ConstraintProgramming
Extensions.|l

An MOI/JuMP extension for constraint programming

Thibaut Cuvelier — CentraleSupélec (université Paris-Saclay)



What Is constraint programming (CP)?

= Way of formulating combinatorial problems
= CP doesn't really work for continuous problems (exception: Ibex, e.g.)

= Initial focus in CP was on feasibility, but optimisation is also possible

= Quite different from mathematical optimisation:
= No duality, no convexity, no linear/continuous relaxation, no differentiability at all
= More generic set of constraints, not just equations and inequalities
= Real focus on discrete aspect of the problem

= Mathematical optimisation’s support for combinatorial problems is more an afterthought

= CP has had many successes in operational research:

= Scheduling, time tabling, resource allocation



http://www.ibex-lib.org/download

An example of CP model: solving Sudokus

5 7
6 19
8
3 6 3
4 3 1
7/ 2 6
41 5
3 9

= Variables:

= d;;: digit for cell (i, /), a number between 1 and 9

= Constraints:
= Known digits (hints)

= Each digit appears once in each row:
alldifferent(d;; Vj), Vi

= Each digit appears once in each column:
alldifferent(d;; Vi), vj

= Each digit appears once in each block:
35,3t 3s5,3t+1 d3$,3t+2

alldifferent| dss+13¢ d3s+13t41  d3s+13c42 |,S € {0,1,2},t € {0,1,2}

d35+1,3t d3$+1,3t+1 d35+1,3t+2

= What about your typical MIP model &)?




ConstraintProgrammingExtensions.|l

* What is the state of CP in Julia?

* What is the state of the package?

« What comes next?

« What is missing in Julia/MOI/JuMP?

« What is enabled with this package?




What i1s the state of CP in Julia?

= Quite a few CP solvers purely written in Julia!

= ConstraintSolver.jl

= JuliaConstraints organisation and its CBLS. |l - Based on MOI

= SeaPerl.jl

= Julialntervals’ IntervalConstraintProgramming.jl -

+ Based on ModelingToolkit
= Apart from one solver wrapped with this package, no external CP solver wrapped

= CPLEX CP Optimizer in CPLEXCP.]|I

» No easy way to write a model for several solver packages



https://github.com/Wikunia/ConstraintSolver.jl
https://github.com/JuliaConstraints
https://github.com/JuliaConstraints/CBLS.jl
https://github.com/corail-research/SeaPearl.jl
https://github.com/JuliaIntervals/IntervalConstraintProgramming.jl
https://github.com/dourouc05/CPLEXCP.jl/

What is the goal of
ConstraintProgrammingExtensions.j|?

= This package sits at the same level as MOI: abstraction of solvers

= Major goal: bring the expressive power of CP to MOI and JuMP
= Have a system that is on (approximate) parity with MiniZinc

= Wrap most of the constraints of CPLEX CP Optimizer, Gecode, JaCoP, etc.

= Current non-goals:

= Give access to the whole set of features of CP solvers: exploration tuning, new
constraint propagators, callbacks, etc.

= Provide preprocessing of the formulation, nonnaive reformulations




Competitors of
ConstraintProgrammingExtensions.|l

= MiniZinc / ElatZinc — actively developed (last release in 2021)

= Dedicated language to describe CP/MIP/SAT models
= FlatZinc: the bare minimum number of constraints, used to communicate with solvers
= For instance, no 2, only <

= MiniZinc can use MIP solvers for CP models

= “Bridges” when the solver does not support some constraint

= But not organised as a graph: MiniZinc provides a default implementation (in the hope that the
solver supports the new constraints)

= Each solver can override the rewriting to stop recursion

= MiniZinc comes with an IDE, a tree visualiser (CP_Profiler), a conflict debugger
(EindMUS), etc.



https://www.minizinc.org/
https://www.minizinc.org/doc-2.5.5/en/fzn-spec.html
https://www.minizinc.org/doc-2.5.5/en/lib-flatzinc.html
https://www.minizinc.org/doc-2.5.5/en/cpprofiler.html
https://www.minizinc.org/doc-2.5.5/en/find_mus.html

Competitors of
ConstraintProgrammingExtensions.|l

= Numberjack — more or less actively developed (latest release in 2021)
= A Python library to build MIP/CP/SAT models

= Numberjack can convert MiniZinc models as Python files, import and export XCSP models

= The constraints can be “decomposed” to ease mapping onto solvers

= For instance, no flexibility in the way models are transformed into MIP, similar to MiniZinc

= Picat — actively developed (latest release in 2021)
= Functional/declarative programming language, similar to Prolog

= Library of functions to create CP models



https://github.com/eomahony/Numberjack
http://www.picat-lang.org/

Competitors of
ConstraintProgrammingExtensions.|l

= Savile Row — actively developed (last release in 2020)
= Dedicated language to describe CP/SAT/SMT models (based on Essence-Prime)

= Reformulations of CP/SAT models to speed up solving times, including techniques to
remove symmetry

= Savile Row can cast CP/SAT models into SMT models, enlarging the available solvers

= OPL —released as part of CPLEX CP Optimizer, actively developed
= Dedicated language for describe CP/MIP models (with some programming too)
= CPLEX comes with an IDE (CPLEX Optimization Studio)

= No reformulations: a MIP model cannot be solved by CPLEX CP Optimizer, and vice-
versa



https://savilerow.cs.st-andrews.ac.uk/
https://www.csplib.org/Languages/EssencePrime/
https://www.sciencedirect.com/science/article/abs/pii/S0004370217300747
https://www.ibm.com/products/ilog-cplex-optimization-studio

What Is the state of the package?

Many standard CP constraints are already available:

= AbsoluteValue = Disjunction
= AllDifferent = Knapsack
= Maximum/Minimum = Non-overlapping
rectangles
= BinPacking
= Reification
= Count, GCC
= Sorting
= Conjunction
= Etc.

» More constraints: easier to model, easier to solve




What is the state of the package?

= One solver is bound:
= CPLEX CP Optimizer (through its Java API)

= Solver wrappers are typically harder to write for CP solvers
= Optimisation solvers usually have a callable low-level C API
= CP solvers mostly have a high-level modelling API, no low-level API, no C

= Many solvers are written in Java/Scala

= No generic file format to share models among solvers as ubiquitous as LP or MPS
= MiniZinc, XCSP, AMPL (to some extent), DIMACS (only for SAT): quite high level

= FlatZinc: low-level variant of MiniZinc

= FlatZinc import and export modules implemented @)!




What is the state of the package?

= All solvers do not implement all constraints
= Same problem as with many MOI solvers

= Same solution: implement bridges

= Many bridges must then be implemented:

Between CP sets (some are variants of others, with more parameters)

Between CP sets and MIP models

So far (July 4): 50 constraint bridges, 6000 lines of code (excluding tests)

MOI only has 23 constraint bridges, 5500 lines of code (including more general infrastructure)

Far from done...




What is the state of the package?

= To iImplement some bridges, more information is required about the functions:
= Does this function have a lower/upper bound? If so, what is this bound?

= |s it integer, binary?

= Hence, the notion of “trait”

= It can also be used for function dispatch

= Currently implemented for variable and affine expressions




What comes next?
= In the short term (v0.3):

= Many more bridges, of course, like #10
= MiniZinc provides an interesting list of sets to implement (and sometimes bridges)

= Flesh out the implementation of NLP functions, with function bridges

= |n the medium term:
= More solver wrappers

= Use this package for Julia CP solvers: #7

= In the long term (v1.07?):

= More bridges, especially for MIP formulations, like with SOS1 sets or big-M constraints
(depending on what the solver proposes): #11, #13, #14, #15

= SAT models, Boolean algebra as constraints

= In the very long term:

= Wrap more features of CP solvers, like guiding the exploration or adding new constraints



https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/10
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/7
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/11
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/13
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/14
https://github.com/dourouc05/ConstraintProgrammingExtensions.jl/issues/15

What is missing in Julia/MOI/JuMP?
(1) Non-linearity

Let’s talk about non-linearity...

So far, in MOI/JuMP, the NLP support is pre-MOI
= Doesn’t play well with MOI (e.g., MOI#1397)

= Complete rewrite planned

= How to represent this within the MOI framework?
= Nonlinear function: count(x .== 4)

= Standard set: MOI.GreaterThan(1)

No need for automatic differentiation, unlike typical NLP

CP solvers may have specific machinery for constraints like count(x .



https://github.com/jump-dev/MathOptInterface.jl/issues/1397
https://github.com/jump-dev/MathOptInterface.jl/milestone/28

What is missing in Julia/MOI/JuMP?
(1) Non-linearity

Consider this package as a prototype for next-generation NLP support in MOI

Have a truckload of new AbstractFunction types:
= NonlinearScalarAffineFunction: generalisation to NL terms
= NonlinearScalarProductFunction: also for posynomials (geometric programming)

= ExponentialFunction, LogarithmFunction, CosineFunction, etc.

Then, CP-specific functions:

= CountFunction, ElementFunction for array indexing, MaximumFunction, etc.

Hugely similar to the way MathOptFormat represents nonlinear functions!



https://github.com/jump-dev/MathOptFormat

What is missing in Julia/MOI/JuMP?
(1) Non-linearity

On the solver side:
= If the combination F-in-S is natively supported: hooray!

= Otherwise:

= Use function bridges: decompose F-in-S as several constraints

= For instance, count(x .==4) >= 1
= CountFunction(x, MOI.EqualTo(4)) —in—MOI.GreaterThan(1)
= [t, x]—In—Count(MOI.EqualTo(4)) and t —in—MOI.GreaterThan(1)




What is missing in Julia/MOI/JuMP?
(2) Variadic parametric types

= Disjunction: OR between several constraints

= EITHERx=20O0ORyYy=200Rz=0
= [x, y, z] —-In—Disjunction((MOI.GreaterThan(@), MOI.GreaterThan(©), MOI.GreaterThan(0))

= Variable number of arguments for Disjunction
= But they can have different types
= Julia types cannot have variadic parametric types, only Tuple does
= Hence: parametrise Disjunction with a Tuple
= Disjunction{NTuple{3, MOI.GreaterThan{Int}}




What is missing in Julia/MOI/JuMP?
(2) Variadic parametric types

= Disjunction{NTuple{3, MOI.GreaterThan{Int}}

= How to dispatch on this thing?
= Write one function per number of arguments and per type of arguments
= Alot of code bloat!

= Or rely on introspection




What is missing in Julia/MOI/JuMP?
(3) Structured variables

= Typically, in optimisation solvers, you deal with integers and floats

= Then, what about...
= Complex numbers? They resemble a pair of floats
= Time intervals? Again, a pair of numbers
= Graphs? A larger number of binary variables
» Still one Variablelndex for each new type of variable

» Still need access to the “subvariables” in some cases (like beginning of time interval)

» Not just for modelling ease: CP solvers sometimes have graphs as variables!




What is missing in Julia/MOI/JuMP?
(3) Structured variables

= Current solution implemented by ComplexOptinterface:

= Nothing specific when creating variables

= You cannot have SingleVariable(z) —in—MOI.EqualTo(1 + 2im), the code for real
variables in MOl is used

= Another solution (MOI#1253):

= Have ComplexVariableIndex, IntervalVariableIndex... be composed of two
VariableIndex (or more)

= MOI.add variable would take a type argument: scalar real (default), complex,
interval...

= Expressions could be parametrised by the type of variable index: e.g.,
ScalarAffineFunction{ComplexVariableIndex, Complex{T}}



https://github.com/jump-dev/ComplexOptInterface.jl
https://github.com/jump-dev/MathOptInterface.jl/issues/1253

Where do we go from here?

= Most CP sets have MIP bridges: modelling becomes easier for users!
= E.g., use a bin-packing, circuit, etc. constraint instead of linear constraints

= Probably not the best models, though

= The new nonlinear infrastructure can be built upon
= It is probably amenable to DCP

= However, | make no claim about performance or compatibility with AD systems




How can you help?

Spread the word for Julia and CP
Discuss the implementation

Write new solvers, new solver wrappers
and check if all the required features are there

Benchmark the performance of this package:
= Compared to MiniZinc to “lower” models
= Compared to existing JuMP/MOI NLP code

Write documentation, examples

= For now, only reference for existing sets




