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Abstract: We study the trajectories of a point particle which is subjected to the simultaneous effect 

of an attractive restoring force and a force perpendicular to its speed, which can thus be a magnetic 

force. Solving the equations of motion, we present the mathematical expression of the trajectories we 

have obtained, which are in general cases, a part of the curves known as “Centered Trochoïd” 

curves. Several of them are detailed with geometrical properties such the radius of curvature and 

some characteristics of the motion. We also present the limiting cases and we discuss our results 

with references to works previously published, especially about the normal Zeeman effect. 

.  
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Introduction 

The study of the trajectories of particles which move under the influence of restoring forces is an 

important topic in Physics, considering the many physical applications in almost all the areas. This is 

particularly true when these forces are attractive, i.e. when the mechanical system is referred to a 

harmonic motion, and when the particle is simultaneously submitted to the influence of a magnetic 

field. 

 

This paper is devoted to this topic, and present results which can represent a significant progress. 

Indeed, naturally, this kind of motion has already been studied in the history of classical Physics, in 

particular when an atom was modelled as a simple harmonic oscillator, in order to explain the Zeeman 

effect ([1], [2]). However, it appears we have obtained others and original solutions, which contain the 

solutions already known as limiting cases. 

 

These trajectories we have obtained are given with the two parametrized plane curves 

 

{
𝑋 = 𝑎 cos 𝑤𝑡 cos 𝛼𝑡 − 𝑏 sin𝑤𝑡 sin 𝛼𝑡
𝑌 = 𝑎 cos𝑤𝑡 sin 𝛼𝑡 + 𝑏 sin𝑤𝑡 cos 𝛼𝑡

}     (1.1) 

 

And 

 

{
𝑋 = 𝑎 cos𝑤𝑡 cos 𝛼𝑡 + 𝑏 sin𝑤𝑡 sin 𝛼𝑡
𝑌 = 𝑎 cos𝑤𝑡 sin 𝛼𝑡 − 𝑏 sin𝑤𝑡 cos 𝛼𝑡

}      (1.2)    

 

Where : cartesian coordinate system is  

(𝑂; �⃗�;  �⃗⃗�;  𝑍) 

𝑎 and 𝑏 are two constant lengths 

𝑤 and 𝛼  are two constant pulsations; 𝛼 is the frequency of Larmor,  
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𝑡 is the time. 

Pulsations are linked to the spring constant 𝑘 with 

 

𝑘 = 𝑤2 − 𝛼2 

 

It appears that curves definite with relations (1) are, as we will detail it, already known under the name 

of “Centered Trochoïd”  [3]. Among them we can distinguish two famous limiting cases, the ellipse of 

Lissajous – Bowditch, when 𝛼 = 0 (magnetic field is null, bi dimensional harmonic oscillator) and the 

rose curves, when 𝑏 = 0. 

 

In the first part of the paper we present the mathematical demonstration of our results, solving the 

equations of motion. In the second part the reader will find the descriptions of several characteristics 

of motions, such as energies and angular momentum. To conclude, we discuss the results and present 

possible applications, in particular about the about the Normal Zeeman and Pashen-Back effect. 

 

Note this work is only constructed using the laws of classical Physics and consequently, we should 

remind the reader that we have not taken into consideration, at this step, relativistic or quantum effects. 

 

1 – Dynamics 

 

Note : In all the paper the mass of the point particle is considered equal to 1, such forces and 

accelerations are confused. 

 

In this part we consider the motion of a charged point particle which is simultaneously submitted to an 

attractive restoring force and a magnetic force due to a constant magnetic field  𝐵 perpendicular to the 

plane on which a charged particle moves. The force at distance we propose to study can be written 

 

�⃗� = −𝑘𝑟 + 𝑞�⃗⃗� ∗ �⃗⃗�  (2) 

Where 

𝑘 is the spring constant 

𝑞 the charge of the particle 

𝑉 its speed. 

 

A limiting case is obtained when the magnetic field is null: this case is corresponding on the well-

known harmonic oscillator and the point particle describes an ellipse of Lissajous – Bowditch.  

 

1.1 solving 

 

We begin introducing the cartesian system of coordinate (𝑂; �⃗�;  �⃗⃗�;  𝑍) where 𝑂 is the center of the 

restoring force.  We can rewrite (2) as 

 

�⃗� = −𝑘(𝑋𝑥 + 𝑌�⃗�) + +𝑞𝐵(�̇��⃗� − �̇�𝑥) 
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For convenience for the calculation we introduce the pulsation of the initial harmonic oscillator and 

the Larmor frequency (per mass unity) [4] 

{
𝑤0 = √𝑘

𝛼 =
𝑞𝐵

2

} 

System becomes using the Newton law of motion 

 

{
�̈� = −𝑤0

2𝑋 − 2𝛼�̇�

�̈� = −𝑤0
2𝑌 + 2𝛼�̇�

} 

 

A classical method to solve this kind of system is to introduce the complex number (solving can be 

found for example in references [1], [5]) 

 

𝑢 = 𝑋 + 𝑗𝑌 

We obtain  the differential equation 

 

𝑑2𝑢

𝑑𝑡2
+𝑤0

2𝑢 − 2𝑗𝛼
𝑑𝑢

𝑑𝑡
= 0 

 

To solve it we consider a limiting case whose we know an exact solution : it is naturally the ellipse of 

Lissajous-Bowditch we have evoked, corresponding on 𝛼 = 0. We name 𝑎 and 𝑏 respectivelly the 

semi major and minor axis of this conic.  By choosing initial conditions such  

 

{
𝑡 = 0
𝑋 = 𝑎
𝑌 = 0

} 

The solution is given by the relations 

 

{
𝑋 = 𝑎 cos𝑤𝑡
𝑌 = ±𝑏 sin𝑤𝑡

} 

(Dependent on the direction of rotation). In this case the complex number 𝑢 is 

 

𝑢 = 𝑎 cos𝑤𝑡 ± 𝑗𝑏 sin𝑤𝑡 

 

Or, 

 

{
𝑢 =

𝑎 + 𝑏

2
𝑒𝑗𝑤𝑡 +

𝑎 − 𝑏

2
𝑒−𝑗𝑤𝑡

𝑢 =
𝑎 − 𝑏

2
𝑒𝑗𝑤𝑡 +

𝑎 + 𝑏

2
𝑒−𝑗𝑤𝑡

} 

 

We add now a magnetic fields perpendicular to the plane of this ellipse. To begin the study we choose 

to investigate solutions of the form 

 

𝑢 = 𝑎0𝑒
𝑗(𝑤+𝛼)𝑡 
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Introducing it in the differential equation we obtain 

 

−(𝑤 + 𝛼)2 +𝑤0
2 + 2𝛼(𝑤 + 𝛼) = 0 

Consequently 

 

𝑤0
2 = 𝑤2 − 𝛼2 

 

Rewriting now our equation 

 

𝑑2𝑢

𝑑𝑡2
+ (𝑤2 − 𝛼2)𝑢 − 2𝑖𝛼

𝑑𝑢

𝑑𝑡
= 0 

 

We notice that a second solution exists 

 

𝑢 = 𝑏0𝑒
𝑗(−𝑤+𝛼)𝑡 

 

Where 𝑏0 is our second constant length. Whereas these results we investigate thus a general solution 

such 

 

𝑢 = 𝑎0𝑒
𝑗(𝑤+𝛼)𝑡 + 𝑏0𝑒

𝑗(−𝑤+𝛼)𝑡 

To determine the constants we study the initial conditions : considering this ellipse, i.e. for 𝛼 = 0 , and 

considering the origin of the time we obtain 

 

 for 𝑤𝑡 = 0    

𝑎 = 𝑎0 + 𝑏0 

 

And for 𝑤𝑡 =
𝜋

2
, we obtain two possibilities depending on the direction of rotation 

 

{
𝑏 = 𝑎0 − 𝑏0
−𝑏 = 𝑎0 − 𝑏0

} 

 

Where 𝑎 and 𝑏 are successively the semi major and minor axis of the conic. We deduce that 

 

{
𝑎0 =

𝑎 + 𝑏

2

𝑏0 =
𝑎 − 𝑏

2

} 

 

Or 

 

{
𝑎0 =

𝑎 − 𝑏

2

𝑏0 =
𝑎 + 𝑏

2

} 
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We obtain thus two general solutions 

 

{
𝑢 =

𝑎 + 𝑏

2
𝑒𝑗(+𝑤+𝛼)𝑡 +

𝑎 − 𝑏

2
𝑒𝑗(−𝑤+𝛼)𝑡

𝑢 =
𝑎 − 𝑏

2
𝑒𝑗(+𝑤+𝛼)𝑡 +

𝑎 + 𝑏

2
𝑒𝑗(−𝑤+𝛼)𝑡

} 

 

We recognize the expressions of the centered Trichoïd curves, given with [3] 

 

𝑢 = 𝑟1𝑒
𝑗𝑤1𝑡 + 𝑟2𝑒

𝑗𝑤2𝑡 

 

And, by identifying the real and imaginary parts 

 

{
𝑋 =

𝑎 + 𝑏

2
cos(𝑤 + 𝛼)𝑡 +

𝑎 − 𝑏

2
cos(𝑤 − 𝛼)𝑡

𝑌 =
𝑎 + 𝑏

2
sin(𝑤 + 𝛼)𝑡 −

𝑎 − 𝑏

2
sin(𝑤 − 𝛼)𝑡

}       (3.1) 

Or 

 

{
𝑋 =

𝑎 − 𝑏

2
cos(𝑤 + 𝛼)𝑡 +

𝑎 + 𝑏

2
cos(𝑤 − 𝛼)𝑡

𝑌 =
𝑎 − 𝑏

2
sin(𝑤 + 𝛼)𝑡 −

𝑎 + 𝑏

2
sin(𝑤 − 𝛼) 𝑡

}      (3.2) 

 

Finally 

 

{
𝑋 = 𝑎 cos𝑤𝑡 cos 𝛼𝑡 − 𝑏 sin𝑤𝑡 sin𝛼𝑡
𝑌 = 𝑎 cos𝑤𝑡 sin 𝛼𝑡 + 𝑏 sin𝑤𝑡 cos 𝛼𝑡

} 

 

And 

 

{
𝑋 = 𝑎 cos𝑤𝑡 cos 𝛼𝑡 + 𝑏 sin𝑤𝑡 sin𝛼𝑡
𝑌 = 𝑎 cos𝑤𝑡 sin 𝛼𝑡 − 𝑏 sin𝑤𝑡 cos 𝛼𝑡

} 

 

i.e. two possible parametrized curves dependent on the initial state of the harmonic oscillator . Note 

these trajectories are solutions to the problem if 

 

𝑤0
2 = 𝑘 = 𝑤2 − 𝛼2 > 0 

 

Or, introducing the ratio of pulsations 

 

𝑛 =
𝛼

𝑤
 

If 

 

−1 < 𝑛 < 1 
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This indicate that they are a part, corresponding to this condition, of the Centered Trichoïd curves. 

 

1.2 – Verification  

 

At this step we verify our solutions: considering for example the first of them and the successive 

derivatives with respect to the time 

 

{
�̇� = −𝑎(𝑤 sin𝑤𝑡 cos 𝛼𝑡 + αcos 𝑤𝑡 sin 𝛼𝑡) − 𝑏(𝑤 cos𝑤𝑡 sin 𝛼𝑡 + 𝛼 sin𝑤𝑡 cos 𝛼𝑡)

�̇� = −𝑎(𝑤 sin𝑤𝑡 sin 𝛼𝑡 − 𝛼 cos𝑤𝑡 cos 𝛼𝑡) + 𝑏(𝑤 cos𝑤𝑡 cos 𝛼𝑡 − 𝛼 sin𝑤𝑡 sin 𝛼𝑡)
} 

 

And 

 

{
 
 

 
 �̈� = 𝑎(−𝑤

2 cos 𝑤𝑡 cos 𝛼𝑡 + 2𝑤𝛼 sin𝑤𝑡 sin 𝛼𝑡 − 𝛼2 cos 𝑤𝑡 cos 𝛼𝑡)

+𝑏(𝑤2 sin𝑤𝑡 sin𝛼𝑡 − 2𝑤𝛼 cos𝑤𝑡 cos 𝛼𝑡 + 𝛼2 sin𝑤𝑡 sin𝛼𝑡)

�̈� = −𝑎(𝑤2 cos𝑤𝑡 sin 𝛼𝑡 + 2𝑤𝛼 sin𝑤𝑡 cos 𝛼𝑡 + 𝛼2 cos𝑤𝑡 sin 𝛼𝑡)

−𝑏(𝑤2 sin𝑤𝑡 cos 𝛼𝑡 + 2𝑏𝑤𝛼 cos 𝑤𝑡 sin𝛼𝑡 + 𝛼2 sin𝑤𝑡 cos 𝛼𝑡) }
 
 

 
 

 

 

A check by direct proof leads well to 

 

{
�̈� = −(𝑤2 − 𝛼2)𝑋 − 2𝛼�̇�

�̈� = −(𝑤2 − 𝛼2)𝑌 + 2𝛼�̇�
} 

 

Where  

𝑘 = 𝑤2 − 𝛼2 

 

2.  Presentation of the curves 

 

2.1 several possible trajectories 

 

In this second part we present the plane parametrized we obtained, choosing the first of them. Using 

the ratio 𝑛 they are given by 

 

{
𝑋 = 𝑎 cos𝑤𝑡 cos 𝑛𝑤𝑡 − 𝑏 sin𝑤𝑡 sin𝑛𝑤𝑡
𝑌 = 𝑎 cos𝑤𝑡 sin 𝑛𝑤𝑡 + 𝑏 sin𝑤𝑡 cos 𝑛𝑤𝑡

} 

 

Firstly note these equations are corresponding on a precession of the initial ellipse of 

Lissajous_Bowdith with an angle of precession equal to 𝛼 . This precession is visible when 𝑛 is small 

(see for example Figure 1). (curves corresponding on figures 1, 2, 3, 4, 5) are drawed for values 𝑎 = 1, 

𝑒 = 0.8 in our system of coordinates) (𝑒 is the eccentricity of the conic). 
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Figure 1 : 𝑛 = 0.05 

 

For a revolution angle of precession is simply given by  

�̂� = 2𝜋𝑛 

 

Trajectories are closed if 𝑛 i a rational number. When this ratio varies we obtain a large variety of 

curves, See for example the following centered Trochoïd curves 

 

                    
Figure 2 : 𝑛 = ±0.5 

                   
 

Figure 3 : 𝑛 = ±0.25 
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Figure 4 - 𝑛 = −0.9  and   𝑛 = 0.9 

 

2.3 – Energy and angular momentum 

 

For the reason that magnetic force doesn’t work Mechanical Energy 𝐸  (sum of the kinetic energy 

𝑇and the harmonic potential 𝑉) is conserved on all the trajectories 

 

𝐸 = 𝑇 + 𝑉 =
1

2
(�̇�2 + �̇�2 + 𝑘(𝑋2 + 𝑌2)) =

1

2
𝑤(𝑤𝑏2 + 2𝑎𝑏𝛼 + 𝑎2𝑤) 

 

Angular momentum is given at O by the relation 

 

𝑝= 𝑟 ∗ �⃗⃗� 

 

And can be written in our system of coordinate 

 

𝑝= (𝑋�⃗� + 𝑌�⃗�) ∗ (�̇��⃗� + �̇��⃗�) = (𝑋�̇� − 𝑌�̇�)𝑧 

 

Using previously relations we obtain after simplifications 

 

𝑝 = (𝑎𝑏𝑤 + 𝛼𝑎2[1 − 𝑒2𝑠𝑖𝑛2𝑤𝑡])𝑧 

  

2.4 Radius of curvature 

 

Radius of curvature is naturally an important property of the curves. This one, for plane parametrized 

curves depending on the time is given by 

𝑅(𝑡) =
[�̇�2 + �̇�2]

3
2⁄

�̇��̈� − �̇��̈�
 

Where the time derivatives are written by 

{
�̇� =

𝑑𝑥

𝑑𝑡

�̈� =
𝑑2𝑥

𝑑𝑡2

} 

After calculations we have obtained 
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𝑅(𝑡) =
𝐴
3
2⁄

𝑎𝑏𝑤3 + 𝛼[𝐴 + 𝑤(𝑏2𝑤 + 𝑎𝑏𝛼 + 𝑤𝑎2)]
 

where 

𝐴 = (𝑎𝑤 + 𝑏𝛼)2 − (𝑤2 − 𝛼2)(𝑎2 − 𝑏2)𝑐𝑜𝑠2𝑤𝑡 

 

It extends along an axis (𝐼𝑀) where 𝑀 is a point of the curve     

𝑀(𝑋, 𝑌, 0) 

And 𝐼 is point located on the X axis such 

𝐼(𝐼𝑥, 0,0) 

To obtain it we write the condition 

𝐼𝑀⃗⃗⃗⃗⃗⃗ . �⃗⃗� = 0 

Where �⃗⃗� is the speed (naturally tangential to the curve) 

�⃗⃗�(�̇�; �̇�; 0) 

Thus 

(𝐼𝑥 − 𝑋). �̇� − 𝑌. �̇� = 0 

And point 𝐼 is defined by 

𝐼𝑥 =
𝑤(𝑎2 − 𝑏2)(cos𝑤𝑡 sin𝑤𝑡)

(𝑎𝑤 + 𝑏𝛼)(sin𝑤𝑡 cos 𝛼𝑡) + (𝑎𝛼 + 𝑏𝑤)(cos𝑤𝑡 sin 𝛼𝑡)
 

 

Two interesting limiting cases can be noted : indeed, when 𝛼 = ±𝑤 , radius of curvature 𝑅 are 

constant. It is also the case of the speed 𝑉 (tab. 1) 

 

𝑛 = 1 
𝑅 =

1

2
(𝑎 + 𝑏) 𝐼𝑥 =

1

2
(𝑎 − 𝑏) 

𝑉 = 𝛼(𝑎 + 𝑏) 

𝑛 = −1 
𝑅 =

1

2
(𝑎 − 𝑏) 𝐼𝑥 =

1

2
(𝑎 + 𝑏) 

𝑉 = 𝛼(𝑎 − 𝑏) 

 

Tab 1 : particular cases : 𝛼 = ±𝑤  

 

We obtain thus two circles 

 

 

Figure 5 : 𝑛 = ±1 

 

In fact it corresponds to a well-known situation. Indeed, in these cases the coefficient 𝑘 given by 
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𝑘 = (𝑤2 − 𝛼2) 

 

Becomes equal to zero : This indicates that the harmonic force is null and, consequently, point particle 

is only submitted to the constant magnetic field. Trajectories are thus circular and we re-obtain for 

each cases the classical relation 

 

𝑉 = 𝑞𝐵𝑅 

 

2.5 – Polar equation 

 

It is often difficult to write a system of parametric equations in a polar system of coordinate 

(𝑂, 𝑒𝑟⃗⃗ ⃗⃗ , 𝑒𝜃⃗⃗⃗⃗⃗). In our case we managed to do it only for certain limiting cases, writing the classical 

equations 

 

{
𝑋 = 𝑅 cos 𝜃
𝑌 = 𝑅 sin 𝜃

} 

 

Where 𝑅 is given by 

 

𝑅 = √𝑋2 + 𝑌2 = √𝑎2𝑐𝑜𝑠2𝑤𝑡 + 𝑏2𝑠𝑖𝑛2𝑤𝑡 

 

Indeed we can obtain the angular speed using the relation 

�̇� = −
(
𝑋
𝑅
)
̇

𝑌
𝑅

 

Which leads to 

�̇� =
(𝑎2𝑐𝑜𝑠2𝑤𝑡 + 𝑏2𝑠𝑖𝑛2𝑤𝑡)𝛼 + 𝑤𝑎𝑏)

𝑎2𝑐𝑜𝑠2𝑤𝑡 + 𝑏2𝑠𝑖𝑛2𝑤𝑡
 

 

We have noted note that the angular speed is constant and given by �̇� = 𝛼  if  𝑤 = 0, 𝑎 = 0 or 𝑏 = 0  

Which allows to obtain in these cases the polar angle 

𝜃 = 𝛼𝑡 

Considering for example the case where 𝑏 = 0. The curves becomes 

 

{
𝑋 = 𝑎 cos𝑤𝑡 cos 𝑛𝑤𝑡
𝑌 = 𝑎 cos𝑤𝑡 sin 𝑛𝑤𝑡

} 

 

And, according to our previously results, can be written in the polar system of coordinate 
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{
𝑋 = 𝑎 cos

𝜃

𝑛
cos 𝜃

𝑌 = 𝑎 cos
𝜃

𝑛
sin 𝜃

} 

 

Which is corresponding on a well known familly of curves, called in the history of mathematics as 

« Rose Curves » since they have been studied by the mathematician Guido Grandi ([6], [7]). To 

illustrate the paper we draw the case 𝑛 = 1/3 (« regular trifolium ») (Figure 6) 

 

  
 

Figure 6 : 𝑛 = 1/3  

 

This indicates that when the initial oscillator is moved in a straight (i.e. when  it is a one-dimensional 

oscillator) the point particle (after addition of the magnetic field) describes one of these curves, where 

the angular speed is constant and simply given by �̇� = 𝛼. It is interesting to note that these properties 

seem not have been noticed until today. The speed of the point particle along these lines are thus 

 

𝑉 =
𝑎𝛼

𝑛
√1 + (𝑛2 − 1)𝑐𝑜𝑠2

𝜃

𝑛
 

 

We list the extrema in the following table: 

 

𝜃 = 2𝑘𝑛𝜋 

 

𝑉𝑚𝑖𝑛 = 𝑎𝛼 

𝜃 = 𝑛𝜋 (
2𝑘 + 1

2
) 𝑉𝑚𝑎𝑥 =

𝑎𝛼

𝑛
 

 

Tab 2. Speed on the rose curves 

 

Speed is well at the most when the point particle reaches the origin of the restoring force. 

 

3. Discussion 

 

As we introduced it we can compare our work with important results of the Classical Physics: we 

think in particular to the Normal Zeeman Effect (if the magnetic field is weak) and the Paschen-Back 
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effect (if it is strong) [8]. Indeed, these effects describes the behavior of an atom (modeled as a 

harmonic oscillator) submitted to a constant magnetic field. The theoretical explanation of the Normal 

Zeeman Effect is historically due to Lorentz, solving equation (1), as it can be found in reference [1].  

 

Our own results can thus be comparable with these works when the spring coefficient given by 

𝑘 = 𝑤0
2 = 𝑤2 − 𝛼2 

 

Is positive, thus when 

 

−1 < 𝑛 < 1 

 

We can list several differences between our results and theses demonstrations. Indeed, it appears these 

solutions have been obtained considering that the angle between the direction of the constant magnetic 

field and the plane of the initial trajectory is random, which is not the case of our work. They have also 

generally been obtained considering approximations, for example assuming that  𝛼 ≪ 𝑤0 [1] or that 

the point particle describes initially a circular orbit around the center of harmonic force [5]. 

 

The solutions presented in the paper seems different because we have chosen different conditions: 

 

- Initial trajectory of the point particle (before the addition of the magnetic field) is a conic 

(and not necessary a circle): It is in this case, an ellipse of Hooke (or Lissajous-Bowditch). 

- Angle between the magnetic field and the osculating plane of the trajectory is right. 

- We didn’t do approximation on the ratio 𝛼/𝑤0 

Consequently, the family of curve is different but can be compared when initial trajectory is circular, 

i.e. when the two lengths 𝑎 and 𝑏 are equals, and when the orientation of the magnetic field is 

perpendicular. Indeed, our two possible trajectories are in this case given by 

 

{
𝑋 = 𝑎[cos𝑤𝑡 cos 𝛼𝑡 − sin𝑤𝑡 sin 𝛼𝑡]

𝑌 = 𝑎[cos 𝑤𝑡 sin 𝛼𝑡 + sin𝑤𝑡 cos 𝛼𝑡]
} 

and 

{
𝑋 = 𝑎[cos𝑤𝑡 cos 𝛼𝑡 + sin𝑤𝑡 sin 𝛼𝑡]

𝑌 = 𝑎[cos 𝑤𝑡 sin 𝛼𝑡 − sin𝑤𝑡 cos 𝛼𝑡]
} 

Or, simpler 

{
𝑋 = 𝑎 cos(𝑤 + 𝛼)𝑡
𝑌 = 𝑎 sin(𝑤 + 𝛼)𝑡

} 

and 

{
𝑋 = 𝑎 cos(𝑤 − 𝛼)𝑡
𝑌 = 𝑎 sin(𝑤 − 𝛼)𝑡

} 

 

Can be compared with the solutions presented in reference [2], for these conditions, which are 

respectively 

{
𝑋 = 𝑎 cos(𝑤0 + 𝛼)𝑡

𝑌 = 𝑎 sin(𝑤0 + 𝛼)𝑡
} 

And 
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{
𝑋 = 𝑎 cos(𝑤0 − 𝛼)𝑡

𝑌 = 𝑎 sin(𝑤0 − 𝛼)𝑡
} 

 

We see that the two expressions are in correct agreement as much the magnetic field is weak. Indeed 

classical explaination of the effect provides that “The circular motion of the oscillating electron in the 

xy-plane at angular frequencies ω0 + ΩL and ω0 − ΩL produces radiation at these frequencies » [1]  

(ΩL is the frequency of Larmor). We note we obtain well the same gap between the two frequencies. 

However we also note a difference about the central position, which isn’t in our solution 𝑤0 but 𝑤. 

This difference is thus 

 

∆= 𝑤0 −√𝑤0
2 + 𝛼2 

 

Naturally this difference is small in the case of the Normal Zeeman effect, because the magnetic fields 

is weak. But, when it increases (case of the Paschen Back effect) the difference could also increase. 

This point can thus be considered as a prediction of the model, to the extent that, naturally, classical 

mechanics can describe this effect. 

 

4. Conclusion 

 

We have presented a family of plane parametrized curves which are obtained by performing a 

precession around the center of an initial ellipse. We have showed that a part of these curves can 

describe the trajectory of a point-particle simultaneously submitted to a harmonic force and a force 

perpendicular to its speed. Besides their mathematical and physical interest, these results could have 

applications in some areas such, for example, the classical electrodynamic, or others. We suggest a 

prediction about the normal Zeeman and the Paschen-Back effects. Research perspectives could be to 

verify this prediction and to extend the study, for example to a three-dimensional harmonic oscillator. 

Another major point should to consider the consequences of quantum effects. 
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