
HAL Id: hal-03303689
https://hal.science/hal-03303689

Submitted on 28 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the Role of Low-Level Linguistic Tasks for Reading
Time Prediction

Franck Dary, Abdellah Fourtassi, Alexis Nasr

To cite this version:
Franck Dary, Abdellah Fourtassi, Alexis Nasr. On the Role of Low-Level Linguistic Tasks for Reading
Time Prediction. 43rd Annual Meeting of the Cognitive Science Society, Jul 2021, Vienna, Austria.
pp.452. �hal-03303689�

https://hal.science/hal-03303689
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On the Role of Low-Level Linguistic Tasks for Reading Time Prediction
Franck Dary, Abdellah Fourtassi, Alexis Nasr

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{franck.dary,alexis.nasr,abdellah.fourtassi}@lis-lab.fr

Abstract
It has been shown that complexity metrics, computed by a
syntactic parser, is a predictor of human reading time, which
is an approximation of human sentence comprehension diffi-
culty. Nevertheless, parsers usually take as input sentences that
have already been processed or even manually annotated. We
propose to study a more realistic scenario, where the various
processing levels (tokenization, PoS and morphology tagging,
lemmatization, syntactic parsing and sentence segmentation)
are predicted incrementally from raw text. To this end, we
propose a versatile modeling framework, we call the Reading
Machine, that performs all such linguistic tasks and allows to
incorporate cognitive constrains such as incrementality. We
illustrate the behavior of this setting through a case study where
we test the hypothesis that the complexity metrics computed
at different processing levels predicts human reading difficulty,
and that when cognitive constraints are applied to the machine
(e.g., incrementality), it yields better predictions.
Keywords: reading time; cognitive modeling; entropy; sur-
prisal

Introduction
Over the last couple of decades, there has been a growing
interest in using Natural Language Processing tools to develop
cognitively-plausible models of human sentence processing
(see Hale (2017) for a review). Researchers have proposed to
interface NLP models with human processing through com-
plexity measures. These measures hypothesize that the proba-
bility of a word given its linguistic context (as calculated by
the model) can predict the difficulty with which humans pro-
cess this word (as measured, e.g., by the time it takes to read
it). Several previous studies have shown that the probability
with which a word fits into a syntactic parse predicts human
processing difficulty (Demberg & Keller, 2008; Boston, Hale,
Kliegl, Patil, & Vasishth, 2008; Boston, Hale, Vasishth, &
Kliegl, 2011; Crabbé, Fabre, & Pallier, 2019).

Despite being successful in accounting for some empirical
data, much of these previous studies remains short of account-
ing for the full complexity of human sentence processing. In
particular, they have generally focused on the syntactic parsing
while assuming other levels of sentence processing to have
been independently and successfully analyzed (e.g., words are
typically assumed to come with their parts of speech labels).
Nevertheless, when reading a sentence, humans perform many
linguistic analyses besides syntactic parsing: they segment the
stream of characters into words, categorize these units into
parts of speech, analyze their morphology, and determine the
sentence boundaries.

Critically, each of these processing steps involve making de-
cisions and, thus, induce a processing cost that may influence
the reading time. In order to test this hypothesis, we need to
build a model that mirrors the complexity of human sentence
processing by “constructing” all these linguistic levels, mak-
ing precise predictions about the contribution of each level of
processing on the reading time. The current work is an attempt
to achieve this goal.

We start from a standard syntactic parser and we extend it by
making it able to construct various linguistic levels, assuming
only the ability to process a string of characters. For each
word in a given linguistic context, our model is able to produce
complexity measures across all processing levels, allowing us
to test the extent to which each level influences the reading
time of this word. Two measures are compared. The first is
surprisal, a standard complexity measure for parsing, which is
based on the probability of the action performed by a parser at
a given time. The second one is the entropy of the probability
distribution over the actions that the parser can execute at a
given time.

We chose as a starting point the Transition Based Parsing
(TBP), an incremental model of syntactic parsing that produces
dependency structures (Yamada & Matsumoto, 2003; Nivre,
2003). This choice was motivated by the fact that the un-
derlying formalism is quite simple and transparent, while at
the same time providing an adequate model of human syntax
processing (Boston et al., 2008, 2011).

We provide an extension of TBP that we call the Reading
Machine (RM). This extension is flexible in the sense that it
can be modulated to instantiate various processing hypotheses.
For example, we can choose the order in which the linguistic
levels are processed or the the amount of information that the
model has access to. In the current work, the goal is not to
contrast all possible processing strategies, but to test whether
different levels of sentence processing influence reading time.
That said, it could be useful to compare at least two strategies
that vary in terms of their psychological plausibility.

We chose to instantiate two strategies that differ in whether
or not they are incremental, i.e., in whether or not the process-
ing of each word at every linguistic level is done the moment
the word is discovered. The incremental strategy processes a
given word at various linguistic levels before switching to the
next word. In contrast, the non-incremental strategy process
the whole text at a given linguistic level before changing level.

The incremental strategy is more psychologically plausible,
thus, we expect it to fare better than the non-incremental strat-
egy in terms of its ability to produce metrics predicting human
processing difficulty.

To sum up, the paper attempts at making several contribu-
tions: 1) investigating how complexity measures of low-level
linguistic processing correlate with reading time, 2) testing
whether introducing more cognitively plausible processing
improve the predictions, and 3) comparing two complexity
measures (i.e., suprisal and entropy) in terms of how they fare
in connecting our reading architecture to human data.

The structure of the paper is the following. In section The
Reading Machine, we give an overview of TBP and define our
extension of this model, which we call the Reading Machine
(RM). Section Complexity Metrics introduces the two com-
plexity metrics that will be used in our experiments. In section
Experiments, the models are evaluated with respect to their
ability to predict human reading time. Section Conclusion
provides concluding remarks.

The Reading Machine
The model we propose in this paper is an extension of Tran-
sition Based Parsing (TBP). This algorithm builds the depen-
dency tree of a sentence by scanning it word by word, in
reading order. At each step, an action, (also called transition)
is predicted, that adds, in general, a new dependency to the
tree being produced. The actions are predicted by a classifier
that takes as input the current configuration of the parser and
computes a probability for every possible action. The action
selected is applied to the current configuration and yields a
new one.

The algorithm is greedy1. At each step, a single decision
is taken corresponding to a local maximum (the action with
the highest probability), it does not guarantee that the tree
produced at the end is the one with the highest probability,
where the probability of the tree is simply the product of the
probabilities of the actions that led to its construction.

From TBP to RM

The original TBP focuses on the syntactic level of processing,
taking as input a text which has already been tokenized, PoS
tagged and segmented in sentences2. As we explained in the
introduction, this falls short of accounting for the complexity

1This is true of the original algorithm. There have been many
propositions for exploring in parallel a reduced number of alternative
analyses using a beam (Huang & Sagae, 2010).

2Once again, this is true for the original TBP approach. There
have been several attempts to extend TBP, mainly in order to real-
ize simultaneously several linguistic tasks. Both Bohnet and Nivre
(2012) and Alberti, Weiss, Coppola, and Petrov (2015) shows how
a transition system can be extended and trained to jointly predict
POS tags and the dependency tree, improving both the accuracy of
the tagging and the parsing. Constant and Nivre (2016) extends the
arc-standard transition system in order to jointly predict the syntactic
tree and some aspects of the tokenization process: the identification
of multiword expressions. The three above-mentioned systems take a
pre-processed (tokenized and segmented into sentences) text as an
input.

of human behavior which processes multiple linguistic levels
simultaneously. In the following paragraph, we explain how
we extended the TBP framework to account for this complexity.

The main modification to the TBP framework that we pro-
pose is to consider every processing decision (such as PoS
tagging, lemmatization, segmentation . . .) as a transition that
performs an action (such as selecting a PoS tag for a word)
and changes the current state of the machine. Each state corre-
sponds to a processing level, it is associated with a classifier
that predicts the next transition to take.

Although a large number of linguistic processing tasks can
be incorporated in a RM, we will be dealing in this work with
six of them: tokenization (TOK), part of speech tagging (POS),
lemmatization (LEM), morphological analysis (MRF), syntactic
parsing (SYN) and sentence segmentation (SEG), each of which
corresponds to a state in the RM.

A RM can be seen as a deterministic finite state automaton.
The structure of the automaton (its states and transitions) de-
fines the order in which the predictions are made. We will
refer to the structure of a RM as its strategy. Two different
strategies are represented in figure 1. The one above, referred
to as INCR, implements an incremental strategy while the one
below, ¬INCR, implements a standard Natural Language Pro-
cessing pipeline strategy (which is non-incremental because it
has access to the low-level right-context predicted linguistic
annotations when making a decision). The actions that label
the transitions have been omitted for readability.

The main difference between the two strategies comes from
the loops on all states of the ¬INCR strategy. These loops
model the non-incremental behavior of the RM: the whole
text is processed at a given level before switching to the next
linguistic level (the next state of the machine). The transition
to the next state of the machine can only be traversed when
the end of the input tape is reached. Traversing this transition
resets the character and the character index and the word index
to zero. In contrast, in the INCR strategy, a word is processed
at every level before switching to the next word.

The action performed by a transition generally consists in
writing a symbol on a tape. There are tapes for every type of
prediction. Tapes can be read tapes, write tapes or both. A
RM has one input tape, which is a read tape and an arbitrary
number of output tapes which are read/write tapes.

The input tape contains the text to parse. It is character
based: each cell of the tape contains a character. The text
has not been linguistically pre-processed: it has not been
segmented into sentences nor into words. The current position
of the input tape’s reading head is called the character index.

Output tapes are word based: each cell of a tape refers to
a word of the input text. Output tapes are used to write the
predictions made by the machine, generally one tape per type
of prediction. These tapes are synchronized: at all times, the
head is at the same position for all tapes. This position is
called the word index.

Table 1 represents the tapes of a machine after processing

TOKstart

POS MRF LEM

SEG SYN

TOKstart

POS MRF LEM

SEG SYN

Figure 1: Two RM strategies defining the order of predictions.
Above, the INCR strategy and below the ¬INCR strategy.

Table 1: Input and output tapes of a RM after processing the
text The boy hits the ball.

SEG NO NO NO NO NO YES

SYN DET SUB ROOT DET OBJ PCT

GOV +1 +1 0 +1 -2 -3
LEM @ @ s@ @ @ @
MRF DEF SG P3S DEF SG -
POS DET N V DET N PCT

TOK the boy hits the ball .
INPUT t h e b o y h i t s t h e b a l l .

the text The boy hits the ball. The machine has 7 output tapes3

and one input tape, represented at the bottom. When the in-
put text is processed by the ¬INCR machine, the table is filled
line by line, bottom-up. In contrast, when the input text is
processed by the INCR machine, the table is filled column by
column, from left to right. It is important to note that, in the
case of INCR, predictions that have been made in the past for
upper levels are taken into account for current lower level
predictions. Predicting PoS tag for word i, for example, can
use the syntactic structure predicted up to word i−1. This fea-
ture allows to take into account some top-down dependencies
across linguistic levels.

Casting the six different linguistic tasks we are dealing with
as predicting a transition is straightforward for tagging tasks,
such as PoS tagging and morphological tagging. Correspond-
ing transitions simply write a symbol (such as a PoS tag) on
the corresponding tape at the word index position.

The case of lemmatization, tokenization and sentence seg-
mentation ask for some explanation. It is not convenient to
see the lemmatization task as a classification task, due to the
large number of classes (potentially all the lemmas of a lan-
guage). Besides, lemmatization is, to a large extent, regular. In
order to capture this regularity, the classifier that realizes the
lemmatization task predicts editing rules of the form s1@s2
where s1 is a suffix of the word to lemmatize and s2 the suffix
of the lemma4. When applied to a word w, such a rule strips

3Both tapes SYN and GOV are filled by the parser (the SYN state
of the RM).

4Of course, such a simple form of rules can only deal with suffixal

off suffix s1 from w and concatenates the result with s2, as
in the following example apply(s@,hits) = hit. The actions
predicted by the tokenizer are of four types: ADDn adds the
n next characters of the input tape to the current word and
moves the character index n positions to the right, IGNORE
ignores the current character (typically spaces) and moves the
character index to the right, WORD marks the current word
as complete and SPLITw

W action moves the character index |w|
positions to the right and adds the word sequence W in the
buffer. This last action is used to expand contractions such as
don’t→ do not. Sentence segmentation is realized by a binary
action EOS(YES/NO) which tags the current word as the end
of the current sentence or not. When an end of sentence is
predicted, the syntactic root of the current sentence is set to
the deepest stack element without a governor, and the stack
is emptied5. In Table 2 we list all actions used in our RM
architecture.

The states of the RM are linked to a neural network classifier.
In this work we chose to share the same feature function
for all states. This feature function transforms the current
configuration (tape contents) into an embedding: a sliding
window of size [-3,0] for the INCR machine and [-3,2] for
¬INCR, is centered on the word index and placed over the
tapes, yielding the current context, and each tape component
of this context is fed into its own Bi-LSTM encoder. The
resulting embedding is then given to a specific decision layer
(one for each state), predicting a probability distribution over
the possible actions.

Complexity Metrics

Surprisal
Various complexity metrics have been proposed in the litera-
ture, that measure the difficulty for a parser to process a word
in its sentential context, and relate this difficulty to human be-
havior when reading the same word (e.g., reading time). Here
we use Surprisal, a measure that was originally introduced in
the context of phrase structure grammars by Hale (2001), but
which has then been adapted to the TBP framework by Boston
et al. (2011).

Surprisal (Attneave, 1959) has its roots in information
theory, it is defined as the logarithm of the reciprocal of a
probability. It represents the intuitive idea that low proba-
bility events are surprising. Surprisal has been used as a
measure of the processing difficulty at a word. Given a sen-
tence S = w1 . . .wn, surprisal at word i is defined as follows:
Surprisal(i) =− log2(

αi
αi−1

), where αi is the probability of the
prefix w1 . . .wi. Given the prefix w1 . . .wi−1, if word wi is un-
expected, the ratio αi

αi−1
will tend to be low and therefore, the

surprisal of word wi, high.

flexional morphology, which is the case of English. More complex
morphology phenomena ask for more elaborate types of rules, such
as the prediction of templates for templatic morphology.

5If there remain — beside root — stack elements without a gover-
nor, they are automatically attached to the predicted root word before
emptying the stack.

Table 2: Actions used in our RM architecture. b.0 stands for
the current word and s.0 for the word on top of the stack.

State Action Description
TOK ADDn Adds the n next symbols to b.0.
TOK IGNORE Ignores the next symbol.
TOK WORD Marks b.0 as complete.
TOK SPLITw

W Consume symbol sequence w.
Add word sequence W in buffer.

POS,
MRF

TAGL(t) Writes tag t to b.0 on tape L.

LEM s@s’ b.0 lemma := form− s+ s′.
LEM CASEul b.0 lemma to upper/lower case.
SYN REDUCE Pop the the stack.
SYN SHIFT Push b.0 on the stack.
SYN RIGHTl Adds arc (s.0,b.0,l).

Push b.0 on the stack.

SYN LEFTl Adds arc (b.0,s.0,l).
Pop the stack.

SEG EOS(Y/N) Mark b.0 as an end of sentence,
set sentence root, attach orphans
to root then empty stack.

In its original formulation by Hale, αi is computed as the
sum of the probabilities of the trees that a Probabilistic Context
Free Grammar associates to the prefix w1 . . .wi. In other words
all the possible syntactic structures that the grammar associates
to the prefix. αi can be efficiently computed using a dynamic
programming algorithm, the algorithm of Earley, in the case
of Hale. Surprisal has been adapted to the framework of
transition based parsing by Boston et al. (2011). The general
definition remains unchanged, but the way αi is computed
is modified: it is the sum of the opposite of the probability
logarithms of the transitions predicted by the parser up to word
i6. In other words, instead of summing over all the possible
parses up to word i, the new definition of αi only considers the
probability of the tree built by the parser after processing word
i. Remember that, due to the greedy nature of the transition
based parsing algorithm, this probability does not correspond
to the probability of the highest scoring tree up to word i.

The prefix probability α as defined by Boston et al. (2011)
is much poorer than the original definition of Hale, since it is
only based on a single analysis for a given prefix. In order to
take into account more than one possible syntactic structure of
the prefix when computing its probability, Boston et al. (2011)
define the quantity αk

i which is the sum of the probabilities of
all configurations in a beam of width k. In the case of k = 1,

6Since surprisal is a word based measure, one has to decide, in
a sequence of transitions the parser predicts for a sentence, which
transition should be associated to which word. We follow Boston et
al. (2011) and consider that all transitions that are predicted while
word wi is the first word of the parser’s buffer are associated to wi.

the prefix probability is, as mentioned before, the probability
of a single transition sequence. Boston et al. (2011) showed
that surprisal models parsing difficulty was reflected in human
fixation durations for various values of k (1≤ k ≤ 100).

We chose to keep the simplest setting (k = 1) in our experi-
ments. The computation of αi in this situation is simply the
sum of negative log probabilities of the transitions predicted
up to word i and Surprisal(i) is simply the part of this sum for
the transitions that the parser associates to word i.

Surprisal generalizes easily to all kind of predictions that
are made by the RM. It is extremely simple to compute for PoS
tagging, morphological tagging and lemmatization since all
these processes exactly predict one transition for every word
of the sentence. Surprisal, in such a case, is simply − log(pt)
where t is the transition that has been selected. In the case of
the tokenizer, the surprisal is computed on the sequence of
transitions that add characters to the current word, until it is
completed.

Entropy
As one can see, surprisal is computed based only on the proba-
bility of a single transition or a sequence of transitions. It’s not
a perfect way to measure how much the machine “hesitates”
between several transitions that have close probabilities. In
order to introduce this information in the complexity metrics,
we also use the entropy7 of the distribution computed by a
classifier over the possible transitions. Entropy measures how
uniformly the probability mass is distributed over the different
transitions. We will refer to this complexity measure for word
i simply as Entropy(i).

In the case of a tagging task (such as PoS tagging, morpho-
logical tagging, lemmatization and segmentation), there is a
single transition associated to word i and therefore a single
distribution. In this case, Entropy(i) is simply the entropy of
this distribution. In the case of the parser, we associate to wi
the transition t that attaches wi to its syntactic governor8 . In
this case, Entropy(i) is the entropy of the distribution from
which t was drawn. In the case of the tokenizer, Entropy(i) is
the mean of the entropies of the distributions of the transitions
that led to identifying wi.

Experiments
We test the hypothesis that model-derived complexity metrics
predict human reading time across several linguistic levels, and
not just syntax. We test this hypothesis across both complexity
measures (i.e., surprisal and entropy), and across processing
strategy (i.e., INCR and ¬INCR).

7Not to be confused with the entropy as operationalized, e.g., in
Hale (2006) or Keller (2004) (.i.e. how much information words con-
vey).We call our complexity metric Entropy because it is the entropy
of the probability distribution produced by our neural network.

8It is important to note that the entropy of word i can take into ac-
count words not seen yet (this is what happens for left dependencies).
This could be problematic for we cannot, in an incremental set-up,
base the fixation time for a word on future events. The reason why
this can be done here is that the variable we are predicting is the total
reading time which is a complex measure that sums all fixations made
by the reader, including fixations made when re-reading a region.

The Provo Corpus
We have used for our experiments the Provo corpus (Luke
& Christianson, 2018), which consist of the recording of the
eye movements of 84 skilled and native American English
readers while reading 55 texts (2744 words). For each word
and for each participant, several reading time related variables
are computed. The variable we use is the total reading time:
summation of the duration across all fixations on any given
word. The data has been cleaned by the Provo team, removing
fixations shorter than 80 ms and longer than 800 ms. We
removed words that have been skipped and words for which
no data were available.

Producing Complexity Metrics for the Corpus
The two machines INCR and ¬INCR, defined in section The
Reading Machine, have been trained on the English Web Tree-
bank from Universal Dependencies (Zeman et al., 2019) that
consist in English sentences collected from the internet. This
corpus is linguistically annotated on all six levels of interest
to our system, namely: tokenization, PoS tagging, morpho-
logical tagging, lemmatization, dependency tree and sentence
segmentation.

After training, the two machines were used to process the
Provo corpus. For each word of the corpus, and for each lin-
guistic level, a prediction is performed (e.g., selecting the PoS
tag of the word) and both surprisal and entropy are computed.9

The output of the machines consited of 6 surprisal values
and 6 entropy values (one for each RM state). These measures
were merged with the eye tracking recording, yielding our final
data frame. It is composed of 96,111 data-points, each point
consisting in the following information (in addition to the
linguistic measures obtained by our machines): word being
fixated, word length (wd length), word frequency10 (freq),
next word frequency (next freq), ID of the human reader, total
fixation time (in ms).

Experimental Setup
The methodology used is the following: we fit multiple linear
mixed-effects regression models on the total reading time,
where each model is a combination of a metric (surprisal
or entropy) and a RM (¬INCR or INCR). These models are
defined in table 3. Then we compared goodness of fit to
determine which model was better. To this end, we used the
difference in Akaike Information Criterion (AIC) as a criterion
to discriminate between linear mixed effect models, following
in this regard some similar previous work (Shaw & Kawahara,
2019; Frank, Otten, Galli, & Vigliocco, 2013).

9Due to the lack of manual linguistic annotations for the Provo
corpus, we were not able to estimate the quality of the linguisitic
predictions made by our machines. Nevertheless, we tested the
accuracy of these machines on the test dataset of the UD corpora
and found that its performances were in the typical range of similar
(greedy) models.

10Estimated using Google’s One billion words benchmark for
language modeling corpus.

11Two way interaction.

Table 3: Linear Mixed Models used in our experiments.

Name Fixed Effect
VANILLA freq+next freq+wd length+freq:wd length11

INCR SUR {VANILLA}+INCR SUR {6 linguistic levels}
INCR ENT {VANILLA}+INCR ENT {6 linguistic levels}
¬INCR SUR {VANILLA}+¬INCR SUR {6 linguistic levels}
¬INCR ENT {VANILLA}+¬INCR ENT {6 linguistic levels}

Random Effect: participant/sentence

Table 4: Top 3 correlations for each metric and each machine.

ENTROPY
INCR ¬INCR

Variables Corr Variables Corr
lemma/morpho 0.48 lemma/morpho 0.46
morpho/tagger 0.40 morpho/tagger 0.37
parser/tagger 0.19 morpho/parser 0.30

SURPRISAL
INCR ¬INCR

Variables Corr Variables Corr
lemma/morpho 0.43 morpho/tagger 0.26
morpho/tagger 0.27 morpho/parser 0.22
morpho/parser 0.24 lemma/morpho 0.19

As a baseline, we use standard predictors for modeling read-
ing times: frequency and word length. We tried to incorporate
bigram frequencies, but this resulted in a slightly worse fit
than the current and next word unigram frequencies. These
frequencies have been log transformed and all other variables
have been scaled to fit in the same intervals. Models were
fitted using the lmer function of the lme4(v.1.1-23) package
of the R Project. Using as the random effect’s grouping factor
the nested relation PARTICIPANT ID/SENTENCE ID. Note that
to allow model comparison via likelihood ratio tests, models
were fitted using the maximum likelihood method instead of
restricted maximum likelihood method which is the default in
lmer.

Results
We investigate first the extent to which metrics produced at
the different linguistic levels carry redundant information. In
order to do so, we compute for each machine (INCR and ¬INCR)
and each complexity metric (surprisal and entropy), the Pear-
son correlation coefficient for every pair of the six linguistic
predictors. As one can see in Table 4, the correlation between
the complexity values among linguistic levels are quite low,
showing that the information carried by these variables is not
redundant. We also computed the correlations between our
complexity metrics at the word segmentation level (tokeniza-
tion) and word frequencies, and found no correlation (The
highest absolute value being 0.025 between word frequency
and tokenization entropy produced by INCR).

Table 5: Estimates of fixed effects for all 4 models.

ESTIMATE
ENTROPY SURPRISAL

Effect ¬INCR INCR ¬INCR INCR

(intercept) 344∗∗∗ 341∗∗∗ 345∗∗∗ 343∗∗∗
segmenter 91.7∗∗ 4.8∗∗∗ 91.9∗∗∗ 4.3∗∗∗
parser 1.19 2.6∗∗∗ 1.2∗ 0.39
lemma 2.1∗∗ 0.49 0.79 1.4∗
morpho 91.09 2.4∗∗∗ 0.49 1.3∗
tagger 3.9∗∗∗ 1.8∗∗ 2.8∗∗∗ 2.0∗∗∗
tokenizer 1.1∗ 3.5∗∗∗ 1.2∗ 2.6∗∗∗
freq:wd length 93.7∗∗∗ 93.7∗∗∗ 93.8∗∗∗ 93.7∗∗∗
freq 98.7∗∗∗ 98.2∗∗∗ 98.9∗∗∗ 98.6∗∗∗
wd length 46.9∗∗∗ 47.6∗∗∗ 47.4∗∗∗ 47.3∗∗∗
next freq 91.8∗∗∗ 91.7∗∗∗ 91.8∗∗∗ 91.7∗∗∗

Table 6: Pairwise comparisons of our models on the basis of
their AIC, with likelihood ratio tests of nested models.

Model 1 Model 2 ∆∆∆AIC χχχ222 P(> χχχ222)
VANILLA ¬INCR SUR 33 45.35 3.984e−8
¬INCR SUR ¬INCR ENT 25 25.16 NA
VANILLA INCR SUR 115 127.22 <2.2e−16
INCR SUR INCR ENT 82 82.18 NA
VANILLA ¬INCR SUR 33 45.35 3.984e−8
¬INCR SUR INCR SUR 82 81.87 NA
VANILLA ¬INCR ENT 58 70.51 3.207e−13
¬INCR ENT INCR ENT 139 138.88 NA

In table 5, we reported the output of the summary function
of the lmerTest package. For each fixed effect, its coefficient
indicates both the magnitude of the effect (absolute value)
and its direction (sign). The symbols above each value indi-
cate its significance: *** for p < 0.001, ** for p < 0.01, * for
p < 0.05,− for p > 0.05. Conclusions to be drawn from these
tables are that most of our complexity metrics have significant
effect on the prediction of the total reading time, except for
the 6 grayed-out cells. However, while we expected the ef-
fect sign to be positive across all levels (meaning that higher
surprisal/entropy leads to more reading time), coefficient of
the parameter corresponding to segmentation complexity in
models ¬INCR ENT and ¬INCR SUR is negative. More work
is needed to understand this unexpected result, but we can
already note that the coefficients are positive when the metrics
are produced by INCR ENT and INCR SUR. This is another clue
that the INCR strategy (which is obviously more cognitively
plausible) is more explainable from the point of view of human
behavior than ¬INCR. One way to make more sense of this
difference would be to extract from the dataset both the sen-
tences that were most difficult to segment in INCR and ¬INCR,
in order to compare them in a qualitative analysis.

In table 6 we reported the output of the anova function of

the lmerTest(v.3.1-3) package where each line is a direct com-
parison of the goodness of fit of a pair of models. The first
two columns contain the names of the models being compared,
the third column contains the difference in Akaike Informa-
tion Criterion (AIC) between the models (positive difference
indicates that model 2 fits better than model 1) and columns
4&5 includes a χ2 test indicating that the differences in good-
ness of fit are indeed significant. By ordering the models by
their ability to fit the data (lower AIC) we get:12 INCR ENT >
¬INCR ENT > INCR SUR > ¬INCR SUR > VANILLA, we can see
that all of the 4 models that use our complexity metrics are
better than the baseline model. Therefore we can conclude
that our complexity metrics are useful for predicting human
reading time. Having observed that INCR SUR > ¬INCR SUR

and INCR ENT > ¬INCR ENT, we can also conclude that our
more psychologically motivated model INCR produces better
complexity metrics than ¬INCR. Finally, by observing that
¬INCR ENT > ¬INCR SUR and INCR ENT > INCR SUR, we can
conclude that our entropy complexity metric, introduced in
section Complexity Metrics overcomes the shortcomings of
surprisal and performs better as a predictor.

Conclusion
In this paper we studied the effect of several types of linguistic
predictions on reading time data from the Provo corpus. To
this end, we developed a versatile modeling framework, called
the Reading Machine, that allows to perform an incremen-
tal processing of a text starting with the string of characters
that corresponds to the text, up to its syntactic parsing. This
integrated framework allows to measure and compare the com-
plexity of each of the linguistic tasks involved in this process.
The Reading Machine also allows us to implement various pro-
cessing strategy. Here we focused on two: 1) a standard, NLP
oriented, non incremental strategy, which corresponds to a
sequential pipeline of modules and, 2) a more psychologically
plausible incremental strategy. Our experiments with this new
framework showed that various linguistic levels contributed to
the prediction of the human reading time, that the measures
produced by the incremental strategy were better predictors
than those produced by the non incremental strategy, and fi-
nally, that — at least in this specific framework — Entropy
performed better than Surprisal.

Acknowledgments
This work was granted access to the HPC resources of IDRIS
under the allocation 2020-AD011011708 made by GENCI.

References
Alberti, C., Weiss, D., Coppola, G., & Petrov, S. (2015).

Improved transition-based parsing and tagging with neural
networks. In Proc. EMNLP (pp. 1354–1359).

Attneave, F. (1959). Applications of information theory to
psychology: A summary of basic concepts, methods, and
results. Henry Holt.

12Symbol “>” reads as “fits better than”.

Bohnet, B., & Nivre, J. (2012). A transition-based system
for joint part-of-speech tagging and labeled non-projective
dependency parsing. In Proc. EMNLP (pp. 1455–1465).

Boston, M. F., Hale, J., Kliegl, R., Patil, U., & Vasishth, S.
(2008). Parsing costs as predictors of reading difficulty: An
evaluation using the potsdam sentence corpus. Journal of
Eye Movement Research.-ISSN, 2(1), 1–12.

Boston, M. F., Hale, J. T., Vasishth, S., & Kliegl, R. (2011).
Parallel processing and sentence comprehension difficulty.
Language and Cognitive Processes, 26(3), 301–349.

Constant, M., & Nivre, J. (2016). A transition-based system
for joint lexical and syntactic analysis. In Proc. ACL (Vol. 1,
pp. 161–171).

Crabbé, B., Fabre, M., & Pallier, C. (2019). Variable beam
search for generative neural parsing and its relevance for the
analysis of neuro-imaging signal. In Proc. EMNLP-IJCNLP
(pp. 1150–1160).

Demberg, V., & Keller, F. (2008). Data from eye-tracking
corpora as evidence for theories of syntactic processing
complexity. Cognition, 109(2), 193–210.

Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2013).
Word surprisal predicts n400 amplitude during reading. In
Proc. ACL (pp. 878–883).

Hale, J. (2001). A probabilistic Earley parser as a psycholin-
guistic model. In Proc. ACL.

Hale, J. (2006). Uncertainty about the rest of the sentence.
Cognitive Science, 30(4), 643-672.

Hale, J. (2017). Models of human sentence comprehension
in computational psycholinguistics. In Oxford research
encyclopedia of linguistics.

Huang, L., & Sagae, K. (2010). Dynamic programming for
linear-time incremental parsing. In Proc. ACL (pp. 1077–
1086).

Keller, F. (2004). The entropy rate principle as a predictor of
processing effort: An evaluation against eye-tracking data.
In Proc. EMNLP (pp. 317–324).

Luke, S. G., & Christianson, K. (2018). The provo corpus: A
large eye-tracking corpus with predictability norms. Behav-
ior research methods, 50(2), 826–833.

Nivre, J. (2003). An efficient algorithm for projective depen-
dency parsing. In Proc. IWPT (pp. 149–160).

Shaw, J. A., & Kawahara, S. (2019). Effects of surprisal
and entropy on vowel duration in japanese. Language and
speech, 62(1), 80–114.

Yamada, H., & Matsumoto, Y. (2003). Statistical dependency
analysis with support vector machines. In Proceedings of
iwpt (Vol. 3, pp. 195–206).

Zeman, D., et al. (2019). Universal dependencies 2.5. (Insti-
tute of Formal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University)

