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Generalization bounds for nonparametric regression
with β−mixing samples

David Barrera ∗† Emmanuel Gobet ‡

Abstract

In this paper we present a series of results that permit to extend in a direct
manner uniform deviation inequalities of the empirical process from the independent
to the dependent case characterizing the additional error in terms of beta-mixing
coefficients associated to the training sample. We then apply these results to some
previously obtained inequalities for independent samples associated to the deviation
of the least-squared error in nonparametric regression to derive corresponding gen-
eralization bounds for regression schemes in which the training sample may not be
independent.

These results provide a framework to analyze the error associated to regression
schemes whose training sample comes from a large class of β−mixing sequences,
including geometrically ergodic Markov samples, using only the independent case.
More generally, they permit a meaningful extension of the Vapnik-Chervonenkis and
similar theories for independent training samples to this class of β−mixing samples.
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1 Introduction and background

This paper is a continuation of [BG19], where we addressed the problem of studying the
error associated to a least-squares regression scheme in the nonparametric, distribution–
free setting assuming that the training sample is independent.

1.1 The problem

Let n ∈ N := {1, 2, . . . } be a natural number (the “sample size”), let the “training sample”
of “explanatory inputs” Xk and “responses” Yk

Dn := ((Xk, Yk))k∈{1,...,n}

be a (not necessarily i.i.d.) random sequence in S ×R, where S is a Polish space, defined
on the probability space (Ω, E ,P) , and let Fn be a family of Borel-measurable functions
S → R (the “space of hypotheses”). For k ∈ {1, . . . , n}, denote by PXk [respectively
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P(Xk,Yk) ] the law of Xk [respectively (Xk, Yk)], assume that Yk ∈ L2
PXk

, and let Φk : S → R
be a version of the conditional expectation of Yk given Xk, thus

Φk(Xk) = E [Yk|Xk] , P− a.s.

Given such (n,Dn,Fn), a natural candidate to a “simultaneous” estimator within Fn
of the regression functions Φk is the empirical regression function Φ̂n defined as a solution
to the least-squares regression problem

Φ̂n ∈ arg min
f∈Fn

1

n

n∑
k=1

|f(Xk)− Yk|2. (1.1)

Indeed, by the orthogonal decomposition

E
[
|Yk − f(Xk)|2

]
= E

[
|Yk − Φk(Xk)|2

]
+ E

[
|f(Xk)− Φk(Xk)|2

]
,

the solutions Φ∗n to the problem

Φ∗n ∈ arg min
f∈Fn

1

n

n∑
k=1

E
[
|f(Xk)− Φk(Xk)|2

]
(1.2)

are the same as those to the problem

Φ∗n ∈ arg min
f∈Fn

1

n

n∑
k=1

E
[
|f(Xk)− Yk|2

]
, (1.3)

from where it follows that (1.1) and (1.2) are approximately the same problem provided that
the deviations of the random variables inside the arg min in (1.1) from their expectations
inside the arg min of (1.3) are (in some appropriate sense) “negligible” uniformly in Fn.

In this context, the purpose of [BG19]1 was roughly speaking to show that, when Dn

is a sequence of independent random variables, such deviations can be properly controlled
provided a control on the complexity of Fn2 and a uniform bound of the response variables
Yk, and to describe some of the consequences of these controls for the problem of (weak and
strong) rates and consistency, including the case where the response sequence (Yk)k is not
bounded. The innovation in [BG19] with respect to the classical i.i.d. case is, therefore,
in the non-stationarity of Dn.

1Where we assumed S = Rd, which is nonetheless largely irrelevant for the arguments.
2As measured typically by uniform entropy estimates, see Definition 3.5.
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In continuation with this, we aim here at deriving some bounds for the probability of
uniform deviations like

P

(
sup

(g1,...,gn)∈G1,...,n

1

n

n∑
j=1

(
agj(Xj, Yj) + b

∫
gj(x, y)PXj ,Yj(dx dy)

)
≥ t

)
(1.4)

when the training data Dn is not necessarily stationary, nor independent, but satisfies
some β-mixing properties (particularly those in Definitions 2.7 and 2.8). Here a, b, t are
scalar, G1,...,n is a family of vectors (g1, . . . , gn) whose entries are measurable functions
S × R→ R, and the complexity of G1,...,n is controlled in the same ways as in [BG19].

We will show here how to “lift” the deviation inequalities in [BG19] from the inde-
pendent to the dependent case using decoupling techniques associated to the β− mixing
coefficients of the training sample, and we will generalize some of the consequences for
weak consistency and bounds on weak errors obtained in [BG19] for independent train-
ing samples using these ideas. When interpreted in the Markovian setting, these results
provide error rates and consistency theorems for least-squares regression schemes under
important ergodicity conditions on Dn. See for instance [TT96], [JR02], [DFG09], and the
references therein.

1.2 Motivation

Our study is motivated in particular by the following application. In [FGM17], the au-
thors investigate the numerical computation of the mean of a function of a conditional
expectation in a rare-event regime, which takes the form

I := E
[
f(X̃,E

[
Y |X̃

]
)|X̃ ∈ E0

]
,

where X̃ and Y are random variables, and the event E0 ∈ E is rare (i.e. P(X̃ ∈ E0) small).
This problem is prominent in financial/actuarial risk management when, as often, one has
to deal with future risk exposure (modelled by E

[
Y |X̃

]
=: Φ(X̃)) in extreme configu-

rations (described by the set E0). The above can be rewritten as I = E [f(X,E [Y |X])]

where X has the conditional distribution of X̃ given {X̃ ∈ E0}. The computational strat-
egy developed in [FGM17] consists in sampling n times (X, Y ), computing the empirical
regression function Φ̂n(x) ≈ E [Y |X = x] with these data, and averaging out the results
over the explanatory sample X1, . . . , Xn. One specific issue is that, E0 being rare, naive
i.i.d. sampling of X (with acceptance-rejection on E0 ) is quite inefficient and one has
to resort to a MCMC technique. The new X1, . . . , Xn are thus not independent, nor
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stationary, but they fulfill some good β-mixing properties to ensure the approximation
with respect to the (target) distribution of X. The convergence analysis is developed in
[FGM17] and a upper bound on the Mean Square empirical norm

E

[
1

n

n∑
j=1

(
Φ̂n(Xj)− Φ(Xj)

)2]

is derived.
Using the current results of this work, we will be able to extend the scope of validity

of the error analysis in [FGM17] in two directions: first, allowing the functions class for
computing Φ̂ to be more general (and not only a linear space as in [FGM17]), including
neural networks for instance; second, estimating the out-of sample error (as opposed to
the in-sample error – aka empirical error).

1.3 Contributions of this paper

The results in this paper contribute to the existing literature mainly in two directions,

1. A systematic presentation of the “lifting” of uniform deviation inequalities via Berbee’s
lemma. This occupies Section 2, whose main results are Theorems 2.11 and Propo-
sition 2.14.

While the main purpose of this part of the paper is to permit a smooth and clear
transition from some of the results under independence treated in [BG19] to the cor-
responding generalizations to dependence with β−mixing errors (achieved in Section
3), we aimed to present the results in this section in a manner that makes clear how
these ideas go far beyond in generality than the kind of applications for which they
are aimed at here. In this sense, we hope that they might serve as a useful refer-
ence for other works in which deviation inequalities for nonindependent sequences
are sought for, provided that their independent counterparts are known or clearly
obtainable.

2. Weak rates and consistency theorems for least-squares regression schemes with non-
independent training samples. This part, developed in Section 3, consists in an
application of the results from Section 2 to some of the results and proofs in [BG19].

The conclusions obtained (see for instance Theorems 3.6 and 3.10) allow us to see
how some the estimates obtained in [BG19] for independent samples generalize to
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estimates for dependent samples3 via the results from Section 2. These estimates
are meaningful for a class of training samples with a kind of “superlinear β−mixing
rate” (see (3.17) and (3.18)), providing in particular non-parametric, distribution-
free estimates for geometrically ergodic Markovian training samples.

1.4 Background literature

Concentration and deviation inequalities for nonindependent samples constitute a topic of
considerable research, in particular due to the importance of the Markovian case at the
level of applications.

We start by mentioning [RM10], which uses basically the same coupling ideas developed
in the present paper4 to extend some of the inequalities in [GKKW02] for i.i.d. samples to
the stationary β−mixing case and to describe the respective consequences for estimates of
weak errors of least–squares regression schemes, including some penalisations. Our results
give estimates that cover in the nonstationary case the corresponding estimates in [RM10]
with a very significant improvement on the constants involved. These gains come in part
from the work developed in [BG19].

We also mention [Ada08] (see also references therein). This paper presents first a
deviation estimate ([Ada08, Theorem 4]) for independent samples under the assumptions
that the functions in the space of hypotheses are centered with respect to the marginal laws
of the sample and satisfy some bounds in terms of Orlicz norms, and then develops similar
estimates ([Ada08, Theorems 6 and 7]) for uniformly bounded Markov samples under a
certain “minorization condition” ([Ada08, Section 3.1]). In contrast with our results, the
estimates for independent samples in [Ada08] cover cases in which the family of hypotheses
is not uniformly bounded. Our estimates, on the other side, do not require the centering of
the hypotheses with respect to the marginal laws in the independent case, and give rates
for any exponentially β−mixing sequence of samples even if it is not Markovian, covering
in particular the geometrically ergodic Markov chains in [Ada08]. We point out also that
our applications (mainly Theorem 3.6) give bounds which are upper estimates on the
probability of some individual large deviation of the empirical processes parametrized by
the family of hypotheses from its corresponding mean, whereas the uniform estimates in
[Ada08] ([Ada08, Theorems 4 and 7]) are rather estimates on the probability of deviations
of the supremum of these empirical process from its mean: we will refer to these as “tail

3 It is important to emphasize that, by reasons of space, in this process of generalizing we did not
exhaust all the results available in [BG19]. The arguments for those treated here indicate how to extend
the ones left aside.

4Our developments were indeed considerably inspired by the argument in [RM10].
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estimates” in the rest of this section.
In [KM17], a coupling argument similar to the one in the present paper is used to

address the problem of generalisation bounds for unspecified loss functions of regression
algorithms in term of Rademacher complexities and β−mixing coefficients associated to
dependences in the training sample, in a setting whose generality is approximately the
same as that in our Section 2. The argument in [KM17], which proceeds via McDiarmid’s
inequality (see footnote 6 below), has the advantage of simplicity and generality compared
to ours, but the rate obtained (roughly speaking 1/

√
n where n is the sample size) is

suboptimal for the (square) loss function considered in our paper (we obtain roughly the
rate log n/n in our analysis). For further comparison, notice again that our analysis does
not proceed via tail estimates (see the comparison with [Ada08] before), and that we also
cover the case of hypotheses depending on the index of the sample (the “time”).

At a more ergodic theoretical level, let us mention the result in [DN93], where it is
proved that the uniform convergence of averages holds for β−mixing samples (with sta-
tionary marginals) provided that it holds for i.i.d. samples with the same marginals when
the class of functions in consideration has finite Vapnik-Chervonenkis (VC) dimension
(as defined here in Example 3.7). Our paper can in part be considered a continuation
of this story towards the investigation of rates of convergence, with more freedom in the
independence assumption but with restrictions on the speed of mixing.

Let us comment briefly on the related research about these rates. Rates of uniform
convergence to zero for the centered averages were for instance investigated in [Yuk86]
(see also references therein), where the sample sequence is a φ−mixing (and therefore
β−mixing) process whose φ−mixing coefficients satisfy certain growth conditions, and
where the class of hypotheses is assumed to satisfy some “weak metric entropy” conditions
and some controls on the associated maximal variance (see [Yuk86, Conditions (1.1)–(1.4),
(1.6), and (1.8)–(1.10)]). Another instance of this story, closer to our paper, is [Yu94],
which works under a general framework and via techniques that are quite similar to the
ones here. It considers a case in which the sample sequence is β−mixing under a decay
of the β−mixing coefficients that can be slower than ours, and it is also an interesting
source of additional references. The results in [Yu94] complement our results in so far
as [Yu94] considers slower mixing rates, and are complemented by our results in so far
as [Yu94] relies on the assumption of stationary samples and time–independent spaces of
hypotheses, which we dispense with here.

Like our own, many of the aforementioned papers proceed via comparisons with the
corresponding results for the independent case and clever bounds on the additional error
induced by dependence. The argument for the independent case typically depends on
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estimates of probabilities like (1.4) when

G1,...,n = {(g1, . . . , gn)} (1.5)

consists of a single point (“atomic estimates”) and the training sequence Dn is indepen-
dent, from where the uniform estimates (for more general G1,...,n) follow via finitely many
applications of the atomic estimates using, for instance, “symmetrisation”, “chaining”, and
estimates of covering or bracketing numbers (“entropy estimates”). See for instance [Pol90]
for an introduction to these ideas.

These estimates have nonetheless been studied “directly” under classical dependence
conditions in several works. The arguments in [Yuk86], for instance, depend on a result
([Yuk86, Lemma 2.1]) which is an extension to the φ−mixing case of Bernstein’s inequality.

But the developments in this directions have continued until recent years. One example
is [MPR09] (see also references therein), whose results ([MPR09, Theorems 1 and 2])
imply that, if each gj in (1.5) is bounded and a = −b = 1 (centered case), and if the
α−mixing coefficients associated to the sample sequence decay exponentially ([MPR09,
Condition (1.3)]5), then a Bernstein–type inequality bound holds (under (1.5)) at the
right–hand side of (1.4). A second and final one is [DG15], where it is shown that, in the
context of irreducible and aperiodic Markov chains, the assumption of geometric ergodicity
is equivalent to the satisfaction of McDiarmid-type inequalities for separately bounded
functionals of the observables6 ([DG15, Theorem 2 and Remark 4]). One of the conclusions
in [DG15] is that, for the small set specified in [DG15, Definition 1], these inequalities hold
(also) under the conditional law at every starting point in such set and for the deviations
of the expectation with respect to such conditional law.

For the case of suprema of partial sums, the results explained in Section 2.6 are compa-
rable with those in [DG15]: they give analogous consequences for the probability of large

5This condition is weaker than (2.13) below for γ = 1, but we remind that the estimates in [MPR09]
are not uniform.

6 If (Xk)k is the Markov chain in consideration, this amounts to the satisfaction of estimates of the
type

P (|K(X1, . . . , Xn)− E [K(X1, . . . , Xn)] | > t) ≤ C1 exp

(
−C2t

2/

n∑
k=1

L2
k

)

where K : Rn → R is any (Borel-measurable) function such that x 7→ K(x1, . . . , xk−1, x, xk+1, . . . , xn) is
bounded by Lk > 0 when x1, . . . , xk−1, xk+1, . . . , xn is fixed, for every k ∈ 1, . . . , n. Notice in particular
that this covers tail estimates like those in [Ada08] and [KM17] when the entries of G1,...,n are uniformly
bounded. For potential comparisons of [DG15] with our results see again the comparison with [Ada08]
and [KM17] above.
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deviations7 which rely only on the rate of decay of the β−mixing coefficients associated to
the underlying sequence and on the corresponding estimates from the independent case.
These estimates admit therefore as a special case that in which the training sample comes
from a Markov chain as those in [DG15].

Organization of the paper. The rest of the paper is organized as follows: we begin
Section 2 by introducing some notational conventions that will be used in the forthcoming
pages. We explain next, also in Section 2, how to transport uniform deviation inequali-
ties from the independent to the dependent case estimating the additional error via the
β−mixing coefficients. Section 3 presents some applications to problems in nonparametric
least–squares regression under dependent training samples, in continuity with some of the
independent-case considerations in [BG19].

2 Bridge between β−mixing and independent sequences

Our strategy for deriving concentration-of-measure inequalities for dependent sequences is
to leverage on decoupling techniques and deviation inequalities for independent sequences
(as those of [BG19]). These inequalities with dependent sequences will take the form of
Lemma 2.1 and Proposition 2.14, which constitute the main result of this section. The
derivation is made in several steps.

2.1 Notation and conventions

The following conventions will be used in this paper

• We depart from a probability space (Ω, E ,P) supporting all the random variables
that will appear in our statements and proofs (the existence of this space can be
verified a posteriori).

• We denote by N = {1, 2, . . . , } the set of positive integers.

• For k, n ∈ N, we will sometimes denote k : n := {k, . . . , n} (k : n := ∅ if k > n), and
we use the notation c1:n for a sequence (n−tuple) of elements (c1, . . . , cn).

• More generally, given a subset J ⊂ N, cJ := (cj)j∈J denotes a sequence indexed by J ,
which we will call a J−tuple. The cardinality of J is denoted by |J |. If cJ = (cj)j∈J

7As opposed, again, to the tail estimates that follow from [DG15].
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is given and J ′ ⊂ J , we will denote the projection of cJ onto the J ′ coordinates by
cJ ′

8. Thus for cJ := (cj)j∈J ,

cJ ′ = (cj)j∈J ′ . (2.1)

• For a subset J ⊂ N and a family of sets {Cj}j∈J indexed by J , we use the notation

C⊗J := {cJ = (cj)j∈J | ∀j ∈ J : cj ∈ Cj} (2.2)

for the product of the Cj’s9.

• Sometimes10 we will deal with sets FJ of J-tuples which are not necessarily a product
of sets. In all of these cases the indexing set (i.e., J) of the elements of FJ will be
indicated in the notation. In analogy with (2.1), given such FJ and J ′ ⊂ J , FJ ′
denotes the projection of FJ into the J ′ coordinates

FJ ′ := {fJ ′ : fJ ∈ FJ}, (2.3)

where each fJ ′ is given by (2.1). Thus for instance, for the set in (2.2) and J ′ ⊂ J ,
we have (C⊗J )

J′
= C⊗J ′ .

• We reserve the character S for Polish spaces with variations from taking products
as in the above, and we will usually denote by Z a generic random vector in S

with compatible variations when S is a product space. Thus ZJ typically denotes
a random element of a product space S⊗J . This is, ZJ = (Zj)j∈J with Zj : Ω → Sj
E−measurable and Sj a Polish space.

• If Z is a random element of S and B a Borel set of S, we use the standard notation
{Z ∈ B} := {ω ∈ Ω : Z(ω) ∈ B} for the preimage of B (which is a set in E). We
use similarly the standard notation PZ for the law of Z: given a Borel set B ⊂ S,

PZ(B) := P({Z ∈ B}).

• For a Polish space S, LS denotes the space of Borel-measurable functions S → R.
If {Sj}j∈J (J ⊂ N) are Polish spaces, set L⊗JS := Πj∈JLSj . A subset of L⊗JS will

8Of course, we will be careful to use properly the notation to avoid confusions: in no place we will for
instance denote two different tuples as cJ and cJ′ , except if their entries with index in J ∩ J ′ are equal.

9The same care will be taken to avoid confusion here: we will always use the same character (here
“C·”) for the sets involved in the product.

10Especially for function hypotheses, see for instance (2.4) below.
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be called a sequential family of functions compatible with S⊗J , or simply a sequential
family of functions when there is no ambiguity for {Sj}j∈J . One relevant example is
the sequential family of functions

GF ,1:n := {gf,1:n : f ∈ F} (2.4)

in (3.7).

• When needed, we will operate with sequential families of functios in a componentwise
manner, thus given fJ = (fj)j, f

′
J = (f ′j)j in FJ , where FJ is a sequential family of

functions, fJ + fJ ′ = (fj + f ′j)j, fJf ′J := (fjf
′
j)j, |fJ | := (|fj|)j, and so on.

• A couple (ZJ ,FJ) where ZJ is a random element of S⊗J and FJ is a sequential family
of functions compatible with S⊗J is called a composable pair. In this definition, the
reference to S⊗J is implicit and omitted for the sake of convenience. Notice that if
(ZJ ,FJ) is a composable pair and J ′ ⊂ J , then (ZJ ′ ,FJ ′) is a composable pair.

• The empirical mean and the average mean associated to the composable pair (ZJ , fJ),
denoted respectively by AZJfJ and µZJfJ are defined, for nonempty finite J , as

AZJfJ :=
1

|J |
∑
j∈J

fj(Zj), µZJfJ =
1

|J |
∑
j∈J

∫
Sj

fj(z)PZj(dz).

(the second average is defined only for those fJ where it makes sense, including the
possible value ∞). With this convention, we will use the short notation

(aAZJ + bµZJ )fJ := aAZJfJ + bµZJfJ =
a

|J |
∑
j∈J

fj(Zj) +
b

|J |
∑
j∈J

∫
Sj

fj(z)PZj(dz),

for any real constants a, b.

• When convenient, we identify a function f with the constant sequence of functions
(fj)j∈J where fj = f for all j ∈ J , which together with the above permits, for
instance, an unambiguous interpretation of the object “µZJf ”.

2.2 “Union bound” for deviations of averages

We begin with the following elementary lemma, which shows that estimates on the dis-
tribution function associated to suprema of (generally non–centered) empirical means can
be obtained from corresponding estimates on the empirical means over the indexes in a
partition of the set {1, . . . , n}.
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Lemma 2.1 (“Union bound” for deviation of averages). Let n ∈ N, let J be a partition
(by nonempty subsets) of {1, . . . , n} and let (Z1:n,G1:n) be a composable pair. Then for
every (a, b, t) ∈ R3

P
(

sup
g1:n∈G1:n

(aAZ1:n + bµZ1:n)g1:n ≥ t

)
≤
∑
J∈J

P
(

sup
gJ∈GJ

(aAZJ + bµZJ )gJ ≥ t

)
. (2.5)

Proof. The proof is easy: for every J ∈ J , denote γJ := |J |/n. Notice that
∑

J∈J γJ =

1. With this, (2.5) is an immediate consequence of the subadditivity of the supremum,
linearity, and the union bound:{

sup
g1:n∈G1:n

(aAZ1:n + bµZ1:n)g1:n ≥ t
}

=
{

sup
g1:n∈G1:n

∑
J∈J

γJ(aAZJ + bµZJ )gJ ≥
∑
J∈J

γJt
}

⊂
{∑
J∈J

γJ sup
gJ∈GJ

(aAZJ + bµZJ )gJ ≥
∑
J∈J

γJt
}
⊂
⋃
J∈J

{
sup
gJ∈GJ

(aAZJ + bµZJ )gJ ≥ t
}
.

The above lemma shows that if we can find appropriate subsampling partition J for
which we have an exponential (for instance) inequality for the deviation probability, the
same type of inequality holds for the full sample {1, . . . , n}. The construction of the
partition J will be made using the β-mixing properties of the sequence Z1:n, which is now
discussed.

Remark 2.2 (Generalization under a convex-like estimate). Lemma 2.1 can clearly be
extended to any family of (Borel-measurable) functionals {KJ}J⊂N, KJ : S⊗J → R with the
property that for every disjoint family {J1, . . . , Jr} ⊂ 2N and some nonnegative γ1, . . . , γr
with

∑
k γk = 1, KJ(ZJ) ≤

∑
k γkKJk(ZJk), P−a.s., where J := ∪kJk. For such a family

one has the inequality

P (KJ(ZJ) ≥ t) ≤
r∑

k=1

P (KJk(ZJk) ≥ t),

for every t ∈ R, every J ⊂ N, and every partition J1, . . . , Jr of J . See also Remark 2.12
below.

2.3 The β−mixing coefficients

In this section, we introduce some facts about β−mixing coefficients that will be useful
later. For an account on mixing properties, we refer the reader to [DDL+07, Dou12,
DMPS19].
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2.3.1 Basic definitions and properties

Definition 2.3 (β−mixing coefficients). Let E1 and E2 be two sub-sigma algebras of E.
The β−mixing coefficient β(E1, E2) between E1 and E2 is defined as

β(E1, E2) := E
[
ess sup

E1∈E1
|P(E1)− P[E1|E2]|

]
. (2.6)

For a definition of the essential supremum, “ess sup”, of a family of random variables,
see [Nev75, Proposition VI-1-1]. It follows in particular that there exists a countable
family {E1,n}n ⊂ E1 such that

β(E1, E2) = E
[
sup
n
|P(E1,n)− P[E1,n|E2]|

]
. (2.7)

Remark 2.4 (A characterization. Properties.). If {E1,n}n is the family in (2.7) and E2 is
countably generated, then

β(E1, E2) = E
[
sup
n
|PE1,n − P (E1,n|E2)|

]
=

1

2
sup

(P1,P2)∈PE1×PE2

∑
(E′1,E

′
2)∈P1×P2

|P (E ′1)P (E ′2)− P (E ′1 ∩ E ′2)|, (2.8)

where PEk (k = 1, 2) denotes the family of finite partitions of Ω by Ek−sets11. This
representation holds in particular if Ek := σ(Zk) is the sigma algebra generated by Zk,
where Zk (k = 1, 2) is a random element of a Polish space Sk.

Additionally, it follows that

(i) The β−mixing coefficients are symmetric: β(E1, E2) = β(E2, E1).

(ii) β(·, ·) is increasing in each component: if E ′k ⊂ Ek (k = 1, 2) then

β(E ′1, E ′2) ≤ β(E1, E2). (2.9)
11This can be seen for instance by noticing that there exist increasing families of finite fields {Ej,k}k

(j = 1, 2) with ∪kEj,k ⊂ Ej such that

β(E1, E2) = lim
k

lim
l
β(E1,l, E2,k),

and using elementary considerations on β(E1, E2) when Ej are finite fields. For a proof under slightly more
restrictive hypotheses, see [DMPS18, Proposition F.2.8].
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(iii) β(E1, E2) = 0 if and only in E1 and E2 are P−independent.

The first two properties follow by the equality between the extreme sides of (2.8). The
third one is clear even from the general definition (2.6).

2.3.2 β− coefficients of m−dependence

We now extend the previous considerations to a case involving families of sub-sigma alge-
bras related to a sequence of random variables Z1:∞. The aim is to set a precise discussion
involving some β-mixing coefficients associated to “the present” and “the past” of this
sequence.

Definition 2.5 ( β− coefficients of m−dependence). Given a subset J ⊂ N, a random
element ZJ of S⊗J , and (m, l) ∈ N× N, the l−th β−coefficient of m−dependence of ZJ is
defined as

βZJ (m, l) := β(σ(ZJ∩[1,l−m]), σ(ZJ∩{l})),

where the right–hand side is defined in (2.6) and with the convention Z∅ := ∅. The maximal
β−coefficient of m−dependence is denoted by βZJ (m):

βZJ (m) := sup
l∈N

βZJ (m, l). (2.10)

Thus for l ∈ J , βZJ (m, l) gives the β−mixing coefficient between Zl and the “distant
past” (at least m units before l) of ZJ . Similarly, βZJ (m) is the smallest upper bound of
the β−mixing coefficients of ZJ within “some present” and its (at least m units) “distant
past”.

We list, for future reference, some properties of βZ·(·, ·) and βZ·(·).

Properties 2.6 (of βZJ ).

1. If l /∈ J then βZJ (m, l) = 0 for all m, see (iii) in Remark 2.4.

2. For fixed l, βZJ (·, l) is decreasing. Thus (βZJ (m))m is also decreasing.

3. A sufficient condition for βZJ (m) = 0 is the m−dependence of ZJ , i.e., the hypoth-
esis that for every l, ZJ∩[1,l] and ZJ∩[l+m,∞) are independent (this condition is not
necessary12). In particular, βZJ (·) ≡ 0 if the entries of ZJ are independent.

12 Choose random variables X,Y, Z with X independent of Y and X independent of Z but with Y +Z

not independent of X, choose X ′ independent of σ(X,Y, Z) and consider, for n = 4, J = {1, 2, 3, 4}, and
m = 2, the choices Z1 = X, Z2 = X ′, Z3 = Y , Z4 = Z).
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4. If J ′ ⊂ J , then βZJ′ (·, ·) ≤ βZJ (·, ·) (pointwise) by (2.9). If in particular Z1:n is a
random element of S⊗1:n and J ⊂ {1, . . . , n} is any subset then

βZJ (·, ·) ≤ βZ1:n(·, ·). (2.11)

5. Assume that the partition J of {1, . . . , n} is such that the indexes within each J ∈ J
are separated by a “minimal gap”, say 1 ≤ m < n,13 then the inequality

βZJ (m′) ≤ βZJ (1) ≤ βZ1:n(m) (2.12)

holds for all m′ ∈ N and all J ∈ J . The first inequality follows from Property 2, the
second follows from Property 1, the inequality (2.11), and the fact that for all J ∈ J
and all l ∈ J , J ∩ [1, l − 1] ⊂ {1, . . . , l −m}.

2.3.3 Examples

Of particular interest for us are the following mixing hypotheses on the rate of decay of
βZ·(·).

Definition 2.7 (Sub exponentially β−mixing process). Let Z1:∞ be a random element of
S⊗1:∞. Z1:∞ is subexponentially β−mixing with parameters (a, b, γ) ∈ (0,∞) × (0,∞) ×
(0,∞) if for all m ∈ N

βZ1:∞(m) ≤ a exp(−bmγ). (2.13)

Definition 2.8 (Subpolinomially β−mixing processes). Let Z1:∞ be a random element of
S⊗1:∞. Z1:∞ is subpolinomially β−mixing with parameters (a, γ) ∈ (0,∞)× (1,∞) if for all
m ∈ N

βZ1:∞(m) ≤ am−γ. (2.14)

If Z1:∞ is a Markov Chain with state space S, then, by the Markov property,

βZ1:∞(m) = sup
n
β(σ(Zn), σ(Zn+m)).

Sufficient conditions for exponentially mixing rates (i.e. (2.13) holds with γ ≥ 1) of
Markov chains can be consulted also in [Bra05], [FM03a], [MT09, Chapter 16]. For suffi-
cient conditions implying (in the Markovian setting) subexponential β−mixing rates (2.13)
with γ ∈ (0, 1) or polynomial rates like (2.14), see for instance [TT96], [JR02], [FM03b],
[DFMS04], [DFG09], and the references therein.

13I.e., m is the smallest m′ such that, for any J ∈ J and any different j1, j2 ∈ J , |j1 − j2| ≥ m′.
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2.4 Berbee’s Lemma

The β−mixing coefficients measure, on a certain sense, the “(P−)distance from indepen-
dence” between two sigma–algebras. This notion is put forward in a more concrete way
by the following classical coupling result14 (see [Ber79, Corollary 4.2.5], [Dou12, Theorem
1, p.7]).

Lemma 2.9 (Berbee’s Lemma). Let (V,W ) be a random vector in S1×S2. There exists a
S2−valued random vector W ∗, distributed as W , independent of V , and with the property

β(σ(V ), σ(W )) = P(W 6= W ∗).

The above lemma admits the following (apparently) generalised version15:

Lemma 2.10 (Generalised Berbee’s Lemma). Given N ∈ N and a random sequence V1:N
of S⊗1:N , there exists a random sequence V ∗1:N with independent entries such that for every
1 ≤ k ≤ N ,

1. Vk and V ∗k have the same distribution, and

2.

P(Vk 6= V ∗k ) = β(σ(V1:k−1), σ(Vk)). (2.15)

(In particular, V1 = V ∗1 , P−a.s.)

Proof. We start with a preliminary observation: notice that if V1, V2, V are random vari-
ables with V independent of σ(V1, V2) then for any Borel set E2 ⊂ S2,

P (V2 ∈ E2|σ(V1)) = P (V2 ∈ E2|σ(V1, V )),

P−a.s. Using the characterization in the first equality of (2.8) (with obvious adjustments
on notation) and the symmetry of β(·, ·),

β(σ(V1, V ), σ(V2)) =E
[
sup
n
|P (V2 ∈ E2,n)− P (V2 ∈ E2,n|σ(V1, V ))|

]
14We omit specifications about the “richness” of (Ω,A), which are implicitly embedded in the introduc-

tory remarks.
15Whose proof, although developed independently, follows an argument resembling the one in [Vie97,

p.484].
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=E
[
sup
n
|P (V2 ∈ E2,n)− P (V2 ∈ E2,n|σ(V1))|

]
= β(σ(V1), σ(V2)).

(2.16)

Now we prove the statement. First, we assume that N ≥ 2 (otherwise the conclusion is
trivial, even without the vacuous property of independence, for V ∗1 := V1).

Let now V1:N be a random sequence in S⊗1:N . We will construct a sequence V ∗2:N satis-
fying, for all 1 ≤ k < N , the property P(k) defined by

P(k): The sequence V ∗k+1:N is such that, for k ≤ j < N ,

1. Vj+1 and V ∗j+1 are identically distributed with β(σ(V1:j), σ(Vj+1)) = P(Vj+1 6=
V ∗j+1).

2. The vectors V1:j and V ∗j+1:N are independent.

which is easily seen to be sufficient to prove the claim of Lemma 2.10 by defining V ∗1 := V1.
We will construct V ∗2:N by backward induction: start defining V ∗N by applying Lemma

2.9 with V = V1:N−1 and W = VN . This verifies the satisfaction of P(N-1).
Now, assume that P(k) has been verified by V ∗k+1:N for some 1 ≤ k < N . An applica-

tion of Berbee’s lemma with V := (V1:k−1, V
∗
k+1:N) and W := Vk guarantees the existence

of a random variable V ∗k distributed as Vk and independent of σ(V1:k−1, V
∗
k+1:N) such that

P(Vk 6= V ∗k ) = β(σ(V1:k−1, V
∗
k+1:N), σ(Vk)) = β(σ(V1:k−1), σ(Vk)),

where the last equality follows by an application of (2.16). The augmented sequence V ∗k:N
satisfies therefore P(k-1). After N − 1 steps this gives the desired construction.

2.5 A general estimate for decoupled averages

Our next result, Theorem 2.11, is an inequality relating the distribution function of certain
random variables defined by suprema and associated to a composable pair (Z1:n,G1:n) to
the corresponding distribution functions over sets of indexes in a partition J of {1, . . . , n}
and a “decoupling” of Z1:n over each one of the set of indexes in J .

Indeed, the inequality (2.5), combined with Lemma 2.10, allows us to relate distribu-
tion functions as in the left–hand side of (2.5) to a sum of similar distribution functions
which are defined for independent sequences, controlling the additional error with the
β−dependence coefficients associated to J in Definition 2.5.

Theorem 2.11. Let J and (Z1:n,G1:n) be as in Lemma 2.1. There exists a sequence Z∗1:n
with the following properties:
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1. For every k ∈ {1, . . . , n}, the distributions of Z∗k and Zk are the same.

2. For every J ∈ J , Z∗J is an independent sequence.

3. The inequality

P
(

sup
g1:n∈G1:n

(aAZ1:n + bµZ1:n)g1:n ≥ t

)
≤
∑
J∈J

(
P
(

sup
gJ∈GJ

(aAZ∗J + bµZJ )gJ ≥ t

)
+
∑
k∈J

βZJ (1, k)

)
.

(2.17)

holds for every (a, b, t) ∈ R3.

Proof. We start by an application of Lemma 2.1, the next step is a further estimate of the
right–hand side of (2.5) via Lemma 2.10.

Indeed, fix J ∈ J . We apply Lemma 2.10 to ZJ to construct Z∗J : if J := {j1, . . . , jN}
in increasing order, construct Z∗J by replacing Vk := Zjk in Lemma 2.10.

Properties 1. and 2. are immediate from this construction. Notice also that, by the
construction and (2.15),

P(Zk 6= Z∗k) = βZJ (1, k), ∀k ∈ J. (2.18)

Now, using the inclusion{
sup
gJ∈GJ

(aAZJ + bµZJ )gJ ≥ t

}
⊂
{

sup
gJ∈GJ

(aAZ∗J + bµZJ )gJ ≥ t

}
∪
⋃
k∈J

{Zk 6= Z∗k},

(2.17) follows from the union bound via Lemma 2.1 and (2.18).

Remark 2.12 (Complement to Remark 2.2). Let {KJ}J be a family of functionals as in
Remark 2.2, then exactly the same argument as in the proof of Theorem 2.11 gives that,
for every finite I ⊂ N and every partition J of I

P (KI(ZI) ≥ t) ≤
∑
J∈J

(
P (KJ(Z∗J) ≥ t) +

∑
k∈J

βZJ (1, k)

)
, (2.19)

where Z∗I satisfies properties 1. and 2. above (with {1, . . . , n} replaced by I).
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Remark 2.13 (Relationship with Bernstein’s method). Let {KJ}J be again as in Remark
2.2. Given a finite set J ⊂ N, a random element ZJ of S⊗J , a partition {J1, . . . , Jr} of J ,
and a partition I1, . . . , Is of {1, . . . , r}, denote, for every k ∈ {1, . . . , r}, J(Ik) := ∪s∈IkJs.
Then using an argument similar to the one in the proof of Theorem 2.11 it is easy to prove
that

P (KJ(ZJ) ≥ t) ≤
r∑

k=1

(
P
(
KJ(Ik)(Z

∗∗
J(Ik)

) ≥ t
)

+
∑
j∈Ik

β(ZJl )l∈Ik (1, j)

)
(2.20)

where

1. ZJk and Z∗∗Jk have the same distribution, for k ∈ 1, . . . , r.

2. For every fixed k ∈ {1, . . . , r}, the sequence (Z∗∗Jl )l∈Ik is independent.

Assume that n = 2am for some (a,m) ∈ N × N. Then one can group the sequence Z1:n

into 2m disjoint blocks J1, . . . , J2m of successive elements, each of length a, and classify
the blocks in “odd” and “even” blocks, which corresponds in (2.20) to taking I1 and I2
as (respectively) the odd and even numbers in {1, . . . , 2m}. An application of (2.20) (for
J = {1, . . . , n}) together with an easy adaptation of (2.12) gives the estimate (with a
slight abuse of notation)

P (K(Z1:n) ≥ t) ≤
2∑

k=1

P
(
K((Z∗∗Jl )l∈Ik) ≥ t

)
+ 2mβZ1:n(a),

where, for fixed k, each sequence (Z∗∗Jl )l∈Ik is independent. This is the key idea in “Bern-
stein’s partition method” (see for instance [KM17] and the references therein).

The most important difference between the partitions used in the estimates (2.19)
and (2.20) is that, in (2.19), there is dependence within the blocks (Z∗J)J∈J but there is
independence inside each block Z∗J . In (2.20) the situation is somewhat reversed: for fixed
k ∈ {1, . . . , r}, there is independence within the blocks (Z∗∗Jl )l∈Ik , but there is dependence
inside each block Z∗∗Jl . The reader is invited to consider the consequences of this difference
for what follows.

2.6 Abstract lifting of deviation inequalities

In this concluding part we present a result indicating how to “lift” deviation inequalities
from the independent to the (possibly) dependent case via Theorem 2.11. The purpose of
this result for what follows is to serve as an intermediate step towards the beta–mixing
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generalization of the deviation estimates proved in [BG19]. The notation and conventions
are those explained in Section 2.1.

Proposition 2.14 (Abstract lifting of deviation inqualities). Let n ∈ N, let (a, b, B) ∈
R× R× (0,∞], and let (Z1:n,G1:n) be a composable pair such that

sup
g1:n∈G1:n

sup
1≤k≤n

||gk(Zk)||P,∞ ≤ B.

Moreover, assume that there exists a function

La,b : {1, . . . , n} × [0,∞]→ [0,∞)

such that for any t ≥ 0, J ⊂ {1, . . . , n} and some Z∗J with independent entries and the
same marginals as ZJ , we have

P
(

sup
gJ∈GJ

(aAZ∗J + bµZJ )gJ ≥ t

)
≤ La,b(|J |, t). (2.21)

Let m ∈ {1, . . . , n} and write

n := qm+ r, with q =
⌊ n
m

⌋
, 0 ≤ r < m

for the Euclidean algorithm for n divided by m; then the estimate

P
(

sup
g1:n∈G1:n

(aAZ1:n + bµZ1:n)g1:n ≥ t

)
≤ (rLa,b(q + 1, t) + (m− r)La,b(q, t) + nβZ1:n(m))1{t≤(|a|+|b|)B}

≤ (m(La,b(q + 1, t) ∨ La,b(q, t)) + nβZ1:n(m))1{t≤(|a|+|b|)B} (2.22)

holds (with the convention La,b(n+ 1, t) ≡ La,b(n, t)).

The inequality (2.21) as an assumption is quite standard: it says that for a given
class of functions GJ , the uniform deviation depends of the size of the sample |J | and
the amplitude of the deviation t, consistently with many results on uniform deviation
inequalities (see for instance [GKKW02, LT13]). As we will see later, the complexity of
the class GJ typically appears in La,b(.).

Proof. The second inequality in (2.22) is trivial. We proceed to prove the first inequality.
In view of the Euclidean decomposition n = qm+ r, consider the m−steps partition

Jmsteps := {J1, . . . , Jm}
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of {1, . . . , n} specified by

Jk :=
{
k + lm

}q
l=0
, 1 ≤ k ≤ r

Jk :=
{
k + lm

}q−1
l=0

, r < k ≤ m.

In words, Jk is the set obtained by starting from k and moving to the right in steps of
m units as far as possible before quitting the set {1, . . . , n}. Clearly, |Jk| = q + 1 for
1 ≤ k ≤ r and |Jk| = q for r < k ≤ m.

We apply Theorem 2.11 with J := Jmsteps. This gives the upper bound(
rLa,b(q + 1, t) + (m− r)La,b(q, t) +

m∑
k=1

∑
j∈Jk

βZJk (1, j)

)
1{t≤(|a|+|b|)B}

for the left–hand side of (2.22). The conclusion follows using the estimate (2.12) which
gives supj∈Jk βZJk (1, j) ≤ βZJk (1) ≤ βZ1:n(m) and the fact that

∑m
k=1

∑
j∈Jk 1 = n.

3 Some applications to nonparametric regression

In this section, we develop some of the applications of the results in Section 2 to the
problems addressed, in the context of independent samples, within [BG19]. The notation,
again, comes from Section 2.1.

3.1 Empirical covering numbers

The functions La,b in (2.21) usually depend on the complexity of the functions class GJ ,
through its covering number w.r.t. a suitable semimetric, see the seminal work [VC71].
We now recall the notion of r-coverings and covering numbers, taking care of extending it
to our case of sequences of spaces GJ .

Definition 3.1 (r−covering, covering numbers). Let (G, d) be a semimetric space, let
G0 ⊂ G, and let r ∈ [0,∞). An r−covering of G0 with respect to d is a set G ′ ⊂ G with the
property that, for every g ∈ G0, there exists g′ ∈ G ′ satisfying

d(g, g′) < r.

The r−covering number of G0 with respect to d is defined as

N (d)(r,G0) := min{|G ′| : G ′ ⊂ G is an r−covering of G0 with respect to d}.
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Notice that the meaning of N (d)(r,G0) depends not only on the set G0 and the metric
d|G0×G0 , but also on the space G where d is defined.

The following type of covering numbers are of special relevance for us.

Definition 3.2 (Empirical covering numbers). Let J ⊂ N be a finite set, let GJ ⊂ L⊗JS
be a sequential family of functions, and let z

J
∈ S⊗J be given. We define the empirical L1

r−covering numbers of GJ at z
J
, N1(r,GJ , zJ ), as

N1(r,GJ , zJ ) := N (d1z
J
)
(r,GJ),

where d1z
J
is the empirical L1−seminorm d1z

J
(gJ , g

′
J) := Az

J
|gJ − g′J | on the product space

L⊗JS .

Remark 3.3 (Measurability issues). It is clear that, if ZJ is a random element of S⊗J ,
ω 7→ N1(r,GJ , ZJ(ω)) is a nonnegative function. To avoid unnecessary measurability
discussions, we will denote by E [N1(r,GJ , ZJ)] the outer expectation of N1(r,GJ , ZJ):

E [N1(r,GJ , ZJ)] := inf
h
E [h] ,

where the infimum is taken over the random variables h : Ω → R with N1(r,GJ , ZJ) ≤ h

(except on a set of P−measure zero), with the convention inf ∅ =∞.

3.2 Uniform deviation inequalities for dependent samples

We start by recalling the following result, which is a consequence of [BG19, Theorem 2.2]
(with easy simplifications left to the reader). We will use it as a “toy” theorem, whose
extension to the dependent case will illustrate some arguments that are not written in
detail later.

Theorem 3.4 (Uniform deviation probability, independent version). Let X1:n be a random
element of (Rd)n with independent entries, and assume that (X1:n,F1:n) is a composable
pair where F1:n is a pointwise measurable sequential family16 with fk : Rd → [0, B] (k =

1, . . . , n) for some B > 0 and for each f1:n ∈ F1:n. Then for

(ε, c, γ, γ′) ∈ ×(0, 1)× (1,∞)× (1,∞)× (1,∞),

the estimate

P
(

sup
f1:n∈F1:n

((1− ε)AX1:n − (1 + ε)µX1:n)f1:n > t

)
16I.e. such that there exists {f (k)1:n}k ⊂ F1:n with the property that, for every f1:n ∈ F1:n, there exists a

sequence (kl)l satisfying liml f
(kl)
1:n = f1:n pointwise.
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≤ 2γ

γ − 1
E
[
N1(

1

2
u1(c, γ

′) t,F1:n, X1:n)

]
exp(− 1

2B
u2(c, γ

′)εnt)

holds with

u1(c, γ
′) := (1− 1

c
)

1

γ′
, u2(c, γ

′) := (1− 1

c
)2(1− 1

γ′
), (3.1)

provided that

t ≥ Bc

2

(γ
n

)1/2
.

Our extension of this result will be made with the help of the following notion, which
we will discuss briefly in Section 3.3:

Definition 3.5 (Uniform L1−entropy estimates). Let J ⊂ N and let GJ ⊂ L⊗JS be given.
A Borel-measurable function λ : N × (0,∞) → [1,∞] is called an empirical L1−uniform
entropy estimate of GJ (or simply, a uniform entropy estimate of GJ) if for every finite
subset J ′ ⊂ Jand every r ∈ (0,∞)

log

(
sup

zJ′∈S
⊗
J′

N1(r,GJ ′ , zJ′ )

)
≤ λ(|J ′|, r).

Going back to the extension of Theorem 3.4, assume the existence of a uniform
entropy estimate λ of G1:n, then λ is clearly a uniform entropy estimate of GJ for every
J ⊂ {1, . . . , n}; in addition, for any random element ZJ of S⊗J , we have

E [N1(r,GJ , ZJ))] ≤ exp(λ(|J |, r)).

Consequently, under the hypotheses of Theorem 3.4, we have that the inequality

P
(

sup
fJ∈FJ

((1− ε)AXJ − (1 + ε)µXJ )fJ > t

)
≤ 2γ

γ − 1
exp

(
− 1

2B
u2(c, γ

′)ε|J |t+ λ
(
|J |, 1

2
u1(c, γ

′) t
))

=: Lc,γ,γ′,ε(|J |, t) (3.2)

holds for every J ⊂ {1, . . . , n}, provided this time that t ≥ Bc
2

( γ
|J |)

1/2. We can “hide” this
restriction on t by extending (3.2) to the estimate

P
(

sup
fJ∈FJ

((1− ε)AXJ − (1 + ε)µXJ )fJ > t

)
≤ 1

{t<Bc
2 ( γ
|J|)

1/2
}

+ Lc,γ,γ′,ε(|J |, t)1{t≥Bc
2 ( γ
|J|)

1/2
}
,

which holds for every J ⊂ {1, . . . , n} and every t > 0, always under the hypotheses of
Theorem 3.4. This, together with Proposition 2.14, allows us to deduce the following “β−
version” of Theorem 3.4.
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Theorem 3.6 (Uniform deviation probability, β−version). Let X1:∞ be a random sequence
in (Rd)N. For n ∈ N, assume that (X1:n,F1:n) is a composable pair where F1:n is a
pointwise measurable sequential family and each f1:n ∈ F1:n is a sequence of functions with
fk : Rd → [0, B] (k = 1, . . . , n) for some B > 0. Assume that λ is a uniform entropy
estimate of F1:n (Definition 3.5), and let

(ε, c, γ, γ′) ∈ (0, 1)× (1,∞)× (1,∞)× (1,∞).

Then, with uj (j = 1, 2) as in (3.1), with Lc,γ,γ′,ε : {1, . . . , n}× [0,∞)→ [0,∞) as in (3.2)
and with βX1:∞(·) as in (2.10), the estimate

P
(

sup
f1:n∈F1:n

((1− ε)AX1:n − (1 + ε)µX1:n)f1:n ≥ t

)
≤
[
m
(
Lc,γ,γ′,ε(

⌊ n
m

⌋
, t) ∨ Lc,γ,γ′,ε(

⌊ n
m

⌋
+ 1, t)

)
+ nβX1:∞(m)

]
1{t≤2B},

holds for every m ∈ {1, . . . , n} (with the convention Lc,γ,γ′,ε(n + 1, t) ≡ Lc,γ,γ′,ε(n, t)),
provided that

t ≥ Bc

2

(
γ⌊
n
m

⌋)1/2

.

In practice, the choice of m will depend on the applications at hand. Typically, it
will be done with the goal of minimizing in a convenient way the deviation from the rates
obtained in the independent case (towards optimal extensions of the results in [BG19])
that follow from the results under consideration (see for instance Propositions 3.16 and
3.17 below ). The uniform deviations proved in [BG19] for independent samples ([BG19,
Section 2]) can be extended in a similar manner.

3.3 Remarks on entropy estimates

The definition of uniform entropy estimates, given here as a uniform estimate of the
covering numbers associated to the L1− empirical seminorm (Definition 3.2), can of course
be extended via Definition 3.1 to other families of semimetrics in L⊗JS , such as the empirical
Lp−seminorms (p ≥ 1) defined as dpzJ := (AzJ |fJ − gJ |p)1/p. The relationships between
covering numbers for different semimetrics can be relevant: for instance, it is clear from the
Cauchy-Schwarz inequality that d1zJ (·, ·) ≤ d2zJ (·, ·), which implies an analogous inequality
for the respective covering numbers of the same sequential family GJ ⊂ L⊗JS .
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It is also important for applications to describe the stability of covering numbers with
respect to some elementary operations between families of functions, see for instance
[GKKW02, Lemmas 6.3, 6.4 and 6.5], [Pol90, Section 5], and [vW96, Theorem 2.6.9].
These translate to analogous “stability properties” for uniform entropy estimates.

Let us now give some instances of the notion of entropy estimates.

Example 3.7 (VC dimension. The “Sauer-Shelah” estimate.). One important instance of
uniform entropy estimates, which is part of the framework used in [BG19], is the following:
for a function f : Rd → R, define the subgraph of f as the set

G+
f := {(x, y) ∈ Rd × R : y ≤ f(x)}.

The VC-dimension VF of a family F of functions Rd → R is the supremum of the natural
numbers l with the following property: there exists a set G ⊂ Rd×R with l elements such
that every subset G′ ⊂ G can be written in the form G′ = G ∩G+

f for some f ∈ F .
When F is a family of bounded, nonnegative functions f : Rd → [0, B], one has the

following uniform L1−entropy estimate ([GKKW02, Lemma 9.2 and Theorem 9.4.]) for
the “diagonal” family

F1:n := {(f, . . . , f)︸ ︷︷ ︸
n times

: f ∈ F} (3.3)

of hypotheses on F , which we typically identify with F itself:17 for r ∈ [0, B/4], every
J ⊂ {1, . . . , n}, and every zJ ∈ (Rd)J ,

log(N1(r,FJ , zJ)) ≤ λVF ,B(r)

:= log 3 + VF(1 + log 2 + log(B/r) + log(1 + log 3 + log(B/r))),

(3.4)

which is clearly O(log(1/r)) as r → 0+ when VF < ∞18, in particular when F = TBH
is the family of truncated functions (see Section 3.4.1) from a vector space of dimention
dH <∞, thanks to the bounds

VTBH ≤ VH ≤ dH + 1

([GKKW02, Theorem 9.5 (and previous paragraph) and Equation (10.23)]).
17Covering numbers for non-diagonal families are nonetheless implicit within what follows, for instance

in the arguments behind (3.13).
18Note also that the restriction r ∈ [0, B/4] can be easily bypassed: one can for instance take λVF ,B(r) =

0 if r > B, and for B ∈ [B/4, B], one can take λVF ,B(r) := λVF ,4B(r), where λVF ,4B(r) is defined as in (3.4)
(valid for r ∈ [0, 4B/4] = [0, B]). A similar trick allows us to give uniform entropy estimates via (3.4) on
(perhaps nonpositive) families F of functions f : Rd → [−B,B]: the family F ′ = F+B := {f+B : f ∈ F}
has the same covering numbers as F , satisfies VF = VF ′ , and its elements are functions f : Rd → [0, 2B].
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The estimate (3.4) is a consequence of the celebrated Sauer-Shelah lemma ([Sau72],[She72]).
It is therefore a relationship between the complexity of F , as measured by VF , and the
notion of uniform entropy estimates.

There are other notions of complexity for families of functions, also associated to
uniform entropy estimates, that are very relevant within the current literature, such as
the (distribution–dependent) Rademacher complexity and the fat shattering dimension.
See [MR08] and [RST15] for respective discussions beyond the i.i.d. case.

Example 3.8 (Neural networks). A second example is given by neural networks: it is
shown in [GKKW02, p.314] that if σ : R → [0, 1] is any cumulative distribution function
(for instance a “sigmoid” function with asymptotes y = 0 and y = 1) and F is the family
of functions f : Rd → R of the form

f(x) = b0 +
N∑
k=1

bkσ(uTk x+ ak)

with N ∈ N fixed, and with ((ak)k, (bk)k, (uk)k) ∈ RN × RN+1 × (Rd)N subject to the
restriction

∑
k |bk| ≤ B for some B > 0, then the corresponding diagonal family F1:n (see

(3.3)) satisfies

log(N1(r,FJ , zJ)) ≤ ((2d+ 5)N + 1)(1 + log(12) + log(B/r) + log(N + 1)) (3.5)

for every r ∈ (0, B/2).
Notice that the estimates in Examples 3.7 and 3.8 do not depend on |J |. In our

applications, the dependence on |J | will be introduced by lower-bounding the radius r ≥
r(|J |) where these estimates are applied.

Remark 3.9 (Additional comments on VF < ∞). Restricting the analysis to the case
VF < ∞ is basically a convenience due the estimate (3.4) for the quantitative bounds on
the errors discussed in our applications, but one can extend these to some cases of “infinite
complexity” (VF =∞) using similar estimates.

One instance is the estimate (3.5) for neural networks (see [Son92] for examples showing
that VF can be infinite within this context), but as indicated in [BG19, Remarks 3.3, 3.5
and 3.19], one can extend the applications below to cases in which the left–hand side of
(3.4) is bounded by a function of the form O((1/r)α) (r → 0+) for some α ∈ (0, 1).

3.4 Weak least-squares error estimates under dependence

In what follows, we provide some applications of the results above to distribution-free and
nonparametric error bounds associated to schemes based in the method of least-squares
regression.
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3.4.1 Least-squares setting

We recover the following definitions and conventions from [BG19]:

• Truncation Operator. First, we remind the truncation operator, defined for a con-
stant B > 0 and associating to any real–valued function g the function TBg defined
as

TBg(x) = max{min{g(x), B},−B}.

• Least–squares regression (LSR) objects. Consider a random vector (X, Y )1:∞ of (Rd×
R)N, assume that for all k, Yk ∈ L2

P, and pick a version Φk : Rd → R of E [Yk|Xk].
Thus

Φk(Xk) = E [Yk|Xk] , P− a.s., k = 1, . . . , n.

For a fixed n ∈ N, consider the data Dn := (X, Y )1:n. Given a family F of Borel-
measurable functions Rd → R, let Φ̂n = Φ̂n(F , Dn) be a solution (assume it exists)
of the least–squares regression problem associated to F and Dn: if we identlfy

f ≡ (f, . . . , f)︸ ︷︷ ︸
n times

(3.6)

for f ∈ F (compare with (3.3)), then

Φ̂n ∈ arg min
f∈F

A(X,Y )1:n|f − y1:n|2,

where y1:n = (y, . . . , y) with y : Rd×R→ R the projection on the second coordinate
(y(x0, y0) = y0), and where we naturally identify f ∈ F with the function Rd×R→ R
whose value at (x, y) is f(x).

We also write Φ1:n := (Φk)
n
k=1. Notice that, consistently with the (3.6)

Φ̂n ≡ (Φ̂n, . . . , Φ̂n)︸ ︷︷ ︸
n times

.

• Pointwise deviations of the least–squares error. In this context, we reserve a spe-
cial notation for the family GF ,1:n = {gf,1:n}f∈F whose elements are the sequential
functions

gf,1:n := |y1:n − f |2 − |y1:n − Φ1:n|2. (3.7)

From here, the meaning of GF ,J for any J ⊂ {1, . . . , n} is clear (see (2.3)).
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3.4.2 A weak L2−error estimate for dependent samples

We continue with the following “β−version” of [BG19, Theorem 3.1]. The setting is that
in Section 3.4.1:

Theorem 3.10. (β−version of [BG19, Theorem 3.1]). Assume that F is a pointwise
measurable class of functions with associated V C−dimension VF <∞, and that ||Yk||P,∞ ≤
B for some B > 0 and all k. Assume further that (c, λ, n,m) ∈ (1,∞)× (1,∞)× N× N
are such that

λ ≤ 3 +
√

1 + 8c

4
,

⌊ n
m

⌋
≥ exp

(
c2 − 71

4VF

)
, (3.8)

(in particular n ≥ m), then the estimate

E
[
µX1:n|TBΦ̂n − Φ1:n|2

]
≤ B2⌊

n
m

⌋θ0 (1 + θ1 + VF(θ2 + log(θ2)))

+ 16B2(1 + λ)nβ(X,Y )1:∞(m) + λ inf
f∈F

µX1:n|f − Φ1:n|2

(= “Variance” + “β−mixing error”︸ ︷︷ ︸
“Statistical error”

+ “scaled bias”.)

(3.9)

holds, where

θ0 =θ0(λ, c) := 32

(
1

3
(1− 1

c
)(1− 1

λ
) + (2λ− 1)

)2

(
c

c− 1
)3

λ

λ− 1
,

θ1 =θ1(c,m) := log(6(c+ 1)(2c+ 3)) + logm,

θ2 =θ2(c, n,m) := 1 + log 24 + log(1 +

√
1 +

c(c+ 1)⌊
n
m

⌋
+ 1

)− log(c− 1

c
) + log(

⌊ n
m

⌋
+ 1).

Remark 3.11 (A simplified version of the variance in (3.9)). It is easy to see that for
every c′, λ′ > 1, there exists a constant Cc′,λ′ > 0 such that

1

Cc′,λ′

VF
λ− 1

(1 + log n− logm) ≤θ0 (1 + θ1 + VF(θ2 + log(θ2))) (3.10)

≤Cc′,λ′
VF
λ− 1

(log c+ log n),

provided that (n, c, λ) ∈ N \ {1} × (c′,∞) × (1, λ′). We shall when convenient write the
variance term in (3.9) as

O

(
B2
nVFn(log cn + log n)

(λn − 1)n
mn

)
, (3.11)
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with the “right” of letting n→∞ as far as {λn}n ⊂ (1,∞) is bounded and {cn}n ⊂ (1,∞)

is away from 1, and provided that (3.8) holds for the parameters (cn, λn, VFn ,mn).

Remark 3.12 (The “β−mixing error–variance” tradeoff). Notice also that reducing m
simultaneaously increases the β−mixing error and reduces the variance in (3.9). Our choice
of m in the applications below is based on a qualitatively optimal tradeoff between these
errors: the tradeoff is made for m = mn with the goal of minimizing the distance to the
smallest possible statistical error, achieved in the independent case in which β(X,Y )1:∞(1) =

0 and the statistical error is therefore equal to the variance term in (3.9) for m = 1.

Proof of Theorem 3.10. First, as proved in [BG19, Section 3.2], we have the estimate

E
[
µX1:n|TBΦ̂n − Φ1:n|2

]
≤ E

[(
sup
f∈TBF

(µ(X,Y )1:n − λA(X,Y )1:n)gf,1:n

)+
]

+ λ inf
f∈F

µX1:n|f − Φ1:n|2

(3.12)

We proceed now to bound conveniently the distribution function [0,∞)→ [0, 1] defined
by

t 7→ P
(

sup
f∈TBF

(µ(X,Y )1:n − λA(X,Y )1:n)gf,1:n ≥ t

)
.

Assuming that B = 1/4, which gives that |gkf (x)| ≤ 1 for all k and x, the arguments
in [BG19, Section 3.2.] lead to the inequalities

P

(
sup

f∈T1/4F
(µ(X,Y )∗J

− λA(X,Y )∗J
)gf,J ≥ t

)
≤ 3G0(c)E

[
N1(G1(c, λ)t0(c, λ, |J |), T1/4F , X1:n)

]
exp(−b(c, λ)|J |t)

≤ 3G0(c)

(
e

G1(c, λ)t0(c, λ, |J |)
log(

3e

2G1(c, λ)t0(c, λ, |J |)
)

)VF
exp(−b(c, λ)|J |t)

=: a0(c, λ, |J |) exp(−b(c, λ)|J |t)
(3.13)

for every J ⊂ {1, . . . , n} and every random element (X, Y )∗J of (Rd×R)J with independent
entries and the same marginals as (X, Y )J , with G0, G1, and b given by

G0(c) := 2(c+ 1)(2c+ 3), G1(c, λ) :=
1

8

1

λ(c− 1) + 1
(1− 1

c
),
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b(c, λ) :=
1

2

1

(1
3
(1− 1

c
) + (2λ− 1) λ

λ−1)2
(1− 1

c
)3

λ

λ− 1
,

and provided that

t ≥ t0(c, λ, |J |) :=
−(λ− 1) +

√
(λ− 1)2 + c(c+ 1)λ2/|J |

2
.

Therefore we have, for every J ⊂ {1, . . . , n} and every (X, Y )∗J as indicated, the estimate

P
(

sup
f∈F

(µ(X,Y )∗J
− λA(X,Y )∗J

)gf,J ≥ t

)
≤1{t<t0(|J |,c,λ)} + a0(c, λ, |J |) exp(−b(c, λ)|J |t)1{t0(|J |,c,λ)≤t}.

This gives rise, via Proposition 2.14 and elementary estimates, to the inequality

P
(

sup
f∈F

(µ(X,Y )1:n − λA(X,Y )1:n)gf,1:n ≥ t

)
≤ (nβ

(X,Y )1:∞
(m) + Lc,λ(n,m, t))1{t≤(1+λ)},

(3.14)

where

Lc,λ(n,m, t) := 1{t<t0(b nmc,c,λ)} +ma0(c, λ,
⌊ n
m

⌋
+ 1) exp(−b(c, λ)

⌊ n
m

⌋
t)))1{t0(b nmc,c,λ)≤t.}

The desired estimate for the case B = 1/4 follows from (3.12) and integration with re-
spect to t (and Lebesgue measure) of the right–hand side of (3.14), with the integral of
Lc,λ(n,m, ·) estimated as in the arguments following [BG19, Equation (3.13)]. The esti-
mate for general B > 0 follows by an homogenization argument (see the homogenization
argument after [BG19, Equation (3.19)]).

3.4.3 Weak rates for β−mixing schemes

It is worth discussing what the right–hand side of (3.9) says about weak consistency, and
to introduce some cases and consequences of special importance which fall under this
discussion. The setting is again that in Section 3.4.1.

As a first consequence, we point out the following result:

Proposition 3.13 (Weak rate for uniformly bounded schemes). Assume that F is a
pointwise measurable family with associated V C−dimension VF <∞ and with

sup
f,k
{||f(Xk)||P,∞, ||Yk||P,∞} ≤ B
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for some B ∈ (0,∞), then for any sequence (mn)n of natural numbers and any bounded
positive sequence (δn)n,

E
[
µX1:n|Φ̂n − Φ1:n|2 − inf

f∈F
µX1:n|f − Φ1:n|2

]
= O

(
log n

δnn
mn + nβ(X,Y )1:∞(mn) + δn

(
nβ(X,Y )1:∞(mn) + inf

f∈F
µX1:n|f − Φ1:n|2

))
.

(3.15)

Proof. This is an immediate cosequence of (3.9) and (3.11), by choosingBn = B, VFn = VF ,
λn = 1 + δn and (say) cn = 2.

Remark 3.14 (Some consequences of (3.15)). It follows in particular that, under the
hypotheses of Proposition 3.13, the left-hand side of (3.15) converges to zero if there exists
a sequence (mn)n such that

mn
log n

n
+ nβ(X,Y )1:∞(mn)→n 0 (3.16)

(take δn := (mn log n/n)1/2). Notice also that the rate at the right–hand side of (3.15) ad-
mits convenient interpretations in interesting cases: if for instance (X, Y )1:∞ ism−dependent
(see item 3. in Section 2.6) and conditionally stationary in the sense that for some
Φ : Rd → R, Φ(Xk) = E [Yk|Xk], P−a.s., and if Φ ∈ F (unbiased case), (3.15) gives
the rate of convergence O(log n/n) to zero for the expected squared error of the least–
squares loss E

[∫
Rd |Φ̂n(x)− Φ(x)|2 dx

]
(take mn = m+ 1 and δn = 1 in (3.15)).

In any case (3.16) requires that

β(X,Y )1:∞(mn) = o(n−1), (3.17)

for some sequence (mn)n satisfying mn = o(n/ log n). It is necessary for (3.16) that

lim
n
nβ(X,Y )1:∞(n) = 0 (3.18)

because (β(X,Y )1:∞(n))n is decreasing (see Remark 2.6 ), and in particular that

lim
n
β(X,Y )1:∞(n) = 0. (3.19)
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Remark 3.15 (The “β−mixing” assumption). Notice that, in general, (3.19) is less re-
strictive19 than the β−mixing assumption on (X, Y )1:∞, which amounts to the hypothesis

lim
m

sup
k
β(σ((X, Y )1:k), σ((X, Y )k+m:∞)) = 0. (3.20)

However, as we pointed out after Definition 2.8, (3.19) is exactly the beta-mixing assump-
tion (3.20) when (X, Y )1:∞ is a Markov process.

For the rates in Definitions 2.7 and 2.8, we deduce the following versions of Theorem
3.10:

Proposition 3.16 (Weak rate of convergence for subexponentially β−mixing samples).
There exists a universal constant C with the following property: if (X, Y )1:∞ is subexpo-
nentially β–mixing (Definition 2.7) with parameters (a, b, γ), and if for some B ∈ (0,∞)

and all k ∈ {1, . . . , n}, ||Yk||P,∞ ≤ B, then for any

1 < λ ≤ 3 +
√

1 + 8
√

71

4
,

the statistical error in (3.9) is bounded by

C

n

(
B2VF

(λ− 1)
(1 + log n) + a

)(
2 log n

b

)1/γ

provided that

1 ≤
(

2 log n

b

)1/γ

≤ n

2
. (3.21)

Proof. For any positive real number α and any x ≥ 2, the inequality

αx+ an exp(−b bxcγ) ≤ αx+ an exp(− b

2γ
xγ)

holds. It follows that, if Cc′,λ′ is the constant from (3.10) corresponding to (c′, λ′) =

(
√

71, 3 +
√

1 + 8
√

71/4) and

αλ,n := 2Cc′,λ′
B2VF(log

√
71 + log n)

(λ− 1)n

19See the footnote on the definition of βZ· in page 14.
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then, under the subexponentially mixing hypothesis (2.13), the statistical error in (3.9) is
bounded by

min
x∈[2,n]

{αλ,nx+ an exp(− b

2γ
xγ)}

Taking x := 21+1/γ (log n/b)1/γ, which lies in [2, n] in virtue of (3.21), we get the bound

21+1/γ

(
log n

b

)1/γ

αλ,n +
a

n
.

for the statistical error in (3.9). The result follows from an easy estimation on this bound.

A similar (and easier) argument, taking this time x :=
⌈
n

2/γ+1
⌉
and estimating via

(2.14), gives the corresponding weak rate for subpolinomially β−mixing samples:

Proposition 3.17 (Weak rate of convergence for subpolinomially β−mixing samples).
There exists a universal constant C with the following property: if (X, Y )1:∞ is subpolino-
mially β–mixing (Definition 2.8) with parameters (a, γ), and if for some B ∈ (0,∞) and
all k ∈ {1, . . . , n}, ||Yk||P,∞ ≤ B, then for any

1 < λ ≤ 3 +
√

1 + 8
√

71

4
,

the statistical error in (3.9) is bounded by

C

n(γ−1)/(γ+1)

(
B2VF

(λ− 1)
(1 + log n) + a

)
.

Notice that, in Corollaries 3.16 and 3.17, we recover the rates of the independent case
by letting γ →∞.
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