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Let 0 (n) be the sum of all divisors of n and let [t] be the integral part of . In this paper, we shall prove that ) ,_ .o ([x/n]) =
(72/6)x log x + O (x (log x) ¥ (log, %) for x — 00, and that the error term of this asymptotic formula is Q(x).

1. Introduction

As usual, denote by ¢ (1) the Euler function and by [¢] the
integral part of real t, respectively. Recently, Bordelles et al.
[1] studied the asymptotic behaviour of the quantity

)

n<x
for x — 00. By exponential sum technique, they proved
that

2629 6
(m.?+o(l)>x log x<§, (x)
(2)
2629 6 1380
< ——-—5+-—=+0(1) |x log x,
4009 7~ 4009
and conjectured that
6
Sq) (x) ~ ?x log x, asx — oo. 3)

Very recently, Wu [2] improved (2) and Zhai [3] re-
solved conjecture (3) by showing

6
S, (x) = el log x + O(x(log %) (log, x)(m)), (4)

and also proved that the error term in (4) is Q2 (x), where log,
denotes the iterated logarithm. Some related works can be
found in [4, 5]. Since the sum-of-divisors function
o(n) = ) 4,d has similar properties as the Euler function
¢ (n) in many cases, it seems natural and interesting to
consider its analogy of (3).

Our result is as follows.

Theorem 1
(i) For x —> 00, we have

Sp(x) = ,g’x 0‘( [%D = %zx log x “

+ O(x(log x) ¥ (log, x)(4/3)).

(ii) Let E(x) be the error term in (5). Then, for x — 00,
we have

i.e. limsup ECl > 0. (6)

X—00 X

E(x) = Q(x),

Let p(n) be the Mobius function and define id(n) = n
and 1(n) =1 for all integers n>1. Then, ¢ =id * y and
o =id # 1. In Zhai’s approach proving (4), the inequality
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Z p(n) < x exp{—C\/lOE}, (x=>1), (7)

n<x

plays a key role, where ¢ >0 is a positive constant. Clearly,
such a bound is not true for 1. By refining Zhai’s approach,
we shall prove our result.

2. Preliminary Lemmas

As in [3], we need some bounds on exponential sums of the
type Y n<n<n'€(T/n) where N < N' <2N. For large values of
N, Zhai used the theory of exponent pair, and for smaller
ones the Vinogradov method. Both estimates are contained
in the following general theorem of Karatsuba [6, Theorem
1], which will be a key tool for proving Theorem 1.

Lemma 1. Let k>2 and M and P be integers, P being
positive. Let f € €' ([M, M + P]; R). Suppose that there
exist positive absolute constants ¢, c,, ¢,, ¢35, and ¢, such that
¢g<l,¢,<1, and ¢, +c¢,<cy; an integer r such that
cok<r<k; and distinct numbers s;>2(j=1,...,r) not
exceeding k, such that for M <t<M + P the following in-
equalities are satisfied:

(i) | f &0 @)/ (k+ DY < P (),
(ii) P~ < | fO) (0)/s | <P, (j=1,...,7).
Then, for each positive integer P, not exceeding P, we have

Y e(f(m)| AP ), (8)

M<m<M+P, -1

27t and A>0, ¢ >0 are absolute constants.

where e(t) = e

The next two lemmas are essentially a special case of [7,
Lemmas 2.5 and 2.6] with a = 1. The only difference is that
the ranges of T and N here are slightly larger than those of
[7, Lemmas 2.5 and 2.6] (T > N? in place of T> N/ and
N <x@ in place of N < x/?), respectively). Although the
proof is completely similar, for the convenience of readers,
we still reproduce a proof here.

Lemma 2. Let ¢! <N<N'<2N and T>N®?. Then,
there exists an absolute positive constant c5 such that

T cslog® N
Z e(—) <N expi+ —5— | 9)
Nemen' T log” T

where the implied constant is absolute.

Proof. We apply Lemma 1 to f(t)= (T/t) with

M =N, P=N, P, =N'- N. For this, we choose
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i
*7 100
_»
L1100
L
27100
10
N (10)
3Ty
1
‘100
k= 100@ ,
log N
and take the s; to be all integers s such that
4log(T/n)S SSlog(T/n) (11)
log N log N

Obviously the number r of s is between ¢,k and k. Next
we shall verify that f (t) satisfies the conditions (i) and (ii) of
Lemma 1 with the parameters chosen above.

For N <t <2N, we have

(k+1)
t ke ke _
% :Tt k ZSTN k 2:Z\] ”1, (12)
where
log (T 1 99
o= ka1 -8 L ity — e (k).
log N 100 100

(13)

Similarly for N <t<2N, we find the inequality
|f ) (0)/s;! <N, where

~ log(T'/n) - 3

}73 = j log N _Zsj = C3Sj. (14)
For the lower bound of (ii), we have

(s)

f "(t) =Tt " >TQN) "9 =N", (15)
s;!

where
log(T/n) log 2
=5 g N Tiog N (1Y)
(16)
4 log2 87
Sgsj + W(Sj + 1) Smsj =08

From Lemma 1, there exist two positive constants ¢ and
A such that
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> o)

3
< AN (R) < AN exp{—icslog N},
N<n<N

log2 (T/n)
(17)

with cs :== 10~ %c. This completes the proof of Lemma 2. [

Lemma 3. Define y(t):=t— [t] - (1/2). Let ¢ be the
constant defined by Lemma 2 and cz:= (8/9)cs,
c* = ((3/5)cg)” V. Then, we have

1 1 N 3
() e o L8NV g

N<n<N' (log x)2 )

uniformly for x>10, exp{c* (log x)(w)} <N<x®) and
N<N'<2N.

Proof. By invoking a classical result on y () (see 8, page 39])

we can write, for any H > 1,
(hx>
2 e
.\ n
N<n<N

Z w<f> <NH '+ n!
NemeN' I<h<H
An application of Lemma 2 with T = hx>x>N®G?
yields

Z 1//<E> < N(H’1 + ¢~ s log N)*/log? (H")log H)
n

N<n<N'

(19)

(20)

Taking H = exp{ (log N)*/(log x)z} <x®2) we easily
deduce that

(log x)2

N<n<N'

(21)

The first term can be absorbed by the second, since ¢5 can
be chosen small enough to ensure that ¢, <1 and since
exp{c* (log x)(m)} <N implies (log N)’/(log x)*>c*.
Hence,

3 > (log N)?
Z w(f) < Ne—cs(log N)’/(log x) ( 0og )2 . (22)
Nen<n' T (log x)

and an Abel summation produces the required result. [

Lemma 4. Let 2<z,<z,<x and F (t)= (1/t)y(x/t).
Denote by Vi _[z;,2,] the total variation of F, on [z},z,].
Then,

x 1
Vi, [z12] <5 +— (23)
zZ; %

where the implied constant is absolute.

3
Z w(f) < N(e—(log N)3/(10g x)? + e—c6 (log N)3/(10g x)? (log N) )
n

Proof. If z, =t,<t, < --- <t, =z, is a partition of the in-

terval ZI’ZZ 5 then
t ( ) - ( - )
k k k-1 k-1

ilFx (te) - Fe (i) = Y
() A

2 G

k=1 k=1 "k-1
(24)
Since |y (t)] <1 for all t, we have
-1 1 x 1 1 1
z —— Yyl = ]| f———<— (25)
ol AN T ty zZy zZ; z

On the other hand, since y(u) is of period 1, we have

i)+
ty i
1 [ x x 1
s<+1)VW[O,1]§2<2+>.
21 \%1 zi 2

(26)

Inserting these two bounds into (24), we obtain the
required result. 0

3. Proof of Theorem 1
3.1. A Formula on the Mean Value of o (n)

Lemma 5

(i) For x>2 and 1<z < x>, we have
2

7, (z-[2)+[2) | (x
D 03) - a2
(27)
where
x [x
A(x,z) = —-yl=).

d< (x/z)d <d> (28)

(ii) For x — 00, we have

2

Z o(n) = %xz + O (x log x). (29)

n<x

Proof. Using o(n) = Y 4,,-,m, the hyperbole principle of
Dirichlet allows us to write

Yom= ) m=8+S,-8, (30)

n<x dm<x

where



S= Yy Y m,
d<(x/z) m<(x/d)

SEIED) )m’ (31)

m<zd<(x/m

Y ym

d<(x/zym<z

Firstly we have

S,= Y m| =] = xlz1+0(22), (32)

m<z

5, = E] [Z]([z] D [Z]([zzz] +1) +o(2).  (33)
Secondly we can write
oh 3 (o)D) )

I GG ) e

2
T

1
= Exz - Exz - A(x,z) + O(x/z2),

where A (x, z) is as in (28). Inserting (32), (33), and (34) into
(30) and using z* < (x/z), we get (27).
Taking z = 1 in (27) and noticing that

1 1
Y o= o)

d<x

> a*la)

d<x

(35)

< x log x,

we obtain the required bound. This completes the proof. [

3.2. Estimates of Error Terms

Lemma 6. Let N, = exp{(6/c6)(log %)@ (log, x)(m)},
where ¢ is given as in Lemma 3. Let A(x,z) be defined by
(28). Then, for x >10 and 2<z <+/N,, we have

IR R

Ny<n< \/x No<n< \/x

( 1 log x)
<X 5+ .
(log x) z

Proof. Denote by A, (x,z) and A, (x,z) two sums on the
left-hand side of (36), respectively. By (28) of Lemma 5, we
can write

+

(36)
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A (x,2) =x Z Z ))dlnw<cfn>

Ny<n</x d<(x/(nz

« oG X s

dg(x/ (Noz)) dN0<nsrnin(\/7,x/(dz))

xAI (x,2) + xAtlI (x,2),
(37)

where

sma= ¥ g 3 )

ds< (x/ (Noz))  Ny<ns (x/d)??

" -~ 1 1 x
Ay (x,2) = D P Z ;W(&)-
d< (x/ (Noz)) (x/d)*P < n< mm{\/f,(x/dz)}
(38)

For 0<k< (log((x/d)*®/Ny))/log 2, let N, =2kN,

and define
1
Y e (9)

N <n<2N;

@k (d) =
Noticing that N < Ny < (x/d)*?, we can apply Lemma
3 to derive that
S, (d) < o 9((10g Nk)3/(log(x/d))2), (40)
with 9(t) := ¢4t — log t. It is clear that 9(¢) is increasing on
[c» 00). On the other hand, for k>0 and d > 1, we have

(log N,)*/ (log (x/d))* = (log N,)’*/ (log x)* = (6/c)log, x.
(41)
Thus,

o) (6 e )
9((10g(x/d))2 =A\¢, Jom ™

=6 log, x - log((?)log2 x) >5 log, x,
6

(42)

which implies that &, (d) < (log x)™°. Inserting this into
the expression of Al (x,z), we get

>y oLy

ds (x/ (Noz))  25Ny<(x/d)

Al(x,2) < |© (d)] < (log x)°.

(43)

Next we bound AI} (x,z). Let F(t) be a function of
bounded variation on [#n,7n+ 1] for each integer n and let
Vi [n,n+ 1] be the total variation of F on [n,n+ 1]. Inte-
grating by parts, we have
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n+l1

jn+1<t_n_%)dF(t) =%(F(n+ 1)+F(n))_J F(t)dt.

n n

(44)

From this, we can derive that

n+l

F(t)dt + O(Vg[n,n+1]),

n

%(F(n+ 1)+ F(n) = J
(45)

for n>1. Summing over n, we find that

N,
Y Fo=[ Faa

N,<n<N,

L (EON) +FON,)) OV, [N, N ).

(46)
We apply this formula to
1 [ (x/d)
N, = [(x/d)??], (47)
. x

N, = [mln{\/},@}].
According to Lemma 4, we have
VEw [N, N,] < (x/d)" ¥, and thus by putting
u = (x/d)/t, we obtain, with the notation

x4, = max(+/x/d,tz) and x;, = (x/d) 1,

) [ ol ()

(x/d) P <n< min{ VX, (x/ (d2))} a

(48)

where we have used the fact that z<./N;, and
d< (x/(Nyz))=z < (x/d)"® and the bound

Xd2 1//(”) J‘xd,z ( J’“ ) du 1 de‘z
—du = Hdt | 5 -—= t)dt
de,l u ¢ Xd,1 Xd,1 1//( ) Uz x(5,22/3) Xd,1 W( )

~(2/3) 1

<z '+ (x/d)’(m) <z .

(49)

< x;11 + (xd,z)

Using (48), a simple partial integration allows us to
derive that

Al{ (x,2)< z ! Z
d<x/ (Nyz)

-1 -1
d <z log x. (50)

Combining (43) and (50), it follows that

|A1 (x, z)| < x(log x) 7+ xz_llog X. (51)

Similarly, we can prove the same bound for |A, (x, z)|.
This completes the proof. O

3.3. End of the Proof of Theorem 1. Let ¢4 be the constant
given as in Lemma 3 and N, := exp{(6/cs) (log x) @3
(log, x)"). Let z € [2, \/Nj ] be a parameter to be chosen
later.

Putting d = [x/n], we have (x/n)-1<d< (x/n) and
x/(d+1)<n< (x/d). We have, with the convention
0(0) =0,

S,(x)=Yad Y 1

d<x (x/(d+1))<n< (x/d)

=Y od- ) o(d-1) (52)
dn<x dn< x,d>2

=Y (o(d)-a(d-1)).
dn<x

By the hyperbole principle of Dirichlet, we can write

Se(x) =8, (x,0) +S,(x,0) - S;(x,0), (53)
where
S (x,0) = (o(d) —o(d-1)),
d<+/x,dn<x
S(x0)= ) (cd-0d-1), (g

n</x,dn< x

S;(x,0) = (o(d)—0o(d-1)).
d<~/x n<A\/x

With the help of the bound o(n) «<n log, n, we can
derive that
8y(x,0) = [VElo([Vi]) < x log, x.  (55)
For evaluating S, (x, 0), we write

S (x0)= Y (o(d)-o(d- 1))[2]
d<+/x

-x Y M+o( Y |a(d)—a(d—1)|>‘
ds~x dsx

(56)

With the help of Lemma 5 (ii), a simple partial inte-
gration gives us



o(d)-o(d-1) o(d)
Z d - z dd+1)

d<\/x d<+/x
_ z U(d)_ z G(d)
e & Ledid+)

Vx 2
- J t_2d<%t2 +0(t log t)) +0(1)

1-

2
T

=—1 1),
B og x+0(1)

Y lo(d)—o(d-1)
d<«/x

< Z o(d) < x.

ds<+/x
(57)
Inserting these estimates into (56), we find that
2
S, (x,0) = 711—236 log x + O (x). (58)
Finally, we evaluate S, (x, o). For this, we write
S, (x,0) = S} (x,0) + Sk (x,0), (59)

Sg (x,0) =
Ny<ng/x

2
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where
Si(x0)= Y (o(d)-o(d-1),
n< Ny,dn< x (60)
Sieo)= Y (o(d)-o(d-1).
Ny<ng/x,dn<x

By the bound that o (1) < n log, n, we have

St(x,0) = Z a< [g]) < Z (%)log2 X

n<N, n<N,

< x(log x)* (log, x) @),

On the other hand, (27) of Lemma 5 allows us to derive
that

2

Yod- Y od =T (x - (x- 1) -Ax2)

d<x d<x-1

+A(x-1,2) + O(E) (62)

2

=T A Z) +A(x—-1,2) +o(f),
6 z

where A(x, z) is given by (28). Thus,

2 (5o aGore) vol)

(63)

=T log x + O(x(log %) (log, x)" + xz 'log x) - A (x,2) + A, (x,2),

12

where

A (x,2) = Z A(f,z) < x(log x) 2+ xzillog X,
Ny<ngq/x n

A, (x,z) = Z A x_ l,z) < x(log x) 2+ xz_llog X,
Ny<ns/x n

(64)

thanks to Lemma 6. Inserting these estimates into (59), we
find that

2

S, (x,0) = 711—2x log x + O(x (log x)* (log, x)“ + xz" 'log x)

(65)

Now (5) follows from (53), (55), (58), and (66) with the
choice of z = (log x) 3,

3.4. Proof of Theorem 1. (ii) For any odd prime p, (52) allows
us to write

Y (o(d)-a(d-1)=S8,(p)-S,(p-1)
dlp

2

:%(log p-log(p-1))+E(p)-E(p-1)
2E(p)-E(p-1)= —2E"(p),
(66)

where E*(p) = max{|E(p)|,|[E(p-1)|}. On the other
hand, we have

Yo d)-o(d-1)=0c(p)-a(p-1)+1

dlp

1 1
sp+1—<p—1+5(p—1)+2+1>+ls — 2P
(67)
Thus, E* (p) > (1/8)p for all odd primes.
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