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ABSTRACT
Baseline JIT compilers in dynamically-typed languages often use
techniques such as static type predictions to optimize common ex-
ecution paths using static heuristics. Such compilations exhibit
implicit slow paths, defined by the language implementation and
not by a developer, representing uncommon execution paths e.g.,
automatic type coercions, type validations and operation reifica-
tions. At run time implicit slow paths need to be jumped over and
penalize overall execution.

Removing implicit slow paths from the main execution path
requires code reordering techniques. However, such heuristics are
generally designed to work with profiling information. Based on
the insight that implicit slow paths are known at compile-time,
and thus do not require runtime-profiles, we experimented with
two different code reordering algorithms: Pettis-Hansen Bottom-
Up (O (n3)) augmented with static code layout heuristics, and a
slow-to-end heuristic (O (n)).

Our results show that many micro-benchmarks improve their
run time by 1.2x. Benchmarks governed by more expensive com-
putations such as message sends or garbage collections show in
general no visible performance improvement nor degradations,
while very few cases show degradations of up to 1.2x. We show that
such static heuristics have low performance impact at compile-time
and have great potential when static type predictions are present
in the JIT compiler.

1 INTRODUCTION
Efficient implementations of dynamically-typed languages use just-
in-time (JIT) compilation techniques to avoid interpretation over-
head and benefit from runtime type-feedback. In a multi-tier com-
piler, a baseline JIT is often the first tier generating sub-optimal
code but very quickly: its focus is to avoid long compilation pauses.
One common implementation of a baseline JITs uses method-based
compilation as the granularity of the compilation units, because
methods have well-established boundaries. A common technique
to implement method baseline JITs combines in a linear fashion
code templates following the order of the source code, typically
bytecode.

In dynamically-typed languages, baseline JIT compilers often
use techniques such as static type predictions to optimize common
execution paths using heuristics [DS84, Hol94]. For example, lan-
guages such as Smalltalk in which operators (e.g.,+) are messages,
those special messages are compiled by first trying integer arith-
metic, and falling back to a slower message-send in case it is not

possible (e.g., because of type checks). Such code patterns imply
that the compilation introduces implicit slow paths (See Section 2):
execution paths that are defined by the language implementation
and not by a developer. These implicit execution paths represent
uncommon execution paths such as automatic type coercions, type
validations and operation reifications. Linear translations as the
ones done by a Baseline JIT mix developer-defined execution paths
with implicit slow paths that need to be jumped over and penalize
overall execution.

Holze informally reported in his thesis [Hol94] that having long
pieces of code in those uncommon paths had negative performance
impact, and replacing those uncommon paths by shorter calls to
stubs improved overall performance. Further, removing completely
those implicit slow paths from the main execution path requires
code reordering techniques [PH90, CT03], with the ultimate goal
of maximizing fallthrough branches (See Section 3). However, such
heuristics are generally designed to work with profiling informa-
tion. Newel and Pupyrev showed recently that they may impose
suboptimal performance on instruction and I-TLB caches [NP20].

Based on the insight that implicit slow paths are known at compile-
time, and thus do not require runtime-profiles, we experimented
with two different code reordering algorithms: Pettis-Hansen aug-
mented with static code layout heuristics, and a slow-to-end heuris-
tic (See Section 4). Our results show that many micro-benchmarks
improve their run time by 1.2x (See Section 5). Benchmarks gov-
erned by more expensive computations such as message sends or
garbage collections show in general no visible performance im-
provement nor degradations, while very few cases show degra-
dations of up to 1.2x. We show that such static heuristics have
low performance impact and have great potential when static type
predictions are present in the JIT compiler.

The contributions of this paper are:
• The identification of implicit control flow paths within static
type predictions for baseline JITs.
• A static weighting heuristic for bottom up Pettis-Hansen
code reordering that does not require any previous profiling
information.
• A slow-to-end heuristic that based on static code heuristics
runs linearly to the number of basic blocks.
• Empirical evidence that such reordering can be done fast
and obtain performance gains of up to 1.2x.

2 IMPLICIT CONTROL FLOW
Dynamically-typed object-oriented languages such as Ruby, Javascript
or Pharo [BDN+09] exhibit implicit slow paths because they support
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high-level of polymorphism and because elementary operations
can be applied on a large set of classes. Implicit slow paths are exe-
cution paths that are defined by the language implementation and
not by a developer, and generally represent uncommon execution
paths e.g., automatic type coercions, type validations and operation
reifications.

A case to illustrate implicit slow paths appears when using static
type predictions [Hol94]. Static type predictions use language imple-
mentor type heuristics to optimize common execution paths. For
example, languages such as Smalltalk define operators as messages,
making it possible for developers to provide their own operator
implementations. However, implementing all such operators as mes-
sage sends over-penalises common arithmethic operations such as
+. Using static type prediction, the language implementor defines
that it is more common that + will refer to integer arithmetic than
to a redefined + operator, thus it introduces a type check to try
integer arithmethic when possible and eventually fall back to a
slower message-send in case it is not possible.

It is important to note that this type prediction is just an opti-
mization, and is not visible to the developer by other than by the
perceived performance.

2.1 Running Example: Addition in Pharo
Addition in Pharo is a message like any other messages in the
language. Here are two examples: the first one shows that adding a
small integer with a large positive integer produces a large positive
integer. The second one, an example taken from an AST interpreter,
illustrates how we send the message + to AST node object instance
of ExConstant using another (complex) node as argument. These
examples show that the message plus can be sent to any instance
with any argument.

1 (1 + 1000 factorial) class
2 >>> LargePositiveInteger
3

4 (ExConstant value: 1) +
5 (ExMultiplication
6 right: (ExConstant value: 11)
7 left: (ExtConstant value: 2))
8 >>> anExContant (23)

The current implementation uses static type prediction for inte-
ger arithmetic, which works as follows:
• The implementation of + should check the types of the re-
ceiver and argument.
• If both are integers, an integer addition is tried out, and an
overflow check takes place.
• When either the receiver or arguments are not small integers
or an overflow is encountered, a much slower path is taken:
a message is sent.

The usefulness of the message-send is two-fold. First, it allows
developers to define their own operators with their own domain
semantics. Second, in case an overflow happens, it lets the standard
library promote the numbers to large integers before retrying a
slower large integer addition. While the bytecode interpreter is not
the focus of this article, the following excerpt of the interpreter
mimics the JIT compiler behaviour, clearly illustrating the situation.

1 bytecodePrimAdd
2 | rcvr arg result |
3 rcvr := self internalStackValue: 1.
4 arg := self internalStackValue: 0.
5 (objectMemory areIntegers: rcvr and: arg) ifTrue: [
6 result := (objectMemory integerValueOf: rcvr) + (objectMemory

integerValueOf: arg).
7 "Check for overflow"
8 (objectMemory isIntegerValue: result) ifTrue: [
9 self
10 internalPop: 2
11 thenPush: (objectMemory integerObjectOf: result).
12 ^ self fetchNextBytecode "success"]].
13 "Slow path, message send"
14 messageSelector := self specialSelector: 0.
15 argumentCount := 1.
16 self normalSend

Not only the case of arithmetic. In Pharo, similar situations occur
with other arithmetic operations, but also control flow operations
such as conditionals and loops. For example, in Pharo the message
ifTrue: expects a boolean receiver. When the receiver is not of the
expected type, the VM activates in-place a mustBeBoolean call-
back similarly as with doesNotUnderstand:. This gives developers
the power to provide their own boolean coercions.

All these cases share a common design: they check first if a fast
path can be taken and do it if so, otherwise they take a slower
path. This design is based on the static assumption that the slow
case is uncommon, and it allows efficient bytecode interpreters and
baseline JITs for common cases.

2.2 Baseline JIT Implicit Slow Paths
In a multi-tier compiler, a baseline JIT is often the first tier gener-
ating sub-optimal code but very quickly: its focus is to avoid long
compilation pauses. One common implementation technique for
such JITs is to combine machine code templates in a linear fashion
following the order of the source code, typically bytecode. In other
words, when such baseline JIT generates code for a sequence of
bytecodes, the generated machine code follows the same order.

Consider for example a sequence of stack-based bytecodes for the
statement return a + b + c: three values are pushed to the stack and
the message + is sent twice, and finally the stack top is returned.
From both the source-code and the bytecode point of view, the
execution is linear and no control flow happens whatsoever (other
than a message send that yields the control to another method).

1 b1: push a
2 b2: push b
3 b3: send #+
4 b4: push c
5 b5: send #+
6 b6: return top

Listing 1: Example of bytecode sequence without
explicit control flow but with implicit control flow
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On the other hand, when that bytecode is compiled to machine
code, the baseline JIT compiler adds additional control flow to han-
dle the cases explained above: type and overflow checks. This con-
trol flow is implicit: it is defined by the language implementation
and not by a developer. Listing 2 below illustrates the intermediate
representation (IR) used by our linear JIT compiler to compile the
above bytecode sequence. It generates machine code in the same
order as in the source bytecode, yielding a code layout similar as
the one illustrated below.

We see in the listing that each bytecode generates zero or more
IR instructions. We mark in green those instructions in the assumed
common fast path, and in red those in the uncommon slow paths.
Implicit slow paths in linear translations need to be jumped over,
generating slopes and penalizing the overall execution.

1 ... # previous bytecode IR

2 b3 check a SmallInteger

3 b3 jumpzero notsmi

4 b3 check b SmallInteger

5 b3 jumpzero notsmi

6 b3 t1 := a + b

7 b3 jumpIfNotOverflow continue

8 b3 notsmi: #slow case first send

9 b3 t1 := send #+ a b

10 b3 continue:

11 b4 c := load [c−address]

12 b5 check t1 SmallInteger

13 b5 jumpzero notsmi2

14 b5 check c SmallInteger

15 b5 jumpzero notsmi2

16 b5 t1 := t1 + c

17 b5 jumpIfNotOverflow continue2

18 b5 notsmi2: #slow case second send

19 b5 t1 := send #+ t1 c

20 b5 continue2:

21 b6 return t1

Listing 2: Linear translation of the Pharo baseline JIT
compiler of the example in Listing 1

2.3 Insights for Static Heuristics
Removing implicit slow paths from the main execution path re-
quires code layout optimization techniques [CT03, PH90, CG99].
However, code layout optimizations are generally designed to work
with profiling information, which are often not yet available to the
first-tier baseline JIT compilers. Nevertheless, such techniques are
applicable to implicit slow paths based on the following insight:

Implicit slow paths are known at compile-time and
thus do not require runtime-profiles.

In the rest of this paper we report on our experiments with two
different code reordering algorithms: Pettis-Hansen augmented
with static code layout heuristic, and a slow-to-end heuristic.

2.4 Static Heuristics Required Properties
Regardless of the algorithm used for code layout optimization, we
would like to guarantee that its output satisfies the following prop-
erties:

Distinguish explicit from implicit control flow edges. The control-
flow graph of a method contains both implicit edges defined by
the language implementation, and explicit edges defined by the
application developer. The code reordering algorithm should be
able to discern between them to remove the slow cases from the
middle of the fast paths.

Prioritize equally all explicit control flow edges. One explicit edge
in the control flow should not be penalized (nor rewarded) over
some other explicit edge, because we cannot statically decide with-
out proper profiling information which one is going to be taken
at run time. Because of this, an ideal code layout should reflect
a reverse post-order of the control flow for all explicit edges. A
reverse post-order guarantees that linear control flow stays linear,
while conditionals have both their branches close to each other.

3 PETTIS-HANSEN CODE POSITIONING
Pettis-Hansen [PH90] (PH from now on) is a profile guided code
positioning technique that can be used both for inter and intra pro-
cedural code reordering. Inter-procedural code positioning deals
with the order of functions/methods in native code, and is out-
side of the scope of this paper. Intra-procedural code positioning,
on the other hand, deals with the order of basic blocks within a
function/method.

Code layout optimization is an NP problem, and PH implements
two heuristics that have shown to produce very good results with
profile information, and that can be implemented very efficiently
using a fixed-point algorithm [CT03]: a greedy heuristic also known
as top-down PH, and a bottom-up heuristic that builds hot chains
of basic blocks before deciding the final code layout. In the rest of
this paper we center our study of PH on the bottom-up heuristic.

3.1 Bottom-Up PH in a Nutshell
Intra-procedural bottom-up PH works as follows. Each edge in the
control-flow graph is assigned a weight representing how likely
that edge is going to be taken. This weight is based on profiling
information either obtained offline during previous executions, or
online during previous phases of the current execution.

The first step of the algorithm is to detect hot chains i.e., chains
of basic blocks that are very likely execute one after the other. For
this, each basic block is assigned first a chain for itself and then all
edges are iterated in likeliness order (from more likely to less likely
taken). For each edge (x ,y) connecting basic blocks x andy, we take
the chains corresponding to its vertices (say A and B respectively)
and merge those chains iff x = tail (A) and y = head (B). Each time
two chains are merged, a new chain is created, both edge vertices
are updated with that new chain, and that chain has its priority
incremented. The priority of a chain shows the number of merges
it has seen and represents to some extent the hotness of the chain.

Once all edges have been traversed and their chains merged,
the algorithm proceeds to merge all hot chains by priority order
and builds the final code layout. Figure 1 shows a control-flow
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graph with edges weighted according to profiling information. This
corresponds to an exact profiling, where the sum of the weights of
the in-edges of each basic block is equals to the sum of the weights
of the out-edges of each block. In the left of the figure there is the
weighted control flow, and the dashed areas represent the final
chains. In the right there is the final code layout and the jumps that
remain.

CFG Final layout

Bi basic block hot path w weight labeled edge

B1

B2 B3

B5

70 30

10 30

B1
B2
B4
B6

B3
B4

60

B6
60 40

B5

Figure 1: Example of Pettis-Hansen with Exact Profiling
Information. The hot paths created by the algorithm are
shown in a dashed line circle. At the right we depict the fi-
nal linear layout.We observe that the hot-paths create traces
connecting the highest weights. The edges in the hot-paths
become fall through branches.

3.2 Challenges of Static Weighting
Using Pettis-Hansen without profiling information means to stati-
cally assignweights to the edges in the control-flow graph. However,
naïvely assigning such weights could not only generate low bene-
fits, but also be counter-productive and generate inefficient code
layouts. For the sake of completeness, we state in this section the
first failing weighting heuristic we tried: unprioritized slow-paths.
This heuristic does not work properly because it satisfies only our
first required property but not the second one. This means that
slow paths are indeed taken out of the main execution path, but
some explicit paths that are not statically decidable are penalized.

Unprioritized slow-paths weights edges to slow-paths statically
with the lowest weight (say 0), and weights all other edges with a
higher default weight (say 100). Figure 2 shows the same control-
flow graph as before with edges weighted according to this first
unrefined static heuristic. Bottom-up PH relies on how the edges are
sorted, and since all edges have similar weights, the algorithm will
not properly resolve ambiguities: as we can observe in the example,
if we process the edge (B2,B4) before (B2,B5), then the blocks B2
and B4 will be merged in a single chain {B2,B4}, preventing B5
to be merged in that chain because B2 is not the tail of it’s chain
anymore.

Moreover, since B5’s chain is not merged with any other block
(or merged with B3 very late), its chain will have low priority and

be put at the end of the final layout, penalizing the execution of B5
which needs a far jump to the end of the method and a jump back
to the so-computed hot control flow.

Bi basic block hot path w weight labeled edge

B1

B2 B3

B5

100 0

100 0

B1
B2
B4
B6

B5
B4

100

B6
100 100

B3

…

CFG Final layout

Figure 2: Example of Pettis-Hansenwith Naive EdgeWeight-
ing when (B2, B4) is processed before (B2, B5). The hot paths
created by the algorithm are shown in a dashed line circle.
On the right we depict the final linear layout. This weight-
ing does not differentiate between explicit paths. We ob-
serve that the hot-paths create traces connecting the high-
est weights. The edges in the hot-paths become fall through
branches.

4 REORDERING TECHNIQUES ON A STATIC
BASIS

In this section we present two other code reordering heuristics
that satisfy our two stated properties but have different compile-
time and implementation costs: a refined static weighting heuristic
for Bottom-Up PH, and a slow-to-end heuristic that satisfies the
previously stated properties for static reordering and yields good
results. While Bottom-Up PH has a run time of O (n3), slow-to-
end runs on O (n) of the number of basic blocks, making it a low-
overhead candidate for baseline JIT compilers.

4.1 Refined Static PHWeighting for
Implicit Control Flow

We designed our weighting heuristic as follows:
• Edges to slow paths get the lowest weight (say 0).
• In conditional branches, the first branch has the highest
weight (say 100), the second branch has the second highest
weight (say 90).
• In merge points, the edge coming from the first branch has
the second highest weight (say 90), the edge coming from
the second branch has the highest weight (say 100).
• All other edges have the highest weight (say 100).

Although the associations of weights we chose may seem odd,
they produce layouts that respect to some extent the properties
stated above. First, edges to slow paths weighting 0 are not included
in a hot chain unless they are the only successor of another basic
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block. In our case that never happens because slow paths have
always a single predecessor. This in turns means that they will
be positioned at the end of the code layout. Second, the heuristic
governing conditional branches and merge points ensures that
branches are scheduled close to each other. The key objective of
this heuristic is to avoid one of the branches to be isolated. This
way one of the branches will be included in the hot path entering
the conditional, while the other branch will be included in the hot
path that exits the conditional. Figure 3 shows how hot chains
are created using this heuristic and without it, and the final code
layouts for both cases.

Bi basic block hot path w weight labeled edge

B1

B2 B3

B5

100 0

90 0

B1
B2
B4

B5

…
B4

100

B6
90 100

B3

B6

CFG Final layout

Figure 3: Refined StaticWeightingHeuristics for Bottom-Up
PH. The figure shows the same control flow graph as in Fig-
ure 2 but using different weight assignments. The hot paths
created by the algorithm are shown in a dashed line circle.
On the right, we depict the final linear layout. Our heuristic
for conditional branches makes the final layout look like a
reverse post-order excepting slow paths.

4.2 Slow-to-End Heuristic
As we stated before, an ideal code layout should reflect a reverse
post-order of the control flow for all explicit edges. A reverse post-
order guarantees that linear control flow stays linear, while condi-
tionals have both their branches close to each other. In this section
we propose another code layout optimization algorithm we call
slow-to-end, that takes advantage of another insight: our source
bytecode is already linearised in reverse post-order.

The key of the Slow-to-End code layout optimization is to identify
basic blocks that belong to a slow path and push them to the end
of the code layout. Slow-to-End takes as input a list of basic blocks
in reverse post-order and does a single iteration on it. For each
block, if the block is marked as a slow path it is removed from its
current position and appended at the end of the list. Algorithm
1 illustrates the basics of Slow-to-End. Figure 4 illustrates how
Slow-to-End works in a control flow graph already linearised using
reverse post-order.

Algorithm 1: Algorithm
Data: A list of basic blocks linearised in reverse post-order
Result: A list of basic blocks linearised in reverse post-order

with slow basic blocks at the end
for each block in the original list do

if current block is marked as slow then
remove current block from the list;
append current block at the end of the list;

end
end

B1

B2 B3

B4

B5

B1
B2
B4
B5

B3

CFG Final layout

Bi basic block edge

B1
B2
B3
B4

B5

Bj slow basic block

Initial layout

Figure 4: Slow-to-End example. The figure shows on the left
the initial code layout with basic blocks on the slow path
marked in dashed lines. On the center, the corresponding
control flow graph. On the right, the final code layout after
using Slow-to-End.

5 EVALUATION
We evaluate the code layout optimizations explained above using
benchmarks on top of Pharo [BDN+09].We chose four different sets
of benchmarks to run, each category containing many benchmarks:
(1) a set of micro benchmarks we designed to observe the impact of
code layout, (2) a set of generic Pharo micro benchmarks, (3) an im-
plementation of the Computer Language Benchmarks Game, and (4)
a set of larger benchmark programs: a bytecode compiler, deltablue
and richards. The first set of benchmarks were written by ourselves
with this article in mind. The latter three sets of benchmarks are
available as part of the SMark benchmarking library1. Since our
prototype is not complete (e.g., we miss support for exceptions. See
Section 6 for more details), some of the available benchmarks did
not finish successfully on all our prototype implementations and
were removed from the evaluation.

This section evaluates different characteristics of such bench-
marks. First we present a profile of the benchmarks showing how
often implicit control flow paths are reached during execution, and
how often they are taken. Such profile gives an idea of the potential
of these optimizations for each benchmark: the more implicit paths

1https://github.com/guillep/SMark

https://github.com/guillep/SMark
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Category Benchmark # Method #Bytecodes #Implicit Jumps #Implicit Jumps
Activations Reached Taken

CodeLayout False Conditionals 3 669 103 (16%) 0 (0% of total - 0% of reached)
CodeLayout False Conditionals Compensated 3 669 103 (16%) 0 (0% of total - 0% of reached)
CodeLayout False Fallthroughs 3 89 13 (15%) 0 (0% of total - 0% of reached)
CodeLayout True Conditionals 3 129 13 (11%) 0 (0% of total - 0% of reached)
CodeLayout True Conditionals Compensated 3 129 13 (11%) 0 (0% of total - 0% of reached)
CodeLayout True Fallthroughs 3 269 103 (39%) 0 (0% of total - 0% of reached)
CodeLayout SmallFactorial 4 263 37 (15%) 0 (0% of total - 0% of reached)
CodeLayout LargeFactorial 128 2666 288 (11%) 0 (0% of total - 0% of reached)
CodeLayout VeryLargeFactorial 1478 28766 2988 (11%) 0 (0% of total - 0% of reached)
Category Benchmark #activations #bytecodes #Implicit Jumps #Implicit Jumps

Reached Taken
Micro ArrayAccess 3 87 3 (4%) 0 (0% of total - 0% of reached)
Micro ClassVarBinding 2 63 3 (5%) 0 (0% of total - 0% of reached)
Micro FloatLoop 2 51 1 (2%) 0 (0% of total - 0% of reached)
Micro InstVarAccess 2 63 3 (5%) 0 (0% of total - 0% of reached)
Micro IntLoop 2 60 4 (7%) 0 (0% of total - 0% of reached)
Micro Send 2 63 3 (5%) 0 (0% of total - 0% of reached)
Micro SendWithManyArguments 3 77 3 (4%) 0 (0% of total - 0% of reached)
Micro Stone 41 1996 293 (15%) 0 (0% of total - 0% of reached)
Category Benchmark #activations #bytecodes #Implicit Jumps #Implicit Jumps

Reached Taken
GameSuite Chameleons 473 6387 296 (5%) 4 (1% of total - 2% of reached)
GameSuite FannkuchRedux 60 975 89 (10%) 0 (0% of total - 0% of reached)
GameSuite Mandelbrot 108 1844 162 (9%) 3 (1% of total - 2% of reached)
GameSuite Meteor 11359424 480056856 73380268 (16%) 4774 (1% of total - 1% of reached)
GameSuite PiDigits 13 236 16 (7%) 0 (0% of total - 0% of reached)
GameSuite RegexDNA 21920 355031 29100 (9%) 4286 (2% of total - 15% of reached)
GameSuite ReverseComplement 693 12775 867 (7%) 11 (1% of total - 2% of reached)
GameSuite SpectralNorm 108 4178 511 (13%) 0 (0% of total - 0% of reached)
GameSuite ThreadRing 30904 322009 12735 (4%) 0 (0% of total - 0% of reached)
Category Benchmark #activations #bytecodes #Implicit Jumps #Implicit Jumps

Reached Taken
Program Compiler 41921 657853 47278 (8%) 3403 (1% of total - 8% of reached)
Program DeltaBlue 2923 49445 3023 (7%) 61 (1% of total - 3% of reached)
Program Richards 1122372 14571071 878209 (7%) 0 (0% of total - 0% of reached)
Table 1: Dynamic characterisation of the benchmarks. Executed bytecode and implicit jump (found and taken).

present in the code, the more effect these optimizations will have.
Second we report the run time of each benchmark, taking as com-
parison baseline the default Virtual Machine with a compiler doing
no code layout optimization. Finally, we characterize how the full
run time of the benchmarks is divided between the execution of
actual work, compilation time, and garbage collection time.

5.1 Benchmark Characterisation
The Pharo baseline JIT compiler produces implicit edges in three
cases: (1) integer comparison (<, >,...) (2) integer arithmetic (+, -,
bitAnd, bitOr...) and (3) conditional jumps (mustBeBoolean check).
To characterize the behavior of implicit edges at runtime, we es-
timated the number of times such implicit edges are reached and
taken per execution, as shown in Table 1. Such profile gives an
idea of the potential of these optimizations for each benchmark:
the more implicit paths present in the code, the more effect these
optimizations will have.

We estimated such numbers by running each benchmark for a
single iteration with a problem size of 1 using an instrumented

bytecode interpreter. This makes an over-estimation because while
the JIT compiler performs some straight-forward form of constant
folding for the cases explained above, the bytecode interpreter does
not do such optimizations. Still we are positive that such estimation
is close to the JIT behavior because the compiler does not perform
any kind of constant propagation, meaning that constant folding
happens only in trivial cases.

Notice also that we only instrumented in the interpreter those
bytecodes that present implicit control flow when compiled to
machine code. Indeed, other bytecodes in the interpreter present
implicit control flow cases (e.g., the multiplication message) but
since those are not present in the compiler, we did not take them
into account in our measurements.

Table 1 shows the dynamic characterization of the implicit jumps
per benchmark, showing the total number of executed bytecodes,
the total number of reached implicit jumps and the total number
of taken implicit jumps. All these numbers are in absolute terms.
In addition, we report total number of reached implicit jumps as
a percentage of the total number of executed bytecodes, and the
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total number of taken implicit jumps as a percentage of the total of
bytecode and the total of reached implicit jumps.

From the table we observe:
• Having 0 in the last column (implicit Jumps Taken) is show-
ing a good behavior of the benchmarks – The benchmarks do
not execute a slow path (large integers or must be booleans
for conditionals).
• By design our specific micro benchmarks shows higher num-
ber of implicit jumps. This is normal since this benchmark
has been designed to stress the code reordering. Note that a
high percentage of implicit jumps cannot be reached because
of the bytecode distribution. Implicit jumps are a minority
compared to pop, push and sends. The bytecode is also not
optimized to support debugging and stepping at the level of
expression and subexpressions (in contrast with line-based
or statement-based).
• The game suite and the benchmark program largely vary in
size. They show from 4% up to 16% of implicit jumps. This
represents the potential target of the fall through maximiza-
tion.

0 25 50 75 100

Compiler

DeltaBlue

Richards

Runtime GC Compilation

Figure 5: Runtime Profile of Program Benchmarks on Base-
line VM. Time spent in GC and compilation vs actual run-
time

5.2 Benchmark Methodology
We run all our benchmarks in three different setups; the stock base-
line JIT compiler with no code reordering nor basic block support,
a JIT compiler with a static PH heuristics, and a JIT compiler with a
Slow-to-End heuristics. The stock baseline JIT was used as the base-
line for comparison. We run our benchmarks on top of an Intel(R)
Core(TM) i5-5287U CPU @ 2.90GHz OSX Mojave, with all applica-
tions closed, most services turned off and no internet connection
plugged to minimise noises. Figures 6 through 9 show the results
of our measurements. We based our performance methodology
on [GBE07], with some modifications. We are aware of recent work
on benchmarking methodologies [BBTK+17], but the engineering
effort to put it in place did not make it in time at the moment of
writing this article.
100 iterations per VM invocation. We performed 100 iterations

per VM invocation to increment our confidence in the mea-
surements.

Warmup takes two iterations only. We discard the two first it-
erations of all benchmarks. Since our virtual machine does
not have an adaptive optimizing compiler, compilation is

deterministic, and thus our warmup phase is fast: we need to
wait until all methods are compiled. In the current implemen-
tation, the first execution of a method runs interpreted, the
second one does generally set off compilation and executes
compiled code. The main exception are hot interpreted loops,
which are compiled when a certain threshold is reached
and an on-stack replacement mechanism takes place. In our
prototype VMs implementing the two said code reordering
heuristics, we do not support yet on-stack replacement.

Single VM invocation. Again, since our virtual machine JIT com-
piler is deterministic and our code cache is big enough to
hold the entire working set of methods in the benchmarks
(1.4MB), we did not do several VM invocations.

Tailored Problem Sizes. Wedefined problem sizes for each bench-
mark that maximize the observability of the measurements.
We did our best effort to calibrate those problem sizes so that
each iteration is around 300 ms. This was not possible for
some benchmarks that seem to have exponential behavior
and incrementing slightly the problem size made the run
time blow up.

5.3 Performance Analysis
Our benchmarks show that both heuristics present different behav-
ior in different benchmarks. We measured the time spent in GC
during the benchmarks. Only two of the benchmarks (deltaBlue
and Compiler See Figure 5) did actually perform GCs.

On the one hand, the PH refined static weight heuristic shows
gains of up to 1.2x in many benchmarks and losses of up to 1.2x
in many others when compared to our baseline VM. After some
analysis, we found that the degradations could be explained because
our weighting heuristic applies to the bytecode-to-machine code
translation but not to the native methods that are manually written
in the intermediate representation (a.k.a. primitives). This means
that handwritten IR routines are subject to themore naïveweighting
explained in Section 3.2, and they need to be manually revised to
mark potential slow paths in them.

On the other hand, Slow-to-End shows results that overlap with
the baseline’s in many benchmarks, meaning that those bench-
marks are not sensitive to the code layout optimizations. Micro
benchmarks where implicit slow paths are very present (e.g., tight
loops with arithmetic) show speed-ups of up to 1.2x. Few bench-
marks show degraded performance with Slow-to-End heuristic (e.g.,
SlopeStone, Richards). Wewant to characterize better such behavior
in the future. Our hypothesis is that since our compiler does not do
inlining, the cost of frame creation coupled with the general small
code size of methods in Pharo dilute the gain of reordering. Zaitsev
reports that methods in Pharo are 6.3 lines in average with a me-
dian of 3 lines [ZDA20]. We are at the moment analyzing why such
degradation takes place, since our intuition is that Slow-to-End
should not degrade performance unless implicit paths are taken
very frequently.

Our observations suggest that structured code where loops and
arithmetic are omni-present present high optimization potential
by both heuristics. However, implementing Pettis-Hansen would
require modifying all handwritten code to properly adjust edges,
while in Slow-to-End the original order is respected. On the other
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Figure 6: Micro Benchmarks in milliseconds (b=Baseline,
p=Pettis-Hansen, sl=Slow-to-End). Lower is better.

hand, highly object-oriented code is not very sensitive to such
optimizations and their gain is diluted in the cost of message sends.

5.4 Instruction Cache Misses
For completeness, we report instruction cache misses for the Small-
Factorial and Mandelbrot benchmarks in Table 2. We extracted this
information using OSX’s Instruments profiler. From the table we
observe that the speed ups/downs observed in our benchmarks
are correlated with corresponding decreases/increases in the CPU
cache misses.

We chose to present in this section SmallFactorial and Mandel-
brot because they exhibit different behaviour: the former shows
performance improvements with our heuristics with respect to
the baseline compiler; the latter shows that Slow-to-End has com-
parable performance than the baseline while Pettis-Hansen sees
a noticeable degradation. Performance effects seem to be indeed
related to the cache behaviour.
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Figure 7: Generic Micro Benchmarks in milliseconds
(b=Baseline, p=Pettis-Hansen, sl=Slow-to-End). Lower is bet-
ter.

Benchmark I-Cache Misses
SmallFactorial (b) 170.6M (1x)
SmallFactorial (ph) 151.3M (0.89x)
SmallFactorial (sl) 153.0M (0.9x)
Mandelbrot (b) 168.8M (1x)
Mandelbrot (ph) 218.8M (1.3x)
Mandelbrot (sl) 172.4M (1.02x)

Table 2: Instruction Cache Misses for the SmallFactorial
and Mandelbrot benchmarks. Numbers represent millions
of misses. Between parentheses the relative ration with re-
spect to the baseline. (b=Baseline, p=Pettis-Hansen, sl=Slow-
to-End)
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Figure 8: Game Suite Benchmarks in milliseconds
(b=Baseline, p=Pettis-Hansen, sl=Slow-to-End). Lower
is better.

5.5 Compile Time Analysis
Along with the run time of benchmarks, we measured also the num-
ber of methods compiled and the total time spent in compilation.
Most of the benchmarks present working sets of ~200 methods, and
total compilation time for all those methods fluctuates between 1
and 4 milliseconds, in all JIT compilers. Such compile times seems
an acceptable in comparison with the associated run time, and make
it difficult to assess associated overheads.
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Figure 9: Program Benchmarks in milliseconds (b=Baseline,
p=Pettis-Hansen, sl=Slow-to-End). Lower is better.

The more observable compile times in our measurements are
shown by the compiler benchmarks which exhibits a working set
of 1271 methods compiled. Our measurements report that the total
compilation time of all those methods using our baseline compiler
adds up to 8ms, while Slow-to-End is 17ms and Pettis-Hansen 24ms.

6 IMPLEMENTATION
We implemented our code reordering heuristics on top the Cogit
JIT compiler of the Pharo VM. The Cogit JIT compiler is a linear JIT
compiler that does not explicitly model a control flow graph (CFG).
The JIT has a separate code zone [HBGM06] and a generational
garbage collector. In this section we explain how we extended the
compiler to build a CFG during the bytecode parsing phase, and
how we extended the building of the intermediate representation
(IR) to mark slow paths.

6.1 Extending the Cogit Compiler with a CFG
The Cogit JIT compiler is a linear JIT compiler that includes three
main phases: a bytecode scan phase iterates the bytecodes of a
method to extract meta-data from them, a bytecode parsing does
an abstract interpretation of the bytecodes performing a stack to
register IR transformation and a code generation phase computes IR
instruction offsets and outputs the final machine code. Moreover,
the Cogit JIT compiler does not explicitly model a control flow
graph (CFG): conditional jump instructions of the IR have a single
jump target and fallthrough edges are implicit.

We extended the compiler with a CFG by doing fourmain changes:
(1) identify basic block leaders during the bytecode scan phase, (2)
create basic blocks when bytecode parsing hits a leader instruc-
tion or when jump instructions are created, (3) turn fallthrough
edges into explicit jumps on conditional jumps and (4) remove
redundant fallthrough jumps after code reordering. With these
changes, fallthrough edges are turned to explicit jumps in (3) and
code reordering can be applied safely. Otherwise if a fallthrough
edge moves it would fall through a different basic block. After code
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reordering, jump instructions representing fallthrough edges are
removed as a peephole optimization.

6.2 Marking Slow Paths
Pettis-Hansen and Slow-to-End have different requirements on how
to mark slow paths in the CFG. On the one hand Pettis-Hansen
requires annotating edges in the CFG, on the other hand Slow-to-
End requires annotating uncommon basic blocks.

In both cases, we took advantage of the compiler’s IR building
schema. The Cogit compiler uses an internal DSL to express instruc-
tions in an at&t-like two-address-code fashion. The DSL works as
an instruction builder creating IR instructions behind the scenes.

To mark slow paths we extended the IR building DSL:
Pettis-Hansen. We introduced new building methods to the DSL

to create jump instructions with an explicit weight. We ex-
tended existing jump instructions to have a default weight. In
the case of instructions that generally mark slow paths (e.g.,
overflow checks), the default weight is the lowest weight.

Slow-to-End. We hooked into those places that mark the begin-
ning of slow basic blocks and marked those blocks as slow.

7 RELATEDWORK
Code Layout optimization Algorithms Pettis-Hansen [PH90]
proposed more than three decades ago two heuristics for code
layout optimization, now known as Pettis-Hansen top-down and
Pettis-Hansen bottom-up, and usable for inter-procedural and intra-
procedural optimization. The goal of these intra-procedural op-
timizations is to maximize fallthrough branches. Pettis-Hansen
bottom-up has been presented in this paper in Section 3. These
code layout optimization algorithms are profile-guided optimiza-
tions (PGO): they use profiling information, taken either offline or
online, to assign weights to the call graph edges.

Newel and Pupyrev show that incorrect weighting may impose
suboptimal performance on instruction and I-TLB caches [NP20].
Newell applies machine learning to discover the cache behavior
and select optimal code layouts.

Huang et al. [HLM06] developed efficient algorithms for code lay-
out that run up to 6000 times faster than the popular Pettis-Hansen
algorithm. However, they require an expensive instrumentation to
gather their profile data.

Offline PGO Intra-procedural code layout optimization. The
HipHop Virtual Machine (HHVM) uses offline profiling to perform
code layout optimization [OM17, OL21]. They have used offline
profiling information to drive the reordering of the VM code that
is compiled ahead of time. Recently they have taken advantage
of their deployment stages to take representative profiles while
testing and accelerate their warmup times. In [OL21], Ottoni et
al. present JumpStart that improves VM warmup and steady-state
performance by sharing VM profile data gathered during the early
phase of new Facebook website deployment.

Ottoni et al. [OM17] study the impact of function placement. By
using sample-based profiling, this methodology follows the same
principle behind AutoFDO, i.e. using profiling data collected from
unmodified binaries running in production, which makes it appli-
cable to large-scale binaries. They first evaluate the impact of the

traditional Pettis-Hansen function-placement algorithm on a set of
widely deployed data-center applications. They show an average
improvement of 2.6%. In addition they present new algorithm, called
C3. C3 places a function as close as possible to its most common
caller, and we do so following a priority from the hottest to the
coldest functions in the program.

OnlinePGOcode layout optimization. Formore than two decades
now, such techniques have been adapted to run-time optimiza-
tions [Arn02, ATDM03, SOT+00].

Chen and Leupen applied dynamic code layout techniques to
improve procedure placements based on their invocation order at
run-time [CL97]. Scales proposes to use run-time information to
dynamically reorder procedures [Sca98]. Scale’s system instruments
procedure calls and copies procedures to new locations dynamically,
which incurs in a high run-time overhead.

Huang et al. [HBGM06] present a dynamic code reordering for
the Jikes optimizing JIT compiler that takes online branching sta-
tistics to guide different code layout optimizations such as intra-
procedural code splitting.

Missing and inaccurate profiles. Levin et al. present low over-
head sampling techniques to handle the lack of profiling informa-
tion. They propose an approach based on the minimal cost circula-
tion problem [LNH08].

This work deals with our same challenge: doing code layout
when profiling information is not present.

Code cache optimization. At the level of a virtual machine and
its JIT, Huang et al. [HBGM06] explore the impact on separating
generated code from heap objects. They develop a dynamic code
reordering system using online information to improve instruction
locality. DCR has three optimizations: (1) interprocedural method
separation; (2) intraprocedural code splitting; and (3) code padding.
DCR uses the dynamic call graph and an edge profile that most
VMs already collect to separate hot/cold methods and hot/cold code
within a method. It also puts padding between methods to minimize
conflict misses between frequent caller/callee pairs. Extensive sim-
ulation and run-time experiments show that a simple code space
improves average performance on a Pentium 4 by around 6% on
SPEC and DaCapo Java benchmarks. These programs however have
very small instruction cache footprints that limit opportunities for
DCR to improve performance. Consequently, DCR optimizations on
average show little effect, sometimes degrading performance and
occasionally improving performance by up to 5%. Our JIT compiler
already separated code space from other, therefore such element
does not influence our reordering analysis. In addition, our JIT
compiler does not split hot/cold methods and hot/cold code within
a method (such optimizations does not show real impact).

Branch alignment. Several works extended the basic block re-
ordering algorithms of Pettis Hansen to add information about
cache padding. Such algorithms are often called branch alignment
optimizations: Calder and Grunwald [CG99] extend Pettis Hansen’s
approach to basic block reordering and propose an improved branch
alignment algorithm that takes into consideration the architectural
cost model and the branch prediction architecture when performing
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the basic block reordering. Torrellas et al. [TXD98] characterize
the locality patterns of the operating system code and shows that
there is substantial locality. They propose an algorithm to present
these localities and reduce interference in the cache. Ramirez et
al. [RLPN+99] design a profile-based code reordering technique
which targets a maximization of the sequentiality of instructions,
while still trying to minimize instruction cache misses [RLpN+98]:
their approach, Software Trace Cache (STC), reorders basic blocks
to change taken branches to non-taken ones, moves unused basic
block out of the execution path and inline basic blocks from the
most popular functions. To reduce instruction cache miss rate, it
map the most popular traces in a reserved area of the i-cache. Their
approach is based on program profiles and cross functions. In addi-
tion, it is unclear how basic blocks with low execution frequency
are placed.

Lazy Basic Block Versioning. Chevalier et al. [CBF15, CBF16]
optimize type tests by proposing the lazy generation of basic block
versioning and generated code patching. This approach uses basic
block versioning as a way to propagate type information. At run
time basic blocks are compiled in a lazy fashion, making code lay-
outs to reflect the dynamic execution of the code.

8 CONCLUSION
In dynamically-typed languages, baseline JIT compilers often use
techniques such as static type predictions to optimize common ex-
ecution paths using heuristics [DS84, Hol94]. Such code patterns
imply that the compilation introduces implicit slow paths: execu-
tion paths that are defined by the language implementation and
not by a developer. Further removing completely those implicit
slow paths from the main execution path requires code reordering
techniques [PH90, CT03], with the ultimate goal of maximizing
fallthrough branches. However, such heuristics are generally de-
signed to work with profiling information which is not available
when the baseline JIT sets off. Newel and Pupyrev showed recently
that they may impose suboptimal performance on instruction and
I-TLB caches [NP20].

Based on the insight that implicit slow paths are known at compile-
time, and thus do not require run-time profiles, we experimented
with two different code reordering algorithms: Pettis-Hansen aug-
mented with static code layout heuristic, and a slow-to-end heuris-
tic. Our results show that many micro-benchmarks improve their
run time by 1.2x. Benchmarks governed by more expensive compu-
tations such as message sends show in general no visible perfor-
mance improvement nor degradations, while very few cases show
degradations of up to 1.2x. We show that such static heuristics have
low performance impact and could have potential when static type
predictions are present in the JIT compiler.
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