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Abstract— This paper introduces tools for the automatic 
detection of “hidden” behind-the-meter solar generation in case 
where there is no monitoring or connection agreement contract 
with the system operator. The objective is to reach the highest 
precision while discriminating the nodes with and without solar 
generation. The proposed methods are based on exogeneous 
information (smart meter and temperature data) and artificial 
intelligence techniques consisting of neural networks as well as 
analytical classification algorithms. A wide range of models 
differing in size, architecture and number of parameters has 
been investigated, and the best performing ones are presented in 
the article. The first method involves time series classification 
(TSC), and the second involves time series forecasting (TSF). 
Open-access consumption data were used for the training of the 
neural networks. The implemented solutions were tested across 
all the nodes of the simulated electrical grid and the sensitivity 
of the tools was analyzed with regard to the level of PV 
penetration. One of the proposed tools is able to detect up to 
100% of new PV installation, depending on the exogenous 
conditions. 

Index Terms—Artificial intelligence, classification, behind the 
meter solar production, time series, neural network. 

I. INTRODUCTION 

Distributed renewable energy, especially photovoltaic 
(PV), has grown rapidly over the past two decades. 
Information about PV generation is crucial for distribution 
system operations such as status estimation, reconfiguration 
and voltage management. However, some behind-the-meter 
solar installations may not be subject to monitoring or 
connection agreement with the system operator. If not 
identified, that “hidden” generation, may incur additional 
uncertainty into the net charge (by reducing the net load 
compared to the expected one during daytime) and particularly 
makes it more difficult to securely operate the distribution 
grid. With the constant growth of installed PV capacities, this 
problem becomes more and more important. Therefore, the 
development of a tool that automatically detects nodes with 
PV production in a distribution grid based on smart meter data 
can be an essential asset for operators with a lack of 
observability. There have been several approaches aiming at 
detecting PV installations in distribution grids. As discussed 

below, these often involve domain knowledge in form of 
detailed mathematical modelling and a mix of methods.  

An approach to identify customers with PV power 
generation using net energy consumption data from smart 
meters is proposed in [1]. In order to reduce the amount of 
data needed to accurately identify solar prosumers to a single 
data point, the authors propose a method of dimensionality 
reduction, which outperforms k-means, combined with a 
classification method. This method is based on agglomerative 
clustering and self-organizing maps (artificial neural network-
based clustering technique). The disadvantage of this method 
is that the clustering of customers into two groups (with and 
without PV) is implemented without historical data about 
consumption of these customers in previous years. Thus, the 
algorithm can identify customers as “with PV” if their total 
consumption or peak consumption is below the average value, 
but it is also possible even without PV. 

A computer algorithm that automatically detects PV panels 
using very high-resolution color satellite imagery (0.3 meters 
per pixel) has also been tested [2]. A Random Forest 
Classification machine learning technique to detect the 
presence of PV is proposed. The main problem of the 
algorithm lies in its principle - it needs high-resolution satellite 
imagery. Moreover, it needs labeled training data.  

A distributed photovoltaic systems capacity estimation 
approach is presented in [3]. Using a support vector machines 
(SVM), the algorithm determines whether a customer has a 
PV or not. Several features describing the discrepancy of net 
load curves between customers with PV and those without are 
extracted, based on weather status driven characteristics of PV 
output power – e.g. ratio of total electricity consumption, 
concave shape index, concavity degree and load ramping rate. 
The disadvantage of the method is that it needs the output 
power data from PV of known customers. 

Another approach for solar prosumer identification is 
change-point detection [4], which detects abnormal energy 
consumption behaviors including unauthorized PV 
installations. Change-points in customer load may be caused 
by other abnormalities. Therefore, the existence of the 
unauthorized PV installation is further verified through a 
statistical inference known as permutation test with the 



Spearman’s rank correlation coefficient. However, this 
approach is unable to detect PV installations until after the 
rolling window length is completed (2–14 days lengths were 
evaluated). Moreover, the cloud cover index is needed. 

Finally, authors in [5] present a method for detecting and 
disaggregating behind-the-meter solar generation using 
weather data, advanced metering infrastructure, substation 
monitoring and generation monitoring for a few PV systems 
nearby the circuit. This method, like the previous one, needs 
various types of data such as solar radiation data, data from 
other PV stations, and detailed weather data or even satellite 
imagery.  

In this paper, the objective is, on the contrary, to not 
require any detailed modelling of the grid and production as 
well as rely strictly on smart metering and temperature data. 
The motivation lies in the capacity of DSOs to use available 
data from users without facing privacy issues not dealt with 
previously and to limit as much as possible the requirements 
for getting the results just needed for the operation of the grid. 

Machine learning techniques as neural networks (NNs) are 
used in a very large variety of contexts in the energy field [6], 
especially forecasting and disaggregation. To the best of our 
knowledge, detection of PV installations has not been 
extensively covered with in mind the practical compromise of 
data limitation, simplicity of implementation and usable 
results. Two different approaches are explored in this paper, 
denoted Method A and Method B. Method A is based TSC, 
and Method B leans on the concept of TSF which is applied 
for classification task. Both involve NNs. While approach A 
explores convolutional neural networks (CNNs) with a wide 
range of architectures and settings, Method B is more 
transparent and combines a conventional Multi-Layer 
Perceptron (MLP) together with an analytical classification 
algorithm. The two approaches with similar, albeit not equal 
assumptions, are compared, regarding their efficiency to detect 
PV production.  

The paper is organized as follows: Section II describes the 
simulation setup and presents both methods A and B. The 
obtained results and sensitivity analysis are discussed in 
Section III before conclusions are drawn in Section IV. 

II. METHODS 

A. Experimental setup 

To simulate the hourly net consumption profiles of the grid 
for two consecutive years (called year n-1 and year n), open-
access consumption data of hundreds of households of London 
were used [7]. The consumption profiles were aggregated into 
14 groups for each node (a dozen of households per node).  

To model PV generation in some nodes, the web 
application NREL's PVWatts [8] was used to estimate solar 
radiation from a specific geographic position (typical 
meteorological year, TMY). Additionally, the DarkSky 
API [9] was used to obtain temperature data for the same 
geographic position and datetimes as the net consumption. 
The PV generation profiles, obtained using the above data 
were integrated to seven nodes during the year n and scaled in 
accordance with the consumption profiles of these nodes and 

the objectives of the experiments. The PV installed capacity in 
any given node is expressed with regards to the peak load 
value of this node / max( )PV load

nomP P . The dataset creation for 
Method A varies slightly, as described in section B. 

Therefore, there are 14 nodes for the simulation over two 
years, of which seven have PV added during the second year. 
The goal is to develop an approach that can detect these seven 
randomly chosen nodes, based on consumption and 
temperature data for no more than two years. 

B. Method A (TSC-based) 

The first approach relies on CNNs and an ensemble model 
based on the Multi-channel deep CNN (MCDCNN) [10] built 
within the PyTorch package. A graphic representation of a 
CNN and a convolution can be found in Figure 1 for 
illustration. The overall implemented process is shown in 
Figure 2.  

 
Figure 1. Convolutional neural network architecture. 

The only input data is the simulated net consumption of all 
nodes. Inputs are time series (TS) of 24h, outputs are two 
classes that identify whether there is a PV installation (1) or 
not (0). Optionally, the classified days can be applied a 
majority vote on. All models are aimed to be as simple as 
possible in terms of size, i.e. the trainable parameters, i.e. the 
number of weights and biases (e.g. convolution kernel size, 
NN weights, and max-pooling kernel size).  

 
Figure 2. Operating principle of Method A. 

The models are detailed in Figure 2: There is one CNN 
and a MCDCNN that is an ensemble of CNN-branches 
applied to each node individually and concatenated 
afterwards. 

The data used is the London data set from [7], simulated 
once with one set of PV nodes and a second time with an 
“inverted” set of nodes regarding PV attribution for both 
training and testing (two years each). Hence each node is 
simulated once with PV and once without. The simulation is 
conducted with various levels of PV capacity: 8.5% (normal), 
25% (slightly higher), 50% (high), 75% (very high) (see 
Section II). Input data is shuffled, but not scaled (shows 



slightly better results). The training set is from April to 
September as the time series are most discriminable in these 
months due to higher PV generation.  

TABLE I. MODEL DETAILS 

Models CNN MCDCNN 

Input 24h TS 24h TS (1 branch/node) 

# CLs 2 2 

# FCLs 1 2 

Regularization MP, BN MP, BN 

AFs inside Sigmoid ReLU 

AF output Sigmoid Sigmoid 

# Parameters 561 699 

MP = Max-Pooling, BN = Batch Normalization, TS = Time Series. 

Training is conducted with the Adam optimizer, the 
BCEWithLogitsLoss (binary cross entropy) loss function 
(calculates cost or error), a learning rate of 0.001, a batch size 
of 200, and 500 epochs (number of training iterations with 
whole data set). Those choices were found to be the most 
relevant during the exploration stage. The initialization is 
based on the PyTorch default, Kaiming for CLs and Xavier for 
FCLs [11]. As the data set is balanced, accuracy is chosen as 
an evaluation metric. 

The existing method for comparison (benchmark) is given 
by the CNN of the repository of the TSC review [12] that 
contains many state-of-the-art models (Keras package) and 
that works with the UCR/UEA archive [13]. It is used for the 
general assessment of TSC algorithms due to comparability. 

C. Method B (TSF based) 

The second method is designed to be less considered as a 
“black box" but more transparent while still presenting a high 
precision. The objective is to detect whether new PVs have 
been installed in the nodes of a distribution grid during a 
considered period (e.g. during the last year or month). 

The developed tool consists of a NN coupled with an 
analytical classification algorithm that is applied separately for 
each node. The operating principle is shown in Figure 3. The 
first part of the data (at the bottom) represents the year n-1 
(“training set”) and the second (at the top) the year n, for 
which the recently installed PV shall be detected.  

 
Figure 3. Principle of operation of method B. 

Trained by consumption data from the year n-1, the NN 
produces the expected consumption for a given day of the year 
n at an hourly resolution, assuming that no new PV has been 
added. This forecast is called baseline, which is then fed to the 
classification algorithm. 

The net energy consumption measured by the meters 
(which provides the difference between load and PV 
generation) for the considered period of the year n is also fed 
to the classification algorithm and is called measurement. 

Finally, the analytical classification method compares the 
baseline and measurement values during daytime and 
nighttime to detect PV.  

The first layer of the NN (Figure 4) contains 31 neurons, 
that is, 31 features, which were chosen after sensitivity studies 
showing the strongest effect on consumption: 

 24 features to determine at what hour of the day the 
simulation will be performed – hi, where i = 1. ... 24; 

 4 others indicate the season – Sh (winter), Sp (spring), 
Se (summer), Sa (autumn); 

 The last 3 are temperature (t°), weekend (W) and 
holiday (F). 

 
Figure 4. Neural network and its features as used in method B. 

The NN contains two hidden layers, of 20 and 15 neurons 
each. The output layer consists of a single neuron, which 
calculates the consumption for the chosen hour. This 
architecture showed the highest precision as the result of 
sensitivity studies. 

The training is conducted with the Adam optimizer and the 
mean absolute error loss function, a learning rate of 0.03 and 
1000 epochs are set. The time of training is tens of seconds for 
each bus. 

The analytical classification algorithm is presented in 
Figure 5. The basic idea is that, in absence of PV generation, 
the difference of baseline and measurement values is 
approximately the same for hours of the day and of the night. 
Hence, if that difference is greater during hours of the day, 
then the algorithm detects that new PVs have been added in 
the considered period, since PV generation can occur only 
during the day. 

At first the algorithm calculates Et (in %), the difference 
between the baseline (Bt) and the measurement (Pt), for each 
hour t of the period T. 



Similarly, Et
S is computed as the difference between the 

baseline and the measurement, but only for the hours of the 
day (between 9 a.m. and 4 p.m. of each day), i.e. a total period 
TS of 2920 hours per year (or less if we consider less than a 
year, i.e. T < 8760 hours). The period between 9 a.m. and 
4 p.m. is chosen because during these hours there is a 
significant generation of PV whatever the season. 

 
Figure 5. Principle of operation of the algorithm at the core of method B. 

Then, the algorithm enumerates the number of hours N1 
when Et is greater than the threshold Emin (10% by default). It 
therefore counts the number of hours for which the baseline is 
at least 10% greater than the measurement. 

If N1 lays outside the interval of [10%; 35%] of the total 
number of hours over the considered period, the algorithm 
adjusts the threshold Emin to avoid any overestimation or 
underestimation from the NN and afterwards repeats the 
process, counting N1 again. This reduces the estimation error 
and makes the algorithm immune to changes in the number of 
inhabitants. The values of 10% and 35% have been obtained 
empirically through sensitivity studies. Emin is the only 
threshold that is to be adapted. 

Once Emin is set, the algorithm calculates N2 - the number 
of hours for which the baseline is greater than the 
measurement during the hours of sunshine by at least the value 
of the previously obtained Emin threshold. 

Then the algorithm checks if N2/TS is greater than N1/T by 
at least L1% (140% by default). Thus, it checks whether the 
situation where the baseline is greater than the measurement 
on Emin % is more frequent during the hours of sunshine than 
any other time period. If there is no new installed PV, N2/TS 
and N1/T will be roughly the same. If there is a new PV 
generation, then N2/TS will be significantly larger than N1/T. 

Finally, the algorithm checks that N2/TS is larger than L2%. 
That is, at least L2% of baseline hours are larger than the 
measurement by Emin%. In case both last checks are 
successful, the algorithm concludes that the node has a local 
PV generation and hence that a new PV was installed at this 
node. 

III. RESULTS AND COMPARISON 

A. Results for Method A 

The test accuracies for all models as well as results from 
benchmark models are depicted in Figure 6. The accuracy was 
calculated according to the following expression:  
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For the London dataset [7] with 8.5% of PV integration, 
the scores are hardly above 0.5 (i.e. the random score). Hence, 
to see if the network is able to discriminate with higher PV 
production rates, the percentage was increased to 25%, 50% 
and 75%, which is very high and not that realistic. The results 
show that the CNNs  are the most suitable models with an 
accuracy of 0.74. The MCDCNN does not perform well. The 
results can be explained by the CNNs having different 
consumption curves and are hence able to generalize more 
than the MCDCN. Thus, it can adapt better to unseen data. 
Also, the CNN uses sigmoid as an activation function instead 
of PReLU. A quick check on the hidden layers verifies that the 
neurons do not saturate, i.e. the network is functioning.  

There are two benchmark models, a CNN with 614 
parameters and a ResNet with 504,258 parameters. Both have 
low scores for the realistic 9% PV integration London dataset, 
and work much better on higher PV percentages, although 
they do not surpass the model proposed here. Note that, 
interestingly, the CNN has a lot less parameters than the 
ResNet, showing that more parameters do not automatically 
yield better performance. 

 

Figure 6. Accuracy test scores from April to September for three models of 
Method A (orange), its benchmark (blue) and Method B (green) on the 

London data, simulated with varying degrees of PV generation (8.5%-75%). 

Examining why the models do not perform better, the 
reason can be found in the combination of model design and 
data. Figure 7 shows an excerpt from the unscaled data, with 
low and very high PV production for a few days in May 2012. 
It becomes clear that PV does have some impact: there now 
appear negative values of the net load for very high PV 
production and the curves seem stretched vertically. However, 
the general pattern of smaller variations is not altered. Hence, 
it still contains many of the information as the net 
consumption without any PV. The model choice then comes 
into play. CNNs are designed to extract smaller patterns 



(depending on the filter size). Our basic assumption was that 
PV changes the curves’ small patterns enough, i.e. such that 
CNNs will detect them. It now becomes clear that this 
assumption does not hold. Also, CNNs detect similar curves 
largely independent of their absolute height. However, those 
absolute differences are necessary for the classification (i.e. 
PV or not) in the studied problem.  This is the reason why 
CNNs are not able to see the added PV, i.e. differentiate 
between PV and none.  

 

Figure 7. Net consumption profiles (unscaled) with (yellow) and without 
(black) PV and their difference (blue) for normal (upper) and very high 

(lower) PV plus solar radiation (green) for five days in May 2012. TODO 

B. Results for Method B 

The implemented Method B is trained on and works for 
each node individually. The 14 nodes were prepared, with PV 
connected to seven of them, randomly selected. 

The accuracy of the method depends on which months 
were selected for the analysis, mainly because they differ in 
the level of solar radiation. To confirm this theory, two cases 
are considered - using consumption and temperature data for 
the six most sunny months (from April to September) and for 
the six least sunny months (from October to March). 

The dependence of the average accuracy of the tool with 
respect to the period under consideration and to 

/ max( )PV load
nomP P  for the whole network is presented in Figure 8 

for the period from April to September and in Figure 9 for the 
period from October to March. 

 
Figure 8. Average accuracy dependence from April to September with 

Method B. 

In the following results and corresponding figures, the 
"Average" performance refers to the average accuracy 

calculated for all possible periods of x days over 6 months 
with on a rolling basis. (e.g. for "period = 60 days", the 
average accuracy of 122 possible 60-day periods between 
April and September was calculated). 

The average accuracy from April to September is then 
between 0.8 ( / max( )PV load

nomP P = 4.5 %, over a period of five 

days) and 1 ( / max( )PV load
nomP P > 7.0 %, for a period of more than 

two months). The results show that the average accuracy for 
the sunniest months is higher for longer periods as a longer 
period reduces the impact of cloudy days, when PV generates 
less energy. It is also obvious that a greater ratio 

/ max( )PV load
nomP P  facilitates the detection of PV, so the average 

accuracy is also higher. 

The results are different for period from October to Mars. 
The average accuracy for these months is between 0.87 
( / max( )PV load

nomP P = 10.0 %, over a period of five months) and 
0.5 ( / max( )PV load

nomP P  = 4.5 %, for a period of six months). For 

ratios / max( )PV load
nomP P  lower than 8.5 %, the average accuracy 

is better for shorter periods, because on average during these 
months the PV systems do not generate enough power for 
detection, but there are still few days with high solar radiation 
level where detection is possible. 

 
Figure 9. Average accuracy dependence from October to March.with 

Method B 

Thus, it can be concluded that it takes an average of the 
sunniest three months of a year to get the highest detection 
accuracy. 

TABLE II. DISTRIBUTION OF THE INSTALLED PV POWER AND THE 

CORRESPONDING ENERGY PRODUCTION 

Bus 2 3 4 8 9 11 12 

,%
max( )

PV
nom

load

P

P
 6,2 6,2 6,2 6,2 6,2 6,2 6,2 

,%
PV

nom
load

W

W
 3,3 3,2 3,3 3,1 3,1 3,1 3,7 

 

Considering the periods of the three sunniest months, 
100 % accuracy of the method on the test system can be 
achieved with values of 6.2 % for the installed PV capacity in 



the node with respect to the maximum load ( / max( )PV load
nomP P ), 

and 3.1 % for the generated PV energy compared to the 

energy consumption of the same node ( /PV load
nomW W )(Table II). 

It should be mentioned that the sensitivity of the tool 
depends on consumption profiles (for two years). Thus, a 
sudden change in the consumer behavior, such as an increased 
consumption during sunshine, may affect the performances. 
However, if the number of inhabitants changes, this should not 
have a significant impact on the results, because the algorithm 
can compensate for this by adjusting the threshold. 

IV. CONCLUSION 

The paper prosed two methodologies for the detection of 
hidden PV generation in a distribution grid (methods A and 
B). It was found that forecasting tools, as proposed in Method 
B, works better than direct classifications algorithms (as 
proposed with Method A). It is mainly explained by the fact 
that neural networks are a lot better at learning small patterns 
than at discriminating similar curves that have been vertically 
distorted by PV. Thereby the PV detection approach 
(Method B), that uses only smart meter and temperature data, 
can be chosen as the best performing method in this case.  

The overall approach of using neural networks for such 
classification performs well on the considered problem, as the 
network can be trained offline within minutes and can then 
analyze any time period within seconds. 

From the comparison of both approaches it can be 
concluded that, for energy time series classification, it is 
necessary to use some domain knowledge. With the 
assumptions made here, the tool is well usable in practice, 
especially since past consumption data and temperature data 
are often available. 

Future works will consist in testing the tools on larger 
grids in simulation. A next step will then be to not only detect 
PV installations, but also to disaggregate its values from the 
net load and hence approximate the amount of PV generation. 
Regarding the data, further thoughts can be given to noise and 
anomaly detection as the simulated data has been very clean in 
the presented study. Validating the presented techniques on 
real data could be as well rewarding. Regarding the (C)NNs, 
future work can experiment on larger grids with a larger and 
more diverse range of consumption profiles. It can be stated 
that Method B represents a good basis for PV detection in 

distribution grids, offering many opportunities to be expanded 
further upon in future work. 
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