitope is widely present on
N-glycoproteins in birds with substantial similarity between pigeon
α4GalT and human Gb3 synthase (72.5%) (Suzuki et al., 2004). The
αGal14Gal epitope is also present on O-glycans in some birds and
amphibians (Suzuki, 2019). This comprehensive review concludes
that most species of mammals possess an active Gb3 synthase, while
putative α4GalT is present in all vertebrates, with proven activity in
birds and some amphibians. Recent analysis of genomes indicated
potential members of this enzyme family also in plants and insects,
but with no information on the specificity of these enzymes that can
reflect the wide α-glycosyltransferase activity of family GT32
(Keusch et al., 2000).

Gb3 is present in the extracellular leaflet of the plasma
membrane and plays a significant role in microbial attachment
to the host cell surface. Furthermore, Gb3 is a tumour-associated
GSL, highly present in a plethora of human cancers, including
breast cancer and lymph node metastases (LaCasse et al., 1999;
Stimmer et al., 2014), Burkitt’s lymphoma (Mangeney et al.,
1993), ovarian (Jacob et al., 2012), colorectal (Kovbasnjuk
et al., 2005) and pancreatic cancer (Maak et al., 2011). Gb3 is
also associated with multidrug resistance as it functionally
interplays with the ABC membrane efflux transporter - MDR1
gene in drug-resistant cancers (Mattocks et al., 2006; De Rosa
et al., 2008). Gb3 is essential in both human health and disease,
and specific Gb3-binding lectins have a high potential in
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therapeutical approaches. There is a considerable need to
investigate the most specific ones.

Gb3 is mainly partitioning in lipid rafts, which are membrane
domains enriched in sphingomyelin and cholesterol. The degree of
unsaturation, chain length (Kiarash et al., 1994), hydroxylation

(Binnington et al., 2002), and heterogeneity (Pellizzari et al.,
1992) of Gb3 fatty acyl chains can affect the lateral lipid mobility
in the plasma membrane and influence the conformation of the
trisaccharide head group on the cell surface. The nature of the fatty
acyl chain of Gb3 also influences the binding of receptors such as

FIGURE 1 | (A) Structure of the glycosphingolipid Gb3. (B) StxB- and LecA-inducedmembrane invaginations on Gb3-containing GUVs. (C) Endocytotic pathways
of StxB and LecA. (D)Different effects of lectin topology (LecA and StxB) in proto-tissue (3D assembly of giant liposomes) formation (Parts of panel D adapted from image
by Sarah Villringer and licensed under CC BY 4.0; https://doi.org/10.1038/s41598-018-20230-6). AF488 (Alexa Fluor 488) and TxRed (Texas Red) are fluorophors, and
DHPE-TxRed represents Texas Red linked to the phospholipid 1,2-Dihexadecanoyl- sn -Glycerol -3-Phosphoethanolamine. All scale bars are 10 μM, and
schematic representations were made using Servier Medical Art (https://smart.servier.com/).
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Shiga toxin, as discussed below (Schütte et al., 2014; Schütte et al.,
2015; Schubert et al., 2020).

GB3-DEPENDENT BINDING AND UPTAKE
STRATEGIES

Several pathogens and pathogen toxins hijack Gb3 at the cell
surface for adhesion, and in several cases, also for internalization.
The examples of Shiga toxin and the bacterium P. aeruginosa are
discussed below.

Shiga Toxin–Binding, Internalization, and
Toxicity
Members of the Shiga toxin (Stx) family are structurally and
functionally related proteins belonging to AB5 holotoxins
produced by pathogenic bacteria (Fan et al., 2000). The primary
toxin-producing bacterium, Shigella dysenteriae, and the toxin itself
were named after the Japanese bacteriologist Kiyoshi Shiga, the first to
describe and isolate the bacterium in 1897 (Keusch et al., 1995; Trofa
et al., 1999). About eighty years later, Shiga toxin-producing
Escherichia coli (STEC) strains appeared to also cause diarrhea,
like S. dysenteriae. Two types of immunologically distinct toxins
have been identified: Shiga toxin type 1 (Stx1), which is very similar to
Shiga toxin produced by S. dysenteriae, and type 2 (Stx2)
(Konowalchuk et al., 1977). However, independently from the
bacterial origin and the mode of action, these toxins are generally
called Shiga toxins (Scheutz et al., 2012).

All Shiga toxins consist of a catalytically active A-subunit and a
homopentameric, receptor-binding B-subunit. The A-subunit is
composed of A1-and A2-domains linked via a disulfide bond.
When an intracellular protease releases the A1-domain from A2,
it becomes catalytically active and is classified as a Type II
ribosome-inactivating protein (RIP). Inhibition of protein
synthesis by Shiga toxin is sufficient to kill a host cell when
properly processed and delivered. There are subtle differences
between types (Stx1 and Stx2) and subtypes (genetic variants) of
Shiga toxins in terms of specificity and binding strength (Paton
et al., 2004; Scheutz et al., 2012).

Shiga toxin enters the cells after binding to its receptor, the
glycosphingolipid Gb3, on the host cell surface. The B-subunit of
Shiga toxin (StxB) is able to induce tubular membrane
invaginations (Figure 1B), as demonstrated in host cells and
giant unilamellar vesicles (GUVs), to initiate its cellular uptake
(Römer et al., 2007; Römer et al., 2010). Endocytosis of Shiga
toxin (Figure 1C) is either clathrin-dependent or, to a lesser
extent, clathrin-independent (Sandvig et al., 1992). Also,
cytoskeletal dynamics is required for endocytosis in human
kidney cells (Torgersen et al., 2007). After endocytosis, Shiga
toxin follows either the degradative pathway to lysosomes when
bound to non-lipid raft Gb3, or is transported retrograde to the
Golgi apparatus and ER when bound to Gb3 associated with lipid
rafts (Figure 1C). Binding to lipid rafts is critical for the toxicity
of Shiga toxin, as retrograde transport to the cytosol facilitates
toxicity, while endosome sorting to lysosomes targets the toxin
for degradation hence decreasing toxicity (Sandvig et al., 1992;

Sandvig et al., 2010). For instance, domestic cattle are not affected
by Shiga toxin poisoning because all toxin bound to intestinal
epithelial cells is transported to lysosomes for degradation (Hoey
et al., 2003). In addition of the saccharide itself, the membrane
environment and cholesterol levels are essential parameters for
Shiga toxin binding and toxicity (Kiarash et al., 1994; Arab and
Lingwood, 1996; Nakajima et al., 2001; Mahfoud et al., 2009;
Schubert et al., 2020).

P. aeruginosa Lectin LecA – Role in Cellular
Uptake of the Bacterium
Pseudomonas aeruginosa is an opportunistic Gram-negative
bacterium colonizing different human tissues and responsible
for lung infections in cystic fibrosis and immune-compromised
patients, especially in hospital environment (Eberl and Tummler,
2004). This bacterium causes chronic and acute pneumonia,
dermatitis, wound and burn sepsis, and also impairs the
wound healing process. Currently, there is a high need for
new therapeutics to limit its spread and mode of action
(Wagner et al., 2016). Among many virulence factors and
antibiotic resistance determinants (Jurado-Martin et al., 2021),
this pathogen produces two tetrameric lectins, LecA and LecB
(also known as PA-IL and PA-IIL), with specificity to terminal
α-D-galactose (αGal) and L-fucose (Fuc), respectively (Gilboa-
Garber, 1982). LecA binds very efficiently to Gb3-containing
GUVs. Besides its ability to induce membrane invaginations that
appear rather different to StxB-induced membrane tubules
(Figure 1B), it can crosslink liposomes (Figure 1D), in
contrast to StxB, probably due to the different orientations of
Gb3 binding sites in both lectins. LecA binding induces elongated
proto-cellular junctions, which shape the vesicles into polygonal
clusters resembling cellular tissues (Villringer et al., 2018).

LecA has been shown to play a crucial role in the
internalization of the whole bacterium into host cells. LecA
binding and clustering of Gb3 induces negative membrane
curvature (Kociurzynski et al., 2021) resulting in the
membrane engulfment of the bacterium via the “lipid zipper”
mechanism (Eierhoff et al., 2014). Experiments on several
epithelial cell lines confirmed the dependence of this
internalization on the presence of both LecA at the bacterial
outer membrane and Gb3 in the host cell membrane. LecA alone
does not follow the retrograde transport route, but rather traffics
to late endosomes and lysosomes in epithelial cells (from personal
communication with Annette Brandel) (Figure 1C), and through
apical recycling endosomes in polarized cells (Müller et al., 2017).
LecA toxicity has been demonstrated in primary respiratory
epithelial cells and in a mouse model of gut-derived sepsis.
LecA decreased the percentage of activated ciliated cells
(Bajolet-Laudinat et al., 1994), probably by permeabilizing the
epithelial cells, permitting a much more decisive action of
associated toxins (Laughlin et al., 2000). Inhibiting LecA by
galactose or galactose-derived compounds proved to be
efficient against lung infection in murine model systems
(Chemani et al., 2009; Boukerb et al., 2014). Furthermore,
LecA selectively bound to cardiac non-myocytes and altered
plasma membrane topology (Darkow et al., 2020).
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When incubated simultaneously with cells, LecA and StxB
localize to different membrane nanodomains, despite binding to
the same carbohydrate epitope. Moreover, StxB stains the

primary cilium, which LecA does not (Schubert et al., 2020). It
is therefore of interest to analyse the structural differences
between these two Gb3-receptors.

FIGURE 2 | Structures of selected lectins complexed with Gb3. Microbial lectins (light blue frame): (A) homopentameric B-subunit of Shiga toxin (StxB) from
Shigella dysenteriae/Escherichia coli (1BOS); (B) homotetrameric LecA from Pseudomonas aeruginosa (2VXJ); (C) homotetrameric PIIA from Photorhabdus
luminescence (5ODU), a LecA homolog; (D) monomeric SadP adhesin from Streptococcus suis (5BOA); (E) PapG monomer from Escherichia coli (4Z3H); Other Gb3-
binding lectins (light green frame): (F) homodimeric CSL3 from Oncorhynchus keta (2ZX4). (G) homodimeric CGL lectin from Crenomytilus grayanus (5F90); (H)
homodimeric LDL from Lyophyllum decastes (4NDV); (I) Jacalin heterotetramer from Artocarpus integrifolia (2ZMK); (J) homodimeric WBA-I lectin from Psophocarpus
tetranoglobus (2ZMK). Each monomer is colored differently, either in deep salmon, purple, cyan, marine, or split pea color. Galactose residues are shown in yellow and
glucose in blue color; calcium is represented by grey sphere andmanganese by deep purple sphere. The 3D representations were visualised using PyMol (https://pymol.
org/2/).
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DIVERSITY, STRUCTURAL ORGANIZATION
AND BINDING MECHANISMS OF
GB3-BINDING LECTINS
Several lectins from different origins have specificity for Gb3
carbohydrate moiety. Structural data are available for many of
them, and searching in the Unilectin3D database (Bonnardel
et al., 2019) results in 15 complexes of lectins with the αGal14Gal
disaccharide, or oligosaccharides with this terminal epitope. Six
structures involve Shiga toxin (Stx) from S. dysenteriae and E. coli,

but other proteins, such as bacterial adhesins and soluble lectins
from plants, fungi, and fish, have also been crystallized with this
epitope (Figure 2; Table 1). The lectin LecA from P. aeruginosa
that also binds to Gb3 has been crystallized with other αGal
containing oligosaccharides and is also included in this structural
review.

Gb3-binding lectins appear to be structurally diverse proteins
with no sequence similarity, and varying size and architecture.
They also vary in oligomerization number, orientation, and depth
of sugar-binding pockets, and the binding modes to the exposed

TABLE 1 | Gb3-binding lectins and their specifications. The number of sites is indicated per functional oligomeric assembly. The specificity (evaluated as star numbers)
indicates the preference for Gb3 oligosaccharides over other Gal-containing ones. PDB code is indicated for complexes with Gb3 oligosaccharides (except LecA and
PIIA complexed with αGal).

Lectin Origin Species Fold Kd Sites Specificity PDB code

STXB Bacteria Escherichia coli OB-fold 0.5–1 mM ITCa 15 *** 1BOS 1QNU
LECA Bacteria Pseudomonas aeruginosa β-sandwich 77 µM ITCb 4 ** 1OKO (αGal)
PIIA Bacteria Photorhabdus luminescens β-sandwich 1 mM IC50

c 4 ** 5ODU (αGal)
PAPG Bacteria Escherichia coli β-sandwich 1.16 mM ITCd 1 ** 4Z3G 4Z3H
SADP Bacteria Streptococcus suis a/β mixed 3 µM ITCe 1 *** 5BOA
LDL Fungi Lyophyllum decastes knottin 0.38 mM ITCf 2 ** 4NDV
CGL Animal Crenomytilus grayanus β-trefoil 14 µM BLIg 6 ** 5F90
CSL3 Animal Oncorhynchus keta β-sandwich 26 µM FACh 4 *** 2ZX4
JACALIN Plant Artocarpus integrifolia β-prism 1.2 mM ITCi 4 * 5J51
WBA-I Plant Phosphocarpus tetranoglobus β-sandwich 0.67 mM ITCj 2 * 2ZMK 2ZML

aαGal14βGal14Glc trisaccharide, determined by isothermal titration calorimetry (ITC) (St Hilaire et al., 1994).
bαGal14βGal14Glc trisaccharide, determined by ITC (Blanchard et al., 2008).
cαGal14Gal disaccharide, determined as IC50 by fluorescence polarization (Beshr et al., 2017).
dαGal14Gal disaccharide, determined by ITC (Navarra et al., 2017).
eαGal14Gal disaccharide, determined by ITC (Zhang et al., 2016).
fαGal14βGal14Glc trisaccharide, determined by ITC (Goldstein et al., 2007).
gαGal14βGal1βGlc-allyl derivative, determined by biolayer interferometry (BLI) (Liao et al., 2016).
hαGal14βGal14Glc trisaccharide, determined by Frontal Affinity Chromatograpy (FAC) (Watanabe et al., 2009).
iαGal14Gal disaccharide, determined by ITC (Mahanta et al., 1990).
jαGal14Gal disaccharide, determined by ITC (Puri and Surolia, 1994).

FIGURE 3 | StxB contains three Gb3 binding sites per monomer. (A) The overall monomer representation of the Gb3 binding sites in the StxB pentamer from
Shigella dysenteriae/Escherichia coli (PDB id:1BOS); (B)Overview of the monomeric structure of StxB with three Gb3 binding sites; (C) Themonomeric structure of StxB
demonstrating the OB-fold; (D) Zoomed Gb3 binding sites of StxB. Galactose residues are yellow and glucose are in blue color. Hydrogen bonds are shown in yellow
dash lines. The 3D representations were visualised using PyMol (https://pymol.org/2/).
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oligosaccharide on the cell membrane, which is also sensitive to
the membrane environment.

Structural Analysis of Shiga Toxin – An AB5

Bacterial Holotoxin
Shiga toxin consists of a pentamer of five identical B-fragments
(forming the B-subunit, StxB) associated with the enzymatic
A-subunit (StxA). StxB is responsible for holotoxin binding to
receptors, such as Gb3, on the host cell surface (Figures 2A, 3A).
The B-subunit (Figure 3B) adopts the ubiquitous
oligonucleotide/oligosaccharide-binding fold (OB-fold). The
OB-fold can bind oligonucleotides, proteins, metal ions,
catalytic substrates, and oligosaccharides (Murzin, 1993). It is
comprised of a five-stranded antiparallel β-barrel, which is also
present in other AB5 toxins, such as cholera toxin or pertussis
toxin, but with different oligosaccharide specificity and no
similarity in amino acid sequence. In the case of StxB, one
end of the barrel is capped by an α-helix (Figure 3C). This
type of topology resembles a Greek key and is known as a closed
β-sheet. Although OB-fold proteins like the heat-labile LTB, the
Shiga toxin family, and the yeast aspartyl-tRNA synthase (AspRS)
share no sequence homology, α-helices have very similar
orientations and can be easily superimposed (Murzin, 1993).
Both types of Shiga toxins, type 1 (Stx1) and type 2 (Stx2), are
structurally similar, but differ in amino acid sequences (Scheutz
et al., 2012).

When the A-subunit is absent, the StxB still adopts the same
pentameric structure as when the holotoxin binds the host
receptors (Donohue-Rolfe et al., 1989). All of the Stx1 and
most of the Stx2 toxins bind exclusively to Gb3. However,
Stx2f and Stx2e can bind Gb4 in addition to Gb3 (DeGrandis
et al., 1989; Skinner et al., 2013). Thus, slight peptide sequence
differences influence the carbohydrate-binding specificity of
Shiga toxins. Interestingly, a new subtype, Stx2k, has been
recently discovered, which is very similar to, but much less
toxic than Stx2a (Hughes et al., 2019).

There are fifteen potential binding sites per Shiga toxin
pentamer since each B-monomer has three sugar-binding sites,
as shown in Figures 3A,B. Stx1B and Stx2B are exhibiting a
dissociation constant (Kd) range of 0.5–1 mM for the B-subunit
monomer toward globotriose. Some differences in published
dissociation constants appear from various studies measuring
Kd values with different techniques and varying sensitivity (Head
et al., 1991; Ling et al., 1998; Soltyk et al., 2002; Flagler et al.,
2010).

Stx1 interacts exclusively with the carbohydrate moiety of
Gb3, while Stx2 needs additional interactions with the full
glycolipid (Gallegos et al., 2012). This necessity has also been
recently demonstrated in studies using the P1 glycotope, which
was N-linked to the synthetic membrane protein Saposin D. This
synthetic receptor mediated Stx1 entry into cells, but not the
uptake of Stx2 (Szymczak-Kulus et al., 2021). Furthermore, Stx1
and Stx2 prefer to bind to Gb3 containing an α-hydroxyl fatty acyl
chain, but not to a Gb3 analog without the hydroxyl group
(Binnington et al., 2002). Albeit Stx1 and Stx2 bind the same
glyco-receptor, Gb3, they slightly bind differently. For instance, in

a solid-phase Gb3 ELISA system, preincubation with Stx1 blocks
the subsequent Stx2 binding, but not vice versa (Itoh et al., 2001).
It seems that Stx1 demonstrates faster binding kinetics when
compared to Stx2, but once Stx2 is bound, it is more difficult to
remove since it binds stronger (Nakajima et al., 2001).

Looking closer at the carbohydrate binding sites of Stx1B
(Figure 3D), it was known, for a long time, that there is almost no
binding to Gb3 by the Stx1B double mutant D16H/D17H in site
#1 (Jackson et al., 1990). Asp17 forms a hydrogen bond with Gal2
(penultimate galactose moiety) in site #1. However, Asp16 is
involved in Gb3 binding in site #2 (Ling et al., 1998). For site #1,
the stacking interaction with Phe30 is typical in carbohydrate-
binding proteins. Also, Phe30 might be as crucial in binding as
Trp34 in site #3, as both amino acids are aromatic (Ling et al.,
1998).

Moreover, the B-subunits of Stx2e (Tyrrell et al., 1992) as well
as Stx2f (Skinner et al., 2013) and Stx2k (Hughes et al., 2019) are
also known to bind Gb4, in addition to Gb3. It was also shown
that the double mutant (Q65E/K67Q) of Stx2e altered back the
binding preference from Gb4 to Gb3 (Tyrrell et al., 1992).

Numerous hydrogen bonds binding Gal1 (terminal galactose
moiety) dominate at binding site #2. However, stacking
interaction is not present at this site. As mentioned above,
Asp16 and Thr62 are essential in binding to Gb3
oligosaccharide. There are fewer contacts with Gb3 at site #2
than at other sites. This is due to the perpendicular position of
StxB to the receptor surface. The D18N mutation retains binding
activity to Gb3 and Gb4 for the B-subunit of Stx2e via hydrogen
bonds. The different faces of aromatic Trp34 interact with Gal1
and Gal2 (Ling et al., 1998). A new serotype, the Stx2k, has been
recently discovered. It is less toxic than Stx2a but is similar in
receptor-binding preference. However, there are two amino acid
differences in the receptor-binding site #1 and site #2, which
might explain differences in cytotoxicity (Hughes et al., 2019).

LecA and Other Related Bacterial Soluble
Lectins
The lectin LecA from P. aeruginosa is a tetramer (Figure 2B),
each unit consisting of 121 amino acids (12.75 kDa) (Gilboa-
Garber, 1982). The crystal structure depicts one calcium-
dependent galactose binding site per monomer (Cioci et al.,
2003). Each monomer possesses a β-sandwich jelly-roll fold
consisting of two curvy sheets with four anti-parallel β-strands.

LecA from Pseudomonas aeruginosa binds to α-galactosylated
lipids and proteins on animal tissue (Kirkeby et al., 2006). It
recognizes efficiently the disaccharides αGal14βGal and
αGal13βGal (Chen et al., 1998), Binding to sphingolipids
capped with αGal14βGal and αGal13βGal was confirmed by
thin-layer chromatography (Lanne et al., 1994). LecA
agglutinates erythrocytes with Gb3 (blood group Pk), but also
with blood group B and blood group P1 (Gilboa-Garber et al.,
1994), and binds strongly to Burkitt lymphoma cells that present
large amounts of the globotriaosylceramide antigen Gb3/CD77/
Pk (Blanchard et al., 2008). The crystal structure of the complex of
LecA with iso-Gb3 trisaccharide revealed how the penultimate
galactose interacts with the protein surface, rationalizing the high
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FIGURE 4 | Comparison of Gb3-binding sites of LecA, PIIA, PapG, and SadP: (A) LecA from Pseudomonas aeruginosa (1OKO); (B) PIIA from Photorhabdus
luminescens (5ODU); (C) SadP adhesin from Streptococcus suis (5BOA); (D) PapG adhesin from Escherichia coli (4Z3G). Galactose residues are shown in yellow and
calcium is represented by a grey sphere. Hydrogen bonds are shown in yellow dash lines. The 3D representations were visualised using PyMol (https://pymol.org/2/),
and 2D ligplot schemes were done using PDBsum.
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affinity (Blanchard et al., 2008). A crystal structure with Gb3
oligosaccharide could not be obtained, but molecular modelling
demonstrated that other contacts are established for this
oligosaccharide (Figure 4A). Furthermore, the firm binding
observed when Gb3 is inserted in the membrane, such as on
Burkitt Lymphoma cells, was rationalized since the Gb3
glycosphingolipid geometry promotes the parallel presentation
of neighbouring trisaccharide heads, fully compatible with
multivalent binding by LecA. Further modelling of the binding
of LecA with Gb3 embedded in the extracellular leaflet of a lipid
bilayer confirmed the likely clustering of αGal14βGal by this
lectin (Kociurzynski et al., 2021).

LecA binds to galactose, galabiose and other αGal-
containing oligosaccharides with medium affinity (Kd in
the range of 50 µM) (Blanchard et al., 2008), although with
a slight preference for melibiose, the αGal16Glc epitope
present in raffinose and other plant oligosaccharides (Chen
et al., 1998). It does not recognize lactose and other βGal-
containing oligosaccharides since His50 would create a steric
conflict with the second residue, but the presence of an
hydrophobic pocket on the protein surface close to the
anomeric position of galactose provides higher affinity for
β-galactose functionalized with aromatic ring (Rodrigue et al.,
2013). LecA has four binding sites, and due to its topology,
two are associated side by side in perfect orientation for
binding to Gb3 in membrane (Kociurzynski et al., 2021).
This results in avidity that is much stronger than local
affinity, with values in the nM range when evaluated with
multivalent ligands (Bernardi et al., 2013).

A LecA homolog, PIIA (Figure 2C) has been identified in
Photorhabdus luminescens, another Gram-negative bacterium,
presenting a complex interaction cycle with nematodes and
insects (Clarke, 2020). The PIIA lectin shares 37% sequence
identity to LecA and presents the same range of affinity for
α-galactosylated epitopes (Figure 4B) (Beshr et al., 2017).

Bacterial Adhesins SadP and PapG
Pathogenic bacteria present various adhesins on their surface
to bind to host tissue or various surfaces (Viela et al., 2020).
Some of these adhesins, present on flagella, or different types of
pili, have carbohydrate-binding domains with specificity to
host tissues.

Streptococcus suis is responsible for infection in pigs and acts
as an opportunistic human pathogen responsible for two
outbreaks in China. Among the 35 identified serotypes, some
are causing severe pneumonia and sepsis in swine, and meningitis
in humans and swine (Gottschalk et al., 2010; Goyette-Desjardins
et al., 2014). The streptococcal factor H-binding protein is also an
adhesin (SadP) and contributes to zoonotic transmission by
binding to both human and porcine intestinal epithelial cells
(Ferrando et al., 2017). SadP (Figure 2D) is a monomeric 80 kDa
adhesin anchored in the bacterial cell wall. Characterization of its
binding specificity showed that SadP recognizes αGal14βGal
containing oligosaccharides (Figure 4C) and binds to Gb3
through its N-terminus (Kouki et al., 2011). The binding of
SadP to Gb3 is one of the crucial steps for the bacterium to

pass the blood-brain barrier and access the central nervous
system resulting in meningitis development (Kong et al., 2017).

The crystal structure of the N-terminal galabiose-binding
domain reveals that SadP adopts a β-sandwich core domain
composed of three α-helices and ten β-strands (Zhang et al.,
2016). The crystal structure of SadP complexed with galabiose
demonstrates the balance of hydrogen bonds and hydrophobic
interactions for the terminal α-galactoside (Zhang et al., 2016).
The affinity for these disaccharides is in the micromolar range
measured by isothermal titration calorimetry (ITC) (Kd � 3 µM).
Two subtypes of SadP have different fine specificities for
glycolipids. The strains with the PN subtype cause meningitis,
while the ones with PO, cause asymptomatic carriage and
respiratory phenotype (Madar Johansson et al., 2020). Both
types of SadP are shown to predominantly bind to Gb3
present in pig lung, but a mutation in the galabiose binding
domain of subtype PN strains results in additional binding to
globotetraosylceramide (Gb4). The sugar-binding sites in both PN
and PO of SadP adhesins are mostly conserved. PO binds to Gb3
with higher affinity than the PN subtype (Kd of 3 µM and of
13 μM, respectively). Interestingly, the mutation from asparagine
to aspartate at position 285 (N285D) results in the ability of PN to
bind Gb4 with Kd � 34 μM, which is more than 200 times higher
compared to the PO subtype (Madar Johansson et al., 2020).

PapG (Figure 2E) is an adhesin present in uropathogenic
E. coli (UPEC), the leading cause of urinary tract infections in
humans. This bacterial adherence factor is located at the tip of P
pili, which are composite fibers consisting of a thin tip and a thick
pilus rod (Lukaszczyk et al., 2019). PapG, as other tip proteins of
chaperone-usher pili (Lukaszczyk et al., 2019), consists of two
domains, the N-terminal part is involved in carbohydrate-
binding and interacts with the receptor, while the C-terminus
is part of the pili architecture and participates in the binding to
the chaperone during the biogenesis. PapG mediates the
attachment of bacteria to the uroepithelium of the human
kidney through binding to the αGal14βGal epitope (Lund
et al., 1987; Stromberg et al., 1990). This adhesin adopts a
large elongated Ig-like fold composed of eight β-strands
connected by long loops and an α-helical section (Dodson
et al., 2001; Sung et al., 2001).

The three different classes of PapG, I, II, and III, adhere
differently to host-cell glycosphingolipids in the uroepithelial
tract with subtle differences in binding specificities
(Stromberg et al., 1990). PapG I and PapG II are specific to
Gb3 and Gb4, while PapG III prefers to bind Forssman
glycosphingolipid (Legros et al., 2019). PapG II adhesin
binds weakly to galabiose (Kd approx. 1 mM) but presents
a higher affinity for globotriose (Kd � 100 µM) as measured by
ITC (Navarra et al., 2017). The structure of PapG II has been
obtained in complex with galabiose and with other
oligosaccharides of the globoseries (Dodson et al., 2001;
Navarra et al., 2017), but in all cases, the main contacts are
limited to the αGal14βGal disaccharide moiety (Figure 4D)
that forms a dense network of H-bonds and water-mediated
interactions involving amino acids in the binding site, as well
as stacking of Gal2 with Trp107.
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Gb3-Binding Lectins From Animals, Fungi,
and Plants
Many animal organisms, such as fishes and invertebrates,
produce various lectins that serve as an innate immunity
system. The rhamnose-binding lectins (RBLs) are a family of
L-rhamnose or D-galactose binding lectins able to agglutinate
various bacteria (Watanabe et al., 2008). Most RBLs are
composed of two or three tandem repeats of about 95 amino
acids stabilized by four disulfide bridges (Tateno et al., 1998).
Three RBLs, CSL1, 2, and 3, from eggs of the chum salmon
Oncorhynchus keta, bind to Gb3 and induce the production of
proinflammatory cytokines (Tateno et al., 1998; Watanabe et al.,
2009). CSL3 lectin (Figure 2F) contains two tandem repeated
carbohydrate-binding domains with 73% sequence identity,
resulting in four binding sites per dimer (Shirai et al., 2009).

The overall shape of CLS3 is a kinked dumbbell with four lobes.
Each CBD (carbohydrate binding domain) comprises two anti-
parallel β-sheets, three α-helices, and four conserved disulfide
bonds interconnecting within each domain. More recently, the
structure of SUL-I, a RBL from venomous sea urchin
Toxopneustes pileolus, demonstrated the presence of three
tandem lectin domains (Hatakeyama et al., 2017). CSL3 and
SUL-I have a similar affinity for the Gb3 trisaccharide (Kd �
26 µM) as determined by frontal chromatography (Watanabe
et al., 2009), but SUL-1 is less specific, i.e., binding to a wide range
of galactosides (Hatakeyama et al., 2017).

Another animal lectin family has been purified from bivalves
and demonstrated to bind αGal- and αGalNAc-containing
oligosaccharides (Belogortseva et al., 1998). Mytilec, a 17 kDa
lectin isolated from the Mediterranean mussel Mytilus

FIGURE 5 | Gb3-binding sites of animal and fungal lectins. (A) Animal lectin CGL from Crenomytilus grayanus (5F90). (B) Fungal lectin LDL from Lyophyllum
decastes (4NDV). Galactose residues are shown in yellow and glucose in blue color. Hydrogen bonds are shown in yellow dash lines. The 3D representations were
visualised using PyMol (https://pymol.org/2/), and 2D ligplot schemes were done using PDBsum.
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galloprovincialis, binds to globotriose and demonstrates glycan-
mediated cytotoxicity towards Burkitt’s lymphoma cells (Fujii
et al., 2012). The related lectin CGL (Figure 2G) from
Crenomytilus grayanus also binds to Gb3 on the surface of
Burkitt’s lymphoma and breast cancer cells, leading to cell
death (Liao et al., 2016; Chernikov et al., 2017). Crystal
structures from both lectins demonstrated the occurrence of a
dimeric β-trefoil domain, with one galactose binding site in each
lobe (Liao et al., 2016; Terada et al., 2016). The structures served as
inspiration for engineering Mitsuba-1, a symmetry-constrained
β-trefoil with three identical tandem repeats. Mitsuba-1 binds to
Gb3-expressing cancer cells, but does not show cytotoxicity
(Terada et al., 2017). CGL has a highly conserved carbohydrate-
bindingmotif in the three lobes, consisting of twoHis, one Gly, and
one Asp (Figure 5A). CGL binds to an allyl derivative of
globotriose with high affinity (Kd � 14 µM) as determined by

biolayer interferometry (Liao et al., 2016). The specificities of
MytiLec and CGL are extended to other αGal containing
oligosaccharides, including αGal13βGal14Glc (iso-Gb3
trisaccharide) and αGal16Glc (Liao et al., 2016; Terada et al., 2017).

Fungi express a large variety of lectins that are considered as a
defence against feeders and pathogens. LDL (Figure 2H) is a
10 kDa αGal binding lectin isolated from Lyophyllum decastes
fruiting bodies with no sequence similarities with other fungi
lectins (Goldstein et al., 2007). The crystal structure
demonstrated a homodimer assembly, with monomers
consisting of a cysteine-knottin fold made of five-stranded
anti-parallel β-sheet and two closely packed α-helices (van
Eerde et al., 2015). The carbohydrate-binding pocket is well
defined (Figure 5B) and is relatively deep and narrow with
binding orientation at the same face for the homodimer. The
affinity for galabiose is relatively weak in the millimolar range, but

FIGURE 6 |Comparison of αGal14Gal and αGal13Gal binding sites of WBA-I lectin from Psophocarpus tetranoglobus. (A)WBA-I bound to αGal14Gal (2ZML). (B)
WBA-I bound to αGal13Gal (2E53). Carbohydrate ligands are shown as yellow sticks. Calcium is represented in grey and manganese in deep purple spheres. Hydrogen
bonds are shown in yellow dash lines. Proteins are represented by ribbon with amino acids interacting with ligand as sticks. The 3D representations were visualised using
PyMol (https://pymol.org/2/), and 2D ligplot schemes were done using PDBsum.
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the specificity is high. It should be noted that LDL binds to the
Gb3 oligosaccharide, but not efficiently to the glycosphingolipid
Gb3, so it can be used only as a probe for terminal galabiose of
non-lipidic nature (van Eerde et al., 2015).

A large number of plant lectins have been characterized due to
their availability in large quantities and their utility in
biotechnology. Some of them bind to Gb3 epitope, but the
specificity is weak. Jacalin (Figure 2I) from Artocarpus integer
is a β-prism lectin that has been crystallized with galabiose
(Abhinav et al., 2016). The lectin has a promiscuous specificity
towards all αGal-containing oligosaccharides. Similarly, winged
bean agglutinin (WBA-I) from Psophocarpus tetragonolobus
(Figure 2J) has been characterized in complex with galabiose
(Kulkarni et al., 2008), but the specificity of the lectin is directed
towards all galactosides. The structural bases for recognition of
αGal14βGal and αGal13βGal are represented in Figure 6.

CONCLUSION

In conclusion, a large variety of sequences and folds have been
observed forGb3-binding lectins illustrating the convergent evolution
for recognition of this epitope. A frequent pattern is the prevalence of
β-sheets in the carbohydrate-binding domain, as observed for StxB,
LecA, PapG, and plant lectins, which is in agreement with the very
high representation of this structural motif in lectin structures
(Bonnardel et al., 2019). In all binding pockets, several hydrogen
bonds are established between the protein and the carbohydrate, and
at least one is crucial for binding to the axial O4 group of galactose,
participating in the specificity. The amino acid involved is frequently
an Arg residue whose side chain can establish two hydrogen bonds,
one with O4 and a second one with the neighboring O3 or O6. The
presence of Trp or Tyr residues is often observed in binding sites since
stacking of the aromatic ring with the apolar face of galactose has a
solid stabilizing contribution (Asensio et al., 2013; Hudson et al.,
2015). The presence of a bridging calcium ion, as observed for LecA,
is less common, but coordination through vicinal axial and equatorial
hydroxyl groups (O4 andO3 of galactose) has been observed in other
lectins (Imberty and Prestergard, 2017). The common feature for all
lectins described here is the multivalency, allowing them to
compensate a relatively low affinity at each Gb3-binding site by a
strong avidity in the presence of multiple Gb3 molecules, like in the
context of lipid rafts.

The variety of fold and binding site of Gb3-binding lectins
results in differences in affinity and specificity. These properties
of lectins from various origins can be correlated to their
hypothetical functions that have to be proposed in view of

evolution. The bacterial lectins achieve higher specificity and
stronger affinity than the ones from fungi, mollusk, or plants.
This could be rationalized by the fact that the optimal recognition
of host globosides by pathogens can be seen as the result of co-
evolution (Bishop and Gagneux, 2007), resulting in proteins
perfectly suited for the binding to these epitopes. On the
opposite, lectins from mollusks or fungi are defence proteins,
often directed against bacterial polysaccharides. Since many
capsular polysaccharides mimic epitopes found in mammalian
tissues (Cress et al., 2014), the recognition of glycosphingolipids
results from the spatial similarity of glycans present in both
bacterial epitopes and human ones.

The structural diversity of lectins described here is inspiring
for designing a toolbox of therapeutical proteins that could bind
to cancer cells and be used for diagnostics or therapeutical
strategies. Indeed, Shiga toxin has been demonstrated as a
valuable tool for investigating cellular trafficking, but has also
been investigated for its potential for imaging cancer cells or
delivering active drugs (Johannes and Römer, 2010; Engedal et al.,
2011; Luginbuehl et al., 2018). As exemplified with the design of
the Mitsuba-1 artificial lectin (Terada et al., 2017), the availability
of variety of scaffolds together with the current development in
synthetic glycobiology for engineering of lectin binding sites and
multivalency (Hirabayashi and Arai, 2019), open the route for the
design of novel Gb3-specific lectins for therapeutical applications.
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