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Abstract

Imposing orthogonality on the layers of neural networks is known to facilitate the learning by limiting the
exploding/vanishing of the gradient; decorrelate the features; improve the robustness. This paper studies theoretical
properties of orthogonal convolutional layers.

We establish necessary and sufficient conditions on the layer architecture guaranteeing the existence of an
orthogonal convolutional transform. The conditions prove that orthogonal convolutional transforms exist for almost all
architectures used in practice for ’circular’ padding. We also exhibit limitations with ’valid’ boundary condition and
’same’ boundary condition with zero padding.

Recently, a regularization term imposing the orthogonality of convolutional layers has been proposed, and
impressive empirical results have been obtained in different applications [44]. The second motivation of the present
paper is to specify the theory behind this. We make the link between this regularization term and orthogonality
measures. In doing so, we show that this regularization strategy is stable with respect to numerical and optimization
errors and that, in the presence of small errors and when the size of the signal/image is large, the convolutional layers
remain close to isometric. The theoretical results are confirmed with experiments, the landscape of the regularization
term is studied and the regularization strategy is validated on real datasets.

Altogether, the study guarantees that the regularization with Lorth [44] is an efficient, flexible and stable numerical
strategy to learn orthogonal convolutional layers.

Keywords— Convolutional layers, orthogonality, deep learning theory, vanishing/exploding gradient, robustness

1 Introduction
We first start by introducing the problem, related work and the context of this paper.

1.1 On Orthogonal Convolutional Neural Networks
Orthogonality constraint has first been considered for fully connected neural networks [2]. For Convolutional Neural
Networks (CNN) [22, 21, 52], the introduction of the orthogonality constraint is a way to improve the neural network
in several regards. First, despite well established solutions [11, 17], the training of very deep convolutional networks
remains difficult. This is in particular due to vanishing/exploding gradients problems [13, 4]. As a result, the expressive
capacity of convolutional layers is not fully exploited [17]. This can lead to lower performances on machine learning
tasks. Also, the absence of constraint on the convolutional layer often leads to irregular predictions that are prone
to adversarial attacks [41, 29]. For these reasons, some authors have introduced Lipschitz [41, 31, 8, 43, 35] and
orthogonality constraints to convolutional layers [47, 5, 16, 51, 25, 10, 30, 44, 42, 19, 24, 15, 19, 3]. Beside the
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above motivations for considering Lipschitz and orthogonality constraints, these constraints are commonly used : - in
Generative Adversarial Networks (GAN) [28] and Wasserstein-GAN [1, 9]; - in Recurrent Neural Networks [2, 15].

Orthogonal convolutional networks are made of several orthogonal convolutional layers. This article focuses on
theoretical properties of orthogonal convolutional layers. We will consider the architecture of a convolutional layer as
characterized by (M,C, k, S), where M is the number of output channels, C of input channels, convolution kernels
are of size k × k and the stride parameter is S. Unless we specify otherwise, we consider convolutions with circular
boundary conditions. Thus, applied on input channels of size SN × SN , the M output channels are of size N ×N .
We denote by K ∈ RM×C×k×k the kernel tensor and by K ∈ RMN2×CS2N2

the matrix that applies the convolutional
layer of architecture (M,C, k, S) to C vectorized channels of size SN × SN .

We will first answer the important questions:

• Existence: What is a necessary and sufficient condition on (M,C, k, S) andN such that there exists an orthogonal
convolutional layer (i.e. K orthogonal) for this architecture? How do the ’valid’ and ’same’ boundary conditions
restrict the orthogonality existence?

Besides, we will rely on recently published papers [44, 30] which characterize orthogonal convolutional layers as the
zero level set of a particular function that is called Lorth in [44]1 (see Sect. 1.3.2 for details). Formally, K is orthogonal
if and only if Lorth(K) = 0. They use Lorth as a regularization term and obtain impressive performances on several
machine learning tasks (see [44]).

In the present paper, we investigate the following theoretical questions:

• Stability with regard to minimization errors: Does K still have good ‘approximate orthogonality properties’
when Lorth(K) is small but non zero? Without this guarantee, it could happen that Lorth(K) = 10−9 and
‖KKT − Id‖2 = 109. This would make the regularization with Lorth useless, unless the algorithm reaches
Lorth(K) = 0.

• Scalability and stability with regard to N: Remarking that, for a given kernel tensor K, Lorth(K) is independent
of N but the layer transform matrix K depends on N : When Lorth is small, does K remain approximately
orthogonal and isometric when N grows? If so, the regularization with Lorth remains efficient even for very
large N .

• Optimization: Does the landscape of Lorth lend itself to global optimization?

We give a positive answer to these interrogations, thus showing theoretical bounds proving that the regularization
with Lorth is stable, and can be used in most cases to ensure quasi-orthogonality of the convolutional layers.

We describe the related works in Section 1.2 and give the main elements of context in Section 1.3. The theorems
constituting the main contributions of the article are in Section 2. Experiments illustrating the theorems, on the landscape
of Lorth, as well as experiments showing the benefits of approximate orthogonality are in Section 3. The code will be
made available in DEEL.LIP2 library.

For clarity, we only consider convolutional layers applied to images (2D) in the introduction and the experiments.
But we emphasize that the theorems in Section 2 and their proofs are provided for both signals (1D) and images (2D).

1.2 Related work and contributions
Orthogonal matrices form the Stiefel Manifold and were studied in [6]. In particular, the Stiefel Manifold is compact,
smooth and of known dimension. It is made of several connected components. This can be a numerical issue, since
most algorithms have difficulty changing connected component during optimization. The Stiefel Manifold has many
other nice properties that make it suitable to (local) Riemannian optimization [23, 24]. Orthogonal convolutional layers
are a subpart of this Stiefel Manifold. To the best of our knowledge, the understanding of orthogonal convolutional
layers is weak. There is no paper focusing on the theoretical properties of orthogonal convolutional layers.

1The situation is more complex in [44, 30]. One of the contributions of the present paper is to clarify the situation. We describe here the clarified
statement.

2https://github.com/deel-ai/deel-lip

2



Many articles [48, 5, 40, 19, 34, 8, 7] focus on Lipschitz and orthogonality constraints of the neural networks layers
from a statistical point of view, in particular in the context of adversarial attacks.

Many recent papers have investigated the numerical problem of optimizing a kernel tensor K under the constraint
that K is orthogonal or approximately orthogonal. They also provide modeling arguments and experiments in favor of
this constraint. We can distinguish two main strategies: kernel orthogonality [47, 5, 16, 51, 10, 19, 24, 15, 19, 3, 36]
and convolutional layer orthogonality [25, 30, 44, 42]. The latter has been introduced more recently.

We denote the input of the layer by X ∈ RC×SN×SN and its output by Y = conv(K, X) ∈ RM×N×N .

• Kernel Orthogonality: This class of methods views the convolution as a multiplication between a matrix
K ∈ RM×Ck2

formed by reshaping the kernel tensor K (see, for instance, [5, 44] for more details), and the im2col
matrix U(X) where the columns of U(X) ∈ RCk2×N2

contain the vectorized patches of X required to compute
the M output channels at a given spatial position (see [12, 49]). We therefore have, Vect (Y ) = Vect

(
KU(X)

)
.

The kernel orthogonality strategy enforces the orthogonality of the matrix K.

• Convolutional Layer Orthogonality: This class of methods connects the input and the output of the layer
directly by writing Vect (Y ) = KVect (X) and enforces the orthogonality of K. The difficulty of this method is
that the size of the matrix K ∈ RMN2×CS2N2

depends on N and can be very large.

Kernel orthogonality provides a numerical strategy whose complexity is independent of N . However, kernel
orthogonality does not imply that K is orthogonal. In a nutshell, the problem is that the composition of an orthogonal
embedding3 and an orthogonal dimensionality reduction has no reason to be orthogonal. This phenomenon has been
observed empirically in [25] and [19]. The authors of [44] and [30] also argue that, when K has more columns
than rows (row orthogonality), the orthogonality of K is necessary but not sufficient to guarantee K orthogonal.
Kernel orthogonality and convolutional layer orthogonality are different, the latter better avoids gradient vanishing and
exploding, and feature correlation.

We can distinguish between two numerical ways of enforcing orthogonality during training:

• Hard Orthogonality: This method consists in keeping the matrix of interest orthogonal during the whole training
process. This can be done either by optimizing on the Stiefel Manifold, or by considering a parameterization of a
subset of orthogonal matrices (e.g., [24, 25, 42, 39, 16, 51]). Note that some convolutional layer orthogonality
methods in this case consider iterations of K, therefore resulting in a convolution where the kernel is of size
larger than k × k.

• Soft Orthogonality: Another method to impose orthogonality of matrices during the optimization is to add a
regularization of the type ‖WWT − I‖2 to the loss of the specific task. This regularization penalizes the matrices
far from orthogonal (e.g., [3, 5, 30, 44, 47, 10, 19, 15]).

Note that unlike Kernel Orthogonality, Convolutional Layer Orthogonality deals directly with K, and thus has
a complexity which generally depends on N . However, in the context of Soft Convolutional Layer Orthogonality,
the authors of [30, 44] introduce the regularizer Lorth which is independent of N (see Sect. 1.3.2 for details), as a
surrogate to ‖KKT − IdMN2 ‖2F and ‖KTK− IdCS2N2 ‖2F . In [44], orthogonal convolutional layers involving a stride
are considered for the first time. The authors also provide very impressive classification experiments using Lorth on
CIFAR100 and ImageNet, including in a semi-supervised setting, on image inpainting, image generation and robustness.

The present paper specifies the theory supporting the regularization with Lorth and the construction of orthogonal
convolutional layers. We give necessary and sufficient conditions on the architecture for the orthogonal convolutional
layers to exist; we unify the Lorth formulation for both Row-Orthogonality and Column-Orthogonality cases; and prove
that the regularization with Lorth: 1/ is stable (Lorth(K) small =⇒KKT − Id small in various senses ); 2/ leads to an
orthogonality error that scales favorably when input signal size N grows. We empirically show that, in most cases, the
landscape of Lorth is benign and we identify the problematic cases. Finally, we also illustrate how the regularization
parameter can be chosen to control the tradeoff between accuracy and orthogonality.

3Up to a re-scaling, when considering circular boundary conditions, the mapping U is orthogonal.
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1.3 Context
In this section, we describe the context of the article by defining orthogonality, the regularization function Lorth and the
Frobenius and spectral norms of the orthogonality residuals. We also derive the notions of approximate orthogonality
and relate it to the approximate isometry property whose benefits are listed in Table 1.

1.3.1 Orthogonality

Given a kernel tensor K, the layer transform matrix K can be written as:

K =

 M(K1,1) . . . M(K1,C)
...

...
...

M(KM,1) . . . M(KM,C)

 ∈ RMN2×CS2N2

,

whereM(Ki,j) is a matrix that computes a strided convolution for the kernel Ki,j = Ki,j,:,:, from the input channel j,
to the output channel i. (see Appendix B for details).

In order to define orthogonal matrices, we need to distinguish two cases:

• Row case (RO case). When the size of the input space of K ∈ RMN2×CS2N2

is larger than the size of its output
space, i.e. M ≤ CS2, K is orthogonal if and only if its rows are normalized and mutually orthogonal. Denoting
the identity matrix IdMN2 ∈ RMN2×MN2

, this is written

KKT = IdMN2 . (1)

In this case, the mapping K performs a dimensionality reduction.

• Column case (CO case). When M ≥ CS2, K is orthogonal if and only if its columns are normalized and
mutually orthogonal:

KTK = IdCS2N2 . (2)

In this case, the mapping K is an embedding.

Both the RO case and CO case are encountered in practice. When M = CS2, the matrix K is square and if it is
orthogonal then both (1) and (2) hold. The matrix K is then orthogonal in the usual sense and both K and KT are
isometric.

1.3.2 The function Lorth(K)

In this section, we define a variant of the function Lorth : RM×C×k×k −→ R defined in [44, 30]. The purpose of the
proposed variant is to unify the properties of Lorth in the RO case and CO case.

Reminding that k × k is the size of the convolution kernel, for any h, g ∈ Rk×k and any P ∈ N, we define
conv(h, g, padding zero = P, stride = 1) ∈ R(2P+1)×(2P+1) as the convolution4 between h and the zero padding of g
(see Figure 1). Formally, for all i, j ∈ J0, 2P K,

[conv(h, g, padding zero = P, stride = 1)]i,j =

k−1∑
i′,j′=0

hi′,j′ ḡi+i′,j+j′ ,

where ḡ ∈ R(k+2P )×(k+2P ) is defined, for all (i, j) ∈ J0, k + 2P − 1K2, by

ḡi,j =

{
gi−P,j−P if (i, j) ∈ JP, P + k − 1K2,
0 otherwise.

4As is common in machine learning, we do not flip h.
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Figure 1: Illustration of conv(h, g, padding zero = P, stride = 1), in the 2D case.

We define conv(h, g, padding zero = P, stride = S) ∈ R(b2P/Sc+1)×(b2P/Sc+1), for all integer S ≥ 1 and all
i, j ∈ J0, b2P/ScK, by

[conv(h, g, padding zero = P, stride = S)]i,j = [conv(h, g, padding zero = P, stride = 1)]Si,Sj .

We denote (in bold) conv(K,K, padding zero = P, stride = S) ∈ RM×M×(b2P/Sc+1)×(b2P/Sc+1) the fourth-
order tensor such that, for all m, l ∈ J1,MK,

conv(K,K, padding zero = P, stride = S)m,l,:,:

=

C∑
c=1

conv(Km,c,Kl,c, padding zero = P, stride = S),

where, for all m ∈ J1,MK and c ∈ J1, CK, Km,c = Km,c,:,: ∈ Rk×k.

It has been noted in [44] that, in the RO case, when P =
⌊
k−1
S

⌋
S,

K orthogonal ⇐⇒ conv(K,K, padding zero = P, stride = S) = Ir0, (3)

where Ir0 ∈ RM×M×(2P/S+1)×(2P/S+1) is the tensor whose entries are all zero except its central M ×M entry which
is equal to an identity matrix: [Ir0]:,:,P/S,P/S = IdM .

Therefore, denoting by ‖.‖F the Euclidean norm in high-order tensor spaces, it is natural to define the following
regularization penalty (we justify the CO case right after the definition).

Definition 1 (Lorth). We denote by P =
⌊
k−1
S

⌋
S. We define Lorth : RM×C×k×k −→ R+ as follows

• In the RO case, M ≤ CS2:

Lorth(K) = ‖ conv(K,K, padding zero = P, stride = S)− Ir0‖2F . (4)
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• In the CO case, M ≥ CS2:

Lorth(K) = ‖ conv(K,K, padding zero = P, stride = S)− Ir0‖2F − (M − CS2) .

When M = CS2, the two definitions trivially coincide. In the definition, the padding parameter P is the largest
multiple of S strictly smaller than k. The difference with the definitions of Lorth in [44, 30] is in the CO case. In this
case with S = 1, [30, 44] use (4) with KT instead of K . For S ≥ 2 in the CO case, we can not derive a simple equality
as in (3). In [44], remarking that ‖KTK− IdCS2N2 ‖2F − ‖KKT − IdMN2 ‖2F is a constant which only depends on the
size of K, the authors also argue that, whatever S, one can also use (4) in the CO case. We alter this in the CO case as
in Definition 1 to obtain both in the RO case and the CO case:

Lorth(K) = 0 ⇐⇒ K orthogonal.

Once adapted to our notations, the authors in [44, 30] propose to regularize convolutional layers parameterized by
(Kl)l by optimizing

Ltask + λ
∑
l

Lorth(Kl) (5)

where Ltask is the original objective function of a machine learning task. The function Lorth(K) does not depend on
N and can be implemented in a few lines of code with Neural Network frameworks. Its gradient is then computed using
automatic differentiation.

Of course, when doing so, even if the optimization is efficient, we expect Lorth(Kl) to be different from 0 but less
than ε, for a small ε. We investigate, in the sequel, whether, in this case the transformation matrix K, still satisfies
useful orthogonality properties. To quantify how much K deviates from being orthogonal, we define the approximate
orthogonality criteria and approximate isometry property in the next section. These notions allow to state the stability
and scalability theorems and guarantee that the singular values remain close to 1 when Lorth is small, even when N is
large. This proves that the benefits related to the orthogonality of the layers, which are presented in Table 1, still hold.

1.3.3 Approximate orthogonality and Approximate Isometry Property

Perfect orthogonality is an idealization that never happens, due to floating point arithmetic, numerical and optimization
errors. In order to measure how K deviates from being orthogonal, we define the orthogonality residual by KKT −
IdMN2 , in the RO case, and KTK − IdCS2N2 , in the CO case. Considering both the Frobenius norm ‖.‖F of the
orthogonality residual and its spectral norm ‖.‖2, we have two criteria:

errFN (K) =

{
‖KKT − IdMN2 ‖F , in the RO case,
‖KTK − IdCS2N2 ‖F , in the CO case,

and

errsN (K) =

{
‖KKT − IdMN2 ‖2 , in the RO case,
‖KTK − IdCS2N2 ‖2 , in the CO case.

When M = CS2, the definitions in the RO case and the CO case coincide. The two criteria are of course related since
for any matrix A ∈ Ra×b, the Froebenius and spectral norms are such that

‖A‖F ≤
√

min(a, b)‖A‖2 and ‖A‖2 ≤ ‖A‖F . (6)

However, the link is weak, when min(a, b) is large.
In the applications, one key property of orthogonal operators is their connection to isometries. It is the property that

prevents the gradient from exploding and vanishing [5, 46, 24, 15]. This property also enables to keep the examples
well separated [30], like the batch normalization does, and to have a Lipschitz forward pass and therefore improve
robustness [44, 5, 25, 42, 19].

We denote the Euclidean norm of a vector by ‖.‖. To clarify the connection between orthogonality and isometry, we
define the ‘ε-Approximate Isometry Property’ (ε-AIP).
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Table 1: Properties of a ε-AIP layer (when ε� 1), depending on whether K defines a convolutional or deconvolutional
layer. The red crosses indicate when the forward or backward pass performs a dimensionality reduction.

Forward pass Backward pass
Lipschitz Keep examples Prevent Prevent

Forward pass separated grad. expl. grad. vanish.
Convolutional M < CS2 ! % ! !

layer M > CS2 ! ! ! %

Deconvolution M < CS2 ! ! ! %

layer M > CS2 ! % ! !

Conv. & Deconv. M = CS2 ! ! ! !

Definition 2. A layer transform matrix K ∈ RMN2×CS2N2

satisfies the ε-Approximate Isometry Property if and only if

• RO case, M ≤ CS2: {
∀x ∈ RCS2N2 ‖Kx‖2 ≤ (1 + ε)‖x‖2

∀y ∈ RMN2

(1− ε)‖y‖2 ≤ ‖KT y‖2 ≤ (1 + ε)‖y‖2

• CO case, M ≥ CS2: {
∀x ∈ RCS2N2

(1− ε)‖x‖2 ≤ ‖Kx‖2 ≤ (1 + ε)‖x‖2

∀y ∈ RMN2 ‖KT y‖2 ≤ (1 + ε)‖y‖2

The following proposition makes the link between errsN (K) and AIP. It shows that minimizing errsN (K) enhances
the AIP property.

Proposition 1. Let N be such that SN ≥ k. We have, both in the RO case and CO case,

K is errsN (K)-AIP.

This statement actually holds for any matrix (not only layer transform matrix) and is already stated in [3, 10]. For
completeness, we provide a proof, in Appendix G.

In Proposition 1 and in Theorem 1 (see the next section), the condition SN ≥ k only states that the input width and
height are larger than the size of the kernels. This is always the case in practice.

We summarize in Table 1 the properties of the layer satisfying the AIP, in the different possible scenarios. We
remind that a kernel tensor K can define a convolutional layer or a deconvolution layer. Deconvolution layers are, for
instance, used to define layers of the decoder of an auto-encoder or variational auto-encoder [20]. In the convolutional
case, K is applied during the forward pass and KT is applied during the backward pass. In a deconvolution layer,
KT is applied during the forward pass and K during the backward pass. Depending on whether we have M < CS2,
M > CS2 or M = CS2, when K is ε-AIP with ε << 1, either KT , K or both preserve distances (see Table 1).

To complement Table 1, notice that in the RO case, if errFN (K) ≤ ε, then for any i, j with i 6= j, we have
|Ki,:KT

j,:| ≤ ε, where Ki,: is the ith line of K. In other words, when ε is small, the features computed by K are mostly
uncorrelated [44].

2 Theoretical analysis of orthogonal convolutional layers
In all the theorems in this section, the considered convolutional layers are either applied to a signal, when d = 1, or an
image, when d = 2.
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We remind that the architecture of the layer is characterized by (M,C, k, S) where: M is the number of output
channels; C is the number of input channels; k ≥ 1 is an odd positive integer and the convolution kernels are of size k,
when d = 1, and k × k, when d = 2; the stride parameter is S.

All input channels are of size SN , when d = 1, SN × SN , when d = 2. The output channels are of size N and
N ×N , respectively when d = 1 and 2. When d = 1, the definitions of Lorth, errFN and errsN are in Appendix A.2.

In Section 2.1, we state a theorem that provides the necessary and sufficient conditions on the architecture for an
orthogonal convolutional layer to exist.

We want to highlight that the theorems of Sections 2.1, 2.3 and 2.4 are for convolution operators defined with
circular boundary conditions. We highlight in Section 2.2 restrictions for the ‘valid’ and ‘same’ zero padding boundary
conditions.

In Section 2.3, we state a theorem that provides a relation between the Frobenius norm of the orthogonality residual
and the regularization penalty Lorth.

Finally, in Section 2.4, we state a theorem that provides an upper bound of the spectral norm of the orthogonality
residual using the regularization penalty Lorth.

2.1 Existence of orthogonal convolutional layers
The next theorem gives a necessary and sufficient condition on the architecture of a convolutional layer (M,C, k, S)
and N for an orthogonal convolutional layers to exist. To simplify notations, we denote, for d = 1 or 2, the space of all
the kernel tensors by

Kd =

{
RM×C×k when d = 1,
RM×C×k×k when d = 2.

We also denote, for d = 1 or 2,
K⊥d = {K ∈ Kd| K is orthogonal}.

Theorem 1. Let N be such that SN ≥ k and d = 1 or 2.

• RO case, i.e. M ≤ CSd: K⊥d 6= ∅ if and only if M ≤ Ckd .

• CO case, i.e. M ≥ CSd: K⊥d 6= ∅ if and only if S ≤ k .

Theorem 1 is proved in Appendix C. Again, the conditions coincide when M = CSd.
When S ≤ k, which is by far the most common situation, there exist orthogonal convolutional layers in both the

CO case and the RO case. Indeed, in the RO case, when S ≤ k, we have M ≤ CSd ≤ Ckd.
However, skip-connection (also called shortcut connection) with stride in Resnet [11] for instance, usually have an

architecture (M,C, k, S) = (2C,C, 1, 2), where C is the number of input channels. The kernels are of size 1× 1. In
that case, M ≤ CSd and M > Ckd. Theorem 1 says that there is no orthogonal convolutional layer for this type of
layers.

To conclude, the main consequence of Theorem 1 is that, with circular boundary conditions and for most of the
architecture used in practice (with an exception for the skip-connections with stride), there exist orthogonal convolutional
layers.

2.2 Restrictions due to boundary conditions
In Sections 2.1, 2.3 and 2.4, we consider convolutions defined with circular boundary conditions. This choice is not
for technical reasons neither to enable the use of Fourier basis. We illustrate in the next two propositions that, for
convolutions defined with the ’valid’ condition, or the ’same’ condition with zero padding, the orthogonality is too
restrictive.

We consider in this section an unstrided convolution and we state results about other paddings and some of their
limitations.

Proposition 2. Let N ≥ 2k − 1. With the ’valid’ condition, there exist no orthogonal convolutional layer in the CO
case.
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This proposition holds in the 1D and 2D case. We give its proof only in the 1D case in Appendix D.1.
Let k = 2r + 1, and let (ei,j)i=0..k−1,j=0..k−1 be the canonical basis of Rk×k. For the zero padding ’same’, we

have the following proposition.

Proposition 3. Let N ≥ k. For K ∈ RM×C×k×k, with the zero padding ’same’ and S = 1, both in the RO case and
CO case, if K is orthogonal then there exist (αm,c)m=1..M,c=1..C ∈ RM×C such that for all (m, c) ∈ J1,MK× J1, CK,
Km,c = αm,cer,r. As a consequence

K =

 α1,1IdN2 . . . α1,CIdN2

...
...

...
αM,1IdN2 . . . αM,CIdN2

 ∈ RMN2×CN2

.

This proposition holds in the 1D and 2D case. We give its proof only in the 1D case in Appendix D.2.

To recapitulate, the results state that with padding ’valid’, no orthogonal convolution can be built in the CO case,
and that for zero padding ’same’, the orthogonal convolutions layers are trivial transformations.

2.3 Frobenius norm stability
We recall that the motivation behind this is the following : The authors of [44, 30] argue that Lorth(K) = 0 is equivalent
to K being orthogonal. However, they do not provide stability guarantees. Without this guarantee, it could happen
that Lorth(K) = 10−9 and ‖KKT − Id‖F = 109. This would make the regularization with Lorth useless, unless the
algorithm reaches Lorth(K) = 0.

The following theorem proves that it can not occur. Therefore, if Lorth(K) is small, errFN (K) is small at least for
moderate signal sizes. Also a corollary is that adding Lorth as a penalty regularization is equivalent to adding the
Frobenius norm of the orthogonality residual.

Theorem 2. Let N be such that SN ≥ 2k − 1 and d = 1 or 2. We have, both in the RO case and CO case,

(errFN (K))2 = NdLorth(K) .

Theorem 2 is proved, in Appendix E. We remind that Lorth(K) is independent of N . The theorem formalizes for
circular boundary conditions and for both the CO case and the RO case, the reasoning leading to the regularization with
Lorth, in [44].

Using Theorem 2, we find that (5) becomes

Ltask +
∑
l

λ

Nd
l

(errFNl
(Kl))

2.

Once the parameter λ is made dependent of the input size of layer l, the regularization term λLorth is equal to the
Frobenius norm of the orthogonality residual. This justifies the use of Lorth as a regularizer.

We can also see from Theorem 2 that, for both the RO case and the CO case, when Lorth(K) = 0, K is orthogonal,
independently of N . This recovers the result stated in [30] for S = 1, and the result stated in [44] in the RO case for
any S .

Considering another signal size N ′ and applying Theorem 2 with the sizes N and N ′, we find

(errFN ′(K))2 =
(N ′)d

Nd
(errFN (K))2.

To the best of our knowledge, this equality is new. This could be of importance in situations when N varies. For
instance when the neural network is learned on a dataset containing signals/images of a given size, but the inference is
done for signals/images of varying size [32, 26, 18].

Finally, using (6) and Proposition 1, K is ε-AIP with ε scaling like the square root of the signal/image size. This
might not be satisfactory. We prove in the next section that it is actually not the case.
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2.4 Spectral norm stability and scalability
We prove in Theorem 3 that errsN (K)2 is bounded by a quantity which is proportional toLorth(K) and the multiplicative
factor does not depend on N. Hence, when Lorth(K) is small, errsN (K)2 is also small for all N . As a consequence,
regularizing with Lorth(K) is efficient for all N , even if the algorithm does not reach Lorth(K) = 0.

Moreover, combined with Proposition 1 this ensures that, if Lorth(K) is small, K is ε-AIP with ε small. Using
Table 1, we see that this property leads to more robustness and avoids gradient vanishing/exploding. This is in line with
the empirical results observed in [44, 30].

Theorem 3. Let N be such that SN ≥ 2k − 1 and d = 1 or 2. We have,

(errsN (K))2 ≤ α Lorth(K)

with:

α =

{ (
2
⌊
k−1
S

⌋
+ 1
)d
M in the RO case (M ≤ CSd),

(2k − 1)dC in the CO case (M ≥ CSd).

Theorem 3 is proved, in Appendix F. When M = CSd, the two inequalities hold and it is possible to take the
minimum of the two α values.

As we can see from Theorem 3, unlike with the Frobenius norm, the spectral norm of the orthogonality residual is
bounded by a quantity which does not depend on N . Moreover,

√
α is usually moderately large. For instance, with

(M,C, k, S) = (128, 128, 3, 2), for images,
√
α ≤ 34. For usual architectures,

√
α is smaller than 200. This ensures

that, independently of N , we have a tight control of the AIP, when Lorth(K)� 1, both in the RO case and CO case.
We recall that this is what explains the benefits of the approach, as stated in Table 1. Experiments which confirm
this statement are in Section 3. This explains some of the impressive results obtained empirically on real datasets by
[44, 30].

3 Experiments
Before illustrating the benefits of approximate orthogonality in section 3.4, we conduct several synthetic experiments
to test and illustrate the theorems of Section 2. In order to avoid interaction with other objectives, we train a single
2D convolutional layer with circular padding. We explore all the architectures such that K⊥2 6= ∅, for C ∈ J1, 64K
, M ∈ J1, 64K, S ∈ {1, 2, 4}, and k ∈ {1, 3, 5, 7}, leading to 44924 (among 49152) architectures for which an
orthogonal convolutional layer exists. The model is trained using a Glorot uniform initializer and a Adam optimizer
with learning rate 0.01 on a null loss (Ltask = 0) and the Lorth regularization (see Definition 1) during 3000 steps.

After training, we evaluate the singular values (σ) of K for different input sizes SN × SN . When S = 1, we
can compute all the singular values of K with the algorithm in [35]. For convolutions with stride, S > 1, there is no
practical algorithm to compute the singular values and we simply apply the well known power iteration algorithm,
to retrieve the smallest and largest singular values (σmin, σmax) of K (see Appendix H). We remind that, when K is
orthogonal, we have σmin = σmax = 1.

3.1 Optimization landscape
We plot (σmin, σmax) forK such that SN ×SN = 64×64, on Figure 2. Each experiment is represented by two points:
σmax, in blue, and σmin, in orange. For each point (x, y), the first coordinate x corresponds to M

CS2 , and the second
coordinate y denotes the singular value of the corresponding K. The points with x ≤ 1 correspond to the artchitecture
in the RO case (K is a fat matrix), and the others correspond to the architectures in the CO case (K is a tall matrix).

The right plot of Fig. 2 shows that all configurations where M 6= CS2 are trained very accurately to near perfect
orthogonal convolutions. These configurations represent the vast majority of cases found in practice. However, the
left plot of Fig. 2 points out that some architectures, with M = CS2, might not fully benefit of the regularization with
Lorth. These architectures, corresponding to a square K, can mostly be found when M = C and S = 1, for instance in
VGG [38] and Resnet [11]. We have conducted experiments that we do not report here in details, and it seems that this
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Figure 2: Optimization of Lorth. Each experiment corresponds to two dots: a blue dot for σmax and an orange dot for
σmin. The x-axis is M/CS2 in log scale. (left) All experiments for which K⊥2 6= ∅; (right) All experiments for which
K⊥2 6= ∅ and M 6= CS2.

Figure 3: Singular values of K, when C = M and S = 1 and optimization is (Left) successful, Lorth small (Right)
Unsuccessful, Lorth large.

is specific to the convolutional layer case. Fully-connected layers do not suffer from this phenomenon when optimized
to be orthogonal.

3.2 Analysis of the M = CS2 cases
Since we know that K⊥2 6= ∅, the explanation for the failure cases (when σmax or σmin significantly differ from 1)
is that the optimization was not successful. We tried many learning rate schemes, number of iterations and obtained
similar results. This suggests that, in the failure cases, the landscape of Lorth does not lend itself to global optimization.
The explanation of this phenomenon and the evaluation of its impact on applications are open questions that we keep
for future research. The contributions of the article is to empirically identify these problematic cases. We also ran
100 training experiments, with independent initialization, for each configuration when M = CS2 (M ∈ J1, 64K and
k ∈ {1, 3, 5, 7}). In average, at convergence, we found σmin ∼ 1 ∼ σmax in 14% of runs, proving that the minimizer
can be reached.

We display on Figure 3 the singular values of K defined for S = 1 and N ×N = 64 × 64 for two experiments
where M = C. In the experiment on the left, the optimization is successful and the singular values are very accurately
concentrated around 1. On the right, we see that only a few of the singular values significantly differ from 1.

Figure 3 shows that even if σmin and σmax are not close to 1, as shown in Figure 2, most of the singular values are
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close to 1. This probably explains why the landscape problem does not alter the performance on real datasets in [44]
and [30]. Notice that [44] contains a curve similar to Figure 3 when used for a real dataset.

3.3 Stability of (σmin, σmax) when N varies

Figure 4: Evolution of σmin and σmax according to input image size (x-axis: N in log-scale) (Left) successful
training, Lorth small, (Right) unsuccessful training, Lorth large

In this experiment, we evaluate how the singular values (σmin, σmax) of K vary when the parameter N defining the
size SN × SN of the input channels varies, for K fixed. This is important for applications [37, 18, 32] using fully
convolutional networks, or for transfer learning using pre-learnt convolutional feature extractor.

To do so, we randomly select 50 experiments for which the optimization was successful and 50 for which it was
unsuccessful. They are respectively used to construct the figures on the left and the right of Figure 4. We display
the (σmin, σmax) values of K as orange and blue dots, for N ∈ {5, 12, 15, 32, 64, 128, 256, 512, 1024}. The dots
corresponding to the same K are linked by a line.

We see, on the left of Figure 4, that for successful experiments (Lorth small), the singular values are very stable
when N varies. This corresponds to the behavior described in Theorem 3 and Proposition 1. We also point out, on the
right of Figure 4, that for unsuccessful optimization (Lorth large), σmin (resp. σmax) values decrease (resp. increase)
rapidly when N increases.

3.4 Datasets experiments
In this section we compare performance, robustness, and processing time, on several datasets, for theLorth regularization
and a method that we call Cayley [42], a hard convolutional layer orthogonality method5. As a reminder, [42] method
is based on the Cayley transform. It builds convolutions parameterized by k × k parameters but, because a mapping is
applied to obtain the orthogonality, the convolution kernels are of size N ×N . In comparison, Lorth regularization
provides convolutions kernels of size k × k, as is standard. The methods are therefore not expected to provide the same
results which makes the comparison a bit complicated.

On Cifar10, we use the same configuration as in [42]: a standard data augmentation (i.e., random cropping and
flipping), a KWLarge architecture [25, 45], a piecewise triangular learning rate, a multiclass hinge loss with a

√
2ε

margin, where ε = 36/255, and an Adam optimizer. In all experiments, for fair comparison, we use CayleyLinear
dense layers, and invertible downsampling emulation as in [42].

For Lorth regularization and for λ ∈ {10, 1, 10−1, 10−2, 10−3, 10−4, 10−5}, we investigate the properties of the
solution of (5). Since small λ can lead to poor regularization, after training σmax and σmin values are computed for
each convolutional layer.

5comparison with kernel orthogonality was done in [44]
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In the following tables, the non-lipschitz-constraint convolution (Conv2D) performance is given as a reference6.
We report the following metrics for each experiments:

• Acc. clean: Classical accuracy on test set

• Σmax = maxl(σmax(Kl)): the largest singular value over all the convolutional layers

• Lup : An upper bound of the Lipschitz constant computed as the product Lup =
∏

l σmax(Kl) of convolution
layers largest singular values.

• Σmin = minl(σmin(Kl)): the smallest singular value over all the convolutional layers

• Llow: the product Llow =
∏

l σmin(Kl) of convolution layers lowest singular values.

• Elip : Empirical local Lipschitz constants computed using the PGD-like method proposed by [50].

• Erob : The empirical robustness accuracy, i.e. the proportion of test samples on which a vanilla Projected Gradient
Descent (PGD) attack [27] failed (for a coefficient α = ε/4.0). The (Drop in Acc.) represents the difference
between the test clean accuracy and this value.

• Tepoch: the average epoch processing time

Table 2: Cifar10: Influence of λ for Lorth regularization and comparison with Cayley method.

Method Conv2D Cayley
Lorth

101
Lorth

1.00

Lorth

10−1
Lorth

10−2
Lorth

10−3
Lorth

10−4
Lorth

10−5

Acc. clean 0.83 0.75 0.72 0.73 0.74 0.75 0.78 0.81 0.82
Σmax 8.85 1.00 1.00 1.03 1.17 1.56 2.18 2.80 3.77
Lup 260.30 1.00 1.01 1.05 1.34 2.56 6.32 18.74 52.41

Σmin 0.41 1.00 1.00 0.99 0.96 0.84 0.56 0.47 0.30
Llow 0.13 1.00 1.00 0.99 0.94 0.75 0.42 0.26 0.24
Elip 16.41 0.76 0.72 0.73 0.79 1.08 2.01 3.48 7.39
Erob 0.51 0.68 0.65 0.66 0.68 0.67 0.67 0.67 0.62

(Drop in acc.) ( 0.32) ( 0.07) ( 0.07) ( 0.07) ( 0.06) ( 0.08) ( 0.11) ( 0.14) ( 0.19)
Tepoch 4.00 5.80 4.20 4.20 4.20 4.20 4.20 4.20 4.20

Table 2 shows that the regularization parameter λ, in (5), provides a way to tune a tradeoff between robustness
(Drop in acc.) and clean accuracy, by controlling the Lipschitz constant of the layers. The Llow line shows that λ
allows to control the importance of the vanishing gradient. The configurations λ = 10−1 and 10−2 achieve similar
empirical performances as the Cayley method. Furthermore their empirical Lipschitz constants are very close to one.
The processing time for the regularizing with Lorth is 1.4 times faster than the one of the Cayley method. It is not
reported here in details but the convergence speed in number of epochs are similar. Moreover, Lorth provides classical
convolution at inference. On the contrary, the Cayley method provides orthogonal convolutions of size N ×N obtained
using a mapping which involves Fourier transforms. This leads to a higher computational complexity even at inference.
The change of support also explains the difference of the accuracies between the Cayley method and the regularization
with λ = 10.

Table 3 presents the same experiments on Imagenette dataset [14]. The latter is a 10 classes subset of Imagenet
dataset [33] with 160× 160 images. We train a KWLarge-like architecture with five convolutional blocks and pooling,
and use the same parameters as for Cifar10 experiments (data augmentation, optimizer, loss, epsilon). Interestingly,
although the drop in accuracy is increased for λ = 10−4 and 10−5, the clean performance increases sufficiently to

6It gives a reference performance for neural networks with orthogonal dense layers
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Table 3: Imagenette: Influence of λ for Lorth regularization and comparison with Cayley method.

Method Conv2D Cayley
Lorth

1.00

Lorth

10−1
Lorth

10−2
Lorth

10−3
Lorth

10−4
Lorth

10−5

Acc. clean 0.79 0.75 0.68 0.70 0.70 0.75 0.79 0.79
Σmax 9.82 1.00 1.00 1.00 1.05 1.31 1.71 2.29
Lup 25909 1.00 1.00 1.01 1.21 3.06 14.70 217.77

Σmin 0.14 1.00 1.00 1.00 0.99 0.73 0.53 0.15
Llow < 3.10−5 1.00 1.00 1.00 0.94 0.44 0.15 < 8.10−4

Elip 23.86 0.48 0.42 0.42 0.41 0.49 0.91 2.14
Erob 0.57 0.73 0.66 0.69 0.68 0.72 0.75 0.75

(Drop in acc.) ( 0.22) ( 0.02) ( 0.02) ( 0.01) ( 0.02) ( 0.02) ( 0.04) ( 0.05)
Tepoch 16.90 87.30 18.80 18.80 18.80 18.80 18.80 18.80

obtain better robustness measures than with the Cayley method. Besides, because Lorth does not depend on the size
N of the input feature map, the processing time for the Lorth regularization is only 1.1 times slower than for the
non-constrained convolution (Conv2D). In comparizon, the Cayley method is 5.2 slower than Conv2D.

4 Conclusion
This paper provides a necessary and sufficient condition on the architecture for the existence of an orthogonal
convolutional layer with circular padding. The conditions prove that orthogonal convolutional layers exist for most
relevant architectures. We show that the situation is less favorable with ‘valid’ and ‘same’ zero paddings. We also prove
that the minimization of the surrogate Lorth enables to construct orthogonal convolutional layers in a stable manner,
that also scales well with the input size N . The experiments confirm that this is practically the case for most of the
configurations, except when M = CS2 for which interrogations remain.

Altogether, the study guarantees that the regularization with Lorth is an efficient, stable numerical strategy to learn
orthogonal convolutional layers. It can safely be used even when the signal/image size is very large. The regularization
parameter λ is chosen depending on the tradeoff we want between accuracy and orthogonality.
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A Notation
First, we set notation.

A.1 Standard math definition
The floor of a real number will be denoted by b.c. For two integers a and b, Ja, bK denotes the set of integers n such that
a ≤ n ≤ b. We also denote by a%b the rest of the euclidean division of a by b, and Ja, bK%n = {x%n|x ∈ Ja, bK}. We
denote by δi=j , the Kronecker symbol, which is equal to 1 if i = j, and 0 if i 6= j.

For a vector x = (x0, . . . , xn−1)T ∈ Rn, we recall the classic norm definitions, ‖x‖1 =
∑n−1

i=0 |xi|, and

‖x‖2 =
√∑n−1

i=0 x
2
i . For x, y ∈ Rn, 〈x, y〉 = xT y denotes the scalar product between x and y. We denote by

0s the null vector of Rs.
For a matrix A ∈ Rm×n, ‖.‖2 denotes the spectral norm defined by ‖A‖2 = σmax(A), where σmax(A) denotes the

largest singular value ofA. We also have ‖A‖1 = max0≤j≤n−1
∑m−1

i=0 |Ai,j | and ‖A‖∞ = max0≤i≤m−1
∑n−1

j=0 |Ai,j |.
We denote by Idn ∈ Rn×n the identity matrix of size n.

Recall that ‖.‖F denotes the norm which, to any tensor of order larger than or equal to 2, associates the square root
of the sum of the squares of all its elements (e.g., for a matrix it corresponds to the Frobenius norm).
Recall that S is the stride parameter, k = 2r + 1 is the size of the 1D kernels. SN is the size of the input channels and
N is the size of the output channels.
For a vector space E , we denote by B(E) its canonical basis. We set

(ei)i=0..k−1 = B(Rk)

(fi)i=0..SN−1 = B(RSN )

(Ea,b)a=0..N−1,b=0..SN−1 = B(RN×SN )

(Ea,b)a=0..SN−1,b=0..N−1 = B(RSN×N )

(Fa,b)a=0..SN−1,b=0..SN−1 = B(RSN×SN )

(Ga,b)a=0..N−1,b=0..N−1 = B(RN×N ) .

(7)

Note that the indices start at 0, thus we have for example e0 =

[
1

0k−1

]
, ek−1 =

[
0k−1

1

]
, and for all i ∈ J1, k − 2K,

ei =

 0i
1

0k−i−1

.

To simplify the calculations, the definitions are extended for a, b outside the usual intervals, it is done by periodization.
Hence, for all a, b ∈ Z, denoting by â = a%SN , ã = a%N , and similarly b̂ = b%SN , b̃ = b%N , we set{

ea = ea%k, fa = fâ

Ea,b = Eã,b̂, Ea,b = Eâ,b̃, Fa,b = Fâ,b̂, Ga,b = Gã,b̃.
(8)

Therefore, for all a, b, c, d ∈ Z, we have{
Ea,bFc,d = δb̂=ĉEa,d, Ea,bEc,d = δb̂=ĉGa,d

Ea,bEc,d = δb̃=c̃Fa,d, Fa,bEc,d = δb̂=ĉEa,d.
(9)

Note also that

ET
a,b = Eb,a . (10)

A.2 Corresponding 1D definitions
In this section, we give the definitions for signals (1D case), of the objects defined in the introduction for images (2D
case).
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A.2.1 Orthogonality

As in Section 1.3.1, we denote by K ∈ RM×C×k the kernel tensor and K ∈ RMN×CSN the matrix that applies the
convolutional layer of architecture (M,C, k, S) to C vectorized channels of size SN . Note that, in the 1D case, we
need to compare M with CS instead of CS2.
RO case: When M ≤ CS, K is orthogonal if and only if KKT = IdMN .
CO case: When M ≥ CS, K is orthogonal if and only if KTK = IdCSN .

A.2.2 The function Lorth

We define Lorth similarly to the 2D case (see Section 1.3.2 and Figure 1). Formally, for P ∈ N, and h, g ∈ Rk, we
define

conv(h, g, padding zero = P, stride = 1) ∈ R2P+1 (11)

such that for all i ∈ J0, 2P K,

[conv(h, g, padding zero = P, stride = 1)]i =

k−1∑
i′=0

hi′ ḡi′+i , (12)

where ḡ is defined for i ∈ J0, 2P + k − 1K as follows

ḡi =

{
gi−P if i ∈ JP, P + k − 1K,
0 otherwise. (13)

Note that, for P ′ ≤ P , we have, for all i ∈ J0, 2P ′K,

[conv(h, g, padding zero = P ′, stride = 1)]i

= [conv(h, g, padding zero = P, stride = 1)]i+P−P ′ . (14)

The strided version will be denoted by conv(h, g, padding zero = P, stride = S) ∈ Rb2P/Sc+1 and is defined as
follows: For all i ∈ J0, b2P/ScK

[conv(h, g, padding zero = P, stride = S)]i = [conv(h, g, padding zero = P, stride = 1)]Si. (15)

Finally, reminding that for all m ∈ J1,MK and c ∈ J1, CK, Km,c ∈ Rk, we denote by

conv(K,K, padding zero = P, stride = S) ∈ RM×M×(b2P/Sc+1)

the third-order tensor such that, for all m, l ∈ J1,MK,

conv(K,K, padding zero = P, stride = S)m,l,:

=

C∑
c=1

conv(Km,c,Kl,c, padding zero = P, stride = S). (16)

From now on, we take P =
⌊
k−1
S

⌋
S and Ir0 ∈ RM×M×(2P/S+1) the tensor whose entries are all zero except its central

M ×M entry which is equal to an identity matrix: [Ir0]:,:,P/S = IdM . Put differently, we have for all m, l ∈ J1,MK,

[Ir0]m,l,: = δm=l

0P/S

1
0P/S

 . (17)

And Lorth for 1D convolutions is defined as follows:

• In the RO case:
Lorth(K) = ‖ conv(K,K, padding zero = P, stride = S)− Ir0‖2F .

• In the CO case:

Lorth(K) = ‖ conv(K,K, padding zero = P, stride = S)− Ir0‖2F − (M − CS) .
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A.2.3 Measures of deviation from orthogonality

The orthogonality errors are defined by

errFN (K) =

{
‖KKT − IdMN ‖F , in the RO case,
‖KTK − IdCSN ‖F , in the CO case,

and

errsN (K) =

{
‖KKT − IdMN ‖2 , in the RO case,
‖KTK − IdCSN ‖2 , in the CO case.

B The convolutional layer as a matrix-vector product
In this section, we write the convolutional layer as a matrix-vector product. In other words, we explicit K and the
ingredients composing it. The notation and preliminary results are useful in the proofs. Note that the results are already
known and can be found for example in [35].

B.1 1D case
We denote by SN ∈ RN×SN the sampling matrix (i.e., for x = (x0, . . . , xSN−1)T ∈ RSN , we have for all m ∈
J0, N − 1K, (SNx)m = xSm).
Put differently, we have

SN =

N−1∑
i=0

Ei,Si . (18)

Also, note that, using (9) and (10), we have SNS
T
N = IdN and

ST
NSN =

N−1∑
i=0

FSi,Si . (19)

For a vector x = (x0, . . . , xn−1)T ∈ Rn, we denote by C(x) ∈ Rn×n the circulant matrix defined by

C(x) =


x0 xn−1 · · · x2 x1
x1 x0 xn−1 x2
... x1 x0

. . .
...

xn−2
. . . . . . xn−1

xn−1 xn−2 · · · x1 x0

 . (20)

In other words, for x ∈ Rn and X ∈ Rn×n, we have

X = C(x) ⇐⇒ ∀m, l ∈ J0, n− 1K, Xm,l = x(m−l)%n . (21)

The notation for the circulant matrix C(.) should not be confused with the number of the input channels C. We also
denote by x̃ ∈ Rn the vector such that for all i ∈ J0, n− 1K , x̃i = x(−i)%n. Again, the notation x̃, for x ∈ Rn, should
not be confused with ã, for a ∈ Z. We have

C(x)T = C(x̃) . (22)

Also, for x, y ∈ Rn, we have

C(x)C(y) = C(x ∗ y), (23)
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where x ∗ y ∈ Rn, is such that for all j ∈ J0, n− 1K,

[x ∗ y]j =

n−1∑
i=0

xiy(j−i)%n. (24)

x ∗ y is extended by n-periodicity. Note that here x ∗ y denotes the classical convolution as defined in math (i.e. by
flipping the second argument). Note also that x ∗ y = y ∗ x and therefore

C(x)C(y) = C(y)C(x) . (25)

Throughout the article, the size of a filter is smaller than the size of the signal (k = 2r + 1 ≤ SN ). For n ≥ k, we
introduce an embedding Pn which associates to each h = (h0, . . . , h2r)T ∈ Rk the corresponding vector

Pn(h) = (hr, . . . , h1, h0, 0, . . . , 0, h2r, . . . , hr+1)T ∈ Rn .

Setting [Pn(h)]i = [Pn(h)]i%n for all i ∈ Z, we have the following formula for Pn: for i ∈ J−r,−r + n− 1K,

[Pn(h)]i =

{
hr−i if i ∈ J−r, rK
0 otherwise. (26)

Single-channel case: Let x = (x0, . . . , xSN−1)T ∈ RSN be a 1D signal. We denote by Circular_Conv(h, x, stride =
1) the result of the circular convolution8 of x with the kernel h = (h0, . . . , h2r)T ∈ Rk. We have

Circular_Conv(h, x, stride = 1) =

(
k−1∑
i′=0

hi′x(i′+i−r)%SN

)
i=0..SN−1

.

Written as a matrix-vector product, this becomes


h0 · · · h2r 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 h0 · · · h2r





xSN−r
...

xSN−1
x0
...

xSN−1
x0
...

xr−1


∈ RSN

=



hr hr+1 · · · h2r 0 · · · 0 h0 · · · hr−1

hr−1
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . h0

h0
. . . . . . . . . . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . . . . . . . . . . h2r

h2r
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . hr+1

hr+1 · · · h2r 0 · · · 0 h0 · · · hr−1 hr



x

= C(PSN (h))x .

8as defined in machine learning (we do not flip h).
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The strided convolution is

Circular_Conv(h, x, stride = S) = SNC(PSN (h))x ∈ RN . (27)

Notice that SNC(PSN (h)) ∈ RN×SN .
Multi-channel convolution: LetX ∈ RC×SN be a multi-channel 1D signal. We denote by Circular_Conv(K, X, stride =

S) the result of the strided circular convolutional layer of kernel K ∈ RM×C×k applied to X . Using (27) for all the
input-output channel correspondances, we have Y = Circular_Conv(K, X, stride = S) ∈ RM×N if and only if

Vect(Y ) =

 SNC(PSN (K1,1)) . . . SNC(PSN (K1,C))
...

...
...

SNC(PSN (KM,1)) . . . SNC(PSN (KM,C))

Vect(X) ,

where Ki,j = Ki,j,: ∈ Rk. Therefore,

K =

 SNC(PSN (K1,1)) . . . SNC(PSN (K1,C))
...

...
...

SNC(PSN (KM,1)) . . . SNC(PSN (KM,C))

 ∈ RMN×CSN (28)

is the layer transform matrix associated to kernel K.

B.2 2D case
Notice that, since they are very similar, the proofs and notation are detailed in the 1D case, but we only provide a sketch
of the proof and the main equations in 2D. In order to distinguish between the 1D and 2D versions of C(.), Pn and
SN , we use calligraphic symbols in the 2D case. We denote by SN ∈ RN2×S2N2

the sampling matrix in the 2D case
(i.e., for a matrix x ∈ RSN×SN , if we denote by z ∈ RN×N , such that for all i, j ∈ J0, N − 1K, zi,j = xSi,Sj , then
Vect(z) = SN Vect(x)).
For a matrix x ∈ Rn×n, we denote by C(x) ∈ Rn2×n2

the doubly-block circulant matrix defined by

C(x) =


C(x0,:) C(xn−1,:) · · · C(x2,:) C(x1,:)
C(x1,:) C(x0,:) C(xn−1,:) C(x2,:)

... C(x1,:) C(x0,:)
. . .

...

C(xn−2,:)
. . . . . . C(xn−1,:)

C(xn−1,:) C(xn−2,:) · · · C(x1,:) C(x0,:)

 .

For n ≥ k = 2r+ 1, we introduce the operator Pn which associates to a matrix h ∈ Rk×k the corresponding matrix

Pn(h) =



hr,r · · · hr,0 0 · · · 0 hr,2r · · · hr,r+1

...
...

...
...

...
...

...
...

...
h0,r · · · h0,0 0 · · · 0 h0,2r · · · h0,r+1

0 . . . 0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 0 . . . 0
h2r,r · · · h2r,0 0 · · · 0 h2r,2r · · · h2r,r+1

...
...

...
...

...
...

...
...

...
hr+1,r · · · hr+1,0 0 · · · 0 hr+1,2r · · · hr+1,r+1


∈ Rn×n .
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Setting [Pn(h)]i,j = [Pn(h)]i%n,j%n for all i, j ∈ Z, we have the following formula for Pn: for (i, j) ∈ J−r,−r +
n− 1K2,

[Pn(h)]i,j =

{
hr−i,r−j if (i, j) ∈ J−r, rK2
0 otherwise.

Single-channel case: Let x ∈ RSN×SN be a 2D image. We denote by Circular_Conv(h, x, stride = 1) the result
of the circular convolution of x with the kernel h ∈ Rk×k. As in the 1D case, we have

y = Circular_Conv(h, x, stride = 1) ⇐⇒ Vect(y) = C(PSN (h)) Vect(x)

and the strided circular convolution

y = Circular_Conv(h, x, stride = S) ⇐⇒ Vect(y) = SNC(PSN (h)) Vect(x) .

Notice that SNC(PSN (h)) ∈ RN2×S2N2

.
Multi-channel convolution : LetX ∈ RC×SN×SN be a multi-channel 2D image. We denote by Circular_Conv(K, X, stride =

S) the result of the strided circular convolutional layer of kernel K ∈ RM×C×k×k applied to X . We have
Y = Circular_Conv(K, X, stride = S) ∈ RM×N×N if and only if

Vect(Y ) =

 SNC(PSN (K1,1)) . . . SNC(PSN (K1,C))
...

...
...

SNC(PSN (KM,1)) . . . SNC(PSN (KM,C))

Vect(X) ,

where Ki,j = Ki,j,:,: ∈ Rk×k. Therefore,

K =

 SNC(PSN (K1,1)) . . . SNC(PSN (K1,C))
...

...
...

SNC(PSN (KM,1)) . . . SNC(PSN (KM,C))

 ∈ RMN2×CS2N2

is the layer transform matrix associated to kernel K.

C Proof of Theorem 1
As the proofs are very similar in the 1D and 2D cases, we give the full proof in the 1D case and we only give a sketch of
the proof in the 2D case.

C.1 Proof of Theorem 1, for 1D convolutional layers
We start by stating and proving three intermediate lemmas. Recall that k = 2r + 1 and from (7), that (ei)i=0..k−1 =

B(Rk) and (Ea,b)a=0..N−1,b=0..SN−1 = B(RN×SN ).

Lemma 1. Let j ∈ J0, k − 1K. We have

SNC (PSN (ej)) =

N−1∑
i=0

Ei,Si+j−r .

Proof. Let j ∈ J0, k − 1K. Using (26), (7), (8) and (20), we have

C(PSN (ej)) = C(fr−j) =

SN−1∑
i=0

Fi,i−(r−j) =

SN−1∑
i=0

Fi,i+j−r .
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Using (18) and (9), we have

SNC (PSN (ej)) =

(
N−1∑
i=0

Ei,Si

)(
SN−1∑
i′=0

Fi′,i′+j−r

)
=

N−1∑
i=0

Ei,Si+j−r .

Lemma 2. Let kS = min(k, S) and j, l ∈ J0, kS − 1K. We have

SNC(PSN (ej))C(PSN (el))
TST

N = δj=lIdN .

Proof. Let j, l ∈ J0, kS − 1K. Since kS ≤ k, using Lemma 1 and (10),

SNC (PSN (ej))C (PSN (el))
T
ST
N =

(
N−1∑
i=0

Ei,Si+j−r

)(
N−1∑
i′=0

Ei′,Si′+l−r

)T

=

(
N−1∑
i=0

Ei,Si+j−r

)(
N−1∑
i′=0

ESi′+l−r,i′

)
. (29)

We know from (9) that Ei,Si+j−rESi′+l−r,i′ = δ ̂Si+j−r= ̂Si′+l−rGi,i′ . But for i, i′ ∈ J0, N−1K and j, l ∈ J0, kS−1K,
since kS ≤ S, we have

−r ≤ Si+ j − r ≤ S(N − 1) + kS − 1− r ≤ SN − 1− r.

Similarly, Si′ + l − r ∈ J−r, SN − 1− rK. Therefore, Si+ j − r and Si′ + l − r lie in the same interval of size SN ,
hence

̂Si+ j − r = ̂Si′ + l − r ⇐⇒ Si+ j − r = Si′ + l − r ⇐⇒ Si+ j = Si′ + l .

If Si+ j = Si′ + l, then
|S(i− i′)| = |j − l| < kS ≤ S.

Since |i− i′| ∈ N, the latter inequality implies i = i′ and, as a consequence, j = l. Finally,

̂Si+ j − r = ̂Si′ + l − r ⇐⇒ i = i′ and j = l .

Hence, using (9), the equality (29) becomes

SNC(PSN (ej))C(PSN (el))
TST

N = δj=l

N−1∑
i=0

Gi,i = δj=lIdN .

Lemma 3. Let S ≤ k. We have
S−1∑
z=0

C(PSN (ez))TST
NSNC(PSN (ez)) = IdSN .

Proof. Let z ∈ J0, S − 1K. Since S ≤ k, we have z ∈ J0, k − 1K. Hence using Lemma 1, then (10) and (9), we have

C (PSN (ez))
T
ST
NSNC (PSN (ez)) =

(
N−1∑
i=0

Ei,Si+z−r

)T (N−1∑
i′=0

Ei′,Si′+z−r

)

=

(
N−1∑
i=0

ESi+z−r,i

)(
N−1∑
i′=0

Ei′,Si′+z−r

)

=

N−1∑
i=0

FSi+z−r,Si+z−r .
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Hence

S−1∑
z=0

C(PSN (ez))TST
NSNC(PSN (ez)) =

S−1∑
z=0

N−1∑
i=0

FSi+z−r,Si+z−r .

But, for z ∈ J0, S − 1K and i ∈ J0, N − 1K, Si+ z − r traverses J−r, SN − 1− rK. Therefore, using (8)

S−1∑
z=0

C(PSN (ez))TST
NSNC(PSN (ez)) =

SN−1−r∑
i=−r

Fi,i =

SN−1∑
i=0

Fi,i = IdSN .

Proof of Theorem 1. Let N be a positive integer such that SN ≥ k.
We start by proving the theorem in the RO case.
Suppose CS ≥M and M ≤ Ck:
Let us exhibit K ∈ RM×C×k such that KKT = IdMN .
Let kS = min(k, S). Since M ≤ CS and M ≤ Ck, we have 1 ≤M ≤ CkS . Therefore, there exist a unique couple
(imax, jmax) ∈ J0, kS − 1K× J1, CK such that M = imaxC + jmax. We define the kernel tensor K ∈ RM×C×k as
follows: For all (i, j) ∈ J0, kS − 1K× J1, CK such that iC + j ≤M , we set KiC+j,j = ei, and Ku,v = 0 for all the
other indices. Put differently, if we write K as a 3rd order tensor (where the rows represent the first dimension, the
columns the second one, and the Ki,j ∈ Rk are in the third dimension) we have :

K =



K1,1 · · · K1,C

...
. . .

...
KC,1 · · · KC,C

KC+1,1 · · · KC+1,C

...
. . .

...
K2C,1 · · · K2C,C

...
KimaxC+1,1 · · · KimaxC+1,C

...
. . .

...


=



e0

0
. . . 0

e0
e1

0
. . . 0

e1
...

eimax

0
. . . 0


∈ RM×C×k ,

where eimax
appears jmax times. Therefore, using (28), we have

K =



SNC(PSN (e0))

0
. . . 0

SNC(PSN (e0))
SNC(PSN (e1))

0
. . . 0

SNC(PSN (e1))
...

SNC(PSN (eimax
))

0
. . . 0


∈ RMN×CSN ,
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where SNC(PSN (eimax)) appears jmax times. We have K = D1:MN,:, where we set

D =



SNC(PSN (e0))

0
. . . 0

SNC(PSN (e0))
SNC(PSN (e1))

0
. . . 0

SNC(PSN (e1))
...

SNC(PSN (ekS−1))

0
. . . 0

SNC(PSN (ekS−1))



∈ RkSCN×CSN .

But, for j, l ∈ J0, kS − 1K, the (j, l)-th block of size (CN,CN) of DDT is :SNC(PSN (ej))

0
. . . 0

SNC(PSN (ej))


C(PSN (el))

TST
N

0
. . . 0

C(PSN (el))
TST

N

 ,

which is equal to SNC(PSN (ej))C(PSN (el))
TST

N

0
. . . 0

SNC(PSN (ej))C(PSN (el))
TST

N

 .
Using Lemma 2, this is equal to δj=lIdCN . Hence, DDT = IdkSCN , and therefore,

KKT = D1:MN,:(D1:MN,:)
T = (DDT )1:MN,1:MN = IdMN .

This proves the first implication in the RO case, i.e., if M ≤ Ck, then K⊥1 6= ∅.

Suppose CS ≥M and M > Ck:
We need to prove that for all K ∈ RM×C×k, we have KKT 6= IdMN .
Since for all (i, j) ∈ J1,MK × J1, CK, each of the N rows of SNC(PSN (Ki,j)) has at most k non-zero elements,
the number of non-zero columns of SNC(PSN (Ki,j)) is less than or equal to kN . Also, for all i, i′ ∈ J1,MK,
the columns of SNC(PSN (Ki,j)) which can be non-zero are the same as those of SNC(PSN (Ki′,j)). Hence,

we have for all j, the number of non-zero columns of

 SNC(PSN (K1,j))
...

SNC(PSN (KM,j))

 is less than or equal to kN . There-

fore, the number of non-zero columns of K is less than or equal to CkN . Hence, since Ck < M , we have
rk(KKT ) ≤ rk(K) ≤ CkN < MN = rk(IdMN ). Therefore, for all K ∈ RM×C×k, we have KKT 6= IdMN .
This proves that if CS ≥M and M > Ck, then K⊥1 = ∅. This concludes the proof in the RO case.

Suppose M ≥ CS and S ≤ k:
Let us exhibit K ∈ RM×C×k such that KTK = IdCSN .
For all (i, j) ∈ J0, S − 1K× J1, CK, we set KiC+j,j = ei, and Ku,v = 0 for all the other indices. Put differently, if we
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write K as a 3rd order tensor, we have

K =



K1,1 · · · K1,C

...
. . .

...
KC,1 · · · KC,C

KC+1,1 · · · KC+1,C

...
. . .

...
K2C,1 · · · K2C,C

...
K(S−1)C+1,1 · · · K(S−1)C+1,C

...
. . .

...
KCS,1 · · · KCS,C

KCS+1,1 · · · KCS+1,C

...
...

...
KM,1 · · · KM,C



=



e0

0
. . . 0

e0
e1

0
. . . 0

e1
...

eS−1

0
. . . 0

eS−1

O



∈ RM×C×k ,

where O = 0(M−CS)×C×k denotes the null tensor. Therefore, using (28), we have

K =



SNC(PSN (e0))

0
. . . 0

SNC(PSN (e0))
SNC(PSN (e1))

0
. . . 0

SNC(PSN (e1))
...

SNC(PSN (eS−1))

0
. . . 0

SNC(PSN (eS−1))
O



∈ RMN×CSN ,

where O = 0(MN−CSN)×CSN denotes the null matrix. Hence, KTK equals
∑S−1

z=0 C(PSN (ez))TST
NSNC(PSN (ez)) 0

. . .
0

∑S−1
z=0 C(PSN (ez))TST

NSNC(PSN (ez))

 .

Using Lemma 3, we obtain KTK = IdCSN .
This proves that in the CO case, if S ≤ k, then K⊥1 6= ∅.

Suppose M ≥ CS and S > k:
We need to prove that for all K ∈ RM×C×k, we have KTK 6= IdCSN .
Following the same reasoning as in the case CS ≥M and M > Ck, we have that the number of non-zero columns
of K is less than or equal to CkN . So, since k < S, we have rk(KTK) ≤ rk(K) ≤ CkN < CSN = rk(IdCSN ).
Therefore, for all K ∈ RM×C×k, we have KTK 6= IdCSN .
This proves that in the CO case, if k < S, then K⊥1 = ∅. This concludes the proof.

C.2 Sketch of the proof of Theorem 1, for 2D convolutional layers
We first set (ei,j)i=0..k−1,j=0..k−1 = B(Rk×k). As in the 1D case, we have the following two lemmas

27



Lemma 4. Let kS = min(k, S) and j, j′, l, l′ ∈ J0, kS − 1K. We have

SNC(PSN (ej,j′))C(PSN (el,l′))
TSTN = δj=lδj′=l′IdN2 .

Lemma 5. Let S ≤ k. We have
S−1∑
z=0

S−1∑
z′=0

C(PSN (ez,z′))
TSTNSNC(PSN (ez,z′)) = IdS2N2 .

For CS2 ≥M and M ≤ Ck2:
We set ei+kj = ei,j for i, j ∈ J0, k − 1K.
Let imax, jmax ∈ J0, k2S − 1K× J1, CK such that imaxC + jmax = M . We set

K =



K1,1 · · · K1,C

...
. . .

...
KC,1 · · · KC,C

KC+1,1 · · · KC+1,C

...
. . .

...
K2C,1 · · · K2C,C

...
KimaxC+1,1 · · · KimaxC+1,C

...
. . .

...


=



e0

0
. . . 0

e0
e1

0
. . . 0

e1
...

eimax

0
. . . 0


∈ RM×C×k×k ,

where eimax
appears jmax times. Then we proceed as in the 1D case.

For CS2 ≥M and M > Ck2:
Using the same argument as in 1D, we can conclude that the number of non-zero columns of K is less than or equal to
Ck2N2. Hence, rk(K) ≤ Ck2N2 < MN2. Therefore, for all K ∈ RM×C×k×k, we have KKT 6= IdMN2 .

For M ≥ CS2 and S ≤ k:
Denoting by O ∈ R(M−CS2)×C×k×k the null 4th order tensor of size (M − CS2)× C × k × k, we set

K =



K1,1 · · · K1,C

...
. . .

...
KC,1 · · · KC,C

KC+1,1 · · · KC+1,C

...
. . .

...
K2C,1 · · · K2C,C

...
KC(S2−1)+1,1 · · · KC(S2−1)+1,C

...
. . .

...
KCS2,1 · · · KCS2,C

KCS2+1,1 · · · KCS2+1,C

...
...

...
KM,1 · · · KM,C



=



e0,0

0
. . . 0

e0,0
e1,0

0
. . . 0

e1,0
...

eS−1,S−1

0
. . . 0

eS−1,S−1

O



∈ RM×C×k×k .

Then we proceed as in the 1D case.

For M ≥ CS2 and S > k:
By the same reasoning as in the 1D case, we have that the number of non-zero columns of K is less than or equal
to Ck2N2. So, since k < S, we have rk(K) ≤ Ck2N2 < CS2N2. Therefore, for all K ∈ RM×C×k×k, we have
KTK 6= IdCS2N2 .
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D Restrictions due to boundary conditions

D.1 Proof of Proposition 2
Proof. For a single-channel convolution of kernel h ∈ Rk with ’valid’ padding, the matrix applying the transformation
on a signal x ∈ RN has the following form:

AN (h) :=


h0 · · · h2r 0

. . . . . . . . .
. . . . . . . . .

0 h0 · · · h2r

 ∈ R(N−k+1)×N .

Hence, for K ∈ RM×C×k, the layer transform matrix is:

K =

 AN (K1,1) . . . AN (K1,C)
...

...
...

AN (KM,1) . . . AN (KM,C)

 ∈ RM(N−k+1)×CN .

Let us focus on the columns corresponding to the first input channel. To simplify the notation, for m ∈ J1,MK
we denote by a(m) := Km,1 ∈ Rk. By contradiction, suppose that KTK = IdCN . In particular, for the first block
matrix of size M(N − k+ 1)×N of K (i.e., corresponding to the first input channel), its first column, last column and
column of index 2r are of norm 1. Since N ≥ 2k − 1, we have

M∑
m=1

(
a
(m)
0

)2
= 1,

M∑
m=1

(
a
(m)
2r

)2
= 1 and

2r∑
i=0

M∑
m=1

(
a
(m)
i

)2
= 1 .

This is impossible. Therefore, for all K ∈ RM×C×k, we have KTK 6= IdCN .

D.2 Proof of Proposition 3
Proof. For a single-channel convolution of kernel h ∈ Rk with zero padding ’same’, the matrix applying the transfor-
mation on a signal x ∈ RN has the following form:

AN (h) :=



hr · · · h2r 0 · · · 0
...

. . . . . . . . . . . .
...

h0
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . h2r

...
. . . . . . . . . . . .

...
0 · · · 0 h0 · · · hr


∈ RN×N .

Hence, for K ∈ RM×C×k, the matrix that applies the convolutional layer is :

K =

 AN (K1,1) . . . AN (K1,C)
...

...
...

AN (KM,1) . . . AN (KM,C)

 ∈ RMN×CN .

Suppose M ≤ C (RO case): If K is orthogonal, then KKT = IdMN . Let us fix m ∈ J1,MK. Since KKT = IdMN ,
the first row, the last row and the row of index r of the m-th block matrix of size N × CN of K are of norm equal to 1,
i.e.

‖K(m−1)N,:‖22 = 1, ‖KmN−1,:‖22 = 1 and ‖K(m−1)N+r,:‖22 = 1 .
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To simplify the notation, for c ∈ J1, CK, we denote by a(c) := Km,c ∈ Rk. Since N ≥ k, the previous equations are
equivalent to

2r∑
i=r

C∑
c=1

(
a
(c)
i

)2
= 1,

r∑
i=0

C∑
c=1

(
a
(c)
i

)2
= 1 and

2r∑
i=0

C∑
c=1

(
a
(c)
i

)2
= 1 .

Substracting the first equality from the third one, and the second equality from the third one, we obtain

r−1∑
i=0

C∑
c=1

(
a
(c)
i

)2
= 0,

2r∑
i=r+1

C∑
c=1

(
a
(c)
i

)2
= 0 and

2r∑
i=0

C∑
c=1

(
a
(c)
i

)2
= 1 .

This implies that for all c ∈ J1, CK, for all i ∈ J0, 2rK \ {r}, a(c)i = 0.
As a conclusion, for any m ∈ J1,MK, any c ∈ J1, CK, and any i ∈ J0, 2rK \ {r},

Km,c,i = 0.

This proves the result in the RO case.
The proof of the CO case is similar, and we have the same conclusion.

E Proof of Theorem 2
As in the previous section, we give the full proof in the 1D case and a sketch of proof in the 2D case.

E.1 Proof of Theorem 2, in the 1D case
Before proving Theorem 2, we first present three intermediate lemmas.

Lemma 6. Let x ∈ RSN . We have
SNC(x)ST

N = C(SNx) .

Proof. Let x ∈ RSN , X = C(x) and Y = SNXS
T
N ∈ RN×N . The matrix Y is formed by sampling X , i.e., for all

m,n ∈ J0, N − 1K,
Ym,n = XSm,Sn.

Hence, using (21), Ym,n = x(Sm−Sn)%SN = xS((m−n)%N). Setting y = SNx, we have yl = xSl for all l ∈ J0, N−1K.
Therefore, Ym,n = y(m−n)%N , and using (21), we obtain Y = C(y). Hence, from the definitions of Y , X and y we
conclude that

SNC(x)ST
N = C(SNx) .

This completes the proof of the lemma.

For N such that SN ≥ 2k − 1, and P =
⌊
k−1
S

⌋
S, we introduce the operator QS,N which associates to a vector

x = (x0, . . . , x2P
S

)T ∈ R2P
S +1, the vector

QS,N (x) = (xP
S
, . . . , x2P

S
, 0, . . . , 0, x0, x1, . . . , xP

S−1
)T ∈ RN . (30)

Lemma 7. Let S, k = 2r + 1 and N be positive integers such that SN ≥ 2k − 1. Let h, g ∈ Rk and P =
⌊
k−1
S

⌋
S,

we have

SNC(PSN (h))C(PSN (g))TST
N = C(QS,N (conv(h, g, padding zero = P, stride = S))) . (31)
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Proof. Let N be such that SN ≥ 2k − 1, and P =
⌊
k−1
S

⌋
S. Let us first detail and analyse the left-hand side of (31).

Recall that by definition PSN (h) is SN -periodic: [PSN (h)]i = [PSN (h)]i%SN for all i ∈ Z. Using (22), (23), and
(24), we have

C(PSN (h))C(PSN (g))T = C(PSN (h))C(P̃SN (g))

= C

(SN−1∑
i=0

[PSN (h)]i

[
P̃SN (g)

]
j−i

)
j=0..SN−1


= C

(SN−1∑
i=0

[PSN (h)]i[PSN (g)]i−j

)
j=0..SN−1

 .

Setting b(SN)[h, g] =
(∑SN−1

i=0 [PSN (h)]i[PSN (g)]i−j

)
j=0..SN−1

, we have

C(PSN (h))C(PSN (g))T = C(b(SN)[h, g]) . (32)

To simplify the forthcoming notation, we temporarily denote by

b := b(SN)[h, g]. (33)

Notice that by definition, b is SN -periodic. Therefore, we can restrict its study to an interval of size SN . We consider
j ∈ J−2r, SN − 2r − 1K. From the definition of PSN in (26), we have, for i ∈ J−r,−r + SN − 1K,

[PSN (h)]i =

{
hr−i if i ∈ J−r, rK
0 if i ∈ Jr + 1,−r + SN − 1K . (34)

Hence, since PSN (h) and PSN (g) are periodic, we have

bj =

SN−1∑
i=0

[PSN (h)]i[PSN (g)]i−j

=

SN−1−r∑
i=−r

[PSN (h)]i[PSN (g)]i−j

=

r∑
i=−r

[PSN (h)]i[PSN (g)]i−j . (35)

The set of indices i ∈ J−r, rK such that [PSN (h)]i[PSN (g)]i−j 6= 0 is included in J−r, rK ∩ {i|(i − j)%SN ∈
J−r, rK%SN}.
Since j ∈ J−2r, SN − 2r− 1K: We have −r ≤ i ≤ r and −2r ≤ j ≤ SN − 2r− 1, then −SN + r+ 1 ≤ i− j ≤ 3r,
but by hypothesis, SN ≥ 2k − 1 = 4r + 1, hence 3r < SN − r and so −SN + r < i− j < SN − r. Therefore, for
i ∈ J−r, rK and j ∈ J−2r, SN − 2r − 1K

(i− j)%SN ∈ (J−r, rK%SN) ⇐⇒ i− j ∈ J−r, rK ⇐⇒ i ∈ J−r + j, r + jK.

As a conclusion, for j ∈ J−2r, SN − 2r − 1K,{
i ∈ J−r, rK | [PSN (h)]i[PSN (g)]i−j 6= 0

}
⊂ J−r, rK ∩ J−r + j, r + jK. (36)

Let us now analyse the right-side of (31). We start by considering padding zero = k − 1 and stride = 1, and we will
arrive to the formula with padding zero = P and stride = S later. Using (11), we denote by

a = conv(h, g, padding zero = k − 1, stride = 1) ∈ R2k−1. (37)
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We have from (12), for j ∈ J0, 2k − 2K,

aj =

k−1∑
i=0

hiḡi+j .

Using (13) and keeping the indices i ∈ J0, k − 1K for which ḡi+j 6= 0, i.e. such that i+ j ∈ Jk − 1, 2k − 2K, we obtain{
aj =

∑k−1
i=k−1−j higi+j−(k−1) if j ∈ J0, k − 2K ,

aj =
∑2k−2−j

i=0 higi+j−(k−1) if j ∈ Jk − 1, 2k − 2K .
(38)

In the sequel, we will connect b with a by distinguishing several cases depending on the value of j.
We distinguish j ∈ J0, 2rK, j ∈ J−2r,−1K and j ∈ J2r + 1,−2r + SN − 1K. Recall that k = 2r + 1.

If j ∈ J0, 2rK: then J−r, rK ∩ J−r + j, r + jK = J−r + j, rK. Using (36) and (34), the equality (35) becomes

bj =

r∑
i=−r+j

[PSN (h)]i[PSN (g)]i−j =

r∑
i=−r+j

hr−igr−i+j .

By changing the variable l = r − i, and using k = 2r + 1, we find

bj =

2r−j∑
l=0

hlgl+j =

k−1−j∑
l=0

hlgl+j =

2k−2−(k−1+j)∑
l=0

hlgl+(k−1+j)−(k−1) .

When j ∈ J0, 2rK = J0, k − 1K, we have k − 1 + j ∈ Jk − 1, 2k − 2K, therefore using (38), we obtain

bj = ak−1+j . (39)

If j ∈ J−2r,−1K: then J−r, rK ∩ J−r + j, r + jK = J−r, r + jK. Using (36) and (34), the equality (35) becomes

bj =

r+j∑
i=−r

[PSN (h)]i[PSN (g)]i−j =

r+j∑
i=−r

hr−igr−i+j .

By changing the variable l = r − i, and using k = 2r + 1, we find

bj =

2r∑
l=−j

hlgl+j =

k−1∑
l=−j

hlgl+j =

k−1∑
l=k−1−(k−1+j)

hlgl+(k−1+j)−(k−1) .

When j ∈ J−2r,−1K = J−(k − 1),−1K, we have k − 1 + j ∈ J0, k − 2K, and using (38), we obtain

bj = ak−1+j . (40)

If j ∈ J2r + 1, SN − 2r − 1K: then J−r, rK ∩ J−r + j, r + jK = ∅. The equality (35) becomes

bj = 0. (41)

Therefore, we summarize (39), (40) and (41): For all j ∈ J−(k − 1),−(k − 1) + SN − 1K,

bj =

{
ak−1+j if j ∈ J−(k − 1), k − 1K,
0 if j ∈ Jk, SN − kK. (42)

Let us now introduce ’padding zero = P ’ and ’stride = S’. We will prove the equality between matrices in (31)
using the equality between vectors in (42).
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Recall that P =
⌊
k−1
S

⌋
S ≤ k − 1, and let i ∈ J0, 2P K. Therefore i− P ∈ J−P, P K ⊂ J−(k − 1), k − 1K, hence

using (37), (14) and (42), we have

[conv(h, g, padding zero = P, stride = 1)]i = ak−1+i−P = bi−P .

Therefore, using (15) and b2P/Sc+ 1 = 2P/S + 1

conv(h, g, padding zero = P, stride = S)

=
(
b−b k−1

S cS , . . . , b−2S , b−S , b0, bS , b2S , . . . , bb k−1
S cS

)T
∈ R2P/S+1 .

Using the definition of QS,N in (30), we obtain

QS,N (conv(h, g, padding zero = P, stride = S))

=
(
b0, bS , b2S , . . . , bb k−1

S cS , 0, . . . , 0, b−b k−1
S cS , . . . , b−2S , b−S

)T
∈ RN .

But, using (41), and since
⌊
k−1
S

⌋
S is the largest multiple of S less than or equal to k− 1 and b is SN -periodic, we have

SNb =
(
b0, bS , b2S , . . . , bb k−1

S cS , 0, . . . , 0, bSN−b k−1
S cS , . . . , bSN−2S , bSN−S

)T
=
(
b0, bS , b2S , . . . , bb k−1

S cS , 0, . . . , 0, b−b k−1
S cS , . . . , b−2S , b−S

)T
∈ RN .

Finally, we have

SNb = QS,N (conv(h, g, padding zero = P, stride = S)) .

Using (33), (32) and Lemma 6, we conclude that

SNC(PSN (h))C(PSN (g))TST
N = SNC(b(SN)[h, g])ST

N

= C(SNb
(SN)[h, g])

= C(QS,N (conv(h, g, padding zero = P, stride = S))) .

Lemma 8. Let M , C, S, k = 2r + 1 be positive integers, and let K ∈ RM×C×k. Let N be such that SN ≥ 2k − 1,

and P =
⌊
k−1
S

⌋
S. We denote by zP/S =

0P/S

1
0P/S

 ∈ R2P/S+1. We have

KKT − IdMN =

 C(QS,N (x1,1)) . . . C(QS,N (x1,M ))
...

. . .
...

C(QS,N (xM,1)) . . . C (QS,N (xM,M ))

 ,

where for all m, l ∈ J1,MK,

xm,l =

C∑
c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S ∈ R2P/S+1 . (43)

Proof. We have from (28),

K =

 SNC(PSN (K1,1)) . . . SNC(PSN (K1,C))
...

...
...

SNC(PSN (KM,1)) . . . SNC(PSN (KM,C))

 ∈ RMN×CSN .
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Hence, we have that the block (m, l) ∈ J1,MK2 of size (N,N) of KKT is equal to :

(
SNC(PSN (Km,1)) . . . SNC(PSN (Km,C))

) C(PSN (Kl,1))TST
N

...
C(PSN (Kl,C))TST

N


=

C∑
c=1

SNC(PSN (Km,c))C(PSN (Kl,c))
TST

N .

We denote by Am,l ∈ RN×N the block (m, l) ∈ J1,MK2 of size (N,N) of KKT − IdMN . We want to prove that

Am,l = C(QS,N (xm,l)) where xm,l is defined in (43). Using (7), (20), and (30), we have IdN = C

([
1

0N−1

])
=

C(QS,N (zP/S)), and therefore,

Am,l =

C∑
c=1

SNC(PSN (Km,c))C(PSN (Kl,c))
TST

N − δm=lC(QS,N (zP/S)) .

Using Lemma 7, this becomes

Am,l =

C∑
c=1

C(QS,N (conv(Km,c,Kl,c, padding zero = P, stride = S)))− δm=lC(QS,N (zP/S)) .

By linearity of C and QS,N , we obtain

Am,l = C

(
QS,N

(
C∑

c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S

))
= C (QS,N (xm,l)) .

Proof of Theorem 2. Let M , C, S, k = 2r + 1 be positive integers, and let K ∈ RM×C×k. Let N be such that
SN ≥ 2k − 1, and P =

⌊
k−1
S

⌋
S. For all m, l ∈ J1,MK, we denote by Am,l ∈ RN×N the block (m, l) of size (N,N)

of KKT − IdMN . Using Lemma 8, we have

Am,l = C

(
QS,N

(
C∑

c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S

))
.

Hence, from (20) and (30), using the fact that for all x ∈ RN , ‖C(x)‖2F = N‖x‖22, and for all x ∈ R2P/S+1,
‖QS,N (x)‖22 = ‖x‖22, we have

‖KKT − IdMN‖2F

=

M∑
m=1

M∑
l=1

‖Am,l‖2F

=

M∑
m=1

M∑
l=1

∥∥∥∥∥C
(
QS,N

(
C∑

c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S

))∥∥∥∥∥
2

F

=

M∑
m=1

M∑
l=1

N

∥∥∥∥∥QS,N

(
C∑

c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S

)∥∥∥∥∥
2

2

= N

M∑
m=1

M∑
l=1

∥∥∥∥∥
C∑

c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S

∥∥∥∥∥
2

2

.
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Therefore, using (17) and (16), we obtain for any M , C, S, k = 2r + 1 and K ∈ RM×C×k,

‖KKT − IdMN‖2F = N‖ conv(K,K, padding zero = P, stride = S)− Ir0‖2F . (44)

This concludes the proof in the RO case.
In order to prove the theorem in the CO case we use Lemma 1 in [44]. This lemma states that

‖KTK − IdCSN‖2F = ‖KKT − IdMN‖2F + CSN −MN.

Therefore, using that (44) holds for all M , C and S, we have

‖KTK − IdCSN‖2F = N
(
‖ conv(K,K, padding zero = P, stride = S)− Ir0‖2F − (M − CS)

)
(45)

Hence, using the definitions of errFN and Lorth in Sections A.2.2 and A.2.3, (44) and (45) lead to(
errFN (K)

)2
= NLorth(K).

This concludes the proof of Theorem 2 in the 1D case.

E.2 Sketch of the proof of Theorem 2, in the 2D case

We start by stating intermediate lemmas. First we introduce a slight abuse of notation, for a vector x ∈ RN2

, we denote
by C(x) = C(X), where X ∈ RN×N such that Vect(X) = x. The main steps of the proof in the 2D case follow those
in the 1D case and are given below.

Lemma 9. Let X ∈ RSN×SN . We have

SNC(X)STN = C(SN Vect(X)).

Let QS,N be the operator which associates to a matrix x ∈ R(2P/S+1)×(2P/S+1) the matrix

xP/S,P/S · · · xP/S,2P/S 0 · · · 0 xP/S,0 · · · xP/S,P/S−1
...

...
...

...
...

...
...

...
...

x2P/S,P/S · · · x2P/S,2P/S 0 · · · 0 x2P/S,0 · · · x2P/S,P/S−1
0 . . . 0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 0 . . . 0
x0,P/S · · · x0,2P/S 0 · · · 0 x0,0 · · · x0,P/S−1

...
...

...
...

...
...

...
...

...
xP/S−1,P/S · · · xP/S−1,2P/S 0 · · · 0 xP/S−1,0 · · · xP/S−1,P/S−1


∈ RN×N .

Lemma 10. Let N be such that SN ≥ 2k − 1, h, g ∈ Rk×k and P =
⌊
k−1
S

⌋
S, we have

SNC(PSN (h))C(PSN (g))TSTN = C(QS,N (conv(h, g, padding zero = P, stride = S))) .

Lemma 11. LetM , C, S, k = 2r+1 be positive integers, and let K ∈ RM×C×k×k. LetN be such that SN ≥ 2k − 1,
and P =

⌊
k−1
S

⌋
S. We set zP/S,P/S ∈ R(2P/S+1)×(2P/S+1) such that for all i, j ∈ J0, 2P/SK, [zP/S,P/S ]

i,j
=

δi=P/Sδj=P/S . We have

KKT − IdMN2 =

 C(QS,N (x1,1)) . . . C(QS,N (x1,M ))
...

. . .
...

C(QS,N (xM,1)) . . . C(QS,N (xM,M ))

 ,

where for all m, l ∈ J1,MK,

xm,l =

C∑
c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S,P/S .

Then we proceed as in the 1D case.

35



F Proof of Theorem 3

F.1 Proof of Theorem 3, in the 1D case
Let M , C, S, k = 2r + 1 be positive integers, and let K ∈ RM×C×k. Let N be such that SN ≥ 2k − 1, and

P =
⌊
k−1
S

⌋
S. We denote by zP/S =

0P/S

1
0P/S

 ∈ R2P/S+1.

RO case (M ≤ CS): From Lemma 8, we have

KKT − IdMN =

 C(QS,N (x1,1)) . . . C(QS,N (x1,M ))
...

. . .
...

C(QS,N (xM,1)) . . . C(QS,N (xM,M ))

 , (46)

where for all m, l ∈ J1,MK,

xm,l =

C∑
c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S ∈ R2P/S+1 . (47)

We set

B = KKT − IdMN .

Since B is symmetric and due to the well-known properties of matrix norms, we have ‖B‖1 = ‖B‖∞ and ‖B‖22 ≤
‖B‖1‖B‖∞. Hence, using the definition of ‖B‖1, we have

‖B‖22 ≤ ‖B‖1‖B‖∞ = ‖B‖21 =

(
max

1≤l≤MN

MN∑
m=1

|Bm,l|

)2

.

Using (46), and (20), we obtain

‖B‖22 ≤ max
1≤l≤M

(
M∑

m=1

‖QS,N (xm,l)‖1

)2

.

Given the definition of QS,N in (30), we have for all x ∈ R2P/S+1, ‖QS,N (x)‖1 = ‖x‖1, therefore,

‖B‖22 ≤ max
1≤l≤M

(
M∑

m=1

‖xm,l‖1

)2

.

We set l0 ∈ arg max1≤l≤M

(∑M
m=1 ‖xm,l‖1

)2
. Using that for all x ∈ Rn, ‖x‖1 ≤

√
n‖x‖2, we have

‖B‖22 ≤

(
M∑

m=1

‖xm,l0‖1

)2

≤ (2P/S + 1)

(
M∑

m=1

‖xm,l0‖2

)2

.

Using Cauchy-Schwarz inequality, we obtain

‖B‖22 ≤ (2P/S + 1)M

M∑
m=1

‖xm,l0‖
2
2 ≤ (2P/S + 1)M

M∑
m=1

M∑
l=1

‖xm,l‖22 .
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Using (47), then (17) and (16), we obtain

‖B‖22

≤ (2P/S + 1)M

M∑
m=1

M∑
l=1

∥∥∥∥∥
C∑

c=1

conv(Km,c,Kl,c, padding zero = P, stride = S)− δm=lzP/S

∥∥∥∥∥
2

2

= (2P/S + 1)M

M∑
m=1

M∑
l=1

∥∥∥[conv(K,K, padding zero = P, stride = S)− Ir0]m,l,:

∥∥∥2
2

= (2P/S + 1)M ‖conv(K,K, padding zero = P, stride = S)− Ir0‖2F
= (2P/S + 1)MLorth(K) .

This proves the inequality in the RO case.

CO case (M ≥ CS): First, for n ≥ 2k − 1, let Rn be the operator that associates to x ∈ R2k−1, the vector

Rn(x) = (xk−1, . . . , x2k−2, 0, . . . , 0, x0, . . . , xk−2)T ∈ Rn . (48)

Note that, when S′ = 1, N ′ = SN , we have in (30), P ′ = k − 1 and

Q1,SN = RSN . (49)

Recall from (7) that (fi)i=0..SN−1 is the canonical basis of RSN . Let Λj = C(fj) ∈ RSN×SN be the permutation
matrix which shifts down (cyclically) any vector by j ∈ J0, SN − 1K: for all x ∈ RSN , for i ∈ J0, SN − 1K,
(Λjx)i = x(i−j)%SN . Note that, using (20), we have for all x ∈ RSN ,

[C(x)]:,j = Λjx. (50)

Recall that k = 2r + 1, and for all h ∈ Rk,

PSN (x) = (hr, . . . , h0, 0, . . . , 0, h2r, . . . , hr+1)T ∈ RSN .

For j ∈ J0, SN − 1K, for x ∈ Rk, we denote by

P
(j)
SN (x) = ΛjPSN (x) (51)

and for x ∈ R2k−1, we denote by

R
(j)
SN (x) = ΛjRSN (x). (52)

By assumption SN ≥ 2k − 1, hence RSN (x) is well-defined and we have for all j ∈ J0, SN − 1K, for all
x ∈ R2k−1, {

‖R(j)
SN (x)‖1 = ‖x‖1,

‖R(j)
SN (x)‖2 = ‖x‖2.

(53)

We first start by introducing the following Lemma.

Lemma 12. Let h, g ∈ Rk. There exist S vectors x0, . . . , xS−1 ∈ R2k−1 such that for all N satisfying SN ≥ 2k − 1,
we have for all j ∈ J0, SN − 1K,[

C(PSN (h))TST
NSNC(PSN (g))

]
:,j

= R
(j)
SN (xj%S) .
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Proof. Recall that from (18) and (19), we have SN =
∑N−1

i=0 Ei,Si and AN := ST
NSN =

∑N−1
i=0 FSi,Si. When

applied to a vector x ∈ RSN , AN keeps unchanged the components of x whose indices are multiples of S, while
the other components of ANx are equal to zero. We know from (50) and (51) that, for j ∈ J0, SN − 1K, the j-th
column of C(PSN (g)) is equal to P (j)

SN (g). Therefore, when applying AN , this becomes ANP
(j)
SN (g) = P

(j)
SN

(
gj
)
,

where gj ∈ Rk is formed from g by putting zeroes in the place of the elements that have been replaced by 0 when
applying AN . But since AN preserves the component whose index is a multiple of S, we have that the j-th column
of ANC(PSN (g)) has the same elements as its j%S-th column, shifted down by (j − j%S) indices. More precisely,
ANP

(j)
SN (g) = Λj−j%SANP

(j%S)
SN (g), hence P (j)

SN

(
gj
)

= Λj−j%SP
(j%S)
SN

(
gj%S

)
= P

(j)
SN

(
gj%S

)
. This implies that

gj = gj%S . Note that, using (26), we can also derive the exact formula of gj , in fact for all i ∈ J0, 2rK,

[
gj
]
i

=

{
gi if (i− r − j)%S = 0,
0 otherwise.

We again can see that gj = gj%S . Therefore, using (50) and (51), we have

AN [C(PSN (g))]:,j = ANP
(j)
SN (g) = P

(j)
SN

(
gj
)

= P
(j)
SN

(
gj%S

)
=
[
C
(
PSN

(
gj%S

))]
:,j
.

Therefore, we have, for all j ∈ J0, SN − 1K,

[C(PSN (h))TANC(PSN (g))]:,j =
[
C(PSN (h))TC(PSN (gj%S))

]
:,j

.

Using the fact that the transpose of a circulant matrix is a circulant matrix and that two circulant matrices commute with
each other (see (22) and (25)), we conclude that the transpose of any circulant matrix commutes with any circulant
matrix, therefore

[C(PSN (h))TANC(PSN (g))]:,j =
[
C(PSN (gj%S))C(PSN (h))T

]
:,j

.

Using Lemma 7 with S′ = 1 and N ′ = SN , and noting that,when S′ = 1, the sampling matrix SN ′ is equal to the
identity, we have

C(PSN (gj%S))C(PSN (h))T

= IdN ′C(PN ′(g
j%S))C(PN ′(h))T IdTN ′

= C(QS′,N ′(conv(gj%S , h, padding zero =

⌊
k − 1

S′

⌋
S′, stride = S′)))

= C(Q1,SN (conv(gj%S , h, padding zero = k − 1, stride = 1)))

To simplify, we denote by xj%S = conv(gj%S , h, padding zero = k − 1, stride = 1) ∈ R2k−1. Using (49), we obtain

C(PSN (gj%S))C(PSN (h))T = C(Q1,SN (xj%S)) = C(RSN (xj%S)) .

Using (50) and (52), we obtain

[C(PSN (h))TANC(PSN (g))]:,j = [C(RSN (xj%S))]:,j = ΛjRSN (xj%S) = R
(j)
SN (xj%S).

Therefore, we have for all j ∈ J0, SN − 1K,[
C(PSN (h))TST

NSNC(PSN (g))
]
:,j

= R
(j)
SN (xj%S) .

This concludes the proof of the lemma.

38



Let us go back to the main proof.

Using (28), we have that the block (c, c′) ∈ J1, CK2 of size (SN, SN) of KTK is equal to :

(
C(PSN (K1,c))

TST
N . . . C(PSN (KM,c))

TST
N

) SNC(PSN (K1,c′))
...

SNC(PSN (KM,c′))


=

M∑
m=1

C(PSN (Km,c))
TST

NSNC(PSN (Km,c′)) . (54)

For any (m, c, c′) ∈ J1,MK×J1, CK2, we denote by (xm,c,c′,s)s=0..S−1 the S vectors of R2k−1 obtained when applying
Lemma 12 with h = Km,c, and g = Km,c′ . Hence, we have, for all j ∈ J0, SN − 1K,

[C(PSN (Km,c))
TST

NSNC(PSN (Km,c′))]:,j = R
(j)
SN (xm,c,c′,j%S) . (55)

Let fk−1 =

0k−1
1

0k−1

 ∈ R2k−1. For all s ∈ J0, S − 1K, we denote by

xc,c′,s =

M∑
m=1

xm,c,c′,s − δc=c′fk−1 ∈ R2k−1. (56)

Note that, from (7), (48), and (52), we have for all j ∈ J0, SN − 1K, fj = R
(j)
SN (fk−1). Therefore, IdSN =

(f0, . . . , fSN−1) =
(
R

(0)
SN (fk−1), . . . , R

(SN−1)
SN (fk−1)

)
. We set

BN = KTK − IdCSN .

We denote by AN
c,c′ ∈ RSN×SN the block (c, c′) ∈ J1, CK2 of size (SN, SN) of BN . Using (54), (55), and (56), we

have, for all j ∈ J0, SN − 1K,

[
AN

c,c′
]
:,j

=

[
M∑

m=1

C(PSN (Km,c))
TST

NSNC(PSN (Km,c′))− δc=c′IdSN

]
:,j

=

M∑
m=1

R
(j)
SN (xm,c,c′,j%S)− δc=c′R

(j)
SN (fk−1)

= R
(j)
SN (xc,c′,j%S) . (57)

We then proceed in the same way as in the RO case. Since BN is clearly symmetric, we have

‖BN‖22 ≤ ‖BN‖1‖BN‖∞ = ‖BN‖21 =

(
max

1≤j≤CSN

CSN∑
i=1

|(BN )i,j |

)2

= max
1≤c′≤C , 0≤j≤SN−1

(
C∑

c=1

‖
[
AN

c,c′
]
:,j
‖
1

)2

.

Using (57) and (53), this becomes

‖BN‖22 ≤ max
1≤c′≤C

0≤j≤SN−1

(
C∑

c=1

‖R(j)
SN

(
xc,c′,j%S

)
‖
1

)2

= max
1≤c′≤C
0≤s≤S−1

(
C∑

c=1

‖xc,c′,s‖1

)2

.
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We set (c′0, s0) ∈ arg max 1≤c′≤C
0≤s≤S−1

(∑C
c=1 ‖xc,c′,s‖1

)2
. Using that for all x ∈ Rn, ‖x‖1 ≤

√
n‖x‖2, we have

‖BN‖22 ≤

(
C∑

c=1

‖xc,c′0,s0‖1

)2

≤ (2k − 1)

(
C∑

c=1

‖xc,c′0,s0‖2

)2

.

Using Cauchy-Schwarz inequality, we obtain

‖BN‖22 ≤ (2k − 1)C

C∑
c=1

‖xc,c′0,s0‖
2

2
≤ (2k − 1)C

C∑
c=1

C∑
c′=1

S−1∑
s=0

‖xc,c′,s‖22 .

Using (53) in the particular case of N ′ = 2k − 1, we obtain

‖BN‖22 ≤ (2k − 1)C

C∑
c=1

C∑
c′=1

S−1∑
s=0

‖RS(2k−1) (xc,c′,s) ‖22

= C
C∑

c=1

C∑
c′=1

S−1∑
s=0

(2k − 1)‖RS(2k−1) (xc,c′,s) ‖22

= C

C∑
c=1

C∑
c′=1

S(2k−1)−1∑
j=0

∥∥∥R(j)
S(2k−1)

(
xc,c′,j%S

)∥∥∥2
2
.

Using (57) for N ′ = 2k − 1, we obtain

‖BN‖22 ≤ C
C∑

c=1

C∑
c′=1

S(2k−1)−1∑
j=0

∥∥∥∥[A2k−1
c,c′

]
:,j

∥∥∥∥2
2

= C‖B2k−1‖2F .

Using Theorem 2 for N = 2k − 1, we have ‖B2k−1‖2F = (2k − 1)Lorth(K) and we obtain

‖BN‖22 ≤ (2k − 1)CLorth(K) .

Therefore, we conclude that, in the CO case

(errsN (K))
2 ≤ (2k − 1)CLorth(K) .

This concludes the proof in the 1D case.

F.2 Sketch of the proof of Theorem 3, for 2D convolutional layers
In the RO case, we proceed as in the 1D case.
In the CO case, we first prove a lemma similar to Lemma 12, then we proceed as in the 1D case.

G Proof of Proposition 1
Below, we prove Proposition 1 for a general matrix A ∈ Ra×b with a ≥ b. In order to obtain the statement for a
convolutional layer K ∈ RMN×CSN :
In the RO case (M ≤ CS): we take A = KT , a = CSN , b = MN .
In the CO case (M ≥ CS): we take A = K, a = MN , b = CSN .
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Let A ∈ Ra×b such that a ≥ b. We denote by ε = ‖ATA− Idb‖2. Let x ∈ Rb, we have∣∣‖Ax‖2 − ‖x‖2∣∣ =
∣∣xTATAx− xTx

∣∣ =
∣∣xT (ATA− Idb)x

∣∣ ≤ ‖xT ‖‖ATA− Idb‖2‖x‖
≤ ε‖x‖2 .

Hence, for all x ∈ Rb,

(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2 .

This also implies σmax(A)2 ≤ 1 + ε. But we know that σmax(AT ) = σmax(A), hence σmax(AT )2 ≤ 1 + ε and
therefore, for all x ∈ Ra,

‖ATx‖2 ≤ (1 + ε)‖x‖2 .

Finally:

• In the RO case, for ε = errsN (K) = ‖KKT − IdCSN‖2, K is ε-AIP.

• In the CO case, for ε = errsN (K) = ‖KTK − IdMN‖2, K is ε-AIP.

H Computing the singular values of K
In this appendix, we describe methods for computing singular values of a 2D layer transform matrix, with or without
stride. The codes are provided in DEEL.LIP9 library.

H.1 Computing the singular values of K when S = 1

For convolutional layers without stride, S = 1, we use the algorithm described in [35]. We describe the algorithm for
2D convolutional layers in Algorithm 1. The algorithm provides the full list of singular values.

Algorithm 1 Computing the list of singular values of K, when S = 1, [35].
Input: kernel tensor: K ∈ RM×C×k×k, channel size: N ≥ k
Output: list of the singular values of K: σ

transforms = FFT2(K, (N,N), axes=[0, 1])
σ = linalg.svd(transforms, compute_uv=False)

H.2 Computing the smallest and the largest singular value of K for any stride S
For convolutions with stride, S > 1, there is no known practical algorithm to compute the list of singular values σ.
In this configuration, we use the well known power iteration algorithm and a spectral shift to compute the smallest
and the largest singular value (σmin, σmax) of K. We give the principle of the algorithm in Algorithm 2. For clarity,
in Algorithm 2, we assume a function ’σ = power_iteration(M )’, that applies the power iteration algorithm to a
square matrix M and returns its largest singular value σ ≥ 0. In practice, of course, we cannot construct M and the
implementation must use the usual functions that apply K and KT . A detailed python implementation is provided in
DEEL.LIP10 library.

9https://github.com/deel-ai/deel-lip
10https://github.com/deel-ai/deel-lip
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Algorithm 2 Computing (σmin, σmax), for any S ≥ 1.

Input: kernel tensor: K ∈ RM×C×k×k, channel size: N ≥ k, stride parameter: S ≥ 1
Output: the smallest and the largest singular value of K: (σmin, σmax)

if CS2 ≥M then
# RO case
σmax = sqrt( power_iteration( KKT ) )
λ = 1.1 ∗ σmax ∗ σmax

σmin = sqrt( λ - power_iteration( λ IdMN2 −KKT ) )

else
# CO case
σmax = sqrt( power_iteration( KTK ) )
λ = 1.1 ∗ σmax ∗ σmax

σmin = sqrt( λ - power_iteration( λ IdCS2N2 −KTK ) )

end if
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