
ConstraintProgramming
Extensions.jl

An MOI/JuMP extension for constraint programming

Thibaut Cuvelier — CentraleSupélec (université Paris-Saclay)



What is constraint programming (CP)?

▪ Way of formulating combinatorial problems 

▪ CP doesn’t really work for continuous problems (exception: Ibex, e.g.)

▪ Initial focus in CP was on feasibility, but optimisation is also possible

▪ Quite different from mathematical optimisation: 

▪ No duality, no convexity, no linear/continuous relaxation, no differentiability at all

▪ More generic set of constraints, not just equations and inequalities

▪ Real focus on discrete aspect of the problem

▪ Mathematical optimisation’s support for combinatorial problems is more an afterthought

▪ CP has had many successes in operational research: 

▪ Scheduling, time tabling, resource allocation

http://www.ibex-lib.org/download


An example of CP model: solving Sudokus
▪ Variables: 

▪ 𝑑𝑖𝑗: digit for cell 𝑖, 𝑗 , a number between 1 and 9

▪ Constraints: 

▪ Known digits (hints)

▪ Each digit appears once in each row:
alldifferent 𝑑𝑖𝑗 ∀𝑗 , ∀𝑖

▪ Each digit appears once in each column: 
alldifferent 𝑑𝑖𝑗 ∀𝑖 , ∀𝑗

▪ Each digit appears once in each block: 

alldifferent

𝑑3𝑠,3𝑡 𝑑3𝑠,3𝑡+1 𝑑3𝑠,3𝑡+2

𝑑3𝑠+1,3𝑡 𝑑3𝑠+1,3𝑡+1 𝑑3𝑠+1,3𝑡+2

𝑑3𝑠+1,3𝑡 𝑑3𝑠+1,3𝑡+1 𝑑3𝑠+1,3𝑡+2

, 𝑠 ∈ 0,1,2 , 𝑡 ∈ 0,1,2

▪ What about your typical MIP model 😅? 



ConstraintProgrammingExtensions.jl

• What is the state of CP in Julia?

• What is the state of the package? 

• What comes next? 

• What is missing in Julia/MOI/JuMP?

• What is enabled with this package?



What is the state of CP in Julia?

▪ Quite a few CP solvers purely written in Julia! 

▪ ConstraintSolver.jl

▪ JuliaConstraints organisation and its CBLS.jl

▪ SeaPerl.jl

▪ JuliaIntervals’ IntervalConstraintProgramming.jl

▪ Apart from one solver wrapped with this package, no external CP solver wrapped

▪ CPLEX CP Optimizer in CPLEXCP.jl

➢No easy way to write a model for several solver packages

Based on MOI

Based on ModelingToolkit

https://github.com/Wikunia/ConstraintSolver.jl
https://github.com/JuliaConstraints
https://github.com/JuliaConstraints/CBLS.jl
https://github.com/corail-research/SeaPearl.jl
https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl
https://github.com/dourouc05/CPLEXCP.jl/


What is the goal of 
ConstraintProgrammingExtensions.jl?

▪ This package sits at the same level as MOI: abstraction of solvers

▪ Major goal: bring the expressive power of CP to MOI and JuMP

▪ Have a system that is on (approximate) parity with MiniZinc

▪ Wrap most of the constraints of CPLEX CP Optimizer, Gecode, JaCoP, etc.

▪ Current non-goals: 

▪ Give access to the whole set of features of CP solvers: exploration tuning, new 
constraint propagators, callbacks, etc.

▪ Provide preprocessing of the formulation, nonnaïve reformulations



Competitors of 
ConstraintProgrammingExtensions.jl

▪ MiniZinc / FlatZinc — actively developed (last release in 2021)

▪ Dedicated language to describe CP/MIP/SAT models

▪ FlatZinc: the bare minimum number of constraints, used to communicate with solvers

▪ For instance, no ≥, only ≤

▪ MiniZinc can use MIP solvers for CP models

▪ “Bridges” when the solver does not support some constraint

▪ But not organised as a graph: MiniZinc provides a default implementation (in the hope that the 
solver supports the new constraints)

▪ Each solver can override the rewriting to stop recursion

▪ MiniZinc comes with an IDE, a tree visualiser (CP Profiler), a conflict debugger 
(FindMUS), etc.

https://www.minizinc.org/
https://www.minizinc.org/doc-2.5.5/en/fzn-spec.html
https://www.minizinc.org/doc-2.5.5/en/lib-flatzinc.html
https://www.minizinc.org/doc-2.5.5/en/cpprofiler.html
https://www.minizinc.org/doc-2.5.5/en/find_mus.html


Competitors of 
ConstraintProgrammingExtensions.jl

▪ Numberjack — more or less actively developed (latest release in 2021)

▪ A Python library to build MIP/CP/SAT models

▪ Numberjack can convert MiniZinc models as Python files, import and export XCSP models

▪ The constraints can be “decomposed” to ease mapping onto solvers

▪ For instance, no flexibility in the way models are transformed into MIP, similar to MiniZinc

▪ Picat — actively developed (latest release in 2021)

▪ Functional/declarative programming language, similar to Prolog

▪ Library of functions to create CP models

https://github.com/eomahony/Numberjack
http://www.picat-lang.org/


Competitors of 
ConstraintProgrammingExtensions.jl

▪ Savile Row — actively developed (last release in 2020)

▪ Dedicated language to describe CP/SAT/SMT models (based on Essence-Prime)

▪ Reformulations of CP/SAT models to speed up solving times, including techniques to 
remove symmetry

▪ Savile Row can cast CP/SAT models into SMT models, enlarging the available solvers

▪ OPL — released as part of CPLEX CP Optimizer, actively developed

▪ Dedicated language for describe CP/MIP models (with some programming too) 

▪ CPLEX comes with an IDE (CPLEX Optimization Studio)

▪ No reformulations: a MIP model cannot be solved by CPLEX CP Optimizer, and vice-
versa

https://savilerow.cs.st-andrews.ac.uk/
https://www.csplib.org/Languages/EssencePrime/
https://www.sciencedirect.com/science/article/abs/pii/S0004370217300747
https://www.ibm.com/products/ilog-cplex-optimization-studio


What is the state of the package? 

▪ AbsoluteValue

▪ AllDifferent

▪ Maximum/Minimum

▪ BinPacking

▪ Count, GCC

▪ Conjunction

▪ Disjunction

▪ Knapsack

▪ Non-overlapping 
rectangles

▪ Reification

▪ Sorting

▪ Etc.

Many standard CP constraints are already available: 
d11 = MOI.add_constrained_variable(

model, MOI.Integer())
# …

MOI.add_constraint(model, 
MOI.SingleVariable(d11),
MOI.Interval(1, 9))

# …

MOI.add_constraint(model, 
MOI.VectorOfVariables([d11, d12…]),
CP.AllDifferent(9))

# …

➢More constraints: easier to model, easier to solve



What is the state of the package? 
▪ One solver is bound: 

▪ CPLEX CP Optimizer (through its Java API)

▪ Solver wrappers are typically harder to write for CP solvers

▪ Optimisation solvers usually have a callable low-level C API

▪ CP solvers mostly have a high-level modelling API, no low-level API, no C

▪ Many solvers are written in Java/Scala

▪ No generic file format to share models among solvers as ubiquitous as LP or MPS

▪ MiniZinc, XCSP, AMPL (to some extent), DIMACS (only for SAT): quite high level

▪ FlatZinc: low-level variant of MiniZinc

▪ FlatZinc import and export modules implemented 😊! 



What is the state of the package? 

▪ All solvers do not implement all constraints

▪ Same problem as with many MOI solvers 

▪ Same solution: implement bridges

▪ Many bridges must then be implemented: 

▪ Between CP sets (some are variants of others, with more parameters)

▪ Between CP sets and MIP models

▪ So far (July 4): 50 constraint bridges, 6000 lines of code (excluding tests)

▪ MOI only has 23 constraint bridges, 5500 lines of code (including more general infrastructure)

▪ Far from done… 



What is the state of the package? 

▪ To implement some bridges, more information is required about the functions:

▪ Does this function have a lower/upper bound? If so, what is this bound?

▪ Is it integer, binary? 

▪ Hence, the notion of “trait”

▪ It can also be used for function dispatch

▪ Currently implemented for variable and affine expressions



What comes next? 
▪ In the short term (v0.3): 

▪ Many more bridges, of course, like #10

▪ MiniZinc provides an interesting list of sets to implement (and sometimes bridges)

▪ Flesh out the implementation of NLP functions, with function bridges

▪ In the medium term:

▪ More solver wrappers

▪ Use this package for Julia CP solvers: #7

▪ In the long term (v1.0?): 

▪ More bridges, especially for MIP formulations, like with SOS1 sets or big-M constraints 
(depending on what the solver proposes): #11, #13, #14, #15

▪ SAT models, Boolean algebra as constraints

▪ In the very long term: 

▪ Wrap more features of CP solvers, like guiding the exploration or adding new constraints

https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/10
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/7
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/11
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/13
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/14
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/15


What is missing in Julia/MOI/JuMP?
(1) Non-linearity

▪ Let’s talk about non-linearity… 

▪ So far, in MOI/JuMP, the NLP support is pre-MOI

▪ Doesn’t play well with MOI (e.g., MOI#1397)

▪ Complete rewrite planned

▪ CP solvers may have specific machinery for constraints like count(x .== 4) >= 1

▪ How to represent this within the MOI framework? 

▪ Nonlinear function: count(x .== 4) 

▪ Standard set: MOI.GreaterThan(1)

▪ No need for automatic differentiation, unlike typical NLP

https://github.com/jump-dev/MathOptInterface.jl/issues/1397
https://github.com/jump-dev/MathOptInterface.jl/milestone/28


What is missing in Julia/MOI/JuMP?
(1) Non-linearity

▪ Consider this package as a prototype for next-generation NLP support in MOI

▪ Have a truckload of new AbstractFunction types:

▪ NonlinearScalarAffineFunction: generalisation to NL terms

▪ NonlinearScalarProductFunction: also for posynomials (geometric programming)

▪ ExponentialFunction, LogarithmFunction, CosineFunction, etc.

▪ Then, CP-specific functions: 

▪ CountFunction, ElementFunction for array indexing, MaximumFunction, etc.

▪ Hugely similar to the way MathOptFormat represents nonlinear functions!

https://github.com/jump-dev/MathOptFormat


What is missing in Julia/MOI/JuMP?
(1) Non-linearity

On the solver side: 

▪ If the combination F-in-S is natively supported: hooray!

▪ Otherwise:

▪ Use function bridges: decompose F-in-S as several constraints

▪ For instance, count(x .== 4) >= 1

▪ CountFunction(x, MOI.EqualTo(4)) –in– MOI.GreaterThan(1)

▪ [t, x] –in– Count(MOI.EqualTo(4)) and t –in– MOI.GreaterThan(1) 



What is missing in Julia/MOI/JuMP?
(2) Variadic parametric types

▪ Disjunction: OR between several constraints

▪ EITHER x ≥ 0 OR y ≥ 0 OR z ≥ 0

▪ [x, y, z] –in– Disjunction((MOI.GreaterThan(0), MOI.GreaterThan(0), MOI.GreaterThan(0))

▪ Variable number of arguments for Disjunction

▪ But they can have different types

▪ Julia types cannot have variadic parametric types, only Tuple does

▪ Hence: parametrise Disjunction with a Tuple

▪ Disjunction{NTuple{3, MOI.GreaterThan{Int}}



What is missing in Julia/MOI/JuMP?
(2) Variadic parametric types

▪ Disjunction{NTuple{3, MOI.GreaterThan{Int}}

▪ How to dispatch on this thing?

▪ Write one function per number of arguments and per type of arguments

▪ A lot of code bloat! 

▪ Or rely on introspection



What is missing in Julia/MOI/JuMP?
(3) Structured variables

▪ Typically, in optimisation solvers, you deal with integers and floats

▪ Then, what about…

▪ Complex numbers? They resemble a pair of floats

▪ Time intervals? Again, a pair of numbers

▪ Graphs? A larger number of binary variables

➢ Still one VariableIndex for each new type of variable

➢ Still need access to the “subvariables” in some cases (like beginning of time interval)

➢ Not just for modelling ease: CP solvers sometimes have graphs as variables!



What is missing in Julia/MOI/JuMP?
(3) Structured variables
▪ Current solution implemented by ComplexOptInterface:

▪ Nothing specific when creating variables

▪ You cannot have SingleVariable(z) –in– MOI.EqualTo(1 + 2im), the code for real 
variables in MOI is used

▪ Another solution (MOI#1253): 

▪ Have ComplexVariableIndex, IntervalVariableIndex… be composed of two 
VariableIndex (or more)

▪ MOI.add_variable would take a type argument: scalar real (default), complex, 
interval…

▪ Expressions could be parametrised by the type of variable index: e.g., 
ScalarAffineFunction{ComplexVariableIndex, Complex{T}}

https://github.com/jump-dev/ComplexOptInterface.jl
https://github.com/jump-dev/MathOptInterface.jl/issues/1253


Where do we go from here?

▪ Most CP sets have MIP bridges: modelling becomes easier for users!

▪ E.g., use a bin-packing, circuit, etc. constraint instead of linear constraints

▪ Probably not the best models, though

▪ The new nonlinear infrastructure can be built upon

▪ It is probably amenable to DCP

▪ However, I make no claim about performance or compatibility with AD systems



How can you help?

▪ Spread the word for Julia and CP

▪ Discuss the implementation

▪ Write new solvers, new solver wrappers
and check if all the required features are there

▪ Benchmark the performance of this package:

▪ Compared to MiniZinc to “lower” models

▪ Compared to existing JuMP/MOI NLP code

▪ Write documentation, examples

▪ For now, only reference for existing sets


