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Recent progress in electronic and electromagnetic topological insulators has led to the

demonstration of one way propagation of electron and photon edge states and the possibility of

immunity to backscattering by edge defects. Unfortunately, such topologically protected

propagation of waves in the bulk of a material has not been observed. We show, in the case of

sound/elastic waves, that bulk waves with unidirectional backscattering-immune topological states

can be observed in a time-dependent elastic superlattice. The superlattice is realized via spatial and

temporal modulation of the stiffness of an elastic material. Bulk elastic waves in this superlattice

are supported by a manifold in momentum space with the topology of a single twist M€obius strip.

Our results demonstrate the possibility of attaining one way transport and immunity to scattering of

bulk elastic waves. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928619]

INTRODUCTION

Topological electronic1 or electromagnetic2–4 insulators

have the astonishing property of unidirectional,

backscattering-immune edge states. This property is associ-

ated with the non-conventional topology of the wave states.

So far, the observation of topologically protected propaga-

tion of electronic or electromagnetic waves has been limited

to the edges of the material. In one-dimensional (1D)

topological insulators, topologically protected edge states are

zero-dimensional (0D) and cannot exhibit transport. In two-

dimensional (2D) and three-dimensional (3D) topological

insulators, the edge states are 1D and 2D, respectively, and

can lead to topologically protected unidirectional propaga-

tion along the materials’ edges or surfaces. The highly desir-

able property of non-reciprocal and topologically protected

propagation of waves (electronic, electromagnetic, or any

other type of wave such as sound or elastic waves) inside the

bulk of a material has not yet been demonstrated. Substantial

effort has been directed toward proposing and demonstrating

non-reciprocal acoustic materials that rely on non-linear

elastic materials,5–8 non-linear magneto-elastic media,9 or

resonators containing moving fluids.10 These approaches of

breaking reciprocity, however, do not offer topological

immunity to scattering.

Non-reciprocal topological frequency bands have been

shown to emerge in finite slabs (infinitely periodic in 1D)

formed out of 2D electromagnetic lattices of metamaterial

components11 and 2D magneto-electric photonic crystals.12

In these systems at distinct frequencies, partial non-

reciprocity may arise when the corresponding forward and

backward-propagating wavevectors do not have the same

magnitude. Spatio-temporal modulation of the properties of

materials has also been used to achieve one-way wave

propagation. Dynamically modulated photonic structures can

transmit light in a single direction.13,14 This approach is

based on subjecting the photonic structure to a spatial and

temporal modulation of the refractive index that results in

direction-dependent frequency and momentum shifts leading

to one way propagation of light. The interaction between

photons and the modulation is interpreted in terms of

inter-band transitions in the space of the time-independent

wave functions of the photonic structure.15 These time-

independent wave functions exhibit the conventional topol-

ogy imparted by the photonic structure and the transitions

are constrained by the usual selection rules. Furthermore,

time- and space-variant phononic systems have been shown

to enable control of phonon dispersion in the frequency and

wavenumber domains.16–18

Here, we demonstrate unidirectional propagation of

sound/elastic waves in a 1D time-dependent superlattice by

breaking the symmetry of their dispersion behavior. In con-

trast to the transition interpretation, the time-dependence of

the interaction is included in the elastic wave function itself

leading to a more comprehensive non-conventional topologi-

cal interpretation of the states and of their topological

constraints. Moreover, in contrast to edge states, we report

unidirectional propagation of bulk elastic waves that can

also lead to immunity to backscattering by defects in the

bulk of a material.

Time-dependent elastic superlattice

We consider the periodic spatial modulation of the stiff-

ness of a 1D elastic medium and its directed temporal evolu-

tion that breaks time reversal symmetry. The bulk elastic

states of this time-dependent superlattice do not possess the

conventional mirror symmetry in momentum space leading to

non-reciprocity in the direction of propagation of the waves.

The wave functions of bulk elastic waves are supported by a
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manifold in momentum space that has the non-conventional

torsional topology of a M€obius strip with a single twist.

To realize the time-dependent elastic superlattice, we

consider the propagation of longitudinal elastic waves along

a 1D material supporting a spatial and temporal sinusoidal

modulation of its stiffness. Unique properties of some mate-

rials such as the giant photo-elastic effects in chalcogenide

glasses19 can be exploited to practically achieve the desired

stiffness modulations by, for instance, illuminating the mate-

rial with light of spatially and temporally varying intensity.

It has been shown that illuminating Ge-Se chalcogenide

glasses with near bandgap laser radiation of increasing

power results in a reduction of the longitudinal elastic con-

stant (C11) by nearly 50%. This photo-softening is athermal

and reversible making it ideal as a means to realize time-

dependent modulations. The stiffness modulation may also

be achieved by various other means such as the application

of time-space dependent magnetic fields to a magneto-elastic

medium, or the modulation of voltage applied to a medium

composed of piezoelectric elements, or the mechanical stim-

ulation of a non-linear elastic medium. Here, we consider the

medium to be composed of a Ge-Se chalcogenide glass of

composition GeSe4.19 Depending on the power of the laser

irradiating the glass, C11 values for GeSe4 can vary between

9.2 GPa (full-power) and 18.4 GPa (zero-power).19 We

assume constant density for GeSe4 (4361 kg/m3), therefore

the minimum and maximum values of C11 coincide with

sound velocities of 1452 m/s and 2054 m/s, respectively. By

itself, a block of GeSe4 is merely a homogeneous medium

with constant elastic properties. If, however, the glass was

placed under an array of lasers, the elastic properties of the

material could be modulated in space and/or time by dynam-

ically adjusting the power of each element in the laser array.

This configuration is the basis for the time-dependent elastic

superlattice described hereafter.

The vibrational properties of this system are investigated

numerically. We represent the time-dependent elastic super-

lattice by a discrete 1D mass-spring system with a spatial

sinusoidal modulation of the stiffness of the springs that

propagates in time with the velocity 6V (Fig. 1(a)).

Individual masses (m¼ 4.361� 10�9 kg) are equally spaced

by a¼ 0.1 mm. The masses are connected by springs that can

vary in stiffness between 920 000 and 1 840 000 kg�s�2. The

study of the dynamics of the discretized time-dependent

model superlattice is amenable to the method of molecular

dynamics (MD). For the calculation of the elastic band struc-

ture of the superlattice, we use a 1D chain that contains

N¼ 3200 masses with Born-Von Karman boundary condi-

tions. The system takes the form of a ring. We have chosen

the value of 100 inter-mass spacings for the period of the

stiffness modulation, L. The dynamical trajectories generated

by the MD simulation are analyzed within the framework of

the Spectral Energy Density (SED) method20 for generating

the elastic band structure of the model superlattice. To

ensure adequate sampling of the system’s phase-space, our

reported SED calculations represent an average over 15 indi-

vidual MD simulations each with time step of 1.5 ns and total

simulation time of 222 time steps. We report in Figures 1(b)

and 1(c) the calculated band structure of the superlattice for

two velocities of the spatial modulation, namely, 0 and

350 m/s.

The band structure of the time-independent superlattice

(Fig. 1(b)) exhibits the usual band folding features with gaps

forming at the edge of the Brillouin zone. The band structure

has the mirror symmetry in momentum space about the ori-

gin characteristic of time reversal symmetry. In this case,

since the system studied takes the form of a ring, it supports

degenerate counter-propagating elastic Eigenmodes. One

consequence of the time-dependence of the stiffness modula-

tion is the loss of the mirror symmetry in k-space which is

indicative of breaking time reversal symmetry (Fig. 1(c)). In

addition to the presence of bands reminiscent of the time-

independent bands, the band structure of the time-dependent

superlattice contains a series of faint frequency shifted

bands. The frequency shift amounts to multiples of X ¼ 2pV
L .

The intensity of these bands decreases as the shift in fre-

quency increases. More remarkable is the formation of

hybridization gaps between the frequency-shifted bands and

the original time-independent bands. Two such gaps appear

in the positive-frequency, positive-wavenumber quadrant of

the first Brillouin zone at the same wavenumber þkg. Such

gaps do not appear in the positive-frequency, negative-wave-

number quadrant (i.e., at �kg) thus indicating the loss of

mirror symmetry. Changing the sign of the modulation

velocity leads to a horizontal flip of the band structure. In the

frequency range corresponding to the band gaps, the time-

dependent ring-like superlattice does not support degenerate

counter-propagating elastic Eigenmodes anymore. At these

frequencies, the degeneracy in the direction of propagation is

lifted and the time-dependent mass-spring ring supports left-

handed or right-handed modes depending upon the velocity

of the modulation.

RESULTS AND DISCUSSION

Multiple time scales perturbation theory
of time-dependent superlattice

To illustrate the origin of the loss of mirror symmetry in

the band structure of the time-dependent superlattice, we

construct perturbative solutions to the elastic wave functions.

In the long-wavelength limit, propagation of longitudinal

elastic waves in a one-dimensional medium perturbed by a

spatio-temporal modulation of its stiffness, Cðx; tÞ, obeys the

following equation of motion:

q
@2u x; tð Þ
@t2

¼ @

@x
C x; tð Þ

@u x; tð Þ
@x

� �
: (1)

In Equation (1), uðx; tÞ is the displacement field and q is the

mass density of the medium. For the sake of analytical sim-

plicity, we choose a sinusoidal variation of the stiffness with

position and time

Cðx; tÞ ¼ C0 þ 2C1 sin ðKxþ XtÞ; (2)

where C0 and C1 are positive constants. K ¼ 2p
L , where L is

the period of the stiffness modulation. X is a frequency asso-

ciated with the velocity of the stiffness modulation, V. The
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quantities K and V are independent. The sign of X deter-

mines the direction of propagation of the modulation. In this

representation, the maximum stiffness of the chalcogenide

material is Cmax
11 ¼ C0 þ 2C1.

The periodicity of the modulated one-dimensional me-

dium suggests that we should be seeking solutions of

Equation (1) in the form of Bloch waves

uðx; tÞ ¼
X

k

X
g
uðk; g; tÞeiðkþgÞx; (3)

where x 2 ½0; L�. The wave number k is limited to the first

Brillouin zone: �p
L ;

p
L

� �
and g ¼ 2p

L m with m being a positive

or negative integer. With this choice of form for the solution

and inserting Equation (2) into Equation (1), the equation of

propagation takes the form

@2u k þ g; tð Þ
@t2

þ v2
a k þ gð Þ2u k þ g; tð Þ

¼ ie f k0ð Þu k0; tð ÞeiXt þ h k00ð Þu k00; tð Þe�iXt
� �

; (4)

where f ðkÞ ¼ Kk þ k2, hðkÞ ¼ Kk � k2, k0 ¼ k þ g� K, and

k00 ¼ k þ gþ K. In this equation, we have defined: v2
a ¼ C0

q

and e ¼ C1

q . We solve this equation by using the multiple-time

scales perturbation method.21 For the sake of analytical sim-

plicity, we treat e as a perturbation and write the displacement

as a second order power series in the perturbation, namely,

uðk þ g; s0; s1; s2Þ
¼ u0ðk þ g; s0; s1; s2Þ þ eu1ðk þ g; s0; s1; s2Þ
þ e2u2ðk þ g; s0; s1; s2Þ: (5)

FIG. 1. Elastic waves in time-dependent elastic superlattice: (a) One-dimensional harmonic mass-spring system with spatial and temporal sinusoidal modula-

tion of the spring stiffness: bðx; tÞ as a realization of an elastic time-dependent superlattice. The spatial modulation propagates in time with the velocity 6V.

(b) and (c) Calculated elastic wave band structure in the cases of modulation velocities of 0 (time-independent superlattice) and 350 m/s, respectively. (d)

Illustration of the conventional momentum space (k-space) manifold supporting Bloch waves in the time-independent superlattice. Parallel transport of a vector

field along a 2p
L closed path in k space that starts and finishes at the origin of the band structure A and goes through points B and B0 shows no accumulation of

phase as the tangent vector does not change orientation along the path. (e) Illustration of the k-space manifold supporting elastic waves in the time-dependent

superlattice. The manifold takes the form of a M€obius strip with a single twist centered on the wavenumber kg corresponding to the band gaps in the band struc-

ture. The accumulation of phase along a 4p
L long closed path in k space that starts and ends at the origin A and goes through points B, B0, C, D, and D0 is shown

through parallel transport of a vector field. The amplitude of the wave function accumulates a p phase every time the path crosses kg. The phase change of the

amplitude is represented by the change in orientation of the vector tangent to the manifold as it is transported along the closed path.
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In Equation (5), ui with i ¼ 0; 1; 2 are displacement functions

expressed to zeroth-order, first-order, and second-order in

the perturbation. We have also replaced the single time vari-

able, t, by three variables representing different time scales:

s0 ¼ t, s1 ¼ et, and s2 ¼ e2t ¼ e2s0. We can subsequently

decompose Equation (4) into three equations: one equation

to zeroth-order in e, one equation to first-order in e, and a

third equation to second-order in e. The zeroth-order equa-

tion represents propagation of an elastic wave in a homoge-

neous medium. Its solution is taking the form of the Bloch

wave

u0ðk þ g; s0; s1; s2Þ ¼ a0ðk þ g; s1; s2Þeix0ðkþgÞs0 : (6)

To zeroth-order, the dispersion relation takes the usual form:

x0ðk þ gÞ ¼ vajk þ gj.

The first order equation is used to solve for u1

@2u1 kþg;s0;s1;s2ð Þ
@s0

2
þx2

0 kþgð Þu1 kþg;s0;s1;s2ð Þ

þ2
@2u0 kþg;s0;s1;s2ð Þ

@s1@s0

¼ i f k0ð Þu0 k0;s0;s1;s2ð ÞeiXs0þh k00ð Þu0 k00;s0;s1;s2ð Þe�iXs0

� �
:

(7)

The third term in Equation (7) is a secular term that is

set to zero by assuming that the displacement,

u0ðk þ g; s0; s2Þ , is not a function of s1. Subsequently, we

will assume that the displacement at all orders of expansion

is independent of odd time scales. The solution to Equation

(7) is obtained in the form of the sum of homogeneous and

particular solutions with split frequency

u1 k þ g; s0; s2ð Þ ¼ a1 k þ g; s2ð Þeix0 kþgð Þs0 þ i
f k0ð Þa0 k0; s2ð Þ

x2
0 k þ gð Þ � x0 k0ð Þ þ Xð Þ2 þ iu

ei x0 k0ð ÞþXð Þs0

þ i
h k00ð Þa0 k00; s2ð Þ

x2
0 k þ gð Þ � x0 k00ð Þ � Xð Þ2 þ iu

ei x0 k00ð Þ�Xð Þs0 : (8)

We have introduced in the first-order solution given by

Eq. (8) a small damping term iu to address the diver-

gence of the two resonances that occur at x2
0ðk þ gÞ ¼

ðx0ðk0Þ þ XÞ2 and x2
0ðk þ gÞ ¼ ðx0ðk00Þ � XÞ2. We will

later take the limit u! 0. The first term in the right-

hand-side of Equation (8) is the solution of the homoge-

neous part of Equation (7) and takes the same form as the

zeroth-order solution of Equation (6). The other two

terms are particular solutions. They are equivalent to sol-

utions for a driven harmonic oscillator. As seen in Figure

1(c), the particular solutions introduce additional disper-

sion curves in the band structure of the time-dependent

superlattice obtained by shifting the zeroth-order band

structure by 6X. The faint intensity of these bands

reflects the non-resonant conditions for the amplitudes in

Eq. (8). We also make the important observation that

there is a phase difference of p between the first-order

particular solution and the homogeneous (and zeroth-

order) solutions of Equation (8). This phase is due to the

change in sign of the amplitude of the first-order dis-

placement function as the wave number is varied across

the resonance. Finally, the second order equation of

motion is given by

@2u2 kþg;s0;s2ð Þ
@s0

2
þx2

0 kþgð Þu2 kþg;s0;s2ð Þ

þ2
@2u0 kþg;s0;s2ð Þ

@s2@s0

¼ i f k0ð Þu1 k0;s0;s2ð ÞeiXs0 þh k00ð Þu1 k00;s0;s2ð Þe�iXs0

� �
: (9)

Inserting Equation (8) into (9) leads to terms of the form

eix0ðkþgÞs0 in the right-hand-side of the equation. These terms

lead to secular behavior that can be cancelled by equating

them to the third term in the left-hand-side of the equation.

Introducing, a0ðk þ g; s2Þ ¼ a0ðk þ gÞeics2 , one may rewrite

u0ðkþg;s0;s2Þ as u0ðkþg;s0;s2Þ¼a0ðkþgÞeics2 eix0ðkþgÞs0

¼a0ðkþgÞei½x0ðkþgÞþce2�s0¼a0ðkþgÞeix�
0
ðkþgÞs0 . Then, one

obtains a correction to x0ðkþgÞ, leading to a frequency shift

and damping. This frequency shift is most pronounced for val-

ues of the wave number leading to strong resonances in

Equation (8) and is given by

dx0 k þ gð Þ ¼ x�0 k þ gð Þ � x0 k þ gð Þ ¼ e2 cð Þpp
¼ e2

2x0 k þ gð Þ

f k0ð Þh k þ gð Þ 1

x2
0 k0ð Þ � x0 k þ gð Þ � Xð Þ2

 !
pp

þh k00ð Þf k þ gð Þ 1

x2
0 k00ð Þ � x0 k þ gð Þ þ Xð Þ2

 !
pp

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: (10)
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The symbol ðÞpp in this expression represents Cauchy’s prin-

ciple part that results from taking the limit: u! 0. This fre-

quency shift is the signature of the formation of

hybridization band gaps between the zeroth-order and the

first-order dispersion relations at the resonance wave num-

bers. Particular solutions of Equation (9) will also include

terms in eiðx0ðk0or k00Þ62XÞs0 . These terms introduce additional

dispersion curves in the band structure of the time-dependent

superlattice obtained by shifting the zeroth-order band struc-

ture by 62X (see Fig. 1(c)). The denominators of the

resonance conditions x2
0ðk0Þ � ðx0ðk þ gÞ � XÞ2 ¼ 0 and

x2
0ðk00Þ � ðx0ðk þ gÞ þ XÞ2 ¼ 0 determine the location of

the formation the two hybridization gaps observed in Fig.

1(c). These conditions predict hybridization gaps where the

lowest first-order dispersion branch (g ¼ 0) and second low-

est branch (g ¼ 2p
L ) intersect a first-order dispersion curve.

The two gaps form only on one side (positive or negative

side) of the first Brillouin zone depending on the sign of X
(i.e., the direction of propagation of the modulation of the

stiffness). These two gaps occur at the same wave number:

kg. This leads to a band structure that does not possess mirror

symmetry about the frequency axis as seen in Figure 1(c).

The band structure now possesses a center of inversion, the

origin, rather than a mirror plane.

Topology of elastic wave functions

We can shed light on the non-conventional topology of

the displacement Bloch function in the time-dependent

superlattice by following a closed continuous path in wave

number space and monitoring the phase difference acquired

by the amplitude of the wave function over the course of

such a cycle.22 Figure 1(c) is used to illustrate this path. We

start from the origin of the band structure (k ¼ 0, point A)

and follow the lowest zeroth-order branch (g ¼ 0Þ by mov-

ing in the direction of increasing k. We approach the

first hybridization gap near þkg. As we pass through the

hybridization gap, the wave function transitions from a state

corresponding to a zeroth-order type wave (eix0ðkþgÞs0 ) to a

wave having the characteristics of a first-order wave

(eiðx0ðk0Þ�X Þs0 ). The transition between these two types of

solutions corresponds to a geometric phase difference of p.

Once through the hybridization gap, one then reaches the

edge of the Brillouin zone (k ¼ p
L, point B). Since the wave

functions are Bloch waves, point B is equivalent by transla-

tional symmetry to point B0 located on the other edge of the

Brillouin zone (k ¼ � p
L). From point B0, one then follows

the first-order branch corresponding to a wave of the form

(eiðx0ðk00Þ�XÞs0 ) back to the wavenumber k ¼ 0 (point C). At

this stage, we have closed a 2p
L loop in wave number space,

and the amplitude of the wave function has accumulated a

geometric phase of p. Further increase in wave number takes

us back along the first-order branch corresponding to the

wave: eiðx0ðk0Þ�XÞs0 . One then reaches the top of the hybrid-

ization gap, again at þkg, and transitions back to the zeroth-

order state eix0ðkþgÞs0 . This transition accumulates an

additional geometric phase difference of p. At the k ¼ p
L

edge of the Brillouin zone, one has reached the point D.

Point D is equivalent by translational periodicity to D0. We

can close the continuous path by increasing k again toward

the origin along the lowest dispersion branch of the zeroth-

order wave. This action takes us back to the starting point A.

This second stage of our continuous path corresponds to

closing a second 2p
L loop in k-space. For each complete loop,

the displacement function accumulated a p geometric phase

when one crosses the wave number þkg, i.e., when transi-

tioning between zeroth-order and first-order wave functions

at the gap. One therefore needs to complete two loops in k-

space (i.e., a 4p=L rotation) to obtain a 2p geometric phase

difference in the amplitude of the wave function. This behav-

ior is characteristic of a non-trivial topology of k-space

whereby the wave function is supported on a wavenumber

manifold that has the torsional topology of a M€obius strip

(Fig. 1(e)).23 Note that here the twist in the M€obius strip-like

manifold is not distributed along the entire length of the strip

but is localized in k-space. The strip exhibits no phase differ-

ence along most of its length. The local twist leads to a p
phase difference only near þkg which is associated with the

narrow gap resulting from fully destructive interferences

between first-order and zeroth-order waves. We can repre-

sent the evolution of the geometric phase of the wave func-

tion by following a closed path in k-space on this M€obius

strip and parallel transporting a tangent vector field. Starting

at point A in Figure 1(e), and following a closed loop in k-
space, the upward-pointing tangent vector remains parallel

until it approached the twist in the strip at þkg. The parallel

transport condition imposed on the vector leads to a p-inver-

sion of the direction in which the vector points. The vectors

remain parallel to each other through a full loop (2p
L rotation)

in k-space reaching point C. One needs another full turn to

go through the twist a second time and rotate the vector by p
again. The vectors remain parallel until they close the contin-

uous path and reach the point A. The vector has accumulated

a 2p phase different along a 4p
L closed path. In contrast, we

have illustrated in Figure 1(d) the manifold for a Bloch wave

with conventional topology that corresponds to a time-

independent superlattice. In this case, the manifold does not

possess a twist. The vector field is transported along a single

close path in k-space without a change in phase. The ampli-

tude of the wave function in this case does not depend on the

wave number.

In the following sections, through a series of numerical

simulations, we demonstrate the application of the concept

of time-dependent modulation of elastic properties by show-

ing bulk wave propagation functionalities such as non-

reciprocal transmission and immunity to back-scattering.

Non-reciprocity of bulk elastic wave propagation

Hybridization between zeroth-order and first-order wave

functions is permissible only if they possess the same sym-

metry. As shown with multiple time scales perturbation

theory, the intersection of zeroth-order and first-order disper-

sion branches may or may not result in the formation of a

hybridization gap. When the displacement fields associated

with the Eigenmodes of each branch are symmetrical, as was

the case at þkg in Figure 1(c), a hybridization gap emerges.

If symmetry is absent, zeroth-order and first-order dispersion
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branches can intersect and not hybridize. The loss of mirror

symmetry in the band structure leads to the existence of uni-

directional bulk propagative modes within the frequency

range of the hybridization gap. This asymmetry can then be

exploited to achieve non-reciprocal wave propagation.

To illustrate this phenomenon, we consider a finite sys-

tem composed of a time-dependent superlattice sandwiched

between two homogeneous domains (see top of Figure 2).

This setup is particularly useful for simulating the transmis-

sion of elastic waves through phononic systems. Absorbing

boundary conditions are imposed at the ends of the

sandwich-system. The medium to the left of the superlattice

contains a source (S) of monochromatic elastic waves. A

detector (D) is located in the medium to the right of the

superlattice. The spectral properties of the superlattice are

characterized by taking the Fourier transform of the time-

domain signal collected at D. The sandwich-system is discre-

tized and transmission is investigated numerically by solving

the elastic wave equation via the finite-difference time-do-

main (FDTD) methodology.24

We consider two simulations, Case I and Case II. For

Case I, the frequency of S is set at f0¼ 72 kHz and the spatial

modulation of stiffness propagates in time with velocity

V> 0. Case II is identical to Case I except the sign of the

velocity is switched (V< 0). The dispersion diagrams for the

superlattices considered in Case I and Case II are shown in

the centers of Figures 2(a) and 2(b), respectively. As noted

previously, changing the sign of the modulation velocity

leads to a horizontal flip of the band structure. To the left of

each diagram is the band structure for acoustic waves in the

homogeneous domain. To the right of each diagram is the

plot for acoustic wave transmission. It is valuable to use the

left and central plots in Figures 2(a) and 2(b) as slowness

surfaces to interpret the transmission plots for Case I and

Case II. A horizontal grey line is drawn over the band struc-

tures of the superlattices considered. This line coincides with

the frequency of the input acoustic source. All zeroth-order

modes in the superlattices with this frequency will be

excited. A red dot is used to identify these modes in Figures

2(a) and 2(b). For Figure 2(a), this mode has negative group

velocity and does not propagate in the same direction as the

input acoustic wave. As a consequence, the transmission

peak at f0 is very weak. Oppositely, the red dot in Figure

2(b) highlights a zeroth-order mode with positive group

velocity and a very large transmission peak is witnessed at

f0. Furthermore, excitation of the zeroth-order modes at the

frequency f0 leads through Equation (7) to first-order modes

at the frequencies f0 6X=2p (see Equation (8)). These modes

appear as small peaks in Figures 2(a) and 2(b).

The unidirectional propagation of elastic waves in the

time-dependent superlattice is enabled by the asymmetric

band structure and therefore the existence of a bulk zeroth-

order propagative mode within the frequency range of a

band gap. The change in sign of the group velocity of the

propagative mode with the sign of the stiffness modulation

velocity leads to the asymmetry in transmission coefficient.

We note that the characteristics of the transmission coeffi-

cient are inverted when one launches an incident wave with

a frequency, f1¼ 105 kHz, falling within a different hybrid-

ization gap. This inversion results from the change in sign of

the group velocity of the propagative mode associated with

band folding.

FIG. 2. One-way transport of bulk

elastic waves: Illustration of the condi-

tion for transmission and transmission

coefficient of a finite size time-

dependent superlattice sandwiched

between two homogeneous regions

(inlet with sound source (S) and outlet

with detector (D) in the case (a) V> 0

and (b) V< 0. In both cases, the band

structure of the homogeneous medium

is represented on the left of the figure

with the source emitting a monochro-

matic wave with frequency f0. The

plots on the right represent the trans-

mission spectrum of the superlattice

around the incident frequency.
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Demonstration of topologically
back-scattering-immune bulk states

One of the signatures of edge states in topological insu-

lators is their robustness with respect to backscattering by

defects. The same robustness exists for the bulk elastic

waves in the time-dependent superlattice. This phenomenon

is demonstrated by inserting a mass defect inside the elastic

sandwich-system considered previously. Here, the defect is

constructed by changing the value of the masses of a region

of the superlattice (see Fig. 3(a)). We consider increasing

levels of mismatch between the defect and the original super-

lattice. The defect mass is chosen to take the values M¼ 2,

3, and 4m. The width of this region is taken to be equal to

the period of the modulation. The mass defect does not affect

the spatio-temporal modulation of the stiffness.

The incident wave has the same frequency f0 from Fig. 2,

whereby unidirectional propagation is attained. As can be

seen in Fig. 3(b), the transmission of the bulk wave through

the time-independent superlattice is increasingly degraded by

an increase in the mass mismatch, i.e., backscattering.

However, the time-dependent superlattice exhibits no signifi-

cant transmission for V< 0 as expected. For V> 0, the mass

of the defect does not appear to have a significant effect on

the transmission. Since the superlattice is unable in this case

of supporting a defect induced back-scattered wave, the elas-

tic energy essentially propagates without scattering. The

time-dependent superlattice demonstrates unambiguously

immunity to backscattering.

SUMMARY AND OUTLOOK

We have identified the non-conventional topology of

bulk elastic waves in a time-dependent superlattice as well

as demonstrated the existence of bulk elastic waves with uni-

directional backscattering-immune topological states. The

moving spatial modulation of the elastic constants leads to

modes with split frequency. The splitting is linear with

respect to the biasing velocity. It is the band folding due to

the spatial modulation which enables hybridization between

the split Bloch modes and the Bloch modes of the time-

independent superlattice. The hybridization opens gaps in a

band structure that has lost its mirror symmetry about the

origin of the Brillouin zone. The elastic wave function is

supported in wave-number space by a M€obius strip-like

manifold with non-conventional torsional topology. These

topology protected bulk states exhibit unidirectional propa-

gation and immunity to back scattering by defects.

The mechanism of asymmetric hybridization between

Bloch waves and frequency-split Bloch waves in a time-

dependent superlattice, demonstrated here for elastic waves,

is universal. We anticipate that this concept will develop

into approaches to realize topology protected bulk states in

materials supporting other types of waves such as electro-

magnetic waves or spin waves. Although we have illus-

trated the concept of the spatio-temporal modulation of the

elastic properties in a photo-elastic medium, one can

achieve time-dependent superlattices in a variety of other

classes of materials by exploiting, for instance, the

magneto-elastic effect or the piezo-electric effect. We have

considered a one-dimensional sinusoidal spatio-temporal

modulation of the properties of the material. The universal-

ity of the concept reported here suggests its extension to

materials with higher dimensions and other more complex

forms of the spatio-temporal modulation. The concept of

time-dependent materials that can break time reversal sym-

metry for bulk wave propagation may potentially serve as

unique platforms to investigate a large variety of phenom-

ena resulting from wave propagation with non-conventional

topological states.
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