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The transition to turbulence in many shear flows proceeds along two competing routes, one linked with finite-
amplitude disturbances and the other one originating from a linear instability, as in, e.g., boundary layer flows.
The dynamical systems concept of an edge manifold has been suggested in the subcritical case to explain the
partition of the state space of the system. This investigation is devoted to the evolution of the edge manifold
when linear stability is added in such subcritical systems, a situation poorly studied despite its prevalence in
realistic fluid flows. In particular, the fate of the edge state as a mediator of transition is unclear. A deterministic
three-dimensional model is suggested, parametrized by the linear instability growth rate. The edge manifold
evolves topologically, via a global saddle-loop bifurcation of the underlying invariant sets, from the separatrix
between two attraction basins to the mediator between two transition routes. For larger instability rates, the
stable manifold of the saddle point increases in codimension from 1 to 2 after an additional local pitchfork node
bifurcation, causing the collapse of the edge manifold. As the growth rate is increased, three different regimes of
this model are identified, each one associated with a flow case from the recent hydrodynamic literature. A simple
nonautonomous generalization of the model is also suggested in order to capture the complexity of spatially

developing flows.

DOI: 10.1103/PhysRevE.102.053108

I. INTRODUCTION

After more than a century of theoretical, experimental,
and computational progress, predicting the transition from
laminar to turbulence in usual fluid flows is still a puzzle for
mathematicians, physicists, and engineers [1,2]. The situation
appears even more complex when different routes toward the
same turbulent state are in competition. The theory of dynam-
ical systems is an elegant way to rationalize such situations
because it provides a cartography of the space of possible
initial conditions depending on their outcome at a later time.
The key concepts here are those of basins of attraction and
boundaries separating disjoint basins of attraction [3]. For
purely supercritical systems such as corotating Taylor-Couette
flow or the Rayleigh-Bénard setup, transition to a nontrivial
state is triggered by any infinitesimal disturbance provided
the control parameter (usually the Reynolds number or the
Rayleigh number) exceeds a given threshold [4]. In such a
case, the whole state space becomes the attraction basin of
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this nontrivial state. After several bifurcations as the control
parameter is increased, the nontrivial state can be identified
with turbulence. For classical subcritical systems such as pipe
or plane Couette flow, the state space is usually partitioned
into two basins of attraction, one for the laminar state and
the other one for the turbulent one [2,5] for the appropriate
Reynolds number. When both the laminar and the turbulent
regime are attracting sets (in the sense that trajectories stay in
their neighborhood for arbitrary large times), the basin bound-
ary common to these two basins is a smooth hypersurface
called the edge [6]. The edge is an invariant set for the flow
dynamics, and it is of codimension 1. In the simplest case, it
is the stable manifold of a given unstable state called the edge
state, a relative attractor within that manifold [7]. The most
popular method to identify the edge state(s) of the system
relies on bisection [5,8]. Alternatives to this approach have
been suggested but usually rely on some preknowledge of the
dynamical nature of the edge state [9—11]. The study of the
edge manifold becomes mathematically more complex in a
situation relevant for the lowest Reynolds numbers close to the
onset of transition: the turbulent set, although still a chaotic
set, is no longer an attractor. Trajectories visiting it have a
finite probability to reach the laminar state after an arbitrarily
long transient time [6,12,13]. This has led to a generalization
of the concept of an edge manifold, seen as a boundary be-
tween two types of trajectories that happen to have the same
asymptotic outcome, namely the laminar regime. Reference
[14] introduced a distinction, depending on whether the edge
manifold splits the state space into two disjoint attractions
basins (hard type) or not (soft type).

Published by the American Physical Society
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Conceptually, there is a symmetric configuration that has
been little studied so far despite its relevance to transitional
flows at high Reynolds numbers: what happens to the edge
manifold in the case in which the laminar state loses its lam-
inar stability (while the turbulent state remains attracting)?
Such a linear instability of the laminar state in an otherwise
subcritical fluid system occurs at least in three of the most
important examples of shear flow transition: the flow inside
a curved pipe [17], inside a parallel channel [18], and the
Blasius boundary layer flow developing over a flat plate [19].
In these cases, the subcritical nature of the transition (the by-
pass transition scenario) is in competition with the exponential
growth, followed by their destabilization, of the so-called
Tollmien-Schlichting (TS) waves (the classical transition sce-
nario) [20]. Even in the absence of such well understood linear
instability, other general destabilization mechanisms can be
in competition with the usual bypass picture: the presence of
small roughness at the walls [21], geometrical defect to the
base flow [22], or, among other possibilities, competing insta-
bility mechanisms due to additional parameters [23]. Several
important fundamental questions arise in such cases: what
happens to the basin boundary and to its role as a mediator
of transition [24]? Can edge states still be identified, and what
is their role in the state space? Does the geometric notion of an
edge manifold at least make sense mathematically speaking?
Is there any way to select or control a given transition route at
the expense of the other one? Can low-order models faithfully
reproduce the complex dynamics at play, and if so, to what
extent?

The three canonical cases of curved pipe flow, plane
channel flow, and the Blasius boundary layer have been as-
sessed numerically in very recent investigations. For curved
pipe flow, finite curvature leads, above some threshold in the
Reynolds number, to an additional instability absent from the
straight pipe case [25]. This instability leads to a limit cycle
replacing the laminar state. The edge manifold generalizes
hence to the separatrix between the turbulent state and a new
attractor replacing dynamically the traditional laminar fixed
point. In plane Poiseuille flow, for the parameters chosen in
the corresponding study, the edge state is a traveling wave
solution appearing in a saddle-node bifurcation at a finite
Reynolds number R & 459, while the instability of the base
flow to TS waves does not occur before R = 5815 [26]. As
R is increased from low to high values, the classical route
emerges in parallel to the bypass route, and it concerns an
increasingly large subset of the state space of initial conditions
[26]. However, for R = 5855 it is reported that the edge state
still exists as a finite-amplitude traveling wave, whose stable
manifold still separates the initial conditions leading to the
turbulent state by involving TS waves from those who lead to a
transition without TS waves taking an active role. The case of
the Blasius boundary layer, despite its relevance to transition
in wind tunnels, presents additional difficulties for bifurcation
studies: because of the spatial development of the laminar
base flow in the downstream direction, there is no independent
control parameter. A Reynolds number can be constructed as
in most flows, however it should be interpreted instead as
a spatial coordinate [19]. There, the bisection algorithm has
also been employed in order to determine an edge trajectory
converging neither to the laminar nor to the turbulent state.

The computational cost of the whole approach, linked to
the cost of simulating a spatially extended three-dimensional
flow field, made conclusions ambiguous until recently. The
bisection method successfully identifies a recognizable spa-
tially localized coherent structure over moderate finite times
in the form of a long velocity streak [16,27]. However, for
even larger horizon time it becomes increasingly ambiguous
to label a given trajectory as transitioning via the bypass or
classical route [15]. This results in a failure of the standard
bisection algorithm for the asymptotic edge regime. An il-
lustration of the two different routes to turbulence starting
from nearby initial conditions is shown in Fig. 1 using a
physical space visualization [28] and state portraits. The state
space visualizations in Figs. 1(a) and 1(b) show that despite a
common initial path, the two trajectories separate rapidly but
converge later toward the same turbulent regime. The physical
space visualizations in Figs. 1(c) and 1(d) highlight the very
different coherent structures present along either route: elon-
gated in the streamwise direction for the bypass route, in the
spanwise direction for the classical route. The three present
examples, based on realistic Navier-Stokes simulations, cor-
respond to three scenarios distinct from the classical bistable
picture presented in [5]. This wealth of behaviors suggests
that a better understanding of the fate of the edge manifold
is welcome as soon as a linear instability competes with an al-
ready existing subcritical transition picture. Low-dimensional
models of subcritical transition have proven a strong compan-
ion tool for an improved understanding of dynamical features
such as the role of the edge in transition [29-34]. In this
tradition, we suggest here a nonlinear model of subcritical
transition, inspired by the two-dimensional model in Ref. [29]
to which a linear instability mechanism is added consistently
with all the hydrodynamic constraints. As we shall see, the
suggested autonomous model parametrized by the unstable
growth rate displays three parameter regions of interest. In re-
gion I, several local bifurcations change the attracting laminar
state without altering the global structure of the state space,
a dynamical regime qualitatively akin to Ref. [25]. In region
II, the state space structure is globally modified after a global
bifurcation, and only one basin of attraction remains while the
edge state still exists, similarly to Ref. [26]. In region III, the
edge state ceases to exist and the edge collapses, qualitatively
closer to the dynamics reported in Ref. [15]. The study of
these regions, together with an extension to a nonautonomous
system, allows for an explanation of all the dynamical regimes
displayed by the previous fluid flow examples and suggests
new directions.

The issues raised in this article go easily beyond the realm
of hydrodynamic transition to turbulence. Any nonlinear dis-
sipative system with two competing attracting regimes is
concerned with the notion of basin boundary and edge mani-
fold. At the level of modeling, many of the low-order models
from mechanics show strong similarities with the models used
in hydrodynamics [11,35-37]. The generalization of the edge
concept suggested using the present model is hence of interest
for many dissipative bistable systems.

The paper is structured as follows: the reference two-
dimensional Dauchot-Manneville system is introduced to-
gether with its autonomous three-dimensional generalization
in Secs. IT A and II B, respectively. The parametric analysis
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FIG. 1. Edge tracking in Blasius boundary layer (see [15] for a detailed study). (a) State portrait at moderate times ¢ ~ [0, 5000] using
the vorticity variables Q. and €2, defined in [15,16]. (b) State portrait at large times ¢ ~ [700, 14 000] using the variables €, ,, and ..
Trajectories correspond to the classical transition route approaching the laminar state (blue) and the bypass transition route (orange). (c),(d) xz-
view of three-dimensional perspective along two different coexisting transition routes. Contours of Ay = —9 x 107 (green), isosurfaces of
streamwise perturbation velocity with respect to the spanwise mean with values = 0.06 and —0.08 (red and blue, respectively), flow from left

to right. (c) Bypass transition. (d) Classical transition.

of the 3D model is carried out in Secs. IIC, IID, and IIE.
A nonautonomous version of the model is introduced and
analyzed in Sec. III. Eventually, the relevance of the two
models to the original hydrodynamical context is discussed
in Sec. IV.

II. LOW-ORDER MODELS OF SHEAR FLOW

We consider shear flow models in the spirit of the Galerkin
models derived from the Navier-Stokes equations (see, e.g.,
[11] for a recent review). Galerkin models are obtained by
projecting the original partial differential equations onto a
basis of predetermined spatial functions called “modes.” The
use of divergence-free modes is such that the pressure terms
have zero projection on the resulting subspace. The generic
structure of such models is hence a simple ordinary differen-
tial equation in time of the form

x=f(x)=Lx+Nx), (1

where x € R”, n being a small integer, contains the relevant
degrees of freedom of the system. L is the linear operator cor-
responding to the system linearized around the origin x = 0,
and N (x) represents the nonlinear terms. The model is such
that the origin x = 0 corresponds to the laminar fixed point L,
while the turbulent state is simply represented by a different
(attracting) fixed point T'.

As pointed out in Ref. [30], for a model of subcritical
transition to be consistent with the original PDEs it needs to be

subjected to two constraints: (i) L is a linearly stable operator
(i.e., all its eigenvalues have real negative parts), which allows
for non-normal growth; (ii) N(x) conserves the total energy
of the system, i.e., (N(x),x) = O for all x, where (-, -) is the
scalar product. The constraint (i) is a property of the linearized
Navier-Stokes operator that characterizes the subcritical flow
cases of interest [38]. The constraint (ii) is an implication from
the Reynolds-Orr theorem f (vVv) - vd®x = 0, itself derived
directly from the Navier-Stokes equations for periodic or lo-
calized flow fields [19].

The numerical solutions of the ODEs presented in this
work have been obtained using Julia [39] with the package
DifferentialEquations.jl [40]. The solver used is Tsit5() with
relative and absolute tolerances of 10714,

A. Dauchot-Manneville model

One of the simplest Galerkin models of shear flows was in-
troduced by Dauchot and Manneville in Ref. [29]. The model
(hereafter referred to as DM2D) is autonomous and assumes a
two-dimensional state space. In its original form, the compo-
nents of x = (x, x,) are meant as the amplitudes of specific
Fourier modes with wave numbers k and 2k in a physical di-
rection z, in the spirit of Galerkin’s projections. The associated
velocity field in physical space reads v = x; sin z + x; sin 2kz.
Its self-interaction via the nonlinear terms vd,v from the
Navier-Stokes equations has no contribution on the equation
for x, and induces the inertia term —kx; when projected on
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FIG. 2. Phase portrait of the 2D Dauchot and Manneville model.
It is also the state portrait of the 3D model (independently of the
value of s3) restricted to the invariant plane P defined by x3 = 0.
Two trajectories approaching 7" and L are shown in orange and blue,
respectively.

the equation for x,. This suggests to consider in the model
a quadratic nonlinearity N satisfying both this property as
well as the constraint (N(x),x) = 0 previously mentioned.
The simplest such form for N is (Ni, N2) = (x1x2, —x7).
The linear operator L is directly inspired from Trefethen’s
model [38].
The equations for the DM2D model read
dx1

s , 2
7 S1X1 + X2 + X1X2 2

% = 5200 — 7, (3)
where 51 < 0 and s, < 0 are two real parameters interpretable
as decay rates. The corresponding operator L is non-normal
and definite negative. The effective control parameter in this
two-dimensional model is the discriminant A = 1 — 4s5s,.
We restrain the analysis to the range A < 1. For A < 0 there
is only one fixed point L = (0, 0). Two additional fixed points
called E and T appear in a saddle-node bifurcation at A = 0.
They are, respectively, unstable and stable, and their expres-
sions are

E= (l(_l +VA), +JZ)2) )
2 4s,
and
T = (1(_1_«/Z),L(—1—\/K)2>. (&)
2 4sy

The system DM2D is bistable with two well-defined basins
of attraction in the interval 0 < A < 1. The saddle point E is
the edge state of the system, whereas L and T are attractors.
The basins of attraction of L and T are separated by a smooth
edge manifold W?(E) of the strong type according to the
typology in Ref. [14]. A phase portrait for s; = —0.1875 and
so = —1 is shown in Fig. 2. The parameters s;, i = 1, 2, can

be re-interpreted as s; = —k?/R, where —k?, i = 1,2, arise
from a Laplacian in Fourier space, and R is a parameter akin
to the Reynolds number in hydrodynamics. This phase portrait
is ubiquitous in many fields of physics and turns out to be
particularly convenient since only fixed points are present,
while no chaotic dynamics takes place.

B. The autonomous 3D model

We extend the DM2D by introducing a third variable x3
in the model, orthogonal to x; and x,. The extension is such
that (i) the laminar state L will be unstable along this new
direction, (ii) the model still obeys the constraints on L and
N(x), and (iii) the dynamics within the 2D plane P defined by
x3 = 0 stays unchanged, i.e., P is an invariant plane for the
new dynamics. The extended model reads

dX1

- = + + s 6
" $1X1 X2 X1X2 ( )

d;Cg 2 2
- = — + , 7
y \ YR %} X7 0 X3 ( )
{3 ( )
= 53X oOX2X3, 8

‘ 343 243

where s3 and o are two additional parameters of the model.
The three-dimensional system is symmetric with respect to
‘P, which is an invariant plane and cannot be crossed by
trajectories, so that we need only focus on the dynamics in
the half-space x3 > 0. The case for which the model is inves-
tigated is s; = —0.1875, s, = —1, and 0 = —1. The control
parameter for this study is s3. By construction, the dynamics
restrained to P is unaltered compared to the 2D model even as
s3 varies, and is completely determined by the state portrait of
Fig. 2. However, the stability of L, E, and T in the direction
X3 transverse to P is now dependent on the value of s3.

C. Parametric study

We explore the dynamics of the DM3D model by perform-
ing a parametric study in s3 with a focus on the topological
changes of the state space and the properties of the edge
manifold for the half-space x3 > 0. The amplitude A = ||x||
(with || - || the Euclidian norm) of all fixed points and limit
cycles is shown in a bifurcation diagram with respect to s3 in
Fig. 3(a). The real parts of the eigenvalues A, associated with
each fixed point of the system are shown in Fig. 3(b) with the
convention that a positive real part indicates instability. They
are used to assess the type of bifurcation undergone by the
steady states of Fig. 3(a).

The bifurcation diagram starts at s3 < 0, for which the
model has the same three fixed points—L, 7', and E—as the
original DM2D model. The only fixed point with an eigen-
value with a positive real part is the saddle point E. The
associated three-dimensional state space is shown in Fig. 4(a)
for s3 = —0.1. Here, the two stable fixed points L and T
each possess their basin of attraction, respectively (L) and
B(T). The intersection of their closures, the edge manifold,
coincides exactly with W*(E), thus

WH(E) = B(L) N B(T). )

053108-4



MODELING THE COLLAPSE OF THE EDGE WHEN TWO ...

PHYSICAL REVIEW E 102, 053108 (2020)

(a)

0.8 A

0.6 A

< ‘
0.4 - : I

0.2 4

0.0 A

53¢ 53d

w4 mr

0.00 0.01

0.04 0.05

0.0

~< —0.1 A

—0.2 A

—0.3 1

0.00 0.01 0.02

0.03

0.04 0.05 0.06 0.07

S3

FIG. 3. (a) Bifurcation diagram for the autonomous DM3D model. Amplitude A of the steady and periodic solutions (minimum and
maximum value only) vs s3. Stable solutions (solid lines), and solutions with one (dashed lines) or two unstable eigenvalues (dotted lines). The
limit cycle C appears at s3 = s33 ~ 0.03 and collapses at s3 = s3. ~ 0.032. (b) Real part of the eigenvalues of the linearized operator around
each fixed point of the system vs s3. The eigenvalues corresponding to perturbations of L, E, and 7 within the plane P do not evolve with s3.
The fixed point S arises as L, loses its linear stability at s; = 0, and disappears by merging with E at s3 = 53, = 0.063. Largest (solid) and
second largest eigenvalue (dashed). Eigenvalues with real part < —0.35 are not shown. Vertical gray lines delimit the regions I, II, and III. The

regions and parameters sy, S3., and s3, are described in the text.

WS(E) is for s3 < 0 a two-dimensional surface invariant
along x3. It separates the basins of attraction of L and
T and is then a codimension-1 manifold of the strong
type.

For s3 > 0O the laminar fixed point L becomes linearly
unstable, as the real part of its largest eigenvalue crosses 0.
For small enough s3 > 0 the trajectories starting within the
neighborhood of L are attracted toward a new fixed point S.
This new fixed point emerges by construction in a supercritical
pitchfork bifurcation at s3 = 0 (we focus only on the branch
with x3 > 0). The stability of E and T in the new state space
remains unchanged, as shown in Fig. 3(b). W*(E) is no longer
invariant along x3 and starts to curl around S, illustrated in
Fig. 4(b). However, the two basins of attraction of 7 and S
(no longer L) exist and are separated by the edge manifold,
which still coincides with W*¥(E).

For s3 2 0.01, S is still stable but its leading eigenvalues
are oscillatory: trajectories leaving L now spiral in toward S.

For s3 = 535 ~ 0.0296, S becomes unstable in a supercritical
Hopf bifurcation, through which a stable limit cycle C is
created. This limit cycle grows in amplitude until 53 = s3. =~
0.031 25, where a global bifurcation takes place. The state
space just before and after s3. is displayed in Fig. 5, and
the global bifurcation is analyzed in more detail in Sec. IID.
The state space continues to evolve beyond this global bi-
furcation. For s3 = 0.055 the couple of complex conjugate
eigenvalues of S become two distinct real positive eigenval-
ues. For s3 = 535 = 0.063 the additional fixed point S, which
was created at s3 = 0, merges with the saddle point E in a
pitchfork bifurcation. Beyond s3 = 0.063 the saddle point E
still exists but has now two unstable eigenvalues as revealed
by Fig. 3(b). The new unstable direction implies that all tra-
jectories starting outside P converge toward 7. This makes
T the only attractor of the system. The investigation has been
pushed to s3 = 0.07 without an obvious change of state space
topology.
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FIG. 4. Autonomous DM3D. Comparison between region s3 < 0
and /. Phase portraits for different values of s3: (a) s3 = —0.1,
(b) s3 =0.01. Surfaces (blue) correspond to the edge manifold
W?*(E) identified using the method described in Ref. [11], Sec. I B.

D. Global bifurcation of the state space

This subsection is devoted to a more detailed analysis of
the global bifurcation taking place at s3. ~ 0.031 25, because
of its importance for the state space topology. Before the
bifurcation, the limit cycle C grows in amplitude, as shown
in Fig. 6(a), and the minimum distances between C and both
E and L decrease as s3 approaches si.. The two distances
both scale algebraically with |[s3 — s3.||, and, importantly,
these two distances reach zero at the same value of s3 = s3.
(determined to numerical accuracy using double precision
arithmetic). The period of the limit cycle C is also monitored
as a function of |ls3 — s3.|| in Fig. 6(b): a logarithmic fit of
the form 7, ~ In(|s3 — s3.|) is valid over as much as eight
decades. This is an unambiguous signature for a saddle-loop
collision [35,41]. Note that compared to [41], where the colli-
sion takes place between an attracting limit cycle and a saddle
point, in the present case C collides simultaneously with two
saddle points (however, the scaling for the diverging period 7},
does not change).

0.15 +

0.05 ~f

0.15 -
0.1+
m
x C
0.05 -
E
T -2t
04 L 4
1
05

0.15 4

FIG. 5. Autonomous DM3D. Comparison between regions I and
II. Phase portraits for different values of s3 close to the global bi-
furcation: (a) s3 = 0.031. The system presents a hard edge between
C and T, region I, (b) s3 = 0.031 25. Heteroclinic cycle close to s;,
(c) s3 = 0.032, beyond s3. the heteroclinic connection collapses and
the edge W*(E) becomes of the weak kind, region II. The blue and
orange trajectories illustrate the two newly born different routes to
transition.
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FIG. 6. (a) Minimum distance from the E/L-state to C as a func-
tion of the distance to criticality. (b) Period 7, of the limit cycle C vs
the distance to criticality (solid), logarithmic fit with slope K = 49.4
(dashed). The critical s3. = 0.031 25.

At the bifurcation point, E and L form a heteroclinic net-
work: the heteroclinic connection from E to L lies in the
invariant plane P whereas the connection from L to E lies
outside P. The bifurcation occurs as C collides with the
heteroclinic cycle connecting E to L. Close to criticality, C
deforms close to the fixed points, as seen in Fig. 5(b).

Just before the global bifurcation takes place, there are still
two basins of attraction, respectively B(T) and B(C). The
intersection of their closures, the edge manifold, coincides
with W?¥(E'). However, once the heteroclinic connection is
formed, the manifold separating the two different basins of
attraction becomes of the weak type, as illustrated by its state
space in Fig. 5(c), where trajectories following the two newly
born routes to transition are shown. The global bifurcation
changes the whole structure of the state space in the following
way: for s3 > s3., the two disjoint different basins of attraction

no longer exist as open sets. All trajectories starting outside P
asymptotically approach 7T in forward time. Note that trajecto-
ries starting strictly in P can still reach L provided they belong
to the relevant part [which coincides with the embedding in R?
of the basin B(L) from DM2D]; however, P is no longer an
open set in R? and has measure zero.

A useful measure to understand the state space is the
transition time 7, introduced in [26] as the time it takes
for a trajectory to approach the turbulent attractor within
a given predetermined (small) distance ey, as a function
of the starting point x. Mathematically it is defined as
argmin,_ ¢’ (x) — T|| < er, where ¢’ refers to the flow map.
Iso-x, = —0.2 cross-sections of the transition time for s3 <
s3c and s3 2 s3. shown in Figs. 8(a) and 8(b), respectively,
confirm that only the basin of attraction B(T') is left. The
stable manifold of E, W*(E), still exists as a codimension-1
manifold except that it appears now wound around S. It is
now possible to distinguish a faster and a slower route to
turbulence, depending on which side of W*¥(E) the initial
condition is located. As a consequence, the edge manifold is
no longer interpretable as a basin boundary, but rather as a soft
boundary in state space between two routes to transition.

E. E as an edge state

The interpretation of the edge manifold, beyond critical-
ity, as a manifold separating two different routes, one fast
and one slow, to the same attractor holds for the parametric
region of interest after the global bifurcation. There exists,
however, a fundamental difference between two behaviors,
for s3 € (0.03125,0.063) and s3 > s34 = 0.063, linked to the
notion of accessibility similar to that used in Ref. [42] and the
number of unstable directions of E, which define whether it is
an edge state or not.

For low s3 < s34, E has only one unstable eigenvalue, and
its unstable manifold is fully contained in P. This behavior is
illustrated in the state portrait in Fig. 9(a). It is hence possible
to approach E using a trajectory starting outside P, and E
is labeled as accessible. This is shown in the time series of
three trajectories with nearby initial conditions in Fig. 9(c),
where the edge trajectory approaches E starting from an initial
condition with x3(0) # 0 and remains in its neighborhood (at
least transiently). However, for s3 > 0.063, E has two distinct
unstable eigenvalues, and is now also repelling in the direction
transverse to P. Finding a trajectory converging toward E
from an initial condition outside P is now impossible. E is
said to be nonaccessible. This behavior is illustrated using
a phase portrait in Fig. 9(b) and using the time series cor-
responding to three trajectories starting from nearby initial
conditions in Fig. 9(d): unlike in Fig. 9(a), we observe now
that the trajectory sandwiched between the fast and slow
routes in state space does not approach E. Consequently, the
trajectories close to the edge manifold that follow the slow
route do not visit the neighborhood of E.

The notion of accessibility of a given fixed point is directly
related here to the codimension of its stable manifold. Here
the saddle point E is accessible when codim (W*(E)) = 1, in
which case E is an edge state, and it is nonaccessible when
codim W*(E)) > 1, in which case the system does not have
any edge state. Note how this is dependent on dimensions:
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FIG. 7. Transverse FTLE at x3 = O for a time horizon T = 1. The
solid black line indicates WW*(E). Color lines indicate the 0-isovalue
of the transverse FTLE for different s5.

for any s3 the system DM2D restrained to P, which is of
dimension 2 only, possesses E as an edge state. A simple local
diagnostic for the instability of £ in a direction transverse
to the invariant plane P consists in computing the transverse
finite-time Lyapunov exponent (FTLE) Ar. For any x € P, we
define P; as the projection on P+ such that Py(x, xp, x3) =
(0,0, x3), and

1
1P (o)l 10
A point x € P such that Ar(x,7) > 0 for 7 sufficiently
small is nonaccessible from outside P. Isolevels of transverse
FTLEs are shown in Fig. 7 for the horizon time 7 = 1. By
construction Ay is always positive at x = L as soon as s3 > 0,
whereas at x = T it is negative since 7 is always stable.
The locus where Ay crosses zero hence marks the stability
boundary in P between trajectories initially deviating from P
and those attracted by P. The isoline A7 = 0 (for a given value
of t) moves with changing s3;. From Fig. 7 it is clear that £
lies on the negative side of the stability boundary for s3 < s34
and on the positive side for s3 > s34. 53 = 537 hence marks
the loss of accessibility of E. This has strong implications for
the bisection process and the numerical determination of the
edge state. When E is accessible, a one-dimensional search
(i.e., a bisection) along almost any line in state space will
generate one trajectory converging to E (even if this trajectory
is repelling). When E is not accessible, this is no longer the
case and the bisection algorithm is not expected to converge
from any initial condition: there is no edge state, although £
still exists as a saddle point. Concretely, E cannot be defined
as an edge state but it is still an exact solution of the system.
To find E, the only possibility is to apply a control strategy
that leaves E unchanged but affects its effective transverse
stability. Any control strategy that can make A7 (E, T) negative
for some value of 7 is likely to make bisection algorithms
converge to E. This differentiation of accessible or nonacces-
sible is particularly relevant to understand the failure of the

Ar(x,T) = %log <W)

(a) 0.15

0.1

0.05

350

300

250

200

150

100

50

0.1

0.05

-0.4

FIG. 8. Transition times 7, for the x;x3-plane for x, = 0: (a) 53 =
0.031249 within region I, (b) s3 = 0.032 within region II, and
(c) s3 = 0.065 within region III.

bisection algorithm and to determine E’s role as a mediator of
subcritical transition.

The loss of accessibility of the edge state is further illus-
trated in Fig. 8(c) using transition times computed in a section
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t

(b)
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(d)
= Slow route

0.9 Fast route
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t

FIG. 9. Comparison between region II and III. Trajectories on different sides of the edge manifold starting from initial conditions with
x3 = 0.05. (a) s3 = 0.032, the edge state is accessible by bisection from outside P, region II. (b) s3 = 0.065, the edge state is no longer
accessible by bisection from outside P, region III. (c) Time series for A(¢) for the trajectories in (a). (d) Idem for the trajectories in
(b). The blue and orange trajectories illustrate the two newly born different routes to transition, to be compared with the same colors in

Fig. 1(b).

with x, = —0.05. The figure highlights larger values of 7
in some regions of the state space; however, the highlighted
structure outside P diffuses out and is not a sharp boundary
for the trajectories on either sides, in contrast to Figs. 8(a) and
8(b).

III. THE NONAUTONOMOUS 3D MODEL

The autonomous model DM3D has the discriminant A, or
indirectly the Reynolds number R, as a control parameter,
as is the case for, e.g., plane Poiseuille flow. In an effort
to mimic the evolution of a localized disturbance in a spa-
tially developing flow, one needs to take into account the
fact that the disturbance experiences changing values of R
as it is advected downstream at an approximately constant
velocity. The simplest way to introduce a time dependence
in the DM3D model is to make the growth rate s3 time-
dependent, so that it becomes positive only at a finite time
and continues to increase subsequently. This ensures that L,
E, and T are still fixed points of the system for every time.
A linear relation of the type s3(t) = kit + ko fulfills these
requirements with as few parameters as possible. The sys-
tem then becomes nonautonomous, while retaining all the
properties required for models of subcritical transition. It

reads
dx1
— = 51x1 + 12 + x1x2, 1D
dt
dXQ
T =SzX2—x%+Ux§, (12)
dx
d_; = (kit + ky)x3 — ox2x3. (13)

The time interval is restrained to t € [tg, ty + T¢], with k; =
0.73/Tf and k; = —0.1, in order to facilitate the comparison
with its autonomous counterpart.

A state portrait of the nonautonomous system is shown for
several trajectories with #p = 0 and 7r = 350 in Fig. 10(a).
The chosen trajectories start very close to the edge manifold
within P from an initial condition with x3(fy) = 107, with
color coding chosen to match Fig. 1 and Figs. 9(a) and 9(b).
The time series for the amplitude along the trajectories are
plotted in Fig. 10(b). The fixed point 7 in DM3D can be
reached in two different ways from outside the x;x, plane,
either approaching L (slow route) or not (fast route), as shown
in Fig. 10(a). The model experiences thus a Blasius-like
dynamics when considering trajectories starting at a weak
nonzero distance from the invariant plane P, as suggested by
comparing Figs. 10(a) and 1(b).
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FIG. 10. DM3D nonautonomous model. (a) State portrait for two
trajectories starting close to the edge of DM2D and to the invariant
plane P, (b) time series of the amplitudes A(¢) along the same
trajectories.

IV. DISCUSSION

In the present article, we have devised and investi-
gated two low-order models, one autonomous and the other
nonautonomous. These models aim to explain nonstandard
behaviors observed during bisection in bistable systems once
one of the attractors undergoes a bifurcation and becomes
unstable [15,25,26]. The present generalization respects the
constraints due to the non-normality of the linearized opera-
tor as well as the energy-conserving nonlinearity due to the
Reynolds-Orr theorem [19]. The procedure is not limited to
the two-dimensional Dauchot-Manneville model, and it can be
carried out in higher dimension using reference models such
as, e.g., the four-dimensional Waleffe model [30]; however,
the present three-dimensional model is ideal for visualizing
state space boundaries.

The nonautonomous DM3D model has dynamics similar to
DM2D as long as the new parameter s3 < 0. As s3 increases
above zero, the laminar state L becomes unstable in favor of
a new fixed point S. After a series of local bifurcations, S
becomes a limit cycle C. The first topological change occurs

at s3 = s3¢ as C collides with the two saddle points £ and
L: the stable manifold W*(E) still exists as a codimension-1
manifold, but it does not split the state space into two any
longer; instead, all trajectories outside the invariant plane P
are attracted by the turbulent fixed point 7. Past a second
bifurcation at s3 = s34, E gains one more unstable eigen-
value so that codim (W*(E)) goes from 1 to 2. W¥(E) is
no longer the edge manifold and E is no longer the edge
state because it has lost its accessibility property, and the
edge has collapsed, i.e., there is no edge anymore. The only
possibility to reach E from outside W*(E) P is to use a
control strategy in order to restabilize the laminar state L
locally.

The present extension of a low-order model for a sub-
critical transition allows for a more generic investigation of
bistable systems, when a linear instability disturbs the usual
dynamical picture. It also paves the way for the study of
the edge manifold beyond criticality in higher-dimensional
systems, such as the full Navier-Stokes equations. In fluid
systems there are several canonical examples where both
transition scenarios are present, such as plane Poiseuille flow
[26], the Blasius boundary layer [15], or bent pipe flow [25].
Although a detailed comparison of these flow cases with the
present models would be naive, common features related to
the global topology of the state space are relevant. The bent
pipe flow system investigated in Ref. [25] is the simplest case:
it contains two attractors, like in any bistable system, except
that a nontrivial state (a traveling wave) has inherited the
former stability of the laminar flow via a local supercritical
bifurcation. Although the precise nature of the bifurcation dif-
fers, this situation is topologically similar to the autonomous
model DM3D for 0 < s3 < s3.: two basins of attraction sep-
arated by a strong edge manifold, including a limit cycle on
one side. The plane Poiseuille flow configuration investigated
in Ref. [26] for R = 5855 is more complex: the edge state
solution still exists, whereas there is only one attraction basin,
namely the turbulent basin. This is analogous to the state space
picture of the autonomous model for s3. < s3 < s34, Where
the edge manifold still exists as a codimension-1 hypersurface
except that it does not split the state space into two disjoint
regions any longer. Eventually, the case of the Blasius bound-
ary layer, shown in Fig. 1, is the most complex: although
early time bisection seems to indicate that the edge state is
accessible along a trajectory starting from a well-tuned initial
condition, it is lost for larger times. The early and later times
can be informally compared to the lower and higher s3 > 0
regimes of the DM3D model, respectively below and above
s34. The nonautonomous model, by construction, sweeps as
time progresses through the same range of values of s3 as
its autonomous counterpart. As shown in Fig. 10, initial con-
ditions that are close to, yet outside, the invariant plane P
would first shadow the edge trajectory in P. At a later time
they would be ejected away from P and converge toward the
turbulent set 7 in two possible ways: either via a transient
approach to L (blue trajectories in Fig. 10) or without it
(orange trajectories in Fig. 10). The edge manifold is only
defined for short finite times but does not exist as an invariant
set over unbounded times. The edge state is not accessible
anymore except from initial conditions strictly inside P, or
at the cost of a control strategy. This confirms and explains
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the conclusions of Ref. [15] based on costly edge tracking of
the Navier-Stokes equations in large computational domains
(cf. both their Fig. 10 and the present Fig. 1 compared to the
current Fig. 10).

The two models presented here are simple, nonchaotic, and
their three-dimensional state space has the important advan-
tage of being easily visualizable. Yet they offer the possibility
to understand the topology of seemingly hopelessly tangled
high-dimensional state spaces associated with several fluid
problems. We believe that the present strategy can be used in

many diverse areas of physics where deterministic bistability
is disturbed by an additional local bifurcation.
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