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Expectiles define a least squares analogue of quantiles. They have been
the focus of a substantial quantity of research in the context of actuarial and
financial risk assessment over the last decade. The behaviour and estima-
tion of unconditional extreme expectiles using independent and identically
distributed heavy-tailed observations has been investigated in a recent se-
ries of papers. We build here a general theory for the estimation of extreme
conditional expectiles in heteroscedastic regression models with heavy-tailed
noise; our approach is supported by general results of independent interest on
residual-based extreme value estimators in heavy-tailed regression models,
and is intended to cope with covariates having a large but fixed dimension.
We demonstrate how our results can be applied to a wide class of impor-
tant examples, among which linear models, single-index models as well as
ARMA and GARCH time series models. Our estimators are showcased on a
numerical simulation study and on real sets of actuarial and financial data.

1. Introduction.

1.1. Motivation. A traditional way of considering extreme events is to estimate extreme
quantiles of a random variable Y ∈R, such as the negative daily log-return of a stock market
index in finance, so that large values of Y correspond to extreme losses on the market, or the
magnitude of a claim in insurance. A better understanding of the extremes of Y can often
be achieved by inferring the conditional extremes of Y given a covariate X . Recent exam-
ples include the analysis of high healthcare costs in [49] and large insurance claims in [41].
We focus on the case when Y given X is heavy-tailed (i.e. Paretian-tailed); this assump-
tion underpins the aforementioned papers and is generally appropriate to the modelling of
actuarial and financial data. Under no further assumptions on the structure of (X, Y ), non-
parametric smoothing methods such as those of [7, 18] can be used. Those techniques suffer
from the curse of dimensionality, compounded in conditional extreme value statistics by the
necessity to select only the few high observations relevant to the analysis. Early attempts at
tackling the low-dimensional restriction, such as [12], were built on parametric models. Later
attempts have mostly used quantile regression: a seminal paper is [6], developed further by
[23, 49, 50]. An approach based on Tail Dimension Reduction was adopted by [17].

These techniques, and more generally the current state of art in conditional extreme value
analysis, rely on quantiles, which only use the information on the frequency of tail events
and not on their actual magnitudes. This is an issue in risk assessment, where knowing the
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magnitude of typical extreme losses is important. One way of tackling this problem is to work
with expectiles, introduced in [38]. The τ th regression expectile of Y given X is obtained
from the τ th regression quantile by replacing absolute deviations by squared deviations:

ξτ (Y |x) = arg min
θ∈R

E ([ητ (Y − θ)− ητ (Y )] |X = x) ,

where ητ (y) = |τ − 1{y ≤ 0}|y2 is the expectile check function and 1{·} is the indicator
function. Expectiles are well-defined and unique when the underlying distribution has a finite
first moment (see [1] and Theorem 1 in [38]). Unlike quantiles, expectiles depend on both
the probability of tail values and their realisations (see [31]). In addition, expectiles induce
the only coherent, law-invariant and elicitable risk measure (see [55]) and therefore benefit
from the existence of a natural backtesting methodology. Expectiles are thus a sensible risk
management tool to use, as a complement or an alternative to quantiles.

The literature has essentially focused on estimating expectiles with a fixed level τ (see
e.g. [27, 30]). The estimation of extreme expectiles, where τ = τn→ 1 as the sample size
n tends to infinity, remains largely unexplored; it was initiated by [9, 11] in the unconditional
heavy-tailed case. Our focus is to provide and discuss the theory of estimators of extreme con-
ditional expectiles, in models that may cope with a large but fixed dimension of the covariate
X . In doing so we shall develop a novel theory of independent interest for the asymptotic
analysis of residual-based extreme value estimators in heavy-tailed regression models.

1.2. Expectiles and regression models. We outline our general idea in the location-scale
shift linear regression model. Let (Xi, Yi), 1≤ i≤ n be a sample from a random pair (X, Y )
such that Y = α + β>X + (1 + θ>X)ε. The parameters α ∈ R, β ∈ Rd and θ ∈ Rd are
unknown, and so are the distributions of the covariate X ∈ Rd and the unobserved noise
variable ε ∈ R. We also suppose that X is independent of ε, and has a support K such that
1+θ>x> 0 for all x ∈K . In this model, by location equivariance and positive homogeneity
of expectiles (Theorem 1(iii) in [38]), we may write ξτ (Y |x) = α+β>x+ (1 +θ>x)ξτ (ε).
A natural idea to estimate the extreme conditional expectile ξτn(Y |x), where τ = τn→ 1 as
n→∞, is to first construct estimators α̂, β̂ and θ̂ of the model parameters using a weighted
least squares method and then construct residuals which can be used, instead of the unobserv-
able errors, to estimate extreme expectiles of ε. This expectile estimator can be adapted from,
for instance, an empirical asymmetric least squares method (see [9, 11]). If ε has a finite sec-
ond moment, the weighted least squares approach produces

√
n−consistent estimators, and

it is reasonable to expect that the asymptotic normality properties of the estimators of [9, 11]
carry over to their residual-based versions. An estimator of the extreme conditional expectile
ξτn(Y |x) is then readily obtained as ξ̂τn(Y |x) = α̂+ β̂>x+ (1 + θ̂>x)ξ̂τn(ε).

Our main objective in this paper is to generalise this construction in heteroscedastic regres-
sion models of the form Y = g(X) + σ(X)ε where g and σ > 0 are two measurable func-
tions of X , so that ξτn(Y |x) = g(x) + σ(x)ξτn(ε). If ε is centred and has unit variance,
this model can essentially be viewed as E(Y |X) = g(X) and Var(Y |X) = σ2(X), and is
called location-dispersion regression model in [47]. Even though our theory will be valid
for arbitrary regression models of this form, one should keep in mind models adapted to the
consideration of a large dimension d, where the estimation of g and σ will not suffer from
the curse of dimensionality and thus reasonable rates of convergence can be achieved. The
viewpoint we deliberately adopt is that the estimation of g and σ is the “easy” part of the
estimation of ξτn(Y |x) because, depending on the model, it can be tackled by known para-
metric or semiparametric techniques that are easy to implement and converge faster than the
extreme value procedure for the estimation of ξτn(ε). This converts the problem of condi-
tional extreme value estimation into the question of being able to carry out extreme value
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inference based on residuals rather than the unobserved noise variables, which is nonetheless
a difficult question because residuals are neither independent nor identically distributed.

In Section 2, given that residuals of the model are available, we provide high-level, fairly
easy to check and reasonable sufficient conditions under which the asymptotics of residual-
based estimators of ξτn(ε) are those of their unfeasible, unobserved error-based counterparts.
Several of our results are of independent interest: in particular, we prove in Section 2.2 a
non-trivial result on Gaussian approximations of the tail empirical process of the residuals,
which is an important step in proving asymptotic theory for extreme value estimators in gen-
eral regression models. The idea of carrying out conditional extreme value estimation using
residuals of location-scale regression models is not new: it has been used since at least [37]
and more recently in [2, 26, 35] in the context of the estimation of extreme conditional Value-
at-Risk and Expected Shortfall. A novel contribution of this paper is to provide a very general
theoretical framework for tackling such questions. In Section 3, we shall then consider five
fully worked-out examples. We start with the location-scale shift linear regression model
in Section 3.1, a heteroscedastic single-index model in Section 3.2, and a heteroscedastic,
Tobit-type left-censored model in Section 3.3. The latter example allows us to show how
our method adapts to a situation where the model Y = g(X) + σ(X)ε is valid in the right
tail rather than globally. Aside from these three examples, we study the two general ARMA
and GARCH time series models in Section 3.4 as a way to illustrate how our results may be
used to tackle the problem of dynamic extreme conditional expectile estimation. Section 4
examines the behaviour of our estimators on simulated and real data, and Section 5 discusses
our findings and research perspectives. All the necessary mathematical proofs, as well as fur-
ther details and results related to our finite-sample studies, are deferred to the Supplementary
Material [19].

2. General theoretical toolbox for extreme expectile estimation in heavy-tailed re-
gression models. Our general framework is the following. Let (Xi, Yi), 1≤ i≤ n be part
of a (strictly) stationary sequence of copies of the random pair (X, Y ), with Y ∈R, such that

(1) Y = g(X) + σ(X)ε

where g and σ > 0 are two measurable functions of X . The unobserved noise variable ε ∈
R is centred and independent of X ; in other words, for each i, Xi is independent of εi,
although we do not assume independence between the pairs (Xi, εi). In addition, we suppose
throughout that the εi = (Yi − g(Xi))/σ(Xi) are independent.

It follows from this assumption that a conditional expectile ξτn(Y |x) can be written as
ξτn(Y |X = x) = g(x) + σ(x)ξτn(ε|X = x) = g(x) + σ(x)ξτn(ε), where we used the loca-
tion equivariance and positive homogeneity to obtain the first identity, and the independence
between X and ε to get the second identity. We assume throughout Section 2 that g and σ
have been estimated, and we concentrate on estimating the extreme expectile ξτn(ε), with the
objective of ultimately constructing an estimator of ξτn(Y |x). Denoting by τ 7→ qτ (ε) the
quantile function of ε, we work under the following first-order Pareto-type condition:

C1(γ) The tail quantile function of ε, defined by U(t) = q1−t−1(ε) for t > 1, is regularly
varying with index γ > 0: U(tx)/U(t)→ xγ as t→∞ for any x > 0.

Condition C1(γ) is equivalent to assuming that the survival function of ε, denoted hereafter
by F : x 7→ P(ε > x), is regularly varying with index−1/γ < 0 (see [13], Proposition B.1.9).
Together with condition E|ε−| <∞, where ε− = min(ε,0), the assumption γ < 1 ensures
that the first moment of ε exists, which entails that expectiles of ε of any order are well-
defined. Both of these conditions shall be part of our minimal assumptions throughout.
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The essential difficulty to overcome in our setup is that the εi are unobserved. However,
because g and σ have been estimated, by g and σ say, we have access to residuals ε̂(n)i =
(Yi− g(Xi))/σ(Xi) constructed from the regression model (1). Our idea in this section will
be to construct estimators of extreme expectiles based on the observable ε̂(n)i , and study their
theoretical properties when they are in some sense “close” to the true, unobserved εi.

We start by the case of an intermediate level τn, meaning that τn→ 1 and n(1− τn)→∞.
Section 2.1 below focuses on a residual-based Least Asymmetrically Weighted Squares
(LAWS) estimator. Section 2.2 then introduces a competitor based on the connection be-
tween (theoretical) extreme expectiles and quantiles and new general results on tail empirical
processes of residuals in heavy-tailed models. Section 2.3 extrapolates these estimators to
properly extreme levels τ ′n using a Weissman-type construction warranted by the heavy-tailed
assumption (see [51]), and combines these extrapolated devices with the estimators of g and
σ to finally obtain an estimator of the extreme conditional expectile ξτ ′n(Y |x).

2.1. Intermediate step, direct construction: residual-based LAWS. Assume that τn is an
intermediate sequence, i.e. τn→ 1 and n(1− τn)→∞. If the errors εi were available, we
could estimate ξτn(ε) by qξτn(ε) minimising

∑n
i=1 ητn(εi − u) with respect to u. We replace

the unobserved εi by the observed residuals ε̂(n)i , resulting in the LAWS estimator

ξ̂τn(ε) = arg min
u∈R

n∑
i=1

ητn(ε̂
(n)
i − u).

Our first main theorem is a flexible result stating that ξ̂τn(ε) is a
√
n(1− τn)−relatively

asymptotically normal estimator of the high, intermediate expectile ξτn(ε) provided the gap
between residuals and unobservable errors is not too large. For technical extensions to the
case of a random sample size or independent arrays, see Lemmas C.5 and C.8 of [19].

THEOREM 2.1. Assume that there is δ > 0 such that E|ε−|2+δ <∞, that ε satisfies
condition C1(γ) with 0< γ < 1/2 and τn ↑ 1 is such that n(1− τn)→∞. Suppose moreover
that the array of random variables ε̂(n)i , 1≤ i≤ n, satisfies

(2)
√
n(1− τn) max

1≤i≤n

|ε̂(n)i − εi|
1 + |εi|

P−→ 0.

Then we have
√
n(1− τn)

(
ξ̂τn(ε)

ξτn(ε)
− 1

)
d−→N

(
0,

2γ3

1− 2γ

)
.

REMARK 1. Theorem 2.1 is a non-trivial extension of Theorem 2 in [9] to the case
when the εi are unobserved. The difference lies in the fact that the estimator ξ̂τn(ε) is much
more difficult to handle directly; Condition (2), on the weighted distance between the εi
and the ε̂(n)i , allows for a control of the gap between ξ̂τn(ε) and the unfeasible qξτn(ε), with
the presence of the denominator 1 + |εi| making it possible to deal with heteroscedasticity
in practice. We shall use this key condition again in our results in Section 2.2. It will be
satisfied when the structure of the model Y = g(X) + σ(X)ε is estimated at a faster rate
than the

√
n(1− τn)−rate of convergence of intermediate expectile estimators. The proof is

based on rigorously establishing that ξ̂τn(ε) and qξτn(ε) have the same asymptotic distribution;
the striking fact is that the theoretical arguments fundamentally only require stationarity of
the εi, with independence only being crucial for concluding that qξτn(ε) is asymptotically
Gaussian by Theorem 2 in [9] and therefore ξ̂τn(ε) must be so. Theorem 2.1 can then be
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expected to have analogues when the εi are stationary but weakly dependent, thus covering
(for example) regression models with time series errors as in [46], as long as one can prove
the
√
n(1− τn)−asymptotic normality of qξτn(ε). An example of such a result for stationary

and mixing εi has been investigated in [10].

2.2. Intermediate step, indirect construction. We start by recalling, as shown in Propo-
sition 2.3 of [3], that the heavy-tailed condition on t 7→ U(t) = q1−t−1(ε) entails

lim
τ↑1

ξτ (ε)

qτ (ε)
= (γ−1 − 1)−γ .

Therefore, if γ is a consistent estimator of γ, and qτn(ε) is a consistent estimator of qτn(ε),
we can estimate the intermediate expectile ξτn(ε) by the so-called indirect estimator

ξ̃τn(ε) = (γ−1 − 1)−γ qτn(ε).

An extension of Theorem 1 in [9] (see Proposition A.1 in [19]) shows that under the follow-
ing classical second-order refinement of condition C1(γ), the asymptotic distribution of the
estimator ξ̃τn(ε) is determined under high-level conditions on (γ, qτn(ε)).

C2(γ, ρ,A) For all x > 0,

lim
t→∞

1

A(t)

[
U(tx)

U(t)
− xγ

]
= xγ

xρ − 1

ρ
,

where A is a function converging to 0 at infinity and having constant sign, and ρ≤ 0. Here
and in what follows, (xρ − 1)/ρ is to be read as logx when ρ= 0.

We now explain how one may construct and study residual-based estimators γ and qτn(ε). Let
z1,n ≤ z2,n ≤ · · · ≤ zn,n be the ordered n−tuple associated with an n−tuple (z1, z2, . . . , zn).
A number of estimators of γ can be adapted to our case and written as a functional of the tail
empirical quantile process of the residuals, among which the popular Hill estimator ([24]):

γ̂k =
1

k

k∑
i=1

log
ε̂
(n)
n−i+1,n

ε̂
(n)
n−k,n

=

∫ 1

0
log

 ε̂(n)n−bksc,n

ε̂
(n)
n−k,n

ds.

Here b·c denotes the floor function. We may also adapt in the same way the moment-type
statistics which intervene in the construction of the moment estimator of [14], and the general
class of estimators studied by [42]. These estimators depend on the choice of an effective
sample size k = k(n)→∞ and k/n→ 0; it is useful to think of k as being k = bn(1− τn)c.
It is therefore worthwhile to study the asymptotic behaviour of the tail empirical quantile
process s 7→ ε̂

(n)
n−bksc,n of residuals, and of its log-counterpart. This is of course a difficult task,

because the array of residuals is not made of independent random variables. To tackle this
problem, we first recall that under condition C2(γ, ρ,A), one can write a weighted uniform
Gaussian approximation of the tail empirical quantile process of the (unobserved) εi:

εn−bksc,n

q1−k/n(ε)
= s−γ +

1√
k

(
γs−γ−1Wn(s) +

√
kA(n/k)s−γ

s−ρ − 1

ρ
+ s−γ−1/2−δ oP(1)

)
uniformly in s ∈ (0,1], where Wn is a sequence of standard Brownian motions and δ > 0
is arbitrarily small (see Theorem 2.4.8 in [13]), provided k = k(n)→∞, k/n→ 0, and√
kA(n/k) = O(1). Strictly speaking, this approximation is only valid for appropriate ver-

sions of the tail empirical quantile process on an appropriate probability space; since tak-
ing such versions has no consequences on weak convergence results, we do not empha-
sise this in the sequel. For certain results which require the study of the log-spacings
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log εn−bksc,n − log εn−k,n, such as the convergence of the Hill estimator, an approximation
of the log-tail empirical quantile process is sometimes preferred: uniformly in s ∈ (0,1],

1

γ
log

(
εn−bksc,n

q1−k/n(ε)

)
= log

1

s
+

1√
k

(
s−1Wn(s) +

√
kA(n/k)

1

γ

s−ρ − 1

ρ
+ s−1/2−δ oP(1)

)
.

Our next result is that, if the error made in the construction of the residuals is not too large,
then these approximations hold for the tail empirical quantile process of residuals as well.

THEOREM 2.2. Assume that condition C2(γ, ρ,A) holds. Let k = k(n) = bn(1 − τn)c
where τn ↑ 1, n(1 − τn)→∞ and

√
n(1− τn)A((1 − τn)−1) = O(1). Suppose that the

array of random variables ε̂(n)i , 1≤ i≤ n, satisfies (2). Then there exists a sequence Wn of
standard Brownian motions such that, for any δ > 0 sufficiently small: uniformly in s ∈ (0,1],

ε̂
(n)
n−bksc,n

q1−k/n(ε)
= s−γ +

1√
k

(
γs−γ−1Wn(s) +

√
kA(n/k)s−γ

s−ρ − 1

ρ
+ s−γ−1/2−δ oP(1)

)
and

1

γ
log

 ε̂
(n)
n−bksc,n

q1−k/n(ε)

= log
1

s
+

1√
k

(
s−1Wn(s) +

√
kA(n/k)

1

γ

s−ρ − 1

ρ
+ s−1/2−δ oP(1)

)
.

Theorem 2.2 is the second main contribution of this paper. It is a non-trivial asymptotic result,
because there is no guarantee that ranks of the original error sequence are preserved in the
residual sequence, and it therefore is not obvious at first sight that Condition (2) on the gap
between errors and their corresponding residuals is in fact sufficient to ensure that the tail
empirical quantile process based on residuals has similar properties to its unobserved errors-
based analogue. As an illustration, we work out the asymptotic properties of the residual-
based, Hill-type estimator of the extreme value index γ of the errors, as well as the asymptotic
behaviour of the related indirect intermediate expectile estimator in Corollary 2.1 below.

COROLLARY 2.1. Assume that condition C2(γ, ρ,A) holds. Let τn ↑ 1 satisfy n(1 −
τn)→∞ and

√
n(1− τn)A((1− τn)−1)→ λ ∈ R. Suppose that the array of random vari-

ables ε̂(n)i , 1≤ i≤ n, satisfies (2). If γ = γ̂bn(1−τn)c and qτn(ε) = ε̂
(n)
n−bn(1−τn)c,n, then

√
n(1− τn)

(
γ − γ,

qτn(ε)

qτn(ε)
− 1

)
d−→
(

λ

1− ρ
+ γ

∫ 1

0

[
W (s)

s
−W (1)

]
ds, γW (1)

)
where W is a standard Brownian motion. In particular,√

n(1− τn)

(
γ − γ,

qτn(ε)

qτn(ε)
− 1

)
d−→ (Γ,Θ),

where Γ ∼ N
(
λ/(1− ρ), γ2

)
and Θ ∼ N

(
0, γ2

)
are independent. As a consequence, if

moreover E|ε−|<∞, 0< γ < 1, E(ε) = 0 and
√
n(1− τn)/qτn(ε) = O(1), one has

√
n(1− τn)

(
ξ̃τn(ε)

ξτn(ε)
− 1

)
d−→N

(
λ

[
m(γ)

1− ρ
− b(γ, ρ)

]
, γ2

[
1 + [m(γ)]2

])
,

with m(γ) = (1− γ)−1 − log(γ−1 − 1) and b(γ, ρ) =
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ
.
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This result is our third main contribution. Such results on residual-based extreme value esti-
mators appear to be quite scarce in the literature: see Section 2 in [50] and Section 3 in [49] in
linear quantile regression models, Proposition 2 in Appendix A of [26] in ARMA-GARCH
models, and Section 3 in [48] in a nonparametric homoscedastic quantile regression model.
Our result relaxes these strong modelling assumptions, and provides a reasonable general the-
oretical framework for the estimation of the extreme value index and intermediate quantile
via residuals of a regression model. Similarly to Theorem 2.2, this result is of wider interest
in general extreme value regression problems with heavy-tailed random errors.

REMARK 2. When, with probability 1, g(X) is bounded and σ(X) is positive and
bounded (this is the setup of our simulation study for linear and single-index models, see
Section 4.1), one could estimate γ using the Yi = g(Xi) +σ(Xi)εi directly, because then the
Yi all have extreme value index γ (see Lemma A.4 in [19]). A competitor to the estimator γ̂k
is thus qγk = k−1

∑k
i=1 log(Yn−i+1,n/Yn−k,n). A numerical comparison of the estimators γ̂k

and qγk (which we do not report to save space) shows, however, that the residual-based esti-
mator γ̂k has by far the best finite-sample performance. The idea is that the presence of the
shift g(Xi) and scaling σ(Xi) in the Yi introduces a large amount of bias in the estimation
of γ by qγk; removing these two components in the calculation of the residuals substantially
improves finite-sample results. A related point is made in [13] (p.83).

REMARK 3. The earlier work of [25] provides general tools to obtain the asymptotic
normality of the Hill estimator based on a filtered process. The essential difference with our
approach is that we put our assumptions directly on the gap between the residuals and the
unobserved noise variables; by contrast, the methodology of [25] essentially assumes that
the residuals are obtained through a parametric filter, and makes technical assumptions on
the regularity of the parametric model and the gap between the estimated parameter and its
true value. The latter approach is very powerful when working with time series models, as
typical such models (ARMA, GARCH, ARMA-GARCH) have a parametric formulation.
By contrast, we avoid the parametric specification and therefore can handle a large class of
possibly semiparametric regression models (such as heteroscedastic single-index models, see
Section 3.2), while still providing useful results for time series models (see Section 3.4).

The theory in [25] allows for non-independent errors in autoregressive time series, see Sec-
tion 3.2 therein. This corresponds to when the filter does not correctly describe the underlying
structure of the time series, and can be used in misspecified models. Our results use the in-
dependence of the errors, but may also be extended to the stationary weakly dependent case:
our argument for the proof of Theorem 2.2 (and hence for Corollary 2.1) relies on, first,
quantifying the gap between the tail empirical quantile process based on the unobserved er-
rors and its version based on the residuals (see Lemma A.3 of [19]), and then on a Gaussian
approximation of the tail empirical quantile process for independent heavy-tailed variables.
Inspecting the proofs reveals that both of these steps can in fact be carried out when the εi
are only stationary, β−mixing and satisfy certain anti-clustering conditions, because a Gaus-
sian approximation of the tail empirical quantile process also holds then, see for instance
Theorem 2.1 in [15].

2.3. Extrapolation for extreme conditional expectile estimation. We finally develop
high-level results for the estimation of properly extreme conditional expectiles whose level
τ ′n→ 1 can converge to 1 at an arbitrarily fast rate. One would typically choose τ ′n = 1− pn
for an exceedance probability pn not greater than 1/n, see e.g. Chapter 4 of [13] in the context
of extreme quantile estimation. Following [51], intermediate quantiles of order τn can be ex-
trapolated to the extreme level τ ′n, using the heavy-tailed assumption. This idea successfully
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carries over to expectile estimation because of the asymptotic proportionality relationship
ξτ (ε)/qτ (ε)→ (γ−1− 1)−γ as τ ↑ 1, resulting in the following class of estimators of ξτ ′n(ε):

ξ
?
τ ′n

(ε) =

(
1− τ ′n
1− τn

)−γ
ξτn(ε),

where γ and ξτn(ε) are consistent estimators of γ and of the intermediate expectile ξτn(ε).
In the context of a regression model of the form (1), these would be based on the residuals
obtained via estimators g(x) and σ(x) of g(x) and σ(x). One can then estimate ξτ ′n(Y |x) in
model (1) by ξ

?
τ ′n

(Y |x) = g(x) +σ(x)ξ
?
τ ′n

(ε). We examine the convergence of this estimator.

THEOREM 2.3. Assume that E|ε−|<∞ and condition C2(γ, ρ,A) holds with 0< γ < 1
and ρ < 0. Assume further that E(ε) = 0 and τn, τ ′n ↑ 1 satisfy

n(1− τn)→∞, 1− τ ′n
1− τn

→ 0,

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
→∞,(3)

√
n(1− τn)A((1− τn)−1)→ λ ∈R and

√
n(1− τn)

qτn(ε)
= O(1).(4)

Suppose also that
√
n(1− τn)(ξτn(ε)/ξτn(ε)− 1) = OP(1) and

√
n(1− τn)(γ − γ)

d−→ Γ,
where Γ is nondegenerate. Then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?
τ ′n

(ε)

ξτ ′n(ε)
− 1

)
d−→ Γ.

Finally, if model (1) holds (with X independent of ε) and, at a given point x, the estimators
g(x) and s(x) satisfy g(x)− g(x) = OP(1) and

√
n(1− τn)(σ(x)− σ(x)) = OP(1), then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?
τ ′n

(Y |x)

ξτ ′n(Y |x)
− 1

)
d−→ Γ.

REMARK 4. This result applies to the residual-based direct LAWS estimator and indirect
quantile-based estimator under the conditions that ensure their

√
n(1− τn)−consistency.

These conditions essentially amount to assuming that the structure of the model is estimated
at a rate faster than

√
n(1− τn), see Theorem 2.1, the related Remark 1, and Corollary 2.1.

3. Applications of our theoretical results.

3.1. Location-scale shift linear regression model. We concentrate here on applications
in the popular example of location-scale shift linear regression model, which we recall below.

Model (M1) The random pair (X, Y ) is such that Y = α+β>X + (1 +θ>X)ε. Here the
random covariateX is independent of the centred noise variable ε, and has a density function
fX on Rd whose support is a compact set K such that 1 + θ>x> 0 for all x ∈K .

Model (M1) features heteroscedasticity. It is well-known that in this model, traditional meth-
ods such as ordinary least squares are consistent but inefficient. A particular concern in
our case is also to find accurate estimators of the heteroscedasticity parameter θ; indeed,
ξτn(Y |x) = α + β>x+ (1 + θ>x)ξτn(ε) with ξτn(ε)→∞ as n→∞, so that, when n is
large, even a moderately large error in the estimation of θ can result in a substantial error in
the estimation of the extreme conditional expectile ξτn(Y |x). We suggest a two-stage proce-
dure to estimate (α, β, θ), based on independent data points (Xi, Yi)1≤i≤n.
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1. (Preliminary step) Compute the ordinary least squares estimators α̃ and β̃ of α and β,
and then the ordinary least squares estimator of θ based on the absolute residuals Z̃i =

|Yi − (α̃+ β̃>Xi)|, that is, θ̃ = ν̃/µ̃ and

(α̃, β̃) = arg min
(a,b)

n∑
i=1

(Yi − a− b>Xi)
2, (µ̃, ν̃) = arg min

(c,d)

n∑
i=1

(Z̃i − c− d>Xi)
2.

2. (Weighted step) Compute the least squares estimators α̂ and β̂ of α and β, weighted
using estimated standard deviations obtained via θ̃, and then the weighted least squares
estimator of θ based on the absolute residuals Ẑi = |Yi − (α̂+ β̂>Xi)|, i.e. θ̂ = ν̂/µ̂ and

(α̂, β̂) = arg min
(a,b)

n∑
i=1

(
Yi − a− b>Xi

1 + θ̃>Xi

)2

, (µ̂, ν̂) = arg min
(c,d)

n∑
i=1

(
Ẑi − c− d>Xi

1 + θ̃>Xi

)2

.

REMARK 5. This is a one-iteration version of a general weighted least squares procedure
where estimates obtained at a given step are fed back into the next iteration to update weights,
this procedure being repeated n0 times. Simulation results seem to indicate that iterating the
procedure further does not improve the accuracy of the estimators in practice.

Once these estimates have been obtained, we can construct the sample of (weighted) residuals
ε̂
(n)
i = (Yi − (α̂ + β̂>Xi))/(1 + θ̂>Xi) satisfying Condition (2) since the weighted least

squares estimators are
√
n−consistent (see Lemma C.1 in [19] and also (52) in the proof of

Corollary 3.1). One can then estimate ξτn(ε) by the direct LAWS estimator ξ̂τn(ε) described
in Section 2.1. The consistency and asymptotic normality of ξ̂τn(ε) are therefore a corollary
of Theorem 2.1, and this in turn yields the asymptotic behaviour of the estimators

ξ̂τn(Y |x) = α̂+ β̂>x+ (1 + θ̂>x)ξ̂τn(ε) (intermediate level)

and ξ̂?τ ′n(Y |x) = α̂+ β̂>x+ (1 + θ̂>x)

(
1− τ ′n
1− τn

)−γ
ξ̂τn(ε) (extreme level)

where γ is a consistent estimator of γ constructed on the residuals.

COROLLARY 3.1. Assume that the setup is that of the heteroscedastic linear model (M1).
Assume that ε satisfies condition C1(γ) with 0< γ < 1/2. Suppose also that E|ε−|2+δ <∞
for some δ > 0, and that τn ↑ 1 with n(1− τn)→∞.

(i) Then for any x ∈K ,
√
n(1− τn)

(
ξ̂τn(Y |x)

ξτn(Y |x)
− 1

)
d−→N

(
0,

2γ3

1− 2γ

)
.

(ii) Assume further that ε satisfies condition C2(γ, ρ,A) with ρ < 0. Suppose also that
τn, τ

′
n ↑ 1 satisfy (3) and (4). If there is a nondegenerate limiting random variable Γ such

that
√
n(1− τn)(γ − γ)

d−→ Γ, then√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n(Y |x)

ξτ ′n(Y |x)
− 1

)
d−→ Γ.

We may similarly obtain the asymptotic normality of the indirect estimators ξ̃τn(Y |x) and
ξ̃?τ ′n(Y |x) of the intermediate and extreme expectiles ξτn(Y |x) and ξτ ′n(Y |x), defined as

ξ̃τn(Y |x) = α̂+ β̂>x+ (1 + θ̂>x)(γ−1 − 1)−γ ε̂
(n)
n−bn(1−τn)c,n
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and ξ̃?τ ′n(Y |x) = α̂+ β̂>x+ (1 + θ̂>x)

(
1− τ ′n
1− τn

)−γ
(γ−1 − 1)−γ ε̂

(n)
n−bn(1−τn)c,n.

Here γ is the residual-based Hill estimator of γ; the asymptotic properties of the estimators
are obtained using Corollary 2.1 and Theorem 2.3. See Corollary E.1 in [19].

REMARK 6. Corollary 3.1 requires a second moment of the noise variable ε because
of the use of the weighted least squares method and the residual-based LAWS estimator of
intermediate expectiles. The R package CASdatasets contains numerous examples of real
actuarial data sets for which the assumption of a finite variance is perfectly sensible. When
this assumption is violated, the alternative is to use a more robust method for the estimation
of the model structure and then use the indirect expectile estimator of Section 2.2. A more
robust method for the estimation of α and β is, for instance, the one-step estimator of [39].
Such methods typically require some regularity on the joint distribution of (X, ε), but avoid
moment assumptions. The convergence of the indirect expectile-based estimator built on the
residuals will then only require a finite first moment, see Corollary 2.1 and Theorem 2.3.

3.2. Heteroscedastic single-index model. A model with greater flexibility is the het-
eroscedastic single-index model; the single-index structure allows to handle complicated re-
gression equations in a satisfactory way, including when the dimension d is large.

Model (M2) The random pair (X, Y ) is such that Y = g(β>X) + σ(β>X)ε. Here g and
σ > 0 are measurable functions. The random covariateX is independent of the noise variable
ε, and has a density function fX on Rd whose support is a compact and convex set K with
nonempty interior Ko. Besides, the variable ε is centred and such that E|ε|= 1.

For identifiability purposes, we will assume that g is continuously differentiable, ‖β‖ = 1
(where ‖ · ‖ denotes the Euclidean norm) and that the first non-zero component of β is pos-
itive. This guarantees that β is identifiable. Other sets of identifiability conditions are possi-
ble, see e.g. [28]. In this regression model, the conditional mean and variance have the same
single-index structure. There are analogue models where the direction of projection in σ is
a vector θ possibly different from β (see e.g. [54]). In practice, model (M2) is already very
flexible, and for the sake of simplicity we therefore ignore this more general case; in the lat-
ter, the direction in the variance component can be estimated at the

√
n−rate (see Theorem 1

in [54]), and it is readily checked that our methodology below extends to this case.

In model (M2), ξτn(Y |x) = g(β>x) + σ(β>x)ξτn(ε). There are numerous
√
n−consistent

estimators of β (see e.g. Chapter 2 of [28]). We thus assume that such an estimator β̂ has
been constructed, i.e.

√
n(β̂−β) = OP(1). Estimate now g with

ĝhn,tn(z) =

n∑
i=1

Yi1{|Yi| ≤ tn}L

(
z − β̂>Xi

hn

)/
n∑
i=1

L

(
z − β̂>Xi

hn

)
.

Here L is a probability density function on R, hn→ 0 is a bandwidth sequence and tn→∞
is a positive truncating sequence. This is inspired by an estimator of [22]; truncating helps in
dealing with heavy tails. Besides, analogously to what we observed in model (M1), σ(β>X)

is the conditional first moment of |Y −g(β>X)|. Introduce then absolute residuals Ẑi,hn,tn =

|Yi − ĝhn,tn(β̂>Xi)| and consider a Nadaraya-Watson-type estimator:

σ̂hn,tn(z) =

n∑
i=1

Ẑi,hn,tn1
{
Ẑi,hn,tn ≤ tn

}
L

(
z − β̂>Xi

hn

)/
n∑
i=1

L

(
z − β̂>Xi

hn

)
.
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In Proposition C.1 (see [19]) we show that, under conditions tailored to our framework, both
of these estimators converge uniformly on any compact subset K0 of the interior of the sup-
port of X at the rate n2/5/

√
logn under the condition nh5n→ c ∈ (0,∞). Similar results,

mostly on the estimation of the link function g, are available in the literature; see for exam-
ple [32] for an estimator based on smoothing splines, as well as references therein.

The residuals are then ε̂(n)i = (Yi − ĝhn,tn(β̂>Xi))/σ̂hn,tn(β̂>Xi). Translated in terms of
these residuals, Proposition C.1 of [19] reads

n2/5√
logn

max
1≤i≤n

|ε̂(n)i − εi|
1 + |εi|

1{Xi ∈K0}= OP(1),

for any compact subset K0 of the interior of the support of X . The restriction to such a
compact subset makes sense since kernel regression estimators strongly suffer from boundary
effects (see, among many others, [33]). This restriction is not important in practice since one
would only trust the estimates of g and σ on a sub-domain of the support where sufficiently
many observations from X have been recorded. It implies, however, that the residuals ε̂(n)i
that can be used for the estimation of the high conditional expectile are those for whichXi ∈
K0. More precisely, let ε̂(n)1,K0

, . . . , ε̂
(n)
N,K0

be those residuals whose corresponding covariate
vectors Xi ∈K0 and N =N(K0, n) =

∑n
i=1 1{Xi ∈K0} be their total number. Define

ξ̂τN (ε) = arg min
u∈R

N∑
i=1

ητN (ε̂
(n)
i,K0
− u),

with τN = τm when N =m> 0. This yields the estimators

ξ̂τN (Y |x) = ĝhn,tn(β̂>x) + σ̂hn,tn(β̂>x)ξ̂τN (ε) (intermediate level)

and ξ̂?τ ′N (Y |x) = ĝhn,tn(β̂>x) + σ̂hn,tn(β̂>x)

(
1− τ ′N
1− τN

)−γ
ξ̂τN (ε) (extreme level).

Again, the estimator γ is typically calculated using high order statistics of the residuals ε̂(n)i,K0
;

for example, this can be the Hill estimator taking into account the top bN(1 − τN )c order
statistics of these residuals (see Lemma C.6(ii) in [19] for the asymptotic properties of this
estimator). The next result focuses on the estimators ξ̂τN (Y |x) and ξ̂?τ ′N (Y |x).

THEOREM 3.1. Work in model (M2). Assume that ε satisfies condition C1(γ) with 0 <
γ < 1/2 and the conditions of Proposition C.1 in [19] hold. Let τn = 1 − n−a with a ∈
(1/5,1), K0 be a compact subset of K◦ such that P(X ∈K0)> 0, and N =N(K0, n).

(i) We have, for any x ∈K0,
√
N(1− τN )

(
ξ̂τN (Y |x)

ξτN (Y |x)
− 1

)
d−→N

(
0,

2γ3

1− 2γ

)
.

(ii) Assume moreover that ε satisfies condition C2(γ, ρ,A) with ρ < 0. Suppose also that
τn, τ

′
n ↑ 1 satisfy (3) and (4). If there is a nondegenerate limiting random variable Γ such

that
√
N(1− τN )(γ − γ)

d−→ Γ, then for any x ∈K0,√
N(1− τN )

log[(1− τN )/(1− τ ′N )]

(
ξ̂?τ ′N (Y |x)

ξτ ′N (Y |x)
− 1

)
d−→ Γ.

REMARK 7. Compared to Corollary 3.1, Theorem 3.1 features the additional restriction
τn = 1− n−a with a ∈ (1/5,1). This means that the intermediate expectile to be estimated
has to be high enough so that the rate of (semiparametric) estimation of the structure of the
model is faster than that of the intermediate expectile and the extreme value index γ.
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REMARK 8. In Theorem 3.1, the order of the conditional expectile to be estimated and
rates of convergence are random and dictated by the number N = N(K0, n) of covariates
Xi ∈K0 (where model structure can be estimated at the rate n2/5/

√
logn). Random conver-

gence rates are not unusual in situations where the effective sample size is random: see, for
example, Corollary 1.1 in [43] and Theorem 3 in [52] in the context of randomly truncated
observations. The random rate of convergence

√
N(1− τN ) in Theorem 3.1 can nonethe-

less be replaced by a nonrandom rate because, with the notation of Theorem 3.1 and if
p0 = P(X ∈ K0),

√
N(1− τN ) = [np0]

(1−a)/2(1 + oP(1)) by the law of large numbers.
Similarly, in convergence (ii) and if τ ′n = 1− n−b with b > a, one can replace 1− τ ′N by the
nonrandom sequence 1−τ ′np0 = (np0)

−b and the rate of convergence in (ii) can be substituted
with the nonrandom rate of convergence [np0]

(1−a)/2/[(b− a) log(np0)].

Let us finally mention that, if γ is the residual-based Hill estimator, an analogous result
(Theorem E.1 in [19]) holds for the indirect extreme conditional expectile estimator

ξ̃?τ ′N (Y |x) = ĝhn,tn(β̂>x) + σ̂hn,tn(β̂>x)

(
1− τ ′N
1− τN

)−γ
(γ−1 − 1)−γ ε̂

(n)
N−bN(1−τN )c,N,K0

.

Again, its asymptotic distribution is controlled by that of γ.

3.3. Heteroscedastic left-censored (Tobit) regression model. We briefly discuss how the
assumption that our model describes globally the structure of (X, Y ) can be relaxed, through
the example of the left-censored regression model below.

Model (M3) The random pair (X, Y ) satisfies Y = g(X)+σ(X)εwhen g(X)+σ(X)ε >
y0, and Y = y0 otherwise. Here y0 is known and g and σ > 0 are measurable functions. The
random covariate X ∈ Rd is independent of the centred noise variable ε such that E|ε|= 1.
On the support of X , the functions g and σ are bounded and σ is bounded away from 0.

When g is linear and σ is constant, this is the Tobit model of [45] with non-Gaussian errors.
The heteroscedastic case is considered in e.g. [34, 40], where it is shown how a linear g can be
estimated at the

√
n−rate, with standard nonparametric rates obtained under no assumption

on g. Such models are important in economics (see [45]) and insurance (to model a net loss,
i.e. claim amount minus deductible when the former exceeds the latter, and 0 otherwise).

Here, if ε is heavy-tailed, there is τc ∈ (0,1) such that for τ ∈ [τc,1], the conditional quantile
function of Y given X satisfies qτ (Y |x) = g(x) + σ(x)qτ (ε) (see Lemma C.7(i) of [19]),
linking model (M3) to the tail regression models of [48, 50]. We do not have an analogue
formula for expectiles because they are not equivariant by taking increasing transformations,
but

ξτ (Y |x)≈ ξτ (g(X) + σ(X)ε|X = x) = g(x) + σ(x)ξτ (ε) (see Lemma C.7(ii) of [19])

as τ ↑ 1, which is much weaker than the relationship ξτ (Y |x) = g(x) +σ(x)ξτ (ε) true when
the regression model is valid globally. It is also weaker than a specification of the form
ξτ (Y |x) = r(x) + ξτ (ε) for τ ∈ [τc,1], which would be an expectile-based version of the
model of [48].

Assume that there are estimators ĝ of g and σ̂ of σ which are vn−uniformly consistent (for
some vn→∞) on a measurable subset K0 of the support of X such that P(X ∈K0) > 0.
Let (Xi,Yi, ei) stand for all those N vectors (where N is random) relative to noncensored
observations with covariate vectors in K0, i.e. Yi = g(Xi) + σ(Xi)ei and Xi ∈K0 for 1 ≤
i≤N . Construct residuals as ê(N)

i = (Yi − ĝ(Xi))/σ̂(Xi). These approximate unobservable
ei that, given N = m> 0, are m i.i.d. copies of a random variable e such that P(e > t) =
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p−1 P(ε > t) for t large enough, where p = P(ε > (y0 − g(X))/σ(X) |X ∈K0) > 0 (see
Lemma C.7(iii) of [19]). In particular one easily shows that if ε has extreme value index
γ, then e has too, and ξτ (ε)/ξτ (e)→ pγ as τ ↑ 1 (see Lemma C.7(iv) of [19]). Let N0 =∑n

i=1 1{Xi ∈ K0}. The fact that N/N0 is a
√
n−consistent estimator of p motivates the

estimators

ξ̂τN (Y |x) = ĝ(x) + σ̂(x)

(
N

N0

)γ̂bN(1−τN )c

ξ̂τN (e) (intermediate level)

and ξ̂?τN (Y |x) = ĝ(x) + σ̂(x)

(
N

N0

)γ̂bN(1−τN )c
(

1− τ ′N
1− τN

)−γ̂bN(1−τN )c

ξ̂τN (e) (extreme level)

where ξ̂τN (e) is the LAWS estimator of the expectile of e at level τN , based on the residuals
ê
(N)
i , and γ̂bN(1−τN )c is the Hill estimator based on the top bN(1− τN )c elements of these

same residuals. We examine the convergence of the above estimators next.

THEOREM 3.2. Work in model (M3). Assume that ε satisfies condition C2(γ, ρ,A) with
0< γ < 1/2. Suppose also that E|ε−|2+δ <∞ for some δ > 0, and suppose that ĝ and σ̂ are
vn−uniformly consistent estimators (here vn→∞) of g and σ on K0 with P(X ∈K0)> 0.
Let τn = 1− n−a with a ∈ (0,1) and assume that n1−a/v2n→ 0.

(i) If
√
n(1− τn)A((1− τn)−1)→ λ ∈ R and

√
n(1− τn)/qτn(ε)→ µ ∈ R then, for any

x ∈K0,√
N(1− τN )

(
ξ̂τN (Y |x)

ξτN (Y |x)
− 1

)
d−→N (b(γ, ρ, p,x),v(γ, p)) with

b(γ, ρ, p,x)

= γ(γ−1 − 1)γ
(
pγE

[
ε

∣∣∣∣ε > y0 − g(X)

σ(X)
,X ∈K0

]
−E

[
max

(
ε,
y0 − g(x)

σ(x)

)])
µ

+

{
p−ρ log p

1− ρ
+
p−ρ − 1

ρ

(
1 + ρ

[
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

])}
λ and

v(γ, p) =
2γ3

1− 2γ
+ 2 log p

γ3(γ−1 − 1)γ

(1− γ)2
+ (log p)2γ2.

(ii) Assume moreover that ρ < 0 and τn, τ ′n ↑ 1 satisfy (3) and (4). Then, for any x ∈K0,√
N(1− τN )

log[(1− τN )/(1− τ ′N )]

(
ξ̂?τ ′N (Y |x)

ξτ ′N (Y |x)
− 1

)
d−→N

(
p−ρ

λ

1− ρ
, γ2
)
.

Note that when observations with X ∈ K0 are never censored, we find p = 1, N =∑n
i=1 1{Xi ∈K0}, b(γ, ρ,1,x) = 0 (because E(ε) = 0) and v(γ,1) = 2γ3/(1− 2γ), which

then makes convergence (i) above analogous to Theorem 3.1(i). As expected, the asymptotic
distribution in (ii) is identical to that of the classical Weissman-Hill estimator when p= 1.

3.4. Time series models. Expectiles can be interpreted in terms of the gain-loss ratio.
This is a popular performance measure in portfolio management, well-known in the literature
on no good deal valuation in incomplete markets (see [3] and references therein). Financial
applications typically require working with stationary but dependent time series data. We
present here, in two such time series contexts, applications of our results to the dynamic
prediction of extreme expectiles given past observations. We only focus on LAWS estimators;
extensions of our theory to indirect expectile estimation can be found in Appendix E of [19].
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3.4.1. The ARMA model. We start with the following general ARMA(p, q) model.

Model (T1) The stationary time series (Yt)t∈Z satisfies Yt =
∑p

j=1 φjYt−j +
∑q

j=1 θjεt−j +

εt where φ1, . . . , φp, θ1, . . . , θq ∈ R are unknown coefficients. The polynomials P (z) = 1−∑p
j=1 φjz

j and Q(z) = 1 +
∑q

j=1 θjz
j have no common root, and no root inside the unit

disk of the complex plane. Finally, (εt) is an i.i.d. sequence of copies of ε such that E(ε) = 0,
E(ε2)<∞, and P(ε > x)/P(|ε|> x)→ ` ∈ (0,1] as x→∞.

In model (T1), the process (Yt) is causal and invertible, and so can be represented as
a linear time series in the εt−j , j ≥ 0, by Theorem 3.1.1 in [4]. A conditional one-step
ahead expectile based on data up to time n is then ξτn(Yn+1 |Fn) =

∑p
j=1 φjYn+1−j +∑q

j=1 θjεn+1−j + ξτn(ε) where Fn = σ(Yn, Yn−1, . . .) is the past σ−field at time n. In gen-
eral,

∑p
j=1 φjYn+1−j +

∑q
j=1 θjεn+1−j depends on the unobservable εn, . . . , εn+1−q , which

are all linear functions of (Yn+1−j)j≥1 since (Yt) is an invertible ARMA process. This is why
the dynamic expectile ξτn(Yn+1 |Fn) to be estimated is conditional upon the whole past Fn
of the process; in the AR(p) case when q = 0, this becomes the simpler conditional expectile
ξτn(Yn+1 |Yn, Yn−1, . . . , Yn−p+1), determined by the past p values only.

Among others, the Gaussian maximum likelihood estimator and the ordinary least squares
estimator of the φj and θj are

√
n−asymptotically normal because E(ε2) <∞ (see The-

orem 10.8.2 in [4]). We then assume that the estimators φ̂1,n, . . . , φ̂p,n, θ̂1,n, . . . , θ̂q,n are
such that φ̂j,n = φj + OP(n−1/2) and θ̂j,n = θj + OP(n−1/2). To construct residuals, set
ε̂
(n)
max(p,q)−q+1 = · · ·= ε̂

(n)
max(p,q) = 0 and define ε̂(n)t = Yt−

∑p
j=1 φ̂j,nYt−j −

∑q
j=1 θ̂j,nε̂

(n)
t−j ,

for max(p, q) + 1≤ t≤ n. We consider the asymptotic behaviour of the estimators

ξ̂τn(Yn+1 |Fn) =

p∑
j=1

φ̂j,nYn+1−j +

q∑
j=1

θ̂j,nε̂
(n)
n+1−j + ξ̂τn(ε) (τn intermediate),

ξ̂?τ ′n(Yn+1 |Fn) =

p∑
j=1

φ̂j,nYn+1−j +

q∑
j=1

θ̂j,nε̂
(n)
n+1−j +

(
1− τ ′n
1− τn

)−γ
ξ̂τn(ε) (τ ′n extreme),

where ξ̂τn(ε) is the LAWS estimator of ξτn(ε) and γ is a consistent estimator of γ, both
constructed on the residuals ε̂(n)t for tn ≤ t ≤ n only, where tn/ logn→∞ and tn/n→ 0.
This condition on tn ensures that the influence of the incorrect starting values for the residuals
has vanished; in the autoregressive case q = 0, one can use all the ε̂(n)t for p+ 1≤ t≤ n.

THEOREM 3.3. Work in the ARMA model (T1). Assume that ε satisfies condition C1(γ)
with 0< γ < 1/2. Suppose also that there is δ > 0 such that E|ε−|2+δ <∞, and that τn ↑ 1
is such that n(1− τn)→∞.

(i) If n2γ+ι(1− τn)→ 0 for some ι > 0, then√
n(1− τn)

(
ξ̂τn(Yn+1 |Fn)

ξτn(Yn+1 |Fn)
− 1

)
d−→N

(
0,

2γ3

1− 2γ

)
.

(ii) Assume further that ε satisfies condition C2(γ, ρ,A) with ρ < 0. Suppose also that
τn, τ

′
n ↑ 1 satisfy (3) and (4) (in addition to n2γ+ι(1−τn)→ 0). If there is a nondegenerate

limiting random variable Γ such that
√
n(1− τn)(γ − γ)

d−→ Γ, then√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n(Yn+1 |Fn)

ξτ ′n(Yn+1 |Fn)
− 1

)
d−→ Γ.
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3.4.2. The GARCH model. ARMA models are widely applicable but well-known for
failing to replicate the time-varying volatility typically displayed by financial time series. Our
next focus is on general GARCH(p, q) models, which arguably constitute the best-known and
most employed class of heteroscedastic time series models.

Model (T2) The stationary time series (Yt)t∈Z satisfies Yt = σtεt, with σt > 0 such that
σ2t = ω +

∑p
j=1 βjσ

2
t−j +

∑q
j=1αjY

2
t−j and ω,α1, . . . , αq, β1, . . . , βp > 0 are unknown co-

efficients, and (εt) is an i.i.d. sequence of copies of ε such that E(ε) = 0, E(ε2) = 1 and
P(ε2 = 1)< 1. Suppose also that the sequence of matrices

At =



α1ε
2
t · · · · · · · · · αqε2t β1ε2t · · · · · · · · · βpε2t

1 0 0 · · · 0 0 · · · · · · · · · 0
0 1 0 · · · 0 0 · · · · · · · · · 0
...

. . . . . . . . .
...

...
...

...
...

...
0 · · · 0 1 0 0 · · · · · · · · · 0
α1 · · · · · · · · · αq β1 · · · · · · · · · βp
0 · · · · · · · · · 0 1 0 0 · · · 0
0 · · · · · · · · · 0 0 1 0 · · · 0
...

...
...

...
...

...
. . . . . . . . .

...
0 · · · · · · · · · 0 0 · · · 0 1 0


has a negative top Lyapunov exponent, i.e. limt→∞ t

−1E(log ‖AtAt−1 · · ·A1‖) < 0 with
probability 1 (where ‖ · ‖ is an arbitrary matrix norm).

The above condition on (At) is necessary and sufficient for the existence of a stationary,
nonanticipative solution, see Theorem 2.4 p.30 of [16]. Condition P(ε2 = 1) < 1 ensures
identifiability. In pure ARCH models (p = 0), one can estimate the model with weighted
least squares regression of Y 2

t on its past. This estimator is
√
n−asymptotically normal if

E(Y 4
t )<∞ (see Theorem 6.3 p.132 in [16]). Under further conditions on model coefficients

(see p.41 of [16]), this may reduce to E(ε4)<∞, but this is still a substantial restriction in
our context of heavy-tailed ε. An alternative is the weighted L1−regression estimator of [29],
whose

√
n−asymptotic normality requires some regularity on the distribution of ε rather than

finite moments. In GARCH models, the self-weighted quasi-maximum exponential likeli-
hood estimator of [53] is

√
n−asymptotically normal for square-integrable innovations.

Take
√
n−consistent estimators ω̂n, α̂j,n and β̂j,n. To construct residuals, set σ̂(n)max(p,q)−p+1 =

· · · = σ̂
(n)
max(p,q) = ω̂n, and then define (σ̂

(n)
t )2 = ω̂n +

∑p
j=1 β̂j,n(σ̂

(n)
t−j)

2 +
∑q

j=1 α̂j,nY
2
t−j

and ε̂(n)t = Yt/σ̂
(n)
t , for max(p, q) + 1≤ t≤ n. Denoting again by Fn the past σ−field and

letting σ̂2n+1 = ω̂n+
∑p

j=1 β̂j,nσ̂
2
n+1−j +

∑q
j=1 α̂j,nY

2
n+1−j be the predicted volatility at time

n+ 1, one-step ahead estimators of intermediate and extreme conditional expectiles are

ξ̂τn(Yn+1 |Fn) = σ̂n+1ξ̂τn(ε) and ξ̂?τ ′n(Yn+1 |Fn) = σ̂n+1 ×
(

1− τ ′n
1− τn

)−γ
ξ̂τn(ε)

respectively, where ξ̂τn(ε) is the LAWS estimator of ξτn(ε) and γ is a consistent estimator
of γ, both constructed on the residuals ε̂(n)t for tn ≤ t ≤ n only, where tn/ logn→∞ and
tn/n→ 0 (for pure ARCH models when p= 0, all residuals for q+ 1≤ t≤ n may be used).

THEOREM 3.4. Work in the GARCH model (T2). Assume that ε satisfies condition C1(γ)
with 0< γ < 1/2. Suppose also that there is δ > 0 such that E|ε−|2+δ <∞, and that τn =
1− n−a for some a ∈ (0,1).
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(i) Then
√
n(1− τn)

(
ξ̂τn(Yn+1 |Fn)

ξτn(Yn+1 |Fn)
− 1

)
d−→N

(
0,

2γ3

1− 2γ

)
.

(ii) Assume further that ε satisfies condition C2(γ, ρ,A) with ρ < 0. Suppose also that
τn, τ

′
n ↑ 1 satisfy (3) and (4). If there is a nondegenerate limiting random variable Γ such

that
√
n(1− τn)(γ − γ)

d−→ Γ, then√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n(Yn+1 |Fn)

ξτ ′n(Yn+1 |Fn)
− 1

)
d−→ Γ.

4. Finite-sample study. We showcase our estimators on simulated data (Sections 4.1
and 4.2) and real data (Sections 4.3 and 4.4). Here we use, to estimate the extreme value
index, the following bias-reduced version of the Hill estimator γ̂k, see [21]:

γ̂RB
k = γ̂k

(
1− b̂

1− ρ̂

(n
k

)ρ̂)
,

where throughout, k = bn(1− τn)c, and b̂ and ρ̂ are consistent estimators of the quantities
b and ρ under condition C2(γ, ρ,A) and the additional assumption that A(t) = bγtρ. The
estimators b̂ and ρ̂ may be found in [21] and are available from the R function mop in the R
package evt0; of course, we shall use here their residual-based versions. We also consider
the following bias-reduced version of the family of direct extreme expectile estimators of ε:

ξ̂?,RB
τ ′n

(ε) = ξ̂?τ ′n(ε)

(
1 +

[n(1− τ ′n)/k]−ρ̂ − 1

ρ̂
b̂γ̂RB
k

(n
k

)ρ̂)
×
(

1 + r?(τ ′n)

1 + r(1− k/n)

)−γ̂RB
k

×
ρ̂+ [(1/γ̂RB

k − 1)−ρ̂[1 + r?(τ ′n)]−ρ̂ − 1]̂bγ̂RB
k (1− τ ′n)−ρ̂

ρ̂+ [(1/γ̂RB
k − 1)−ρ̂[1 + r(1− k/n)]−ρ̂ − 1]̂bγ̂RB

k (n/k)ρ̂
, with

r(1− k/n) =

(
1−

ξ̂1/2(ε)

ξ̂1−k/n(ε)

)
1

1− 2k/n

1 +
b̂[F̂n(ξ̂1−k/n(ε))]−ρ̂

1− γ̂RB
k − ρ̂

−1 − 1, and

r?(τ ′n) =

(
1−

ξ̂1/2(ε)

ξ̂?τ ′n(ε)

)
1

2τ ′n − 1

(
1 +

b̂
(
1/γ̂RB

k − 1
)−ρ̂

1− γ̂RB
k − ρ̂

(1− τ ′n)−ρ̂

)−1
− 1.

This expression is motivated by the proof of Proposition 1 and Corollary 1 in [9]; here F̂n
is the empirical survival function (i.e. complementary distribution function) of the residuals.
We similarly consider the following bias-reduced version of the family of indirect estimators:

ξ̃?,RB
τ ′n

(ε) = ξ̃?τ ′n(ε)

(
1 +

[n(1− τ ′n)/k]−ρ̂ − 1

ρ̂
b̂γ̂RB
k

(n
k

)ρ̂)
× [1 + r?(τ ′n)]−γ̂

RB
k

×
(

1 +
(1/γ̂RB

k − 1)−ρ̂[1 + r?(τ ′n)]−ρ̂ − 1

ρ̂
b̂γ̂RB
k (1− τ ′n)−ρ̂

)
.

These procedures improve the accuracy of our estimators, without affecting their asymptotic
properties (see [20, 21]). They naturally give rise to extreme conditional expectile estimators
ξ̂?,RB
τ ′n

(Y |x) and ξ̃?,RB
τ ′n

(Y |x), to which we refer in the present section.
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4.1. Simulation study: linear and single-index models. We simulate N = 1,000 samples
of n= 1,000 observations (Xi, Yi), 1≤ i≤ n. HereX ∈R4, with independent components,
the first three being uniformly distributed on (0,1), and the fourth following a Beta(2,1)
distribution. We then simulate from two different models on (X, Y ):

(G1) Y = 1 +β>X +
(
1/2 +β>X

)
ε.

(G2) Y = 1 + exp
(
β>X − 2

)
+
(
3/2 + exp

(
β>X − 2

))
ε.

Model (G1) is a location-scale shift linear regression model, while model (G2) is a het-
eroscedastic single-index model. In both cases, the coefficient vector β = (1,1,1,1) and ε is
a noise variable, independent of X , with a normalised symmetric Burr distribution, that is,
ε=−ρε0/B((γ − 1)/ρ, (ρ− γ)/ρ), where B is the Beta function and ε0 has density

(5) f0(x) = (2γ)−1|x|−ρ/γ−1(1 + |x|−ρ/γ)1/ρ−1 (x ∈R).

We consider the cases γ ∈ {0.1,0.2,0.3,0.4} and the second-order parameter ρ=−1.

Our aim is to estimate extreme expectiles ξτ ′n(Y |x), in both of these models. We compare
the performances of several procedures, constructed using the following four strategies:

(S1) We assume that Y is linked to X by a location-scale shift linear regression model,
i.e. Y = α+β>X+

(
1 + θ>X

)
ε. The methodology used for the estimation of ξτ ′n(Y |x)

is outlined in Section 3.1, and the bias-reduced direct estimator is used.
(S1i) Identical to (S1), but the bias-reduced indirect estimator is used instead.
(S2) We assume that Y is linked to X by the heteroscedastic single-index model Y =
g
(
β>X

)
+σ

(
β>X

)
ε. The vector β is estimated using the algorithm of [54] (see 1.(a)–

(c) on page 1240 therein), with g and σ estimated using the procedure described in Sec-
tion 3.2, with hn = 0.3 and tn = n2/5 ≈ 15.85. The bias-reduced direct estimator is used.

(S2i) Identical to (S2), but the bias-reduced indirect estimator is used instead.

These procedures are compared with the following eight benchmarks:

(B1) We assume no specific structure on (X, Y ) and, atX = x, we use a local bias-reduced
direct estimator relying on those Yi whoseXi are the 100 nearest neighbours of x. In this
procedure we use k = 20, i.e. τn = 0.8 for the extrapolation step.

(B1i) Identical to (B1), but the bias-reduced indirect estimator is used instead.
(B2) We assume the homoscedastic single-index model Y = g

(
β>X

)
+ ε with known β =

(1,1,1,1). The function g is estimated through the Nadaraya-Watson estimator, with a
bandwidth chosen using the R package np. The bias-reduced direct estimator is used.

(B3) Identical to (S2), although β is assumed to be known and equal to (1,1,1,1).
(B4) We assume that the structure of the model linking Y toX is fully known, i.e. we know
β and the location and scale functions, and we use the direct estimator (no bias reduction).

(B4i) Identical to (B4), although the indirect estimator is used instead (no bias reduction).
(B5) Identical to (B4), although the bias-reduced direct estimator is used instead.
(B5i) Identical to (B5), although the bias-reduced indirect estimator is used instead.

In each procedure except (B1) and (B1i), the intermediate expectile level used as an anchor in
the extreme value index and extreme expectile estimators is fixed at τn = 0.9, corresponding
to k = bn(1− τn)c= 100; in (S2), (S2i), (B2) and (B3), we use the Epanechnikov kernel in
the estimation of the link functions g and σ. To assess the performance of our methods, we
compute, for a given estimator ξ

?
τ ′n

(Y |x), the Relative Mean Absolute Deviation (RMAD)

RMAD = median
1≤m≤N

∣∣∣∣∣∣ξ
?,(m)
τ ′n

(Y |x)

ξτ ′n(Y |x)
− 1

∣∣∣∣∣∣ ,
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where x> = (1/2,1/2,1/2,1/3). The quantity ξ
?,(m)
τ ′n

(Y |x) denotes the estimator calculated
on the mth replication, at the level τ ′n = 1− 5/n= 0.995. The error RMAD gives an idea of
the uncertainty on extreme conditional expectiles at a typical data point in the centre of the
data cloud. Finally, for all α ∈ (0,1), the true expectiles ξα(Y |x) are deduced from ξα(ε0),
obtained by solving the equation ψ(y)/(2ψ(y) + y) = 1− α via the R function uniroot,
where ψ(y) =

∫∞
y P(ε0 > t)dt is computed with the R function integrate.

Results are reported in Table F.1 of [19]. In the linear model (G1), methods (S1) and (S1i) are
clearly the best, and single-index based methods (S2) and (S2i) perform reasonably well. In
fact, for the heaviest tail, methods (S2) and (S2i) slightly outperform (S1) and (S1i) because
they are more robust to the highest values in the sample. In the single-index model (G2),
methods (S2) and (S2i) perform best, and method (S2) is quite close to the unrealistic bench-
mark (B3); methods (S1) and (S1i) are heavily penalised by the misspecification of the con-
ditional mean and variance. The nonparametric benchmarks (B1) and (B1i) are surprisingly
competitive, perhaps because they benefit from a degree of robustness against heteroscedas-
ticity. Not accounting for heteroscedasticity is indeed very detrimental, as a comparison of
method (S2) and benchmarks (B2), (B3) shows, even with the unrealistic advantage of a
correct pre-specification of the direction β. Finally, a comparison of benchmarks (B4) and
(B5) shows that even though an unrealistic correct pre-specification of the model structure
is obviously beneficial, getting the extreme value step right is very important: in the linear
model (G1), method (S1) outperforms benchmark (B4) for γ ∈ {0.1,0.2}, and is competitive
otherwise, because it features a bias-reduction scheme at the extreme value step.

It appears that while knowing model structure is an advantage for lighter-tailed models, this
advantage disappears when the noise variable has a heavier tail, thus illustrating that the
extreme value step, rather than model estimation, is indeed the major contributor to estima-
tion error. For instance, when γ = 0.2, the RMAD of benchmark (B5) is only 5% smaller
than the RMAD of method (S2) in the single-index model (G2), and method (S2) is even
slightly more accurate when γ is larger. The difference when γ = 0.1 makes sense: in this
setup where extreme expectiles are comparatively smaller, an error on the conditional mean
or variance will have more consequences. Let us conclude that while we used the intermedi-
ate level kn = 100 for the sake of computational efficiency, in practice one may want to use
a data-driven criterion for the choice of kn. In Appendix F.1 of [19], we suggest an adapta-
tion of an Asymptotic Mean-Squared Error (AMSE) minimisation criterion; we repeated this
simulation exercise with this choice of kn and observed that there is no obvious advantage in
the data-driven choice although results are competitive. Full results are reported in Table F.2
of [19].

4.2. Simulation study: time series models. We simulate N = 1,000 replications of time
series of size n+ 1 = 1,001 from two different models:

(T1) An ARMA(1,1) model Yt = φYt−1 + θεt−1 + εt, where the parameters φ and θ are
estimated using default settings of the R function arma from package tseries.

(T2) A GARCH(1,1) model Yt = (ω + αY 2
t−1 + βσ2t−1)

1/2 εt, where ω, α and β are esti-
mated using default settings of the R function garch from package tseries.

The εt are i.i.d. with common density f0 as in (5) and ρ=−1; in the GARCH(1,1) model,
these innovations are rescaled by

√
Γ(1− 2γ)Γ(1 + 2γ) to guarantee that E[ε2] = 1.

We estimate a one-step ahead extreme expectile ξτ ′n(Yn+1 |Fn), where Fn denotes the past
σ−field at time n. We then compute, on the mth sample, the target value ξ(m)

τ ′n
(Yn+1 |Fn), its
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direct estimate ξ̂?,RB,(m)
τ ′n

(Yn+1 |Fn) and its indirect counterpart ξ̃?,RB,(m)
τ ′n

(Yn+1 |Fn), where
τ ′n = 1− 5/n= 0.995 and kn = n(1− τn) = 100. We calculate their RMAD

RMAD = median
1≤m≤N

∣∣∣∣∣∣ξ
?,(m)
τ ′n

(Yn+1 |Fn)

ξ
(m)
τ ′n

(Yn+1 |Fn)
− 1

∣∣∣∣∣∣ , with ξ
?,(m)
τ ′n

= ξ̂
?,RB,(m)
τ ′n

or ξ̃?,RB,(m)
τ ′n

.

In the ARMA model, we take φ, θ ∈ {0.1,0.5}; in the GARCH model, we fix ω = 0.1
and take (α,β) ∈ {(0.1,0.1), (0.1,0.45), (0.45,0.1), (0.1,0.85)}. In each model, we take
γ ∈ {0.1,0.2,0.3,0.4}. Note that the GARCH model is second-order stationary only if
α+β < 1 (see Theorem 2.5 in [16]). Our methods are compared with the (unrealistic) bench-
marks generated from knowing model coefficients (and therefore observing the innovations).

Results are reported in Table F.3 of [19]. In the ARMA model, the RMAD does not seem
overly sensitive to the parameters φ and θ, but increases with the extreme value index γ.
In the GARCH model, errors seem to be sensitive to whether the model is close to second-
order stationarity (note the slightly different errors in the case (α,β) = (0.1,0.85) and γ ∈
{0.1,0.2}). In both models, the indirect estimator has an advantage over the direct estimator,
which gets smaller as the tail gets heavier. Knowing the true values of the coefficients does
not bring a large improvement, except maybe for the lightest tails; this again underlines that
most of the estimation error, and hence of the uncertainty on the estimates, originates from
the extreme value step, rather than model estimation. With our data-driven choice of kn, the
indirect estimator typically stays the best.

4.3. Real data analysis: Vehicle insurance data. We consider the Vehicle Insurance Cus-
tomer Data1, made of n= 9,134 total (i.e. cumulative over the duration of the contract) claim
amounts Y of insurance policyholders according to their lifetime value X1 (in USD), income
X2 (in USD), number X3 of months since last claim and number X4 of months since policy
inception. We follow the methodology of Section 3.2. A cross-validation procedure using
the R function npindexbw (from the package np) gives a selected bandwidth h∗ ≈ 0.1
(for covariates standardised by their respective maxima). We also choose t∗ =∞. We ob-
tain β̂ ' (−0.923,0.386,−0.001,−0.002), which seems to indicate that only lifetime value
X1 and income X2 play a role in the prediction of Y . The estimated functions ĝ and σ̂ are
depicted in the top left panel of Figure 1 (the kernel function L is the Epanechnikov kernel).

We now estimate an extreme conditional expectile ξτ ′n(Y |x) at level τ ′n = 1 − 1/(nh∗) ≈
0.999. The top right panel of Figure 1 shows the direct extreme conditional expectile esti-
mator for k∗ = 200 and τ∗ = 1 − k∗/n (the bottom right panel of Figure 1 shows that the
heavy-tailed assumption on the noise is reasonable). The heteroscedastic single-index model
captures the variation in the shape of the data cloud fairly well, and the extreme conditional
expectile curve gives a reasonable idea of the conditional extremes of the data. Interpret-
ing an expectile curve, meanwhile, is not always straightforward. However, in this insurance
example, the expectile ξτ ′n(Y |x) satisfies the following gain-loss ratio criterion (see [3]):

1− τ ′n ≈
1− τ ′n
τ ′n

=
E((Y − ξτ ′n(Y |x))1{Y > ξτ ′n(Y |x)}|X = x)

E((ξτ ′n(Y |x)− Y )1{Y < ξτ ′n(Y |x)}|X = x)

≈
E((Y − ξτ ′n(Y |x))1{Y > ξτ ′n(Y |x)}|X = x)

ξτ ′n(Y |x)−E(Y |X = x)
.

1Available at https://www.kaggle.com/ranja7/vehicle-insurance-customer-data and
from the authors upon request.
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In other words, ξτ ′n(Y |x) is the aggregate premium to be collected over the lifetime of the
contract so that, for customers having the list of characteristics x, the ratio between aver-
age losses exclusively incurred by claims made by such customers above that level and net
average profit is approximately the small quantity 1− τ ′n. This value ξτ ′n(Y |x) can be thus
interpreted as a high safety margin for the insurer, and has an even clearer meaning to rein-
surers, who only face a loss when the claim exceeds a certain high threshold.

We compare extreme conditional expectile and quantile estimates at the same level τ ′n, the
latter being obtained by combining the standard Weissman-type estimate of an extreme quan-
tile of the noise with our estimates ĝ and σ̂. It can be seen in Figure 1 that the extreme
conditional quantile estimate is outside a pointwise 95% bootstrap confidence interval for
the extreme conditional expectile (constructed using an adapted methodology called semi-
parametric Pareto tail bootstrap, see Appendix F.2 of [19]). This may be relevant to insur-
ance companies, for whom lower (i.e. more optimistic) assessments of risk translate into
marketable contracts with lower premiums and hence improved competitivity, while policy-
makers and regulators would favour the higher (i.e. more pessimistic) quantile estimates to
hedge better against systemic risk. Interestingly, the regression median is below the regres-
sion mean, so there is a qualitative difference between central and extreme assessments of risk
using expectiles and quantiles: a risk assessment based on the regression mean (i.e. a central
conditional expectile) is more conservative than if it were based on the regression median
(i.e. a central conditional quantile), but extreme conditional expectile risk measurements are
less conservative than those made with extreme conditional quantiles.

4.4. Real data analysis: Australian dollar exchange rates. The analysis of exchange rate
risk is a key question in economics. An accurate analysis of exchange rate risk informs strate-
gic decisions made by firms, such as the extent to which they import and export and whether
they should invest in foreign markets, which have consequences on their competitiveness
on the global marketplace. We study the daily log-returns of the Australian Dollar/Swiss
Franc (AUD/CHF) and Australian Dollar/Swedish Krona (AUD/SEK) exchange rates from
1st March 2015 to 28th February 2019, represented in the left panels of Figure 2 (sam-
ple size n = 1,043). The literature has suggested that expectiles can be fruitfully used to
estimate quantiles (see e.g. [3, 44]). Our goal is to estimate the (dynamic) extreme condi-
tional quantile qτ ′n(Yn+1 |Fn) of level τ ′n = 0.995 ≈ 1− 5/n on the final day. We consider
a GARCH(1,1) model, motivated by the finding of [36] that GARCH models fit past Aus-
tralian exchange rates well; the R function garch (in the package tseries) returns, with
the notation of Section 3.4.2, (ω̂n, α̂n, β̂n) = (4.20×10−7,0.943,0.0465) for AUD/CHF and
(1.21× 10−5,0.576,0.119) for AUD/SEK. We construct the quantile estimator

q̂?,RB
τ ′n

(ε) =
(
(γ̂RB
k )−1 − 1

)γ̂RB
k ξ̂?,RB

τ ′n
(ε).

With k∗ = 50 and τn = 1− k∗/(n− 1), we get γ̂RB
k = 0.189 for AUD/CHF (resp. 0.211 for

AUD/SEK) and q̂?,RB
τ ′n

(ε) = 2.40 (resp. 2.58) (graphical evidence of a heavy right tail of ε is
given on the right panels of Figure 2). To check that our estimates make sense, we recall the
characterisation of qτ ′n(ε) as 0.995 = τ ′n = E(1{ε≤ qτ ′n(ε)}) and compare that with

1

n− 1

n∑
i=2

1

{
ε̂
(n)
i < q̂?,RB

τ ′n
(ε)
}
≈ 0.99424 for AUD/CHF (resp. 0.99520 for AUD/SEK).

This is indeed very close to the expected value τ ′n = 0.995. Our estimate can be compared
with a bias-reduced version q̃?,RB

τ ′n
(ε) of the classical extrapolated estimate of [51]:

q̃?,RB
τ ′n

(ε) = q̃?τ ′n(ε)

(
1− γ̂RB

k

b̂

ρ̂

(n
k

)ρ̂)
,
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where q̃?τ ′n(ε) is the residual-based Weissman quantile estimator using γ̂RB
k∗ in its extrapo-

lation step. This estimate is 2.48 for AUD/CHF (resp. 2.64 for AUD/SEK). Our expectile-
based estimate of 2.40 (resp. 2.58) is slightly lower; this makes sense, as the estimated value
of γ is lower than 1/4, and extreme expectile-based estimates can be thought to reflect this
rather light tail by producing lower point estimates than their quantile counterparts (and when
γ > 1/4, expectile-based quantile estimates seem to be higher than traditional estimates,
see e.g. Section 7.1 in [9]). This lower assessment of risk may be interesting to financial
companies, as opposed to regulators who may prefer quantile-based estimates. Finally, the
predicted estimate of qτ ′n(Yn+1 |Fn) on 1st March 2019 is 0.0138 with Gaussian and semi-
parametric Pareto tail bootstrap 95% confidence intervals (see Appendix F.2 of [19]) being
[0.0122,0.0154] and [0.0116,0.0160] for AUD/CHF (resp. 0.0156, Gaussian confidence in-
terval [0.0136,0.0178] and bootstrap confidence interval [0.0127,0.0191] for AUD/SEK).
This amounts to a daily variation of 1.4% of the AUD/CHF exchange rate (resp. 1.6% for
AUD/SEK).

5. Discussion and perspectives. We provide a general toolbox for the estimation of
extreme conditional expectiles, by showing how a simple assumption on the residuals of
the model makes it possible to obtain the convergence of residual-based estimators of the
extremes of the noise. By applying our results in examples not limited to low dimensions,
we contribute to the broader question of how to model extremes with a large number of
covariates. The works of [17, 23, 49, 50] introduce dedicated modelling assumptions on
the tail conditional quantiles of Y . The tail linear quantile regression model of [50] is not
straightforward to interpret: even when the conditional quantile is in fact linear in x (for
any τ ), this model is the arguably complicated linear model linking Y to X with random
coefficients (see p.808 of [6]). Our generic model provides a straightforward way of seeing
the effectX has on Y and avoids the crossing problem (unlike the method of [50]), since the
structure of the model is estimated only once. The nonparametric model of [17], meanwhile,
rests upon the estimation of a Tail Dimension Reduction subspace, which can only be done
using the pairs (Xi, Yi) such that Yi is large. This entails a potentially substantial loss of
modelling strength compared to our approach. Besides, the aforementioned papers focus on
the case of i.i.d. data (Xi, Yi); our method allows us to consider popular time series examples.

Among future research perspectives, it would be nice to extend our results for ARMA and
GARCH models in the ARMA-GARCH model, to allow for heteroscedasticity in time series
not having mean 0. Besides, the basic principle of our approach relies on location equivari-
ance and positive homogeneity, which are true for numerous interesting functionals, e.g. co-
herent spectral risk measures, including the very recent concept of extremiles ([8]). Adapting
our approach to other risk measures constitutes an interesting avenue for further work. An-
other perspective is to relax the heavy-tailed assumption, to extend the applicability of our
method. As far as we know, even in the simple unconditional i.i.d. case, there are currently
no estimation procedures available for extreme expectiles of either light-tailed or short-tailed
distributions, which are the other setups one would consider in an extreme value framework.
Finally, an approach that fully accounts for joint uncertainty between model estimation and
extreme value estimation would be an important next step in order to handle the strongest
possible forms of heteroscedasticity. This will at least require uniform weighted Gaussian
approximations of the tail empirical residual-based quantile process; this very difficult ques-
tion needs to be solved on a case-by-case basis, because the structure of residuals is com-
pletely controlled by the structure of the model. In linear regression, the current state of the
art seems to be uniform non-weighted approximations on the real line (see [5], especially
Section 6 therein). The absence of weighting makes it impossible to use such results for ex-
treme value inference. We are not aware of such results in single-index models, not even
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non-weighted and in the homoscedastic case. This is a very substantial research project in
itself which we defer to future work.
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SUPPLEMENTARY MATERIAL

The supplementary material document () contains the proofs of all theoretical results. It
also provides further theoretical results related to indirect estimators, and further details about
our finite-sample procedures and studies.
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FIG 1. Vehicle Insurance Customer data. Top left: estimates of g (red curve) and σ (blue curve) with a histogram
of the β̂>Xi. Top right: estimates of the regression mean (red line) and median (orange line) and of the estimated
conditional expectile (solid purple line; dotted lines represent bootstrap pointwise 95% confidence intervals) and
quantile (green line) at level τ ′n = 1− 1/(nh∗) ≈ 0.999 in the (β̂>x, y) plane. Bottom left: curves k 7→ γ̂RB

k

on the non-filtered data Yi (black curve) and residuals (red curve). Bottom right: Exponential QQ-plot of the
log-spacings log(ε̂(n)

n−i+1,n/ε̂
(n)
n−k∗,n), 1≤ i≤ k

∗ = 200. The straight line has slope γ̂RB
k∗ = 0.263.
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