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REGULARIZATION ESTIMATES AND HYDRODYNAMICAL LIMIT
FOR THE LANDAU EQUATION

KLEBER CARRAPATOSO, MOHAMAD RACHID, AND ISABELLE TRISTANI

ABSTRACT. In this paper, we study the Landau equation under the Navier-Stokes scal-
ing in the torus for hard and moderately soft potentials. More precisely, we investigate
the Cauchy theory in a perturbative framework and establish some new short time reg-
ularization estimates for our rescaled nonlinear Landau equation. These estimates are
quantified in time and we obtain the instantaneous expected anisotropic gain of regularity
(see [54] for the corresponding hypoelliptic estimates on the linearized Landau collision
operator). Moreover, the estimates giving the gain of regularity in the velocity variable
are uniform in the Knudsen number. Intertwining these new estimates on the Landau
equation with estimates on the Navier-Stokes-Fourier system, we are then able to obtain
a result of strong convergence towards this fluid system.
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1. INTRODUCTION

In this paper, we are interested in the link between the Landau and Navier-Stokes
equations. It has been a major challenge to establish rigorous links between microscopic
and macroscopic equations for many years, this problem goes back to Hilbert [40] and
the main goal is to obtain a unified description of gas dynamics. The equations of kinetic
theory (including the Boltzmann and the Landau equations) can be seen as an intermediate
step between the microscopic and macroscopic scales of description. In order to link the
Landau and Navier-Stokes equations, we study a suitable rescaling of the Landau equation,
as described in Subsection 1.1.

After giving some preliminary technical results in Section 2, the first part of our paper
(Sections 3 and 4) is dedicated to the study of this rescaled Landau equation thanks to
hypocoercivity methods, (linear and nonlinear) regularization estimates and sharp non-
linear estimates on the Landau collision operator. We study the Cauchy theory in a
close-to-equilibrium framework for this equation and establish new and sharp regulariza-
tion estimates in short time. The second part of our paper focuses on the aforementioned
hydrodynamical limit problem. More precisely, in Section 6, we give a result of strong con-
vergence of the solutions to the Landau equation constructed in the first part of the paper
towards strong and global solutions to the incompressible Navier-Stokes-Fourier system.
Our approach is reminiscent of the one used in [5, 24] for the hard spheres Boltzmann
equation and improves the result obtained in [33, 55] in terms of type of convergence or
functional framework in the case of not too soft potentials. Our analysis heavily relies on
the estimates on the Landau equation established in the first part of the paper as well as
on results of spectral analysis for the linearized Landau equation performed in [60] and
presented in Section 5 and some refined estimates on the fluid problem (as in [24]).

1.1. The kinetic model. We start by introducing the Landau equation which models
the evolution of charged particles in a plasma through the evolution of the density of
particles f = f(t,z,v) which depends on time t € R*, position 2 € T? the 3-dimensional
unit periodic box and velocity v € R3, when only binary collisions are taken into account.
The Landau equation reads:

Of +0-Vef = 1QUL 1),

where € > 0 is the Knudsen number which is the inverse of the average number of collisions
for each particle per unit of time and @ is the Landau collision operator. It is defined as

(1.1) Qlg, F)(v) = Dy, /R a0 =) [9(0:)0, f(v) = F(©)Dy,9(v.)| dv,
where we use the convention of summation of repeated indices. The matrix a;; is symmet-
ric, semi-positive and is given by

VU5
(1.2) aij(v) = o2 (% TP ) . 3<y <L

We have the following classification: We call hard potentials if v € (0, 1], Maxwellian
molecules if v = 0, moderately soft potentials if v € [—2,0), very soft potentials if v €
(—3,—2) and Coulomb potential if v = —3. Hereafter, we shall consider the cases of hard
potentials, Maxwellian molecules and moderately soft potentials, i.e.

-2<y< L

The Landau equation preserves mass, momentum and energy. Indeed, at least formally,
for any test function ¢, we have

13 [ QUnEew

=5 [t = e fe) ) (%

2 JR3xR3

J0) 8y f(v)
@  f)

) (&,j @(v) — Oy, w(v*)) dv, dv,
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from which we deduce that

t) G g TR = [ 20U w0~ ap )| ) v
=0 for o(v)=1,v,v%

Moreover, the Landau version of the Boltzmann H-theorem asserts that the entropy

H(f):= /TSXRSflogfdvdx

is non increasing. Indeed, at least formally, since a;; is nonnegative, we have the following
inequality for the entropy dissipation D(f):

D) =-SHO =3 [ el e) S0 )

(av,.fw) B av,.f@*)) (avjfw) 0, f(v2)

fv) CH fv) CH)

The second part of the H-theorem asserts that local equilibria of the Landau equation are
local Maxwellian distributions in velocity. In what follows, we shall consider the following
centered normalized Maxwellian independent of time ¢ and space z which is a global
equilibrium of our equation defined by

) dv,dvdx > 0.

1 2
M(v) := e 2 .
(2m)2
Taking € small has the effect of enhancing the role of collisions and thus when ¢ goes
to 0, in view of the above mentioned Landau version of the Boltzmann H-theorem, the
solution looks more and more like a local thermodynamical equilibrium. As suggested in
previous works (see for example [4]), we consider the following rescaled Landau equation
in which an additional dilatation of the macroscopic time scale has been done in order to
be able to reach the Navier-Stokes equation in the limit:

(1.5) Oufe + év Vo ff = eiQQ(ff,fE) in R* x T3 xR3.

To relate the Landau equation to the incompressible Navier-Stokes equation, we look at
equation (1.5) under the following linearization of order e:

(1.6) fe(t,x,0) = M(v) +evVM(v)g° (L, x,v).

Let us recall that taking € small in this linearization corresponds to taking a small Mach
number, which enables one to get in the limit the incompressible Navier-Stokes equation.
If f¢ solves (1.5), then equivalently ¢° solves

1 1 1

(1.7) Og" +-v-Vug® = 5 Lg" +-T'(¢°,¢°) in RT x T3 xR3
€ € €

where the nonlinear collision operator I' is defined by

(19) T(fi. o) = —=Q (VATA VAT L)

and the linearized collision operator L by

(1.9) Lf =T (VM,f)+T (f,VM).

Notice that the property (1.3) implies that for any suitable functions f; and fo,
(1.10) /R3 T(f1, fo) (W) p(v)dv =0 for @(v) = VM,vWM,v|*VM.

We also define the full linearized operator A, as

1 1

(1.11) Aci= 5L~ vV,
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It is well known (see for example [14]) that the kernel of L is given by
Ker L = Span{\/M,le/M,vgvM,vg\/M, \v\Qx/M} ,

and we shall denote by 7w the orthogonal projector onto Ker L which is defined by:

(1.12) 7 f(v) = < s f(w)\/ﬂ(w)dw—i—/Rawf(w)\/M(w)dw-v

lw|? — 3 |v]?2 — 3
+ f(w)VM(w) dw 5 )\/M(v)

R3 3

Throughout the paper, we shall also use the following notation: For a given kinetic
distribution f = f(x,v), we denote by f* its microscopic part, namely

(1.13) fHi=0d-n)f
and by (pf,uy,0y) its first macroscopic quantities defined through

(1.14) py(x) = /RS Fz,0)VM (v) dv,

(1.15) up(x) = /R?)vf(x,v)\/ﬂ(v) dv,
and
1

(1.16) 05() =5 |

so that mf = (pf +up-v+ Gf oP 73) V' M. Using for example Proposition 3.1 from [8], we

also have:
Ker A, = Span{\/M,vl\/M,vg\/M,vg\/M, |v|2vM}

and the projector II onto Ker A, is given by

(\v\z - 3)f(z, v)\/ﬂ(v) dv,

T3xR3

(1.17) f(v) = (/I‘3><R3 f (2, w)VM(w) dw dz + f(z,w)wVM(w) dwdz - v

lw|? — 3 ] =3
[ )V () dw da T>W<v>-

Notice that IIf(v) = / mf(x,v)de.
T3

1.2. Cauchy theory, decay and regularization for the Landau equation. We intro-
duce the following H'-norm in velocity which naturally arises in the study of the Landau
equation:

ol X o
L18) 1% = @) T fIs + 0PI, + 1) 3 (1d PV f |2,

where P, stands for the projection on v, namely, P,w = (w . ﬁ) ﬁ We define the

weighted Sobolev-type spaces 2" and %4 as the spaces associated to the following norms:
7 bt
(1.19) 115 = @D flFe + 1P IV, + 1) VEf T, +IVEf ]2
and
A1 == 116> E D 12 gy + 10OV 113 g
7
+ [[{v) QHVif”%g(Hg’*) + ”Vi«f”%g(ﬂg’*)-

Remark that as in [32, 13], we work with “twisted” Sobolev spaces in which the weights
depend on the order of the derivative in z, it allows us to close our nonlinear estimates.

(1.20)

Let us now state our main result on the well-posedness, decay and regularization of the
rescaled Landau equation (1.7).
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Theorem 1.1. There is 9 > 0 small enough such that for any € € (0,1), if g, € &
satisfies

(1.21) / g5 (z,v)p(v)dvdz =0 for @(v) = VM, vWM,|v]*VM,
T3xR3

and ||g5,|| 2z < mo, then the following holds:

(i) There is a unique global solution g° € L°(Ry; 2) N L2 (R4 ;%) to (1.7) associated to
the initial data g5, which verifies moreover

1 e ¢} e}
(122) swp e g O + 5 [ O 1B dt+ [ g O de S -

for any 0 < 0 < a9, where ag is the decay rate of linearized operator A, given in Proposi-
tion 5.2, and where we recall that (¢°)* is defined in (1.13).

(ii) In addition, the solution satisfies the following regularization estimates, for all t > 0,

—ot

~ e
()l < ‘ Y S
(1.23)  [lgF(®)]las < and €[Vag Ol 5 a7

efat
 E N w
min(l, \/%)HngHz/?//?

where V. is a weighted anisotropic gradient defined in (2.6).

195l 2

Remark 1.2. Tt is worth noticing that the condition (1.21) is equivalent to g5, € (Ker A.)*.

Remark 1.3. Let us point out that the results obtained in Theorems 1.1 could be obtained
in larger spaces of the type & := H;j’L%((wk\/M ) for k large enough. More precisely, due
to the linearization (1.6), working in spaces like & means that the original data f¢ lie
in polynomially weighted Sobolev spaces, which is more relevant from a physical point of
view. We chose to only present the proof in the functional space 2~ because this functional
framework is compatible with the second part of the paper which is about hydrodynamical
limit of the Landau equation (1.7). Let us though explain the strategy to perform such
an extension of our results from the functional space 2" to &. The strategy is the same as
the one used in [9] by Briant, Merino-Aceituno and Mouhot where uniform in ¢ estimates
on solutions to the hard-spheres Boltzmann equation have been obtained. The trick is to
rewrite the equation (1.7) as an equivalent system of two equations thanks to the splitting
of the linearized operator A, = A. + B. introduced in Section 5: We write ¢° = ¢ + ¢5
with

1 1 1
Org] = Begi + gF(g‘ig‘i) + gf(gi,gé) + gF(gi,gi) and gi(t=0)=g§, €&
and .
Org5 = Negs + EF(9§795) +Agf and g3(t=0)=0¢c 2.

The first equation can be studied in the large space & thanks to the nice properties of B. in
all type of spaces and the second one can be studied in the smaller space 2 since it starts
from 0. Moreover, we have some nice estimates on this equation because the operator A,
enjoys some regularizing properties, it is bounded from & into 2", we can thus use the
estimates obtained for the first equation satisfied by ¢j. Following those ideas, one can
obtain some nice nested a priori estimates on the system, which allow to conclude.

Remark 1.4. Our method should be robust enough to also treat the case of very soft
and Coulomb potentials —3 < v < —2 in which the linearized operator does not have
a spectral gap (in this case, the inequality (2.10) does not provide coercivity anymore).
More precisely, we should be able to obtain a similar result of Theorem 1.1 with the
exponential time-decay in (1.22) being replaced by a sub-exponential one, by combining
the arguments developed in this paper together with the study made in the case ¢ = 1
in [12] by Carrapatoso and Mischler. We do not treat this case in the present paper.

The Cauchy theory and the large-time behavior of the Landau equation for € = 1 have
been extensively studied. We here give a small sample of the existing literature: Let
us mention [1] for renormalized solutions with defect measure, [19] for the convergence
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to equilibrium for a priori smooth solutions with general initial data, [32, 50, 13, 12]
for strong solutions in a perturbative framework. Concerning the well-posedness of our
rescaled equation, it has already been obtained in [33, 54] respectively by Guo and Rachid
in Sobolev spaces (respectively in Hi\fv with N > 8 and in H2L?) thanks to nonlinear
energy methods. In [8], Briant has obtained a similar result in Hé\jv with N > 4 thanks
to the so-called H'-hypocoercivity method at the linear level.

Our global strategy to prove Theorem 1.1-(i) is based on the study of the linearized
equation. And then, we go back to the fully nonlinear problem. This is a standard
strategy to develop a Cauchy theory in a close-to-equilibrium regime. However, we have

to emphasize here that our study is quite involved as explained below.

At the linear level, our strategy is based on a L?-hypocoercivity method which heavily
relies on the micro-macro decomposition and is thus particularly adapted to the study of
hydrodynamical problems. Recall that the challenge of hypocoercivity is to understand the
interplay between the collision operator that provides dissipativity in the velocity variable
and the transport one which is conservative, in order to obtain global dissipativity for the
whole linear problem (see [59, 36] for a presentation of this topic). The L2-hypocoercivity
method has been introduced by Hérau [35] (see also [21]) for one dimensional space of
collisional invariants and introduced by Guo in [34] for a space of collisional invariants of
dimension larger than one (including the Boltzmann and Landau cases). Let us explain

into more details the strategy, we first define a norm ||| - [|z2 =~ (associated to the scalar
product ((,-)) ;2 ) which is equivalent to the usual one [| - [[z2 —uniformly in € and is such
that 7 ’

1
(Aef, Phrz, S —6—2”le%§(1{57*) - HfH%gc,v-

Such a norm is defined in Subsection 3.1 and is inspired by [34] (see also [7]) in which the
more complex case of bounded domains with various boundary conditions is treated. Due
to the fact that derivatives in x commute with A., it is easy to deduce a similar result on
the space H2L2. However, it is not an easy matter to recover such an energy estimate
in larger or smaller spaces than H2L2. Actually, the methods presented in [31, 48] by
Gualdani, Mischler and Mouhot to develop shrinkage or enlargement arguments at the
level of energy estimates is not easily adaptable to rescaled equations if one wants to get
uniform estimates in the parameter of rescaling. To develop an enlargement argument,
one can use the trick introduced in [31, 48] of splitting the original equation into several
ones. This trick was already used in [9, 2] to obtain uniform in € estimates on the rescaled
Boltzmann equation for respectively elastic and inelastic hard spheres in a large class of
Sobolev spaces (see also Remark 1.3). However, we do not have such a method of splitting
to perform a “shrinkage” argument. In the present paper, we exhibit a norm equivalent to
the usual one that provides dissipativity for A, in a smaller space than H2L? (namely in
the space 2" defined in (1.19)) and that also preserves the gain of 1/e on the microscopic
part of the solution. This is done in Subsection 3.1. Notice that it is also possible to obtain
decay estimates directly on the semigroup associated to A. thanks to Duhamel formula
once one has exhibited a nice splitting of A. (see Section 5).

We then prove some new and sharp nonlinear estimates on the Landau collision operator
(see Subsection 4.1) to be able to develop our Cauchy theory for the whole nonlinear
problem in a close-to-equilibrium framework. It is worth mentioning that to prove good
a priori estimates on the nonlinear problem, we use the hypocoercive norm defined in
Subsection 3.1 and we only perform energy estimates. It is actually important that our
analysis does not rely on the use of Duhamel formula because of the rescaling parameter
(see the beginning of Section 4 for more details).

The strategy that we use to prove the regularization estimate in Theorem 1.1-(ii) is
quite classical for linear hypoelliptic equations and has been introduced by Hérau and
Nier [37] for the kinetic Fokker-Planck equation. Such a method has been used for many
hypoelliptic equations: In [38] for the fractional kinetic Fokker-Planck equation, in [13, 12]
for the linearized Landau equation, in [39] for the linearized Boltzmann equation without
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cutoff etc... To our knowledge, it is the first time that such a strategy is used for a
nonlinear equation (even in the simpler case ¢ = 1) and for a rescaled equation (with
uniform estimates in the rescaling parameter). Roughly speaking, the idea is to introduce
a functional with weights in time which is a Lyapunov functional for our equation for
small times. From this property, we are then able to recover some regularization estimates
quantified in time as stated in Theorem 1.1-(ii). Here, the difficulties are threefold:

- First, we study a nonlinear equation, our computations are thus much more intricate,
the idea behind our computations being that we work with small data which allows
us to absorbe the nonlinearity. Our proof also requires some new and sharp nonlinear
estimates on the collision operator (see Subsection 4.1).

- Then, the functional has to be suitably defined to handle the dependencies in €. The
differences of behaviors between microscopic and macroscopic parts of the solution
have to be taken into account and in the spirit of the definition of the H'-hypocoercive
norm of Briant [8], some terms of the functional only involve the microscopic part of
the solution (see (4.38) for the definition of the functional).

- Finally, since we want to obtain the optimal gain of regularity (the corresponding
hypoelliptic estimates are provided in [54] by Rachid), our functional has to be defined
accordingly. For example, in [13] in which the authors were not interested in getting
the optimal gain of regularity (and in which only the case ¢ = 1 was treated), only
classical derivation operators were involved in the definition of the functional. Here,
the definition of the functional is much more intricate: We have to work with the

anisotropic operators V, and V, defined in (2.6) and our functional also involves
additional terms which are necessary to close our estimates.

To end this part, we mention that our proof also provides a regularization estimate in the
space variable which is not uniform in ¢ (see (1.23)). The non-uniformity in € of such a
gain is expected since the transport operator and the linearized collision operator (which
gives the gain of regularity in velocity) do not act at the same scale.

1.3. The fluid model. In the second part of the paper, we shall prove that the hydrody-
namical limit of (1.5) as € goes to zero is the incompressible Navier-Stokes-Fourier system
associated with the Boussinesq equation which writes
O +u - Vau —v1Azu = —Vup
00 +u-Vi0 — A0 =0

divy,u=20

Vz(p+0)=0.

In this system, the temperature 0, the density p and the pressure p are scalar unknowns,
whereas the velocity u is an unknown vector field. The pressure can actually be eliminated
from the equations by applying to the momentum equation the projector P onto the space
of divergence-free vector fields. This projector is bounded over Hf; for all ¢, and in LP
for all 1 < p < co. To define the viscosity coefficients v; (see for example [4]), let us
introduce the two unique functions ® (which is a matrix-valued function) and ¥ (which
is a vector-valued function) orthogonal to Ker L such that

1 |v]? 1 5— |v|?
—L(VM®)=—Id— d ——L(VMV)=—"—
T ( ) 3 Vv®vU an T ( ) 2 v
The viscosity coefficients are then defined by

" ;:% RS@;L(W@)\/MM and W;:% RS\I/-L(\/M\I’)\/Mdv.

In what follows, we call well-prepared data the class of functions f € Ker L that write

(1.24)

v|? —
(125) f(a.0) = VI (pf<m>+uf<x>-v+’ - 30f<m>>

with Vg-uy =0 and py+0;=0
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where we recall that ps, uy and 65 are defined in (1.14), (1.15), (1.16).
It is known that for mean free (pg,uo,fp) € H2 small enough and satisfying
(1.26) Ve -ug=0 and pg+60y=0,

there exists a unique solution (p,u,) € HJ to (1.24) defined on Rt with associated
initial data (pg,uo,00) (see [23, 44, 45, 24]). For such an initial data, we also define gy a
well-prepared data with (pg, ug, o) as associated first macroscopic quantities, namely

(127) go(w,v) == VA (v) <po<x> T ug(a) v + ’”'2{ 390<:c>>

with V. -ug=0 and pg+6y=0.

Notice that from the definition of the space 2", we in particular have that g € 2 and
the mean-free assumption made on (pg,ug, fy) implies that gy € (Ker A.)*. Notice also
that due to the definition of 2", the smallness assumption made on (pg,ug, ) can be
translated into a smallness assumption on gg. Indeed, given the form of gy, by triangular
inequality, it is clear that

lgoll2= < 1l (pos o, 00) |l 3
Moreover, since {\/ M,/ Muv;, /M (|v]? — 3)/2} is an orthogonal system in L2, we also
have that

lgollz 2 lgoll a2 2 11(pos w0, 00) | s -
As a consequence, there exists 71 > 0 such that if gg is of the form (1.27) and satis-
fies ||go|| 2~ < M1, then there exists (p,u, ) € H? defined on R solution to (1.24). We de-
fine the kinetic distribution lying in Ker L with associated macroscopic quantities (p, u, )

(1.28) g(t,z,v) == VM(v) <p(t,x) +u(t,x) v+ W%H(t,x)) .

We also have the following estimate

(1.29) 9llLso 2y S Cligoll2)

where C(]|go||2°) is a constant only depending on the 2 -norm of the data go. The afore-
mentioned results on the system (1.24) can be found in [24, Appendix B.3] in which more
details and references on the subject are given.

1.4. Hydrodynamical limit result. For the statement of the main hydrodynamical
result, we first introduce the following notation for functional spaces: If X; and X, are
two function spaces, we say that a function f belongs to X; + X5 if there are f; € X;
and fo € X9 such that f = f; + fo and we define
[fllxix = min - ([[fillx + [ f2llx.) -
f=hH+f
fi € Xi
Theorem 1.5. Let g5, € 2" N (Ker A.)* for e € (0,1) such that ||g5, || 2= < nmo (where g
is defined in Theorem 1.1) and ¢° € L{°(Z") being the associated solutions of (1.7) with
initial data g5, constructed in Theorem 1.1. Consider also go € Z N (Ker A.)* such
that ||gol| 2z < m and g defined respectively as in (1.27) and (1.28) (where we recall that
1 has been chosen small enough so that g is defined globally in time).
There exists na € (0, min(ng, 1)) such that if max (||¢5, || 2, llg0ll2) < m2 and

- 3
(1.30) 95 — 9ol moa

then we have
€ _ oo (g .
(1.31) 19" = 9ll g2y =5 O

If max (|lginll 27, l90ll 27) < 72 and

E —
(1.32) 795 — goll 2 m(h
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then we have

(1.33) 9" = 9llt @) +L3=(2) =57 O-

Remark 1.6. One can get a rate of convergence in (1.31) and (1.33) if we suppose that g
has some additional regularity in x, namely a rate of €° if the regularity is supposed to
be H3%9 for § € (0,1/2]. We refer to Theorem 6.1 for a quantitative version of this result.

Remark 1.7. As explained in Remark 1.3, the results of Theorem 1.1 could be obtained
in larger spaces & = H2L2((v)*v/M). A similar approach as the one used by Gervais
in [26, 25] in which the hard spheres Boltzmann equation is treated in “large” Sobolev
spaces, might yield the associated hydrodynamical result.

Remark 1.8. As explained in Remark 1.4, the strategy of the proof of Theorem 1.1 should
also work in order to treat the case of very soft and Coulomb potentials. However, in order
to obtain the associated hydrodynamical result, our method employs some fine spectral
estimates that are known to hold only for the case —2 < v < 1 by [60]. Therefore, if we
are able to extend the results of [60] to the case of very soft and Coulomb potentials, we
might then be able to obtain the analogous result of Theorem 1.5.

We first give a short overview of the existing literature on the problem of deriving fluid
equations from kinetic ones (we refer to the book by Saint-Raymond [56] for a thorough
presentation of the topic). The first justifications of the link between kinetic and fluid
equations were formal and based on asymptotic expansions by Hilbert, Chapman, Enskog
and Grad (see [40, 16, 29]). The first rigorous convergence proofs based also on asymptotic
expansions were given by Caflisch [10] (see also [43] and [17]). In those papers, the limit
is justified up to the first singular time for the fluid equation. By using the nonlinear
energy method introduced by himself in [32], Guo [33] has justified the limit towards the
Navier-Stokes equation and beyond in Hilbert’s expansion from Boltzmann and Landau
equations (see below for more details on this result).

There has also been some convergence proofs based on spectral analysis in the framework
of strong solutions close to equilibrium introduced by Grad [30] and Ukai [57] for the
Boltzmann equation. In this respect, we refer to the works by Nishida, Bardos and Ukai,
Gallagher and Tristani [53, 5, 24]. These results use the description of the spectrum
of the linearized Boltzmann equation in Fourier space in the space variable performed
in [52, 15, 22]. Our approach is reminiscent of these ones and relies on the generalization
of the paper [22] to several kinetic equations (including the Landau one) made in [60] by
Yang and Yu. Notice also that such a spectral result has recently been obtained in [26] by
Gervais for the hard-spheres Boltzmann equation in a larger class of Sobolev spaces.

More recently, some uniform in ¢ estimates on kinetic equations have allowed to prove
(at least) weak convergence towards the Navier-Stokes equation. Let us mention [42,
55] in which the cases of Boltzmann equation without cutoff and the Landau equations
are treated. In [8, 9], the authors have obtained convergence to equilibrium results for
the rescaled Boltzmann equation (and also the Landau equation in [8]) uniformly in the
rescaling parameter using respectively hypocoercivity and enlargement methods. In [9],
the authors are able to weaken the assumptions on the data down to Sobolev spaces
with polynomial weights. We also refer to [2] in which a similar approach combined with
perturbative arguments has been used to derive a fluid system from the inelastic Boltzmann
equation. Notice that Briant [8] has combined this with Ellis and Pinsky result [22] to
recover strong convergence in the case of the Boltzmann equation.

Finally, let us mention that this problem has been extensively studied in the framework
of weak solutions, the goal being to obtain solutions for the fluid models from renormalized
solutions introduced by DiPerna and Lions in [20] for the Boltzmann equation. We shall
not make an extensive presentation of this program as it is out of the realm of this study,
but let us mention that it was started by Bardos, Golse and Levermore at the beginning
of the nineties in [4, 3] and was continued by those authors, Saint-Raymond, Masmoudi,
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Lions among others. We mention here a (non exhaustive) list of papers which are part of
this program (see [27, 28, 46, 47, 56]).

Let us focus on the Landau equation for which the literature is scarcer. As mentioned
above, in [33], Guo justifies the limit the Navier-Stokes limit and beyond in the Hilbert’s
expansion from (the Boltzmann and) the Landau equations (even for the case of very
soft potentials) in the torus by using his nonlinear energy method. Our result on the
hydrodynamical limit is reminiscent of the one obtained in [33] for the hard and moderately
soft potentials in the sense that we work with strong solutions and we prove a strong
convergence result. It is however worth noticing that our functional framework is less
restrictive (we only work with 3 derivatives in = and no derivative in v whereas in [33],
regularity on 8 derivatives in both variables z and v is required). Moreover, there is an
important loss of regularity in the estimates of convergence proven in [33] whereas we only
lose § derivatives in z and there is no loss in v to get a rate of convergence of € from
Landau to Navier-Stokes equation (see Theorem 6.1). In the present paper and in [33], the
fluid initial data are supposed to be well-prepared, namely the divergence free condition
and the Boussinesq relation (1.26) are supposed to hold. We refer to [41] by Jiang and
Xiong for an extension to the case where the fluid part is not supposed to be well-prepared
and the creation and propagation of initial layers is studied. In [33, 41], the kinetic initial
data is supposed to have a specific form so that there is no creation of kinetic initial
layers. Our presentation is slightly different since we do not use Hilbert expansion to
study the limit towards the Navier-Stokes equation, our assumption being the following:
The projection of the kinetic initial data onto the kernel of the linearized operator L is
supposed to converge towards the well-prepared fluid initial data as e — 0. Finally, in [55],
Rachid obtained a result of weak-x convergence in L{°(H32L2) towards the incompressible
Navier-Stokes-Fourier system, we have thus strengthen this result for the type of initial
data that we consider here. One can notice that the assumptions made on the fluid initial
data in [55] are a bit less restrictive since the divergence free condition for uy and the
Boussinesq relation for py and 6y are not supposed to hold. The initial layer that such an
initial condition creates is absorbed there in the weak convergence. In our framework, we
can not hope to absorbe it in a strong convergence framework because the initial layer is
propagated over time in the periodic domain (see [41]). Note also that in [24], the authors
were able to treat this type of “completely ill-prepared” data only in the case of the whole
space since those terms have some dispersive properties in the whole space.

Let us describe into more details our strategy to obtain strong convergence. It is inspired
by the ones used in [5, 8, 24]. Indeed, as in [24], using the spectral analysis performed
in [60] by Yang and Yu, in order to prove our main convergence result, we reformulate the
fluid equation in a kinetic fashion and we then study the equation satisfied by the difference
satisfied between the kinetic and the fluid solutions. However, let us point out that we are
not able to perform a fixed point argument as in the aforementioned paper. This is due
to the fact that the structure of the Landau bilinear operator is more complicated than
the hard-spheres Boltzmann one. Indeed, there is an anisotropic loss of derivatives and
weights in the nonlinear estimates which prevents us from closing a fixed point estimate.
To circumvent this difficulty, we use some new a priori estimates on the solution of the
linearized rescaled Landau equation and on the nonlinear rescaled Landau equation (1.7)
that are uniform in the Knudsen number and that have been presented in Theorem 1.1.
By intertwining these refined and sharp kinetic estimates and fluid mechanics ones, we are
able to prove a result of strong convergence from the solutions of the Landau equation to
the Navier-Stokes one as stated in Theorem 1.5.

1.5. Outline of the paper. In Section 2, we give some technical results on the Landau
collision operator that will be used all along the paper. In Section 3, we develop hypocoer-
civity and regularization estimates for the linearized problem. In Section 4, we develop our
perturbative Cauchy theory for the whole nonlinear problem as well as some regularization
estimates on it. In Section 5, we develop some new estimates on the linearized problem
that are useful to prove our hydrodynamical result, which is proven in Section 6.
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2. PRELIMINARY RESULTS
In this section, we present some technical results and tools that will be useful throughout

the paper.

2.1. Collision operator. Recalling the definition of the matrix a = (a;;);; in (1.2) and
that we use the convention of summation of repeated indices through the paper, we define
the following quantities

bi(v) = djaij(v) = =2 v v,
(v) = Byyai;(v) = ~2(y +3) [o]",
in such a way that one can rewrite the Landau operator (1.1) as
Q9. f) = (aij * 9)0; v, f — (cx g) f
= Oy, {(aij * G)O0p; [ — (b; * g)f} :

where * denotes the convolution in the velocity variable v.
We now state a technical lemma in which we provide a rewriting of the nonlinear
operator I' defined in (1.8) and the linearized collision operator L defined in (1.9).

(2.1)

Lemma 2.1. There holds
T(f1, f2) = 0, { (i < [VALA]) 00 fo } = 00, { (bi+ [VDLA]) o}
(2.2) - (aij * [\/Mfﬂ) 0Oy, f2 + i (aij * [\/Mfl]) vV; f2
— 5 (VA1) fo

and
Lf =0, {(az‘j * M) 3vjf} + {—% (ag; * M) vivj + %8%[(@@']‘ * M) Uj]} f
+ (asy * V1)) wio /M — (aii » [V F]) VAT — (e [VATf]) VM.

Proof. From the definition of I' in (1.8) and using the formulation (2.1) for @, we first
obtain

(2.3)

I'(g1,92) = LM@H {(aij * [\/Mgl]) Oy, (VMgs) — (bi * [mgl]) \/MQQ} -

By writing 0y, (vVMg2) = VMO, 92 — %vj\/ M go we thus obtain

['(g1,92) = LMavi {(aij * [\/Mgl]) \/M(?ngz} - %\/LM(% {(aij * [\/Mgﬂ) Uj\/MQQ}
- \/Lﬂavi {(bz * [\/Mgﬂ) \/Mgz} .

Applying the derivative 0,, inside the brackets to the term VM we then get
F(91,92) {(a” [\/_gl]) ang2} (CLU [\/_91]) Vg UJQZ
- ; {(am [\/_91]) U]92} (aw [\/_91]) VU592
— Oy, {(bz * [\/Mgl]) 92} +3 (bi * [\/Mgl]) vig2.
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Finally, we apply the derivative to the third term in the right-hand side of the above
equation and using that a;; = a;; for any 1, j , we get

Dg1,92) = B, { (a1 * V3] ) Doy 02} — 3 (a5« [V on]) i, 9o
(b *[\/_91])%92——<au [\/_91]) 2——(% [\/_91])%3 .92
(% [\/_91]) Vivge — {(b *[\/_91]) 92} ( [\/_91]) ;g2
= {(am [\/_91]) v]g2}—(a¢j*[m91])vz8ngz

(au VMai]) g2+ (aw VMa1]) vivigs = 0o, { (b + [VMa1]) 9}

which completes the proof of (2.2).

qklb—\[\DIr—*

We now prove (2.3). From (2.2) we get
D(VM, f) = Oy, {(aij = M) Dy, f } = 0oy {(bi + M) f}
— (aij * M) v;O, f + i (aij * M) vivj f — % (az x M) f.
For the second term in the right-hand side of above equation, we observe that
=0y, {(bi x M) f} = = (cx M) f — (b x M) Oy, [,
as well as
= (bi# M) Oy f = — (Buyi5 + M) Oy f = (ai v, M) Dy f = (aij M) 00y, f
by using that a;;(v — w)(v; —w;) = 0. We also remark, using that a;;(v —w)(v; —w;)(v; —
w;) =0,
’ —(C * M) = —(aij * &,iava) = (aij * 5@]M) — (aij * UinM)
= (aii * M) - (aij * M)Ui?}j,
as well as
Oy [(asj % M)v;] = —(az; * M)vivj + (az * M).
Putting together previous equalities, we finally obtain
1 1
D(VM, f) = 0y, {(ai * M) D, f } + {—1 (aij * M) vivj + 50y, [(aij * M)vj]} f
Moreover, from (2.2) we get
T(f, VM) = 8y, { (asj + VI £]) 00, VI } — 0y, { (b1 [V £]) VAT |
_ (aij * [\/Mfl]) ;O \/M—F Z (al-j * [\/Mf]) vivj\/M
(au [\/_f]) VM
so that, developing the derivatives 0,,, we get
D(f, VM) = (b [VMf]) 00, VM + (i 5 [V ]) 0,00, VM
— (ex VM f)) VM = (b + [VMf]) 9y, VM
_ (aij * [\/Mf]) Uiayj\/ﬂ + i (aij * [\/Mf]) Uﬂ)j\/M
(a” [\/_f]) VM.

Observing that

1 1
Oy, VM ——v]\/M and 0y, 0y, VM = —§5ij\/M + Zvivj\/M,
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we then get
D(f,VM) = (aij * [\/Mf]) vV M — (an‘ * [\/Mf]) VM — (c* [\/Mf]) VM,
which concludes the proof. ]

For v € R3, we define the symmetric matrix A(v) = (4;;(v))1<i j<3 whose coefficients
are given by

Aij(v) = (aij *y M) (v).

We can decompose A (v) as A(v) = BT (v)B(v), where B(v) = (B;;(v))1<i,j<3 is a matrix
with real-valued smooth entries (see [54]). Recall also that from [18], for v € R\ {0}, the
matrix A(v) has a simple eigenvalue ¢;(v) > 0 associated with the eigenvector v and a
double eigenvalue £5(v) > 0 associated with the eigenspace v-. Moreover, when |v| — 400,
we have

(2.4) 01(v) ~2(v)Y  and  ly(v) ~ (V)T
As such, one can write that for any v € R3\ {0},

A(v) = 61(v)m ® ol + £2(v) (Id—m ® m) )

where Id denotes the identity matrix and

(2.5) B(v) = V(1) — ® — + /I (v) (Id—i@)i).

ol [vl ol [l
In what follows, we will use the following differential operators
(2.6) V,:=B(®)V, and V,:=B()V,
as well as their adjoint operators in L? given by, for F: R? — RY,
(2.7) (Vo)*F = -V, - (B@)F) and (V,)'F =-V,-F.

Using the formulation (2.3) of the linearized collision operator L, we can therefore
rewrite it as

Lf = =Vi¥.f - {{B)P - 39, [BTB@p] } 1

(2.8)
— {— (aij * \/Mf) ViVj + (an- * \/Mf) + (C * \/Mf)}m

The functions A;;, B;; verify the following properties (see for example [33, 54]): For any
multi-index a € N? we have, for all v € R?,

(2.9) 102 A5 (0)] S ()21 109 B (0)| S (u) 2l

From [18, 32, 49, 51], we also know that L has a spectral gap, more precisely, there
is or, > 0 such that

(2.10) (Lf f)pz < —orllf =7 fli

for any f € Dom(L), where we recall that 7 is the projector onto the kernel of L defined
in (1.12) and the Hi*—norm is defined in (1.18). Notice that in the case —2 < v < 1 which
we study in the present paper, the previous inequality is indeed a coercivity estimate
becase |- [l 3 II- 13-
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2.2. Functional spaces. We first notice that there exist some universal positive con-
stants C1 and Cy such that the H! ,-norm in velocity defined in (1.18) satisfies

) ~
Cullf 2. <o) 312, + 1Vuf 125 < CallFllZs

where V,, is defined in (2.6). This comes from [18, 32], more precisely, we use the smooth-
ness of the eigenvalues ¢1(v) and f3(v) in v € R3\ {0}, their asymptotic behavior at
infinity (2.4) and the fact that if |[v| < 1, they are bounded from below by a positive
constant independent of v. In order to lighten the notations, in what follows, we will still
denote

5 -
11 = 13 7125 + 19 2.
We also introduce some H? norm in velocity defined through the following norm:

i ol ol - —
111, = 1) 2 L1 + Vo () 2T NI, + 1) 2T Vuf 12, + VoVl

Similarly to the definitions of 2" and %4, we define the weighted Sobolev-type space %
as the space associated to the norm

17135 = 10> FD f1 gz )+ 10OV s

(2.11) T+12 712 3202
) T2 Bz + 193 2
We then introduce the spaces Z;° for i« = 1,2 that involve derivatives in z: 27 is
associated with the norm
(2.12) 1% = £ + 1 f 1% + IV fII%
1
and Z5 is associated with
(2.13) 1% = 11 + N F 1% + e IVEFI%

For the sequel, it is worth noticing that if f € 25, then eVoVaf € 2. Indeed, a simple
computation based on integrations by parts shows that

ellVoVafllz S EIVIFl2 +11f 2.

For i = 1,2, we also define the associated dual spaces (%;)" and (Z°)" with 2 as a
pivot space, more precisely, they are associated with the following norms:

(2.14) [fllzy == sup (f,@)a
llella; <1
and
(2.15) [fll(zey == sup (f, @)z
el e <1
where (-,-) 2 is the scalar product associated to || - || 2~ defined in (1.19). Notice that we
have the following interpolation result:
(2.16) [%, (%6)/}1/2,2 = (27)".

The notation used above is the classical one of real interpolation (see [6]). For sake of
completeness, we briefly recall the meaning of this notation. For C' and D two Banach
spaces which are both embedded in the same Hausdorff topological vector space, for any
z € C + D, we define the K-function by

K(t,2)= inf (lelc+tld|n), V>0

The space [C, D]y, for § € (0,1) and p € [1,400] is then defined by:

(€, Dlpy = {z€C+D, t s K(t,2)/t" € L (dt/1)}.
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2.3. Basic estimates. We gather in this subsection some basic estimates concerning the
collision operator L that will be useful in the sequel.

In order to simplify, we recall the formulation of the operator L in (2.8) and we introduce
the function

(2.17) P(v) == %’B(U)U‘Q - %VU . [BT(U)B(U)U}
as well as the operators

(2.18) Lif := =VVof —0f

and

(2.19) Lof :=— {— (aij * \/Mf) Vv; + (an‘ * \/Mf) + (c* \/Mf)}\/ﬂ
so that we have L = L1 + Lo.
We start with some basic commutator estimates.
Lemma 2.2. For any suitable function f = f(x,v) and any (xz,v) € T x R3, there holds:
(i) [Vo,v - Vol f(z,0) = Vo f(2,v).
(ii) For any o € R and 1 < j < 3, one has
[(0)%, Vo 1 fl (2, 0) = [[(0)%, V5 1f](2,0) S @) 27 f](,0).
(iii) For any 1 < 1,7 < 3, one has
[Vois Vi, 1 f1(,0) S (0)H Vo f1(,0).
(iv) For any 1 < i,j < 3, one has
[Vois Vi 1F (2, 0) S (0) Vo f|(@,0) + (0)7] f| (2, 0).
(v) For any 1 <1i,j < 3, one has
[Voi, Vo £ l(@,0) = V5, Va 1 fI(2,0)  (0)F Ve s |(2,0).
(vi) For any a € R, one has
[0, V51, V0, ] £ (2,0) S @Yot ] (@, 0).
(vii) For any 1 < 1,7,k < 3, one has
V0, Vsl Vo] 1] (2,0) S (o) FH V0 £, 0).
and
(Ve Vi 1 V| | @,0) S ) FHI90f (2, 0) + () F | f] (2, 0),
(viii) For any 1 < i,j,k < 3, one has
(Va0 Vo, V] £ @0) = [V V5,1, V] ] (20) S (00 FH 90 £ (2,0),
Proof. Recall that we denote B(v) = (B;;)1<i j<3 and that we have
Void = Bindu, S, Vaf = Binduf, Vif = =00, (Binf): Vif = =Bimde,.f = ~Va,f.

(i) We have

[vavfamg]f = Bimavm (Ufamgf) - Ufamg (Bimavm f)
= Bifazwf + Bimvﬁavmamgf - vﬁBimazwavmf

(ii) We easily compute
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as well as
(), T4 1 = (T, (0)°).
We conclude the proof by remarking that 61,]. (0)* = a(B(v)v);(v)*~?% and using that
IB(v)v| < (v)21! thanks to the definition (2.5) of B(v).
(iii) We easily compute
[ﬁvm 6vj]f = Bimavm (Bjﬁavzf) - Bjﬁavz (Bimavmf)
= BimBﬂavmawf + Bim(avaj )avgf - BjKBimawavmf - Bjﬁ(avgBim)avmf
— Bim(avajﬁ)awf - Bjﬁ(avgBim)avmfa
and we conclude the proof using (2.9).
(iv) We have
[ﬁvw 6:]].]0 = _Bimavmaw (ijf) + 81}[ (BjZBimavmf)
- _BimBjéavmawf - Bim(avaj )awf
- Bim(avmavgBjZ)f - Bim(aijZ)aUmf
+ Bim(aijZ)aUmf + Bjé(avgBim)aUmf + BjZBimavgaUmf
- _Bim(aUmBj )8vgf + Bjé(awBim)aUmf - Bim(avmaijZ)f-

We can simplify last expression by relabelling the indices m and £ of the second term,
which gives

Vo, Vi1 = [Bjm(9u, Bit) = Bim (v, Bje)) 0wy f — Bim (D, 00, Bjo) f-
We then conclude the proof by using using (2.9).
(v) We have
[Vois Vi, | f = Bimu,,(BjeOs, ) — BjeO, (BimOu,, f)

= BimBanvmazwf + Bim(avajﬁ)azwf - BjﬁBimamgavmf
- Bim(avaj )al'gf

as well as

— Vi, Vsl = Oup (Bim B, f) = BjeOu, v, (Bim f)
- jfaa:gavk (Bsz) + Bim(aUmBjZ)ang - Bjéamgavm (Bsz)
- Bim(avajZ)axef'

We then obtain the estimate by using (2.9).

(vi) Thanks to the proof of item (ii), we write

= V0, (T, (%)) — (T (o, () f
= Vo, [(0)%, Vi, 1f = (Vo (Vo (0)9)) .
We conclude the proof by using ﬁvj (1)* = a(B(v)v); (v)*"? and the upper bound (2.9).
(vii) Thanks to the proof of item (iii), we first write
[601-7 6Uj]6ka = Bim(avm Bj )81)[ (Bk:pavp f) - ij(aw Bim)avm (kaavp f)
= Bim(avaj )Vvkavgf"i_ Bim(aUmBj )(aWka)avpf
- jé(avgBim)vvkavmf - Bj[(avgBim)(aUmka)avpf-
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We then obtain
Vs ViV f = Vo, [Bin (Du Bie) 0o, f1 = (Vo [Bisn (9o, Bje)]) Do, f
= Vo [Bje(9u,Bim)u,, 1+ (Yo, [Bje(0u, Bim))) O, |
+ [Bim(avajé)(akap) - ij(awBim)(avakp)]avpf
=V Vo, Vo, I f = (Vo [Bim(0s,, Bio)) o, f + (Voo [ Bje(Oo, Birm))) D, f
+ [Bim(avajé)(aszkp) - Bﬂ(aszim)(avakp)]avpf

and we conclude the proof of the first estimate using (2.9). The second estimate is obtained
in a similar way by using the computation of item (iv), thus we omit it.

(viii) Thanks to the proof of item (v), we write
Vi VoV f = =B (00 Bit)92, Vo f
= ~ Vg (Bim(0u, Bit)0s, f) = (Vor [Bjm (9o, Bit)]) 0u, f
= Vo Varr Vi, 1 = (Vo Bim (0o, Bir)]) O, f.

The estimate then follows from (2.9).
O

Using the above result, we shall now compute some commutators related to the L; term
defined in (2.18) of the collision operator L.

Lemma 2.3. For any suitable function f = f(x,v) and any (z,v) € T3 x R3, there holds

(i) For any o € R, one has

(), Lalf = =F3, () Tl = o [0, T3, 17 = [0, 95,1, 9] £
(ii) For any 1 < k < 3, one has

[ﬁvkv Ll]f = —62 [ﬁvw 6W]f - 604 [ﬁvw ﬁzg]f - [[6%76&]7 ﬁvz} f - (ﬁvu/f)f

(7ii) For any 1 < k < 3, one has
Ve Ll f = =V, Vi, Vil f = Vo Voo, Vi1 = [[Var Vi1 Vi | £
and
[(0)2 Oy, Ll f = = V3, [(0) 300, Vi f = Vi [(0) 300, V3 1f = [[(0) 300, V2] V| £
Proof. (i) We first write
(0)* (Lf) = =)V, Vo, f = 9 (0)*f

and

Li((0)* ) = = V5,V ()" ) = () f.
We now observe that
W)*V5, Voo f = Vi (0)Vo, [+ [(0) V5,1V, f

=TT (00 ) + T3 [0, Tl + Tl )7 T + [0, T30 0] £,

which completes the proof.
(ii) We first compute

Vi (L1 f) = =V, Vi, Vo, f = Vi (0)

and

Ll(ﬁka) = —63461)4(61116]0) - ﬂﬁka
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We conclude the proof by observing that
ﬁvkﬁzzﬁwf = ﬁzzﬁvkﬁwf + [ﬁvka ﬁzg]ﬁvgf
= Vi, VoV f + Vi Vo Vol f + Vo Vo ViIF + (Vo V31, Vo) f

and writing V., (0f) = ¢V, f + (Vo ¥)f.
(iii) We compute B o B
vl‘k (Llf) = —mGvzszf - ¢kaf

and N o N
We now observe that

kavzevvzf = Vzngkvwf + [v$k7 Vze]wa

= Vi, Vo Vo f + Vi Var Vol f + Vo Ve, Vi If + [Var, Vi Vo] f

which gives the first estimate.

The computation for [<v>%&rk, L;] can be obtained in a similar fashion, thus we omit

it. O
Lemma 2.4. For any suitable function f = f(v) and any v € R? there holds:
(i) For any i,j € {1,2,3} one has
[(aij * £)@)] + |(ai; * F)(v)vi] + |(ai; * F)(w)vivs] S )72 [0) " fllrz
(ii) For anyi,j,¢ € {1,2,3} one has
B,y * F) ()] + (b * ()] S ) (0) fll2
and
| (B,aij = ) (W)vil + 1 (Do, aij * f) (0)vivg] S ()72 [(0)* f Iz
(7ii) If v = 0, for any ¢ € {1,2,3} one has
[ (e £) (0)] + (B, bi * £) ()] < (W) [1{0)° Fl 2
(v) If v € [-2,0), for any £ € {1,2,3} one has
[ (e f) ()| + 1 (Du,bi ) ()] S ()7 [1(0)° fll 4
Proof. All estimates in point (i) come from [13, Lemma 3.4]. The estimates on the term
|(b; * f)(v)| in point (ii) and on the term |(c * f)(v)| in (iii)—(iv) also come from [13,
Lemma 3.4], and the proof of the estimates on [(0y,a;;* f)(v)] in (ii) and on | (0y,b; * f) (v)]
in (iii)—(iv) follow the same lines since |9y,a;;] < [o[7 and |0,,b;| < |v]7.
We thus only prove the second estimate in (ii). Using that a;j(v — vi)viv; = ai;(v —
Us)(v4)i(vs)j, we observe that

(Ovpaij * f) (v)vivy = (ai; * Oy, [)(V)viv;
= (ai; * v;v;Oy, f)(v)
= (O, a5 [vivj f1)(v) = (ai; * [O, (vivy) f1) (V).
Using the the estimate in (i) and the first estimate in (ii), we thus deduce

(B, ai * £)(W)vivs| S )W) Fllzz + ()2 (1(0)* fl 2.

O
Lemma 2.5. For any function f = f(v) smooth enough and o € R, there holds:
o 1
(e x (VM[)) {0)* VM| 2 S IM3f] L.
Proof. See [13, Proof of Lemma 2.12]. O

We are now able to obtain some upper bounds on the term Ly defined in (2.19) of the
collision operator L as follows.
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Lemma 2.6. For any function f = f(x,v) smooth enough, there holds:

(i) For any o € R, one has

1
[{0)* Lo fllz , S 1M fllzz -

(ii) For any 1 < k < 3, one has

IV, (Laf)llz, S NMAfllz , + [1M3Voflz -

(iii) For any 1 < k < 3, one has
Vay (L2f)l|z2, S IMAVf e -
Proof. (i) We write
(V)*Lof = — {— (aij *y \/Mf) vvj + (an‘ *y \/Mf) + (c *y \/Mf)} <v>“\/ﬁ
from which, thanks to Lemma 2.4, we deduce
() Laf| S |MF fl13 (o) T2V + |(c 00 VM )| (0)2 VM.
We conclude the proof by taking the L? norm of the last estimate and using Lemma 2.5.

(ii) Writing V., = B9y, we compute
Vi (Laf) = _BM{— (aij *y &Jg(mf)) VU5 — (aij *y \/Mf) O, (vivy)

+ (@is %0 00, (VM) + (e 50 00 (VDS)) }\/M
— {— (aij *y \/Mf) Vv + (aii *y \/Mf) + (c*v \/Mf)}%k\/ﬁ

Thanks to Lemmas 2.4 and 2.5, we obtain that
~ 1 1~
IV (Lo f) (2, )z S NIM3f(x, )]z + M7V f(, )12,
and we conclude by integrating in x this last estimate.

(iii) Writing ﬁxk = Bj¢0,, we compute
Voo (Laf) = —Bkz{— (aij *y \/Ma$[f) CRUES (aii *y \/Mauf) + (C *y \/Ma$[f) }\/M7

and we obtain the wanted result thanks to Lemmas 2.4 and 2.5. O

3. ESTIMATES ON THE LINEARIZED PROBLEM

For the rest of the paper, the parameter £ will belong to (0,1). We recall that the
functional spaces 27, # and ZT are respectively defined in (1.19), (1.20) and (2.12),
that the operator A. is given in (1.11) and that IT is the projector onto the kernel of A,
(see (1.17)). We consider U¢(t) the semigroup associated with A, and study its decay and
regularization properties.

Theorem 3.1. For any o € (0,00), we have:
1T ) Ad ~ID) 920 S ™,

ot —ot

e ‘ < €
P min(1,#3/2)’

oy S — d ||U(t)(Id —1I

where o is defined in Proposition 3.2.

|U=(#)(1d —IT)
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Our proof is based on hypocoercivity tricks and thus on direct energy estimates on the
whole problem 0;f = A.f. Our method to prove this theorem is of particular interest
when one wants to extend the analysis to the whole nonlinear problem (see the paragraph
at the beginning of Section 4). Indeed, it is based on a micro-macro decomposition of
the solution and thus allows to identify the different behaviors of the microscopic and
macroscopic parts of the solution. We will use this approach in Section 4 in which we
develop a Cauchy theory for the nonlinear Landau equation as well as some regularization
estimates on it.

Let us finally notice that we are actually able to prove Theorem 3.1 by using a splitting
of A, as presented in Section 5. By establishing nice estimates on each part of the splitting,
we are then able to recover the wanted estimates on the whole semigroup U¢(¢) thanks to
Duhamel formula. Such an analysis does not allow us to develop our Cauchy theory and
regularization estimates for the nonlinear problem but will be useful to study our problem
of hydrodynamical limit, we thus postpone it to Section 5.

3.1. Hypocoercivity estimates. In this part, we state some hypocoercivity results for
our linearized operator A, defined in (1.11). The first one provides a result of hypocoer-
civity in LQZM and the proof is a mere adaptation of the one provided in [7, Theorem 5.1]
in the more complicated case of bounded domains with various boundary conditions. For
sake of completeness, we give the proof of Proposition 3.2 in Appendix A.

Proposition 3.2. There exists a norm || - 2 on L3, (with associated scalar prod-
uct (-, ) 2 ) equivalent to the standard norm ||-|| 12 —which satisfies the following property:
For any f € Dom A, N (Ker A.)*,

(Af, Pz, < —oollfllZz, - HonH%g(Hvl’*) -2l 122 1 -

for some constructive constants 0 < og < oy, (where o, is defined in (2.10)), kg > 0 and
where f* is defined in (1.13).

Roughly speaking, the norm || - |||z  is of the following form

3
IFIG2, = 1£11F2 +e D m (0n A7 nf,7if ),
=1 ®

where 7; : L2, — L2 is some suitable moment operator, the inverse laplacian A;! is

v
suitably defined and the constants n; are chosen to be small enough (see (A.19) in the
proof). The norm ||| - [[|z2 = thus depends on ¢ but is equivalent to the usual norm || - |2

uniformly in e, this explains the fact that we do not mention the dependency in € in our
notation.

In the following proposition, we provide a result of hypocoercivity in 2 . Notice that
obtaining hypocoercivity in H2L? is a straightforward consequence of the previous propo-
sition since derivatives in x commute with A.. Due to the presence of additional weights
in the definition of the space £, we have to exhibit a new norm equivalent to the usual
one for which we can recover a suitable energy estimate.

Proposition 3.3. There exists a norm || - ||2 on 2~ (with associated scalar product
denoted by ((-,-)) o) equivalent to the standard norm || - || 2 which satisfies the following
property: For any f € Dom A, N (Ker A.)*,

(3.1) (Al 1) g < =ollFI% = A1 = 511

for any 0 < o < og (where o is defined in Proposition 3.2) and for some k > 0. As a
consequence there holds, for all t > 0,

(3.2) JUF ()1 ~TD) 5 < Ce™".
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Proof. We define the inner product ((-,-)) ,- on 2" by
(3.3)

2
(foad o =D <6 <(v>(3—i)(%+1) Vi fE (v)3-DE+D) v;gL>L2

=0 z,v
(v,

so that its associated norm is given by

~((virvia),, )

2
iy ; ;
(B4) I = (3w DGEGEFHR, VLA ) + VAR
=0
for some constant § € (0,1) to be chosen small enough, and where ((-,-)) ;> and || - [|z2

are defined in Proposition 3.2 (see (A.19)). We first observe that this norm is equivalent
to the norm || - || 2.
Let o’ € (0,00) be fixed and f € 2 N (Ker A.)*. We shall prove

(3.5) (At £ o < =0 IIFIB = S5 1515

for some constant x’ > 0. Since there exists a constant ¢g > 0 such that

I 1l < collmfllzg iz < coll Mz < coll F11%

2, %) by
decomposing the first term with ¢/ = o 4 (¢/ — o). Estimate (3.2) is then a direct
consequence of (3.1).

the previous inequality readily implies (3.1) with some constant x = min ((’;

Step 1. We first compute

2
i —i) (% i

(AS, ) = D0 (B VLA, () EDIGE i) |

1=0 v
3 . .
3 (Videt, 951))
and we observe that, thanks to Proposition 3.2 and the fact that V, commutes with A,
we already have

> ((ViAcf Vs,

3

i 4 o
<=3 {lIVEAIR: , + mol V3 B + SIVEF By |-
=0

Step 2. We first observe that
1 1
(Af)" = (1d =mAcf = 5(1d = m)Lf = —(Id = m)(v - V.. f),

from which we obtain, since 7L = 0 and Lf = Lf', that

(36) (M) = L5 = 2 {o- Vef 40 Valnf) 7o Vef)}.

We therefore get, for any ¢ € {0,1,2} and using that the transport operator v - V, is
skew-adjoint,

3—i)(L+1) i 1 3—i)(L+1) i ¢L 121112
(@EDED VAN @E G | = SR - R+ RS

T,v
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with A A
Ry = ()3 VGV GILFE ()G L)

Ry = ()G V(0. Vo(nf)), DG Vi)

T,V

)

R; = <(v>(3*i)(%+1) Vi (n(v - Vaf)), (v)3=DE ) v;fJ_>L2

T,v

and we treat each term separately. For simplicity we denote w; = (v>(37i)(%+1) in the
sequel.

Step 3. We deal with the term R}. Since V, commutes with L we have

Ry = (L) Vi) |+ (o LVLFS oV

+ ([wir L] Vi F i Ve )

2
Lz,v

Lo

=: Riy + Ris + Ris,
where we recall that L; and Lo are defined in (2.18) and (2.19), respectively. Thanks to
the spectral gap estimate (2.10), we have

Riy < ~or|wiVif* - w(@Vh ) e
< —opllwiVeS s gy + CIIVEF 72,
for some constant C' > 0. From Lemma 2.3 we get
2 = = (i Vu Vot Vu @iVe ) = (o ViIVEF Vi @iVirt)
— (Wi V3], Voo | Vift wiVE fl>L% U
Using Lemma 2.2 and Cauchy-Schwarz inequélity, we first get
|[Ria| < CIVu(@iVef Iz 10) 2 wiVif e, + CIVi@i Vil ()

+Clw) 2w Vi3,

L
2w VeI,

X_
2

2w; < ()3T, + C,, for any n > 0 (and similarly

N

Using Young’s inequality to write (v)
for (v)2 'w;), and observing that
¥ ~ ~

1)z gllee, + IVoglize, +11Vigllzz, S l9llzz )
we deduce from the previous estimate that

(Biol < (00— "oV s s s ) + CIVEFH s,
for any o” € (0’,0¢) by using Young’s inequality again and taking n > 0 small enough.

For the term Rj3, we use Lemma 2.6 to obtain
IRig| < CIVLFH 2 .

Gathering previous estimates we finally get

R < —0”||Wz'vifL\|ig(Hg,*) + CHV;fLH%%,U‘

Step 4. We deal with the terms R} and R}. Observing that
|lwi Ve (v - Va(m )z, + lwiVa(rw- Vaf)lzz, SNV fllz,
we obtain
|RY| + RS < CIVE fllpe NwiVe Iz,

( o — 0///)

< sV 2 ey + CEIVER A2
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for any 0" € (o', 0"), where we have used Young’s inequality and that ||-||z2 and [|-[z2
are equivalent in last line.

Step 5. Gathering previous estimates we then obtain
3

i i KO | i
(At £ <=3 {ooll VeI, + mol Vs sy + IV B
=0

0,///5

2
+ 3 =TIV By + 2 IV IR, + COIVET IR ]
=0

Recalling that || - [|z < |- [I12(m2 ), it follows

3 7 2
i g i
(et £y < ~oullflI3z, = (00— CO) S IIVESIR, — %5 Y olli VeI,
i=1 i=0

(KO - 05)

3

i 112

= gwlrf W2y —
1=

(0" —d’) 2 i opd2
— Q= Z:Zo Ollws Ve Nz Ly
We then choose ¢ € (0,1) small enough such that og — Cd > ¢’ and kg — Cd > 0, therefore
we obtain (3.5) with x" = min((¢"” — ¢’)d, kg — C) > 0, which completes the proof.  [J
3.2. Regularization estimates.
Proposition 3.4. The solution f(t) = U®(t) fin to the equation
Of =Af

{f(O) =fin€ XN (KerAe)J‘

satisfies, for allt > 0,

—ot
(37) I7Eos < 75 Ml
and

—ot
(3.8) ()] 22 < C— | finll 2

min(1,3/2)
for any 0 < o < o9 (where og is defined in Proposition 3.2).

Remark 3.5. Notice that thanks to the second inequality, one can in particular recover
a gain of one derivative in the spatial variable (with the associated anisotropic gain of
weight in velocity), at the price of loosing a 1/e. As already mentioned, this is explained
by the fact that the gain comes from the transport operator which does not act as the
same scale as the collision operator in velocity. Notice also that in [9], the authors were
facing a similar singularity in € when wanting to obtain a gain of regularity in the spatial
variable for the hard-spheres Boltzmann equation. The latter equation is not hypoelliptic
but thanks to a suitable use of averaging lemmas, the authors were also able to obtain
regularization properties in the spatial variable with the same singularity in €.

Proof of Proposition 3.4. We shall prove that for any ¢ € (0, 1] there holds

(3.9) 1F(0) o < % 1 finll
and

C
(3.10) I£®la < g Il

which readily imply (3.7) and (3.8) thanks to the exponential decay of U¢ in 2~ from
Proposition 3.3.

Step 1. Define the functional

Ut ) = 1%+t (IV,

Y+ K ) F )
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teaot® (Vof Vof ), +ast® (IVa I + KN 0)3Vafl% ).

with constants 0 < a3 € a9 € a1 < 1 so that ay < /ajaz and K > 0. The constants «;
will be chosen small enough and K large enough during the proof.
We easily observe that

= ol
I + ¢ (IFur 1% + IR ) + 28191 S 200 0)
Remarking that || f||a; < || f 2 + |7 f]l 2, we thus obtain

£l S VoS 1% + 1) 2+ I fllrs

from which we deduce the following lower bounds: For all ¢ € [0,1] there holds
(3.11) tIfI5 S %t f) and ||fl%: S %1 f).

Therefore, in order to prove (3.9) and (3.10), it is sufficient to show that

%%S(taf)goa Vte [071]7

which we shall do next. We thus compute

d d ~ _
St f) = I+ or (KN @FHS + 19,0415

d v ~
ot (KN T G + 19 1)

(3.12) +2a25t< of V$f> + anet %<V [ fo>

+3a3€2t2(|!%f|@g+K|!<v>5 V. fl%)
s (19,1 + KV r1%)

and we estimate each term separately in the sequel. In order to simplify, we introduce the
notations g; = Vi f, g+ = (VLf)* = Vi ft and w; = ()B=DGEHD 50 that

3 3 3
1 =S loigilz . 13 = X hoiailBamy e 1713 = 3 lwigillZegar
=0 =0 =0

Step 2. From Proposition 3.3, we already have

(3.13) alllflll?r < —rollFll% - 2/ 13
for some constant kg > 0.

Step 3. We deal in this step with the time-derivative of the term (K| (v)z+!fL]% +
Vo ft]%:). We split the computations into two parts.

Step 3.1. We first compute

3
1 1 d o
sy = 1y Sjamirig, |

2dt =

Observing that f satisfies the equation 9, f+ = (A f)*, with (A, f)* given by (3.6), using
that the transport operator is skew-adjoint and that derlvatives in x commute with © and
A, for any i € {0,1,2,3} we obtain

s J_ o 1 o 1 1 ; 1 3 1 3
il T e IE: | = (i) o w3l ) L = S - S
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with
. ol 1 1
Ji = <wi<v>2+1Lgi ,wi(v)2 g >L2

Ty 1= (o) 70 - Valmgo) wilo) g )
Iy = (i) F (o - Vage)),wi ()3 161 )
For the first term, we write
Ji= (L) g + )2 Lalgd + ()2, Lolg i) ),
= Jh + Jiy + Jis,

where we recall that L; and Lg are defined in (2.18) and (2.19), respectively. Thanks to
the spectral gap estimate (2.10), one has

Ty < ~2nlsto) 3 g — wwnlo) 7 ) o
~26lJwi (0) T G 72 iy + CllgilIZ2 s
for some constants x,C > 0. From Lemma 2.3, we get
. Yy o~ -
T = = (w0}, Vi ot Vo (wi() 37 6))
2 7 *
= (lwsto) VLo, Vi i) 6))

141 S S
— ([wi ()31, 93,0, Vo, | g wiw) 3 |
Using Lemma 2.2 and observing that ||V, hllzz, + HV*hHLg o S Ilizz s we then obtain

B y_ 1
()3 i) g g, + Cll)E Fun(o) g2,

14 l
< Allwilo) g e + Cllwito) FHgt 2,

‘ 11l
[ial < Cllwi)z gt | 3z )

where we have used that v < 1 and Young’s inequality in last line. For the term Ji;, we
use Lemma 2.6 to obtain

|Jis] < Cllwigs- ||L2 :
We deal with the terms J§ and Ji. Observing that
1 1 =
lwi )2 (v Va(mgi))llzs , + lwi(o) 2 (m(v - Vagi)lzz, < lwiVagillzz .
we obtain

T3] + 1731 < CllwiVagillzz, llwi ()2 gt Iz

Gathering previous estimates and using that || <v>7+% 2 SN+ lla, we obtain

1 d ol K ol C C i
(3.14) 5@\\<v>2“flllf@ < —;H@P“fﬂ@l + E—QHle?yl + ;Hle%HmeH,%

for some constants «,C > 0.

Step 3.2. We now compute

3

Z _sz vG; HL2

=0

1 1. 1. 1.
el s Ry S
(2 624'63 64>

l\.')lr—l
Q.

1
LI =

Q.
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with
Ii = <wi€vkLgil,wi€uk9il>L%v
= (90,0 Valrg ) wiVugt) |,
IL = <wﬁvk (m(v- ngi))vwiﬁvkgij_>L% i
L’i = <w,6 k(v : ngil)7wi60kg%>L%U

For the first term, we write

I{ - <L(w26vkglj_)7wzvvkg£_>ll2 + <[w27L1]€vkgzlawZ€nglJ_>

T,v

+ <Wi[€vkaL1]giL,Wi6vk9il>L2 + <[WiaL2]%vkgiL,Wi6vk9il>

T,v

+ (il Lolgt @iV gt )

x,v

2
Lz,v

2
L:c,v

=i Iy + Iy + I3 + Iy + Iis.
Thanks to the spectral gap estimate (2.10), one has
Ii; < _2"‘€H°‘)i6vkgz‘L - W(Wi%vkgf”@g(H;Q
—QHHwﬁvkgﬁ@g(H;,*) + Cng‘lH%g’v,
for some constants x,C' > 0. From Lemma 2.3, we get

Ty = = ([0, Vo Vo g, Voo @iV ), = (wi Vi, V0 Vi, (@iVa0))

_ <[[wi, 6;], 61}@} ﬁvkgf,wiﬁvkgii>% s ,
and

Iy = = (Vo Vot Voo @V 8)) |, = (Vo Vi lots Vi, @2V001))

x,v

< {[VUMV*] 6 }gz ,wiV Ulcgz > < Wi v;ﬂ/’)gz 7wlvvkgl >

2
L:c,v

For I%,, using Lemma 2.2 and observing that HVUhHL%U + H%;hHL%U S HhHL%(H%*), we
obtain

y_1
272

v~ ~
ol < CllwiVuegi Iz o I (002~ wiVo,gi [z, + Cll(w) 2 2wiVu, g5 [172 -

For Ii,, we first observe that writing
Vo (W2h) = WiV, (wih) 4 (Vp,w;)wih
V3, (@2h) = —wiVy, (wih) = [(Du, Bep)ws + (Vi) | wih
and using the bounds (2.9), we have
(3.15) ooy T 2Bz, + o 98, PR zz, S il agany.)-
Therefore, using Lemma 2.2 and noticing that
Vol S )3 [Voyl S 02 ()7,
we obtain
sl < CllwiVugit 2 ) lwi ) ™ Vogi Iz, + ClwiVe,gi I2am.,)
+ Cllwi(v) Vogi 2 1(0) 2wV gtz
+ Cllwi(w) gt 22 I1(0) 2w, Vo 6122,
+ Cllwi(o) ™ g N1z I (0) 2 wiVu, g Iz, -

oAy
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Putting together the estimates for I%, and Ii; and using Young’s inequality, it follows
| Tal + sl < KllwiVo,gi 172y + Cllwi0) g 12|+ Cllwi(v)* Vougi IIZ: |
For the terms I%, and Ii;, Lemma 2.6 yields
T4l + 5] < Cllwigi HL2 + CwiVug; ”L2 :
The terms I§ and I?f can be dealt as before in Step 3.1, and we obtain
|31+ 1] < CllwiVagill iz @iV il 2,

For the remainder term I, we use Lemma 2.2 and the fact that the transport operator is
skew-symmetric to obtain

I = (wiVa, g 0V 08 ), < lwiVart iz, iV gtz ,
T,V

Gathering previous estimates, we obtain
g rL c 1L c 1L
CITuI I < ~ 1T B+ SIS+ Sl
C -~ .
+ Ve f o I Vaflla

Finally, we observe that [|(v)7+1f]12 + [[(0)7F1V, f 1% < [[(0)2H fLl9, and thus,
gathering (3.14) and (3.16) and taking K > 0 large enough, we obtain

57 (B3 1% + 1V

K1 C C =
< =3I B + S B + S Ve f Ll

for some constants x1,C > 0.

(3.16) 2 dt

(3.17)

Step 4. We deal in this step with the time-derivative of the term (61,]”, ﬁxﬂgg We
compute

di <Wivvgi; Wi6:vgi>L2

x,v

1 . 1 . 1 . 1 .
(6—233 SR+ 58— 555)

d - -
dt <va, me>,a?f

M= ng

Il
o

(2

with

=,
i

Vk Lgl vak92> 9

= (¥
Si <w o 9i> Wi Vi (Lgi )>
= (¥

U

.
i

L U v$gl) wzvxkgz>L2
Recalling that ﬁzk = —63[:,6, we then write

L+ St = (Lot Vi (@V090) = Ve (@FV09))

L2

T,V

< NeiLgt ez, (107 Vi @200 12, + 7 Vo @3V 0022, )
Observe that

wflﬁzk (w?%kgi) = ﬁvk (wzﬁxkgi) + [wi, ﬁvk]ﬁxkgi + Wi[ﬁxkavvk]gi

so that using Lemma 2.2, we get

(3.18) ;' Vo @iV 9)llz,, S 1wiVagill 2 ara..)-
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Writing w; Lgi- = w;L1g;- + w;Lag;- and using the explicit formula (2.18) of L; together
with the bound of Lemma 2.6 for Lo, we obtain

(3.19) ”wiLgilHLg%’v S HwigiLHL%(Hgy*)'

Together with (3.15), we hence get

’Rzi + Sﬂ < CHwigiLHLg%(Hgy*) ngiHLg(Hq},*)-

For the remainder terms, we observe that using Lemma 2.2 and the fact that the
transport operator is skew-adjoint,

% + Sé = ”wiﬁmcgl”%%v + <wiv : vx(ﬁvkgi)7wi€xkgi>[/2

+ (@iVigiwiv - Va(Varg)) , = leiVa,ilZs,

Gathering previous estimates we obtain

d Co iy e Lie .o
5 Vol Vel ) . < S o Vaflla — ZIVaS I

for some constant C' > 0.

(3.20)

Step 5. We deal in this step with the derivative in time of the term (K\|<U>%fo”%{ +
[VaflI%). We first compute, using that the transport operator is skew-adjoint,

)3V

1 3 d ol 2
3 > g lwilo) 2 Vagillzs |
i=0

=: i 6% <W@'<U> Oz, (Lgi),wi(v > 33ng>

1=0

2dt

L3
Since 8, commutes with L, we can argue as for the term J} in Step 3.1 above to obtain
ol X X -~
(wil0)2 00, (Lgi),wi(0)2 0 gs) |, < —Allwilo)2 VagillFa s ) + CllwiVogil 2

for some constants x,C > 0, therefore

K

5 C
(3.21) H< VIV fl% < —6—2||<v>5vxf\l%/l + 6_2vaf‘|,2%'

2dt

Using that the transport operator is skew-adjoint and commutes with 6%, we Now
compute

1d ~ 13 d, =
§a\|vmf\|.2% =5 Zo & |W¢Vmgz‘”%§,v
3 3
1 ~ 1
= Z 2 <w2vl“k (Lgi),w; mkgz> Z —2
=0 x’v :0

We then write
Ni — <L(wi6mkgi)awi6mkgi>ll2 + <[w¢,L1]§xkgi,wi6vkgi>L2
+ <Wi[6mk,L1]gi,wiﬁmkgz>L2 + <[wi, Lg]@mkgi,wiﬁxkgi>

+ <wi [6mk7L2]gi7wi€$kgi>L2

=: Ni + Ni + Ni+ Ni + N

L2

T,v

Thanks to the spectral gap estimate (2.10), one has
le‘ < _Q’QHWiﬁmkgi - W(Wiﬁmkgi)nig([{g )

2|V G Ba iy + CllwoiVagills
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for some constants x,C' > 0. From Lemma 2.3, we get

N =— <[wz‘, Vool Var i 61;[(%6%9@')%% o <[wi7 Vi Var9is Vi, (wi%xkgi)>ll% )

_ < [[Wi, 6@], 6UZ:| kagi, wivzkgi>

)

2
Lz,v

and

N = = ([Vars Vo9 Voo @?Ve,90)) = (Vs V3190, Vi, (@7 Vi,90))

— (@i [[Var, Vi), Vi | gios xkgz>
Arguing in a similar way as in Step 3.2 above (for the term Ii, and Ii3), it follows
N3]+ V3] < llwiVaila sy + Cllei (0) ™ Vagil 32
For the terms N} and N{, Lemma 2.6 yields
NI+ V] < Cllws¥ogiliZa .
Gathering previous estimates, we obtain

K~ C
(322) S Vel < — IVl + S0PV

Finally, we observe that |[(v)71V,f||% < ||<’U>%fo||oy1 and thus, gathering (3.21)
and (3.22) and taking K > 0 large enough, we obtain

2 = R2 | Cs
(323) ST (KI@IVaf I + IVl %) < ~FIVaf I + S1Vaf I
for some constants ko, C' > 0.

Step 6. Conclusion. Gathering (3.13)—(3.17)—(3.20)—(3.23), we thus obtain

d RO ol i
UL 1) < —koll I = I3 + o (KNP % + 1905413
K1 C C =
+ ot (—g—zllle%/Q + g—szLH?yl + ;Hle%Hfong)
C - 1,
+ 2005t (91,901 ), + a0et? (S N9 ok — 1971
+ 3038 (Vo f I + K| (0)2 Vo f 1Y)
R2 = C =
+ase® (<2113 + SIT1 )
Observe that
S _
K@) 24 fHS + IV 1% S 1 1%
and
< )12 1 2 <V f2
IVafllo + Kll(0)2Vafl2 S IVafll%
and also that, thanks to Young’s inequality, there holds
OéltC

2
o) =~ af 1
£ e Ve fll o < tQ\\folliﬁC—;—z\\fH\?yl

Oégt C 013142

1126 Ve fllon < =51V £l + C 2 S 13,

202¢t (Vaf, Vo), < zt2HfoH,@f + Ca#ufu?yl.
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We therefore deduce that, for any ¢ € [0, 1], there holds

d 1 o?
a%(t, f) < = (ko — Caa) || fllZ — = (ﬂo —Cay — Ca—;> £ 1%
(3.24) t B\ L2, g2 Cas) [T,
—a|am - O 1f115, — 2 (= = Cas ) [Vafl%
Qakots
— = Ve £l

We now choose a; =1, ag = 775, and ag = 77%, with 7 € (0,1) small enough such that
each quantity appearing inside the parentheses in above inequality is positive. We hence
obtain that %%s(t, f) <0 for any t € [0, 1], which concludes the proof as explained in
Step 1. O

4. CAUCHY THEORY AND REGULARIZATION ESTIMATES FOR THE NONLINEAR PROBLEM

In this section, we provide a Cauchy theory for (1.7) for small initial data as well as
some new regularization estimates for this equation. Notice that our proofs are based
on the results developed in Subsection 3.1. It is actually crucial to be able to avoid the
use of Duhamel formula to obtain nice estimates on the nonlinear problem because of the
singularity in e that is in front of the nonlinear term in (1.7). Our strategy is to perform
direct energy estimates with the norm ||| - ||| 2~ introduced in Subsection 3.1 (see (A.19)
and (3.4) for the precise definition) and exploit the facts that T'(f,g) = (I'(f,g))* and

{7, g)’h>L§,v = (I'(f, g)ahlﬁg’v so that
(9 )z, = (P95,

(C(f,9),h) o = > 6 () EIEH VID(f,g), (0)E=IG+D vipt)

+Z<w (f.9), Vih™)

where we recall that 6 € (0,1) is a small enough constant chosen in Proposition 3.3.
Notice also that we used the particular form of ||| - [z =~ defined in (A.19) and the fact

that 7I'(f,g) = 0. Rearranging terms, we then deduce

)

2
Lz,v

" (T(f,9). 1) 5 = 5 (T(f.9), "), +Z<VZ LV,

+(1-5) <vir<f, 9. Vih%

4.1. Bilinear estimates for the Landau operator. In this part, we start by establish-
ing some new and sharp nonlinear estimates on the Landau collision operator, we recall
that the matrix B(v) is defined in (2.5) and that the spaces 27, %, % and % are
respectively defined in (1.19), (1.20), (2.11) and (2.14).

We start by establishing some convolution estimates for the coefficients a;; and b;:

Lemma 4.1. For any suitable function f = f(v), vector fields G = G(v),H = H(v) and
¢ € {1,2,3} there holds, for any v € R3:

(4.2) [(aij * £)GiHj|(v) < [1{0)" fll 2B (v)G (v)|[B(v) H (v)]
(4.3) (B, aij * £)GiHj|(v) < 1(v)* fll 2 B (v) G (v)[[B(v) H (v)|
(4.4) |(Dugbi * )Gl (0) S 11(0)° fll2 ()2 B)G)| if 0<y <1
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(4.5)
[(@u,bi + DGl (0) S (1) Flly )+ @) fllz2) (0)F BE)GE)] if —2<y<0.

Proof. We split the proof into three steps.

Step 1. Proof of (4.2). We only prove the estimate for |v| > 1, the case |v| < 1 being
trivial. Recalling that P, denotes the projection onto v, we decompose

Gi = (PH(G)+ (= Pu(G) = s (G- ) + (1= P)(G)

and

Hy = (Pu)y () + (1= P);(H) = vy (H- 05 ) + (1d = R (1),
We thus obtain
(s + DIGHIH @) = (g » Py (G10) —) (# w)
+ o+ N (G- 177 ) (14 = P, (H()
e

+ (@i Pe)e(1d - RY(GE) (H)- Hz)
+ (a3 P0)1d = P(G()1d = P),(H()).

Using Lemma 2.4, we estimate each term of the previous splitting. First,
v v
(@ = Ny (60775 ) (20 75|
2 ol
S 1) fllzz (0) 2 |G(v)[{v) 2 [H (v))].

Then,
(@ + D) (G) - o) (0 = P, (W)
. S ) Fllpz ()2 rG< )l{v)? “rad P,)H(v)|
(@ = £y (10 = R)(G) () - o5 )
S ) Fllpa () THH(1d = P,)G(v)|(0) 2| H (v)].
Finally,

|(aij  f)(v)(Id = Py)i(G(v))(Id = P,);(H(v))]
S )T Fllzz (0)3 (1 = P)G(w)[(0)2T(Id = P,) H(v)].
We conclude the proof of (4.2) by gathering previous estimates and recalling that
B(v)G(v)] £ (v)2|P,G(0)] + (v)2 (I = P,)G(v)] < [B)G(v)].

Step 2. Proof of (4.3). The proof of (4.3) is similar to the one of (4.2) by using the bounds
on (Oy,aij * f), (Op,aij * f)vi, (Op,aij % f)v; and (Oy,aij * f)viv; given by Lemma 2.4. We
thus skip it.

Step 3. Proof of (4.4) and (4.5). Again, we only prove the estimate for |v| > 1. Recall
that [9y,b;] < |v[7. If 0 <y < 1, then using Lemma 2.4, we have

|(u,bi * £)(0)Gi(0)] S 10)* Fll 2 (0) |G ().
If —2 < v < 0, we use the above decomposition of G to write

v

(O x £RIG ) = (0= ) (G0) - ) + Oubix )1 = RYG()),
Remarking that (09y,b; * f) = (b; * Oy, f), we also observe that
(bi Oy, f)(v)vi = (B, aij * Do, f) (V) Vi
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= (aij * vi0y; 00, ) (v)
= (b; * (vi0y, [))(v) — (@i * Oy, [)(v),

from which we obtain

(bi % Dy, f)(v)vi = (bi * Oy, f])(0) = (bi % (B, vi) £))(v) — (aii * Do, f) (V)
= (Ougbi * [vif1)(v) = (b * f)(v) = (Dv, i * f)(v).

From Lemma 2.4 and using classical Sobolev embeddings, we have

|(@u,bi  £)(0)] < W) [1(0)> Fllza < W) 10)> fll s

Therefore, using once more Lemma 2.4, we obtain

|(Qu,bi  F)()vil S () 10) Fllay + 0)FHI(0) fl 2

Hence,
(Do, bi * f)(0)Gi(v)]
SN flla ((Wl(Id — P,)G(v)| + <v>“|G(v)l> + 1) fll L2 () |G (w)],
which concludes the proof. 0

We shall now establish bilinear estimates for the nonlinear operator I' in Proposi-
tions 4.2, 4.3, 4.4 and 4.5 below. Recall from (2.2) that

I'(g1,92) =T1(91,92) + T2(g1,92) + T's(g91,92) + Ta(g1,92) + T5(91, 92)

th;) T1(g1,92) = o, { (i * [VM1)) 00,921
(4.7) Ta(g1,92) = —0u { (b # [VMan]) g2}
(4.8) Ts(g1,92) = — (aij * [VMa1]) vidy, 95,
(4.9) Pa(g1,90) = (a3 = [VAT)) vivson
(4.10) Ds(91,92) = — (a1 [V3ar]) .

Proposition 4.2. Let g1, g2 and g3 be smooth enough functions. For any o € R, there
holds for any i =0,...,3,

(1) {@)Vil(0.02). Vigs) , < lorlmses ) o2l loslmscas .
and
(4.12) ((0)*T(g1,92),93) o~ < g1l 2 [(v)* 92l|4 1193 || 24 -

As a consequence, one has by duality

(4.13) IT(g1, 92)llay < llgall 2l g2la -
Proof of Proposition 4.2. We shall first prove that for any o € R, there holds

1
(4.14) ()T (91,92),93) 2 S IMAgrl 2l () g2l m2 Mgl -

Once this estimate is established, we shall prove (4.12) in the final step of the proof by
integrating it in = and using Sobolev embeddings. Notice that we only prove (4.12) because
the proof of (4.11) is similar and simpler. Estimate (4.13) is then a direct consequence of
(4.12). We thus write I'(g1,92) = I'1(91,92) + - + I'5(g91,92) as in (4.6)—(4.10), and we
estimate each term separately in the sequel.
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Step 1. We write, from (4.6) and making an integration by parts,
(V)*T1(91,92),93) 12 = — <(aij * [V Mgl]) 3uj9273ui(<v>0‘93)>L2

= — (s * VM) 01, 00, (0)°Bus3)) |, = ( (017 * VM 31]) D00, (Do (0))s)
=1 + L.
For the term Iy, we use Lemma 4.1, which yields
l ~ ~
L S 1M1z (0 Vogel, [Vugsl)
l ~ ~
S IMAg| 2 [[(0)*Vugal 2 [[Vogsllzz -
In a similar way, thanks to Lemma 4.1 and using that |V,(v)*| < (v)2 1%, we obtain
1 1 =
L S Mgz ()2 (0)°1Vagel: lgal)

1 ~ 1_
SIMagi| 2 1(0)*Vogall 2 () 2 g3l 2.
We therefore obtain

1 ~
(4.15) ((v)*T1(g1,92): 93) 12 < (1M 7 g1l 2211 {0)* Vgl £z 193l 1., -
Step 2. Starting from (4.7) and making an integration by parts, we get
() T2(g1,92): 93) 2 = ( (b VM1]) g2, 00, ((0)°95))
= (b VM@)) 92, 0)Duigs) |, + (b * VM) 92, 00 (0) )3 ),
=:1I; +II,.
For the term II;, we use Lemma 2.4 to obtain
1
I 5 Mgz (@) (0)ga, [Vogal)
1 X X
S Mgl 211 (0)* (0) 2 gall 2 1 (v) 2 Vugsll 3
In a similar fashion, Lemma 2.4 yields
1 _
I 5 M3 (@) @) el lgsl)

1 X X
S IIM g1l 2 ll(0)* (v) 2 g2l 22 ]I(v) 2

193 ”Lg .
We thus get

1 X
(4.16) {(0)°T2(91,92), 93) 12 S 1M 7 gal 3 [1(0)* (0) 2 g2l 22 Nl g3l -

Step 8. All the remainder terms associated to I's, I'y and I's can be estimated directly
thanks to Lemma 2.4 or Lemma 4.1 and Cauchy-Schwarz inequality. Indeed we first have,
using Lemma 4.1 and [B(v)v| < (0)2H!,

((v)*T'3(91,92),93) 12 = — <(aij * [\/Mgl]) v; 0y, 92, (v>a93>L%
(4.17) S IM gz (o) ()3 Vugal,losl)

1 = 1
SIMgil 2 1(0)* Vogall 2 1(0) 2 g3l 2.
In a similar way, we also get
o 1 \/_ o
()*Tal91,92), 93) 15 = § <(aij * [ Mg1]) Vv 92, (V) 93>L2
1
(4.18) < 1M gz ({02 0}l sl ),

ol X

1 ol
S IM g1l 2ll{0)* (v) 2 g2l 22 1I(v) 2 gl 2.
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Finally, now using Lemma 2.4, we obtain

(4.19) SIME gz (0% () lgal, lgal)
1 X X
SIM g2l (0)* ()T gal 2]l (0) 2+ g3l 2.

We thus conclude the proof of (4.14) by gathering estimates (4.15)—(4.16)—(4.17)—(4.18)—
(4.19) and observing that

d X
(o) g2l7 . < 10)* Vegallzs + [10)* ()2 gallZa < 11(v) g2l -

Step 4. Let us now prove (4.12), (4.11) is proven in a similar and simpler way. Recalling
the definition of (-,-) ,- in (1.19), we have

3
(0)°T(g1,92), 98) 5 = > ((©)* () *DEFIVIT (g1, o), ()G TIVEgs)

,[/:0 x,v

:ZTO+T1+T2+T3.

Thanks to (4.14) and the fact that || - |Lee < || - || g2, we get

1 ol
T 5 [ Mg gl h 0 galy

¥

1 2
S 1M 3 g1l g3l (0) (0)*2

S llgall 2 [1€0) g2l [l 9312 -

(3 ggl| s da

X
<U>3( 2+1)g3”L§(H7}’*)

AP

Using that 0,,I'(g1,92) = I'(0z,91,92) + I'(91, 0z, 92), Holder inequality and the fact that
from classical Sobolev embeddings, | - |lzs + || - [z < || - |1, estimate (4.14) yields

1
75 [ IV 102D () gl
1 X X
[ I g2 [0 ) Vol 102 F Vg, da
1 X X
S IMAVagll 22102 E D @) gall i a1V 2E DV ogsll 2

1 x « 2
+ ”M491HH§L%H<U>2(2+1)<U> va:QZHL%(Hg’*)”<U>2(2+1)V$QSHL%(H%’*)

S llgall 2 [1€0)* g2l l| 9312 -

()T, g3l gy da

Moreover, for the term 75, similarly, we have
L= /Ts <I|M%vzgluLg||<v>%+1<v>a92um,* - [MTVagi] 22| 0) 3 () Vagally
M52 )3 (0) P2 gal )1 0)FH V2l
< (HM%VingLmH<v>%“<v>“92HH;(H5,*>
I3 Vagn sz 102 7 (0)* Vagolly

1 ok ok
+ [[M% g1l g2zl (v) 2+1<U>O‘V§92HL§(HU{*)) [[{v) 2+1V§93HL%(H57*)

S llgulla-l[{v)* g2l || g3ll2 -
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Finally, for the term T3, we have
Ty S /T 3 (nM%viglung )% gall s .+ 1MV 111 (0)* Vogal s |

+ 1M TV o1 22 | (0) V2 g2 11 + ||M%gluLg||<v>av;°;gQHHg,*) IV3gsll2  da
< (\\M%vimu%u<v>agzuH;(Hg,*> + 17V 201 | 12 10) Vo | st

1 1
+ M IVagill 22 ll(0)*Vigall 2y + 1M g1l 221 (0)* Vg2l 2 a3 )HvigsHL;(Hg,*)
S llgulla [[{v)* g2l l| 93|24
which concludes the proof of (4.12).

Step 5. Proof of (4.13). The result is immediate using the definition of the norm of %/
given in (2.14) and (4.12). O

Proposition 4.3. Let g1, g2 be smooth enough functions and Gs a smooth enough vector
field, then

(4.20) <€UP(91792)7G3>
Proof of Proposition 4.3. We shall only prove that for any o € R, there holds
<<U>Q6UF(917 92)7 G3>L%

1 1
S (IM3gillz )l ) g2l a2, + M5 gn g 1) 95ll 2 ) Gl ...

from which we obtain the desired result by integrating in x and arguing as in Step 4 of
the proof of Proposition 4.2. We thus write I'(g1,92) = I'1(91,92) + -+ + I'5(g91, 92) as
n (4.6)—(4.10), and we estimate each term separately in the sequel. We shall use during
the proof the following equivalence:

e
() g2ll gz . < I1(0)* W) gallzz + () (v) 2T Vogall 2
+ 1) Vo(Vog2) 2z S 1(0)*2llprz,,

o < (lorll - lozllss + llorllssllgell2-) G .

(4.21)

Step 1. Term associated to I'y. Writing 6% = By0,, and observing that [%Uk,(?vi] =
—(0y; Bie) 0y, , we first get that for any k € {1,2, 3},

Vo D191, 92) = Oy, { (i * [VMG1]) 0, (Vorg2) | + 00, { Vi, (i % [VMa1]) 0,92 |
- 8%’ {(aij * [mgl]) (avakﬁ)awg2} - (8U¢Bk£)avg {(am [\/_91]) v]g2}

whence
<<U>avvkrl(917 92); G3,k>L2 =L+ I+ I3+ L,

where G'3 ), denotes the k-th component of Gf.
For the term Iy, we first make an integration by parts, then we use Lemma 4.1 and the
fact that |V, (0)?] < (0)2 71 () together with Cauchy-Schwarz inequality to obtain

L = = () (aij * VMg1]) 9y, (V,02), 90, Ga) ,
— ((ais * [VM1]) 00y (Vo 92), <>Q,Gg7k>L%

1 ary (O <« — ae (o
S 13l (100 190V 196G}, + (003100 9u(Vango) Gl )

1 S = 1
S IM g1z [[(0)* Vo (Vga)ll 2 (HVszlng +l(v)? 1G3”L%)-
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We argue in a similar fashion for the term Is. We first make an integration by parts and
write that V,, (aij * [V Mgl]) = By ((%laij * [V Mgl]), then we use Lemma 4.1 together
with [Bye| < (v)2 1!, thus we obtain

I = = ((0)* Byt (9,015 % [VMg1]) Bu,02, 00, G )
—<Bkz (&;eau [\/_91]) Du; 9200, (V) 7G3,k>L%

1 X - - X J_ -
S I3l ( (0000900l [9,Gial ), + (0030030 Vgl Gl , )
1 X i i X _
S I3l 03 )1 9ugall (19,Galliz +110) 3 Galrz ).
For the term I3, arguing similarly as above using also that |V, By < (0)211(0) 2, we get

Iy = <<U>a (aij * [\/Mgl]) (O, Bké)av4927aviG3,k>L%
<(aw [\/_91]) (Ov; Bree) 0y, 920, (v)?, G3,k>L%

¥

1 a2 ol ~
S \|M4gl||Lg<<<v> (0) 21 (0) Vg, [V, Gal)

1 X - - J_
S Mgy g2 () (v) 2 Vogall 2 (vaGslng + [[{v)2 lelng)-

We treat the term I in the same way, first performing an integration by parts and using
also that |0y, 0y, Bre| S ()2~ and (0)7|V,Gs| < |V,Gsl, it gives us

Iy = <<v>a (am [\/_gl]) v]g2(8lek€) ang?) k>
<(az] «[VMg]) 0 ) Ov; 92(0y; Bre) Oy, (v >Q7G3,k>L%
<<U> (aw [\/_91]) 0u; 92, (0, Ov, Bre) G'3, k>

L

SN

1 o . E iy, o . 211
suM4g1uL3(<<v> (0) 7 0) 3 [Vogal, [VoGl) , + ((0)(0) 7+ (v)3 vagz\,reswp)
1 a X i — L
S IM 3 g]| 2 [[ (@) (0) T Vgl 2 (vaGgHLg + [[(v)? 1G3HL3>'

Finally, gathering previous estimates, we get

(4.22) (@°9uTs(91,92),Gs) , S Mgl @) ol |Gl

Step 2. Term associated to I's. We write ﬁvk = Bj¢0y, so that [ﬁvk, Oy;) = — (0, Bre) O, ,
thus we get, for any k € {1,2,3},

6kaZ = _60 av- {(bz * [\/Mgl]) 92}
=00, { (b VMg1]) Vg2 = 00, { Vo (bi % [VMg1]) 92}
+ (Op; Bre) 0y, {(b s« [V Mg )92}

whence

<<v>avvkrz(91, 92), G3,k> = II; + Iy + IIs.
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For the term II;, we make an integration by parts and then use Lemma 2.4 together with
()2 |V,Gs| < |V,Gsl, which yields

IL = << ) (b *[\/_91]) vk927aU1G3k> <(b *[\/_91]) Vo 9200, (v) ,G3,k> )
S Mg ( () ()" Vo gl, rvveg,k% + (W) Vg2l (0)* Gl )

1 ol ~ ind o
< 1M 3|2 1) (0) 31 ¥ 000 12 (vaasnLg )3 1G3||Lg).

For the term IIy, we first make an integration by parts using that 6% (bi * [V Mgl]) =
By (avzbi * [V Mgl]), which yields

II, = <<U>aBkE (5wbz‘ * [\/Mgﬂ) g2, Oy, G3,k>L%
+ <BM (8wbi * [\/Mgl]) 920y, (V) GS,k>L% -

We now split into two cases according to the estimates of Lemma 4.1: If 0

A < v <1, using
that |V, ()] < ()27 we get

1 X X i ol ol J_
1L S 0¥z ({00 0) 1 0)Faal, [9,Gal) , + (00} Flgal (0)F 1, 1Gal) , )
1 ~ 7
S I3z 00 ) galz (I9,Gallog + 10} Gallzz),
and if —2 < v < 0 we get, using also that (v)? <1,

I S [ Mgl <<v>a<v>%‘“<v>%|gz|, VGal)

1 _
+ 1M 3 gy gy (o) g, [V G3\>
1 2 X
+ Mgyl () > 1+a\92\,rcgr>L
1 J_ J_
+ Mgy ()3 (0) 371 (0) 371 g, Gal)

1 o = -
S Mgl (0)* (v >'Y+192\|L2 (IVGallza + (02 2G|z )
1 2
+ 1M g1 [ | 0) 922 (IVGallzz + 1) 3 Glrz) -

We deal with the term II3 by first making an integration by parts and then using Lemma 2.4
together with |8y, Bre| < (v)% and |, Ov, Bre| S (v) 371

3 = — <(v>“ (bl- * [\/Mgﬂ) 92(0; Bie), 8U‘G3’k>L§
— <(b, * [\/Mgﬂ) 92(0u; Bie) Oy, (v)%, GB’k>L%
- <<v>o‘ (bi * [\/Mgl]) 92(00; 00, Bre), G3,k>

, which yields

L3
< Mi a/,\v+1 2 \vE. a/, \v+1 I-1 G
S IMAgillzz ( (0% 0) T g2l (0)2, [VoGal) , + ()% (0)7 [gal(v) 277, 1Gsl ),
< L o/, \y+1 V. 11
S IMAg |2 [[(0)* () gall 2 { IVoGallz + [{0)> ™ Gsllzz )
Finally, gathering previous estimates, we get

<<U>a6v112(91,92) G3>

S IM g 2 l1(0)  gall 2 NGl
(4.23)

+ M3 gl g 1(0) g2 22 |Gl .,



38 K. CARRAPATOSO, M. RACHID, AND I. TRISTANI

Step 8. Term associated to I'3. We write 61}1@ = B0, so that [%Uk,(?vi] = —(0y, Bre) Oy,
thus we get, for any k € {1,2,3},

Vo T'3(g1, 92) = V {(azg [\/_91]) v; v]92}
( \/_91 )Uz vj (vvk92) - ; Vi (al] [\/_91]) (% ng2
- % ( « [VMgi] ) (6%%‘)@592 + % (aij * [\/Mgﬂ) i (Ov; Bre)Ov, 92

whence N

((0)* V0, T3(g1, 92), G ) =TI + Ty + 11T + T,
We now bound each term separately using Lemma 4.1. For the term IIl;, using that
IB(v)v| < (v)21!, we first obtain,

1 i
III; = _5 << > (am [ gl]) v;0 v; (vvkg2)aG3,k>L%
1 1411S S
SIM gl (@) @) 3 V(Yo g2)|,1Ganl)

1 < S 2
SIM gl 2 [(0)* Vo (Vog2) |2 [ (0) 2 Gall 2.

Using also that |By| < (v)2 7!, we then get
1
HIQ = —5 <<U>0‘BM (81)[@@']' * [\/ Mgl]) Uiangg, GB’k>L%
1 1 1418
S Mgl (@) ()3 (w) 3 Ve, 1Gsl)

1 141e 1
SIM g2 (o) (@) 2 Vogall 2 [ (0) 2 T Gl 2.
Since 6%%’ = By;, we obtain
1
My = 5 () (i * [VM01]) Buado, 2, G,
l ~
Tz ((0)* ()2 [Vogel, 1Gal)
1 X — 2
SIM g2 (o) ()2 Vogal 2 [ (0) 2T Gl 2.
Using now that |V, Bpe| < (0)271(0)2 and (0)2|V,g2| < [Vegal|, we thus get
1
Iy =3 <<U>a (aij * [V Mgl]) 0; Oy, BreOy, 92, GS,k>L2
1 ol x ol
S I gl () ()2 ()37 (0) 2 Vogal, 1Gal)

1 11 o
S IMagy|| 2 [[(0)*(v) 2T Vagall 22 [[(0) 2+ Gs | 2.

Finally, gathering previous estimates, we get

21)  (0)"ViTalor ). Gs ), S 100zl )2l |Gl

Step 4. Term associated to I'y. Writing 6% = By¢0,, and observing that [6%,&%] =
—(0y; Bre) 0y, we first get, for any k € {1,2, 3},

VT4 = iﬁvk {(aij * [\/Mgﬂ) Uz‘vj92}
- i (aij * [\/Mgl]) vivjﬁykgg + i%vk (aij * [\/Mgﬂ) ViV g2
(am [\/_gl]) Vg (Uivj)QZ

whence

<<’U>avvkr4(gl,g2), G3,k> =1V +1Vy +1V3.
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We now bound each term separately using Lemma 2.4. For the term IV, we first obtain
Vi = % <(U>a (aij * [\/Mgl]) Uivjﬁvkg% G37k>L%
< IME gz (@) ) Va2l [Gal)
SN g2l 0)* ()2 Vgl 2| (0) 2 G 2.
For the term IV, we also use that |By| < (v)2 1! to obtain
IVy = i <<U>O‘BM (Bwaij * [\/Mgl]) V;V;92, GB’k>Lg
S IMAgnllzg (40)° ()2 ) gl 1G5,
< Mgy 2| (w)* (0) 2 a2 | (0) 3 G 2.

For the last term IV3, we write ﬁvk (vivj) = v; B + v;j By, and thus we get

= 0 o) )

1 x
S Mgl (o) 0) 2 ()3 gal, 1Gsl)

1 X
S IMEgy] g2 [[€0)* (0) 2 g2l 22 [1(v) 2 Gl 2.

Finally, gathering previous estimates we get

(25)  {(0)°VLal91,92),Gs) , S 1M i1z 10) 92llz, |Gl

Step 5. Term associated to I's. We write 61};@ = Bj¢0y, so that [%k,avi] = —(0v, Bre) Oy, ,
thus we get, for any k € {1,2,3},

Vo L5(g1,92) = _%6% {(aii * [\/Mgl]) 92}

= —% (an’ * [mgl]) 6vkg2 Vo, (a” [\/_91])

1
2
whence

<<U>a%vkr5(91, 92), G3,k>L% =Vi+ Vs

We now bound each term separately using Lemma 2.4. For the term Vi, we get
1
Vi = =2 (0" (ais x [VMa1]) Vo2, G
1
S M3 gz () (0)+2 |V, ], \Gs,kr>L2

1 Tl 2
SIMag |2 [[(0)* (W) 2 Vagall 2 1) 2 Gs|l 12,

and, for the term Vg, we use |Bge| < ()2 to deduce

Vo = _% <<U>aBkZ (&waii * [mgl]) 92; GB,k>L%

1 2
S Mgl (@) )2+ @) gal, Gl

1 2
SIM g1l 2 ll{0)* () g2l 2| (0) 2 Gl 2.

Finally, gathering previous estimates we get

(26)  (0)"ViTslor ). Gs) , S M0zl )2l |Gl

Step 6. Proof of (4.21). We gather estimates (4.22)—(4.23)—(4.24)—(4.25)—(4.26). O



40 K. CARRAPATOSO, M. RACHID, AND I. TRISTANI

Proposition 4.4. Let g1, g2 be smooth enough functions and Gs a smooth enough vector

field, then

<%xr(91792),G3>%
(4.27) _ _
S (lo1ll 2 1V2gslls + [Vagll 2 llgallag + ol 2 llgallas ) 1G]l -

Proof of Proposition 4.4. We shall first prove that for any o € R, there holds
<<U>a6mr(917 92), G3>L%

1 = 1 X
< (1M g1ll 2 1) Vgl . + 1M Vgl |00 003 gy ) Gl

We thus write I'(g1, g2) = I'1(91,92) + -+ + I'5(g91,92) as in (4.6)—(4.10), and we estimate
each term separately in the sequel. The desired result (4.27) is then obtained by inte-
grating in x, the proof is given in Step 7 because it differs from Step 4 of the proof of
Proposition 4.2.

(4.28)

Step 1. Term associated to I'y. Writing 6% = By¢0y,, observing that [6%73%-] =
—(0Oy; Bie)0z, and using that V, (aij * [\/Mgl]) = By (aij * [\/M&wgl]), we first get
that for any k € {1,2,3},

6:1:,6111(91%]2) {(alj [\/_91]) ( :vkg2)} + avi {Bkﬁ (am [\/_3ng1]) v]g2}
- avi {(aij * [\/Mgl]) (8vak£)arg92} - (8U¢Bk£) (am [\/_81191]) v; 92
— (90 Bye) (i * [VM1]) Dy, (9r,92).

whence

<<U>a6xkfl(91,92), Gs,k>L2 =h+h+I3+1L+]1s

We can then estimate each term separately using Lemma 4.1 and arguing similarly as in
Step 1 of the proof of Proposition 4.3, which we brief explain below. N
For the term I;, we make an integration by parts and use the fact that |V, (v)®| <

(1)) to obtain
L= = () (aij * VMg1]) 90, (Var02). 00, G ,
= ((aij * VM g1]) 9y, (V5,920 <v>“,G3,k>Lg

1 RS = 2
< 1M1l 1) ¥ (Tago) 2 (nvaguLg T u<v>z+1G3uLg).

In a similar way, for the term I, we make an integration by parts and use that |Byg| <

(v)2*1, which yields
Iy = — <<U>O‘Bkz (aij * [maxggl]) O, 92, 8v,~G3,k>L%
= ()" Bue (ai * [VAID5,]) 01,0200, ()" G ),
S Mgl 10007 (003 Dol (I9,Gall + 10} Gl ).
For the term I3, arguing as above and using also that |VyBye| < (0)271(v) 2, we get
Iy = ((0)7 (as; * [VMar]) (0o, Be), 92,00 G ),
<(aw [\/_91]) (Ov; Bro) Oy 9200, (0) GB,k>L%

1 Y11 = ol
S Mgz [1(0) ()2 Vol 2 (HVuGsHLg + H<U>;{+1G3HL%)-



REGULARIZATION AND HYDRODYNAMICAL LIMIT FOR THE LANDAU EQUATION 41

For the term I, we use that |V,Bye| < (0)7! to get

L= = ()7 (a * [VAI92,01]) (00 Br)ds, 92, G,

1 e X
S M3V ag1 [ 2]l (0) ()2 Voo 12 [1(0) 31 G| 2.

Performing an integration by parts in the term I5, we first obtain
Iy = = ()" (a1 * [VM1]) (9 Bre)dr, (0n,92), G )
= << ) (aw [\/_91]) (5vine)3x¢gz,aij3,k>L%
+ <<U>a (aij * [\/Mgl]) (Ou; Ov; Brt) O, 92, G3,k>L%
+ (a1 * [VM01)) (90 Bro)(0r,92)00, ()%, G )
+ <<U>a (bi * [\/Mgﬂ) (Ov; Bre) Oz, g2, G3,k>L%

Using Lemmas 2.4 and 4.1 together with |0, Bre| < (1))% and |0y, O, Bre| S (1)):2171, we
hence obtain

1 a =
Is S M5z ((0)° (0) Va9l VGl )
1
+ M1z () (0) 2 (0)3 Vgl Gal)
1 1\
+ Mgz (@) (0) 3 (0)VagalIGal)

1 a
+ M5 g1 () (0) (0)3 | Vagal|Gal)

1 TS = 7
S Mgl 2 ll(v)* (v) 2 Vaga| 2 (”VUG?’HL% + H<v>2“G3HLg)-
Finally, gathering previous estimates, we get

(429) <<U>a€mrl(91, 92), G3>L%

1 =~ 1 Y41
S (1M 1)l 211 (0)*Vagallmy . + 1M5 Vg1 22 [1(0)* () 1 Vogollzz ) |1 Gllzzy., -

Step 2. Term associated to I'y. Similarly as for I'y, we have that for any &k € {1, 2, 3}

vxkr2 - _§xkav~ {(bz * [mgl]) 92}

{(b * [\/_91]) kuQ} — Oy, {Bké (bi * [\/Maugl]) 92}
+ (Ov, Bre) (bi * [\/Mgﬂ) 0z,92 + (Ov, Bre) (bi * [\/M(?ngl]) g2.

We can then estimate each term separately using Lemma 4.1 and arguing as in Step 2 of
the proof of Proposition 4.3, which yields

(430 <<U>a€xr2(91, 92), G3>L%

1 ~ 1
S (1M g1 2 ll0) Vagall gy , + IM5Vagill 2| (0) @) 202112 ) | Gsll .-

Step 3. Term associated to I's. As previously, we first get that for any k € {1, 2,3}

Vo I's = =V, {(aij * [\/Mgﬂ) Uiang2}

(au [\/_91]) ;O (Var92) — Bre (aij * [\/Maxggl]) v;Oy; g2
+ (a@'j * [\/Mgl]) i (Oy; Bre) Oz, go-
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We can then estimate each term separately using Lemma 4.1 and arguing as in Step 3 of
the proof of Proposition 4.3, which yields

<(v>a@mf3(91, 92), G3>L%

(4.31) ) N ) N
S (M1 1) Vagall gy, + M5 Vagr| 2]l (0)* ()2 Vogsl| 2 ) [1Gsll .

Step 4. Term associated to T'y. As previously, we first get that for any k € {1,2,3},
- 1~
Ve L4 = vak {(aij * [V Mgl]) Uing2}
1 ~ 1
= Z (aij * [\/ Mgl]) Uﬂ)jvxkgg + ZBM (aij * [\/ Mawgl]) VU5 g2.-

We can then estimate each term separately using Lemma 2.4 and arguing as in Step 4 of
the proof of Proposition 4.3, which yields

()" V.Tal01.92),Ga)

(4.32) ) 3 )
S (1M3 g1 12 1(0)*Vagall gy . + 1M Vagn 12 1) ()2 g0l 12 ) G 1y .-

Step 5. Term associated to I's. As previously, we first get that for any k € {1, 2,3},

611;5 = —%61«,@ {(aii * [\/Mgﬂ) 92}
= —% (an' * [\/Mgl]) Vg2 — %Bu (an' * [\/Mamggl]) g2.

We can then estimate each term separately using Lemma 2.4 and arguing as in Step 5 of
the proof of Proposition 4.3, which yields

<(v>o‘§xfs(91, 92); G3>L%

(4.33) 1 3 1
S (M3 g1 12211 (0)* Vool g, + 1M 3 Vg 1211 (0)*(0) 20112 ) Gl

Step 6. Proof of (4.28). We gather estimates (4.29)—(4.30)—(4.31)—(4.32)—(4.33).
Step 7. Proof of (4.27). We first write

3
<er(91, 92), G3> => <<U>(3_Z)(%+1)Vﬁ;vxr(91, 92), <U>(3_Z)(%+1)V;G3>

z L2

ZZO x,v

::T0+T1+T2+T3

and recall that 0,,I'(g1, 92) = I'(02,91, 92) +T'(91, 0z,92) and that V, and V., commute. In
the remainder of the proof, we shall use (4.28) as well as some classical Sobolev embeddings
as in Step 4 of the proof of Proposition 4.2 without no further mention. We here point out
that in estimate (4.28), it is important to keep ||(v>°‘(v>:2l+lgg\|H5 _ in our estimate instead
of bounding this term by [|(v)®g2| 52 and also that to close our estimate, we widely use

that the weights in our functional spaces depend on the order of the derivatives in zx.
For Ty, we have:

1 ol ad
Ty S <HM491HH3L%||<v>3(2+1)Vx92||L§(H%,*)

1 ol ok ol
MVl |0 00 gl sz ) 10" DGally .

S (lgillo [Vagslls + gl lgallas ) 1Gsllas
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For T1, we have:
71 % (I3 g1z 103DV T,
+ 1M TV |22 1) E DVl a2 )||< P EDYLGall 2 2y
+ (uM%vxmuH;Lgu<v>2<%+1>vx<<v>%‘“gﬂnmg,*)

1
+ IM3V2g1 ] a2z (0 E D 0) 2 gl gy )H( REARAPTEr PP

S (g2 1Veg2ll25 + llgill - llg2llas ) Gl -

For T5, we have:
T < (M3 TV (Vego) |
2 S IM3gillgzrzl(v) +(Veg2)ll 2 )
1 Y41 =
FIM3Vagillmrz(0) 2" Va(Vaga) )

1 X — X
+ IM3V2g1] 222 || (v) 2+1Vz92”H§(H57*)) 1) 2 V2G| 2 (a2

1 ol 2
+ (Mgl ) V(0 ) .
1 X X
+ |’M4v32591”H;L%H<U>2+1v$(<v> 2+192)HH;(H7}’*)
1 y
+ ”M“Vigl”LgL%”( )2 +1< > 92”H2 (H:.) )H<U>2+1viG3HL§(H7}7*)

S (lgillo [Vagsllos + g1l gz llas ) 1Gsllas

For T3, we have:

1 V. I v
R (T P L AT HIEA A PR LAV
+ ||M4v$91||L2L2||V (V 192)||H2 H} )

IV 1202 Dl i ) ) 195G sz,

- (nM%vzglquLguvi<<v>%“g2>uLg<Hg,*> + 1MV g1 1112 1V 2 (0D E 2 02) g ey
+ M3 g1l 12 22 1V2 (0) 2 g2) |2y
+ 1M TVAg 222 10} g2l izt )uviaguL;(Hg,*)
S (gl 2 1V2g2llz1 + llgr 1l 192 llzs + 1M5Vag1 [l 222211 (0) 3 gall 2oy ) Gl -
We conclude the proof by gathering previous estimates and observing that

1 Y41 d
1M3% 2010 22l (0)2 ™ gall 2 ) S IVegnll 2 llg2 ]l 24 -

Proposition 4.5. For any smooth enough functions g1 and go there holds
IT(g1, 92)ll27 S llgall 2 [l g2llzs + llg1llas llg2]l2 -
Proof. We shall only prove that for any o € R, there holds

1 1
(4.34) 1{0)*T(g1, 92)ll 2 S 1M T gillzz () g2l + IMEgallmy, 1) g2l 2
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from which we obtain the desired result by integrating in x and arguing as in Step 4 of
the proof of Proposition 4.2.

Starting from the formulation (2.2) of I'(g1, g2), we perform the 0,, derivative in the
first two terms, which gives

1 1
I'(g1,92) = (aij * [\/Mgl]) {&;iangz — 00y, g2 + ZvinQQ} - ([ian‘ + C] * [\/Mgﬂ) g2

=:T1(g1,92) + 291, 92) + T3(91, 92) + Talg1. 92),
and we estimate each term separately in the sequel.

The terms Fg(gl, g2) and Fg(gl, g2) can be easily estimated thanks to Lemma 4.1. In-
deed, we have

1) Ta(g1, 92)z2 = [(0) (@i * [VDMg1]) 0o, 0012

1 11 1
S IM g2 [[(0)* ()2 Vogallz S M7 g1llall(w)* g2l g2 .
and also

100) Fslon, 9l z = 100 (aiy % [VATa)) wivgnllze

1 1
SIM g1 2]l (0)* (0) 2 g2l 22 S 1M1l 2211 (v)* 02l 12 .-

Moreover, we can easily estimate f4(g1, g2) thanks to Lemma 2.4. We have
1
1) (ais * [VR1]) gellz < 1M ¥ g3 1) (o) g2 2

1
S IME gz l(v)* g2l g2 ,

as well as, if v > 0,
() (e [VMa]) gallzz S M7 gull 2| (0)* () gl 2
< Mg 2l (w)* gall e
and, if —2 <y <0, since || - HL4 N HH1 we have
1) (e [VMa1]) gallzz S M7 gl | (0)* () gl .2
S IM3S gl [l(0) g2l 2.

We now prove (4.34) for I'1(g1,g2). When |v] < 1, the result is straightforward using
Lemma 2.4. Consider now |v| > 1. We first write

and
v; Uk

8viang2 ‘ ‘ ‘ ‘8%8@]_92 + (Id P, ) Vv(angz),
thus we obtain

v; U Vi v Vi U,
avia’vaQ ‘ ‘ ‘ k‘avk (ﬁﬁavg.QQ) + m’?k’avk ((Id - PU)]ngz)

+ (Id - Pv)ivv <|UTJ| %ang) + (Id - Pv)ivv ((Id - Pv)jvvg2) .
Thanks to a straightforward computation, we remark that
Vi Uy
(Id — P,);V, (—J—&, 92>
CINCI.

_ Y v (Id — P,)iVy(0y,92) + Oy, (%ﬂ) (1 - &%’ﬁ) Doy o

~ olo]

V; Uk Vi Vg Vi Vj (Vg Uy
——0 < ’ —0 gz) —L (——3 0 gz).
o] Jo] ™ \Jo] [o] ol To] \Jof o]

and
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Therefore, we get

() T2 (g1,92)(0) = (0)° (asy = (VAT 91]) |—ﬂ ( 8%8%92)

|

)T
+ () (ai * [VMgy)) ﬂ—fad — )iV (0,92)
)

Uk Vg
[o] [ |

(

( ol Tl

+0)" (g [VET]) 0 ({475 (1= T ) D
0)* (ai +

o] v o] [v]

=L+L+3+1+Is.

We can now estimate each of these terms using Lemma 2.4 and Lemma 4.1. We obtain
illze < 1M gilz 1(0)® (0) Vo Vagallzz S M3 gll 2 ll(0)goll .
1220122 < M43 gyl 12 | (0)* (0) Vo [(1d = P,)Vagalllzz < M g1zl (0) 2l 2 .
a1z < M3 gy g2 | (0)* (0)*1(0d — PV (Vuga)llze S M7 grllzll(0) g2l 2 .

1 1
Hallzz S 1M 2 g1l g2 (o) () Vogall 2 S 1M 7gal|2ll(v)* g2l 2 .
and finally
1 1
125122 S (1M 7 g1 22 | {0)* (v) 2 (1d = P,) Vo [(Id = Py)Vogolllz S 1M 7 g1 22 {0)* g2l 2 .-

We conclude the proof of (4.34) by gathering previous estimates. O

4.2. Well-posedness for the Landau equation. In this section, we shall prove the
well-posedness part of Theorem 1.1.

Proof of Theorem 1.1-(i). Let ¢° be a solution to (1.7) associated to g5, € 2 satisfy-
ing (1.21). Notice that it implies that g5, € (Ker A.)* and thus ¢°(t) € (Ker A.)* for
all £ > 0 from the conservation laws (1.4). We shall use the norm || - ||| 2~ (and the associ-
ated inner product ((-,-)) ,-) defined in (3.4) during the proof of Proposition 3.3, in order
to establish below an a priori estimate for ¢°.

Let o € (0,00) be fixed and compute

1 d £ &€ 1 £ &€ £
5l = (Aeg® 07+ < (T, 9,6

For the linear part, estimate (3.1) in Proposition 3.3 already gives us
K 1L
(Aeg® 97N o < —0llg"lI% — wllg°I1% — = l(g°) [
For the nonlinear part, from (4.1), we get

(C(o%, %), 67 = 6 (T(o%, 5°) >J+i< ) Vile)h)

1=0 v
+(1-9) <v3r<g ), Vi(oF)* >
Thanks to (4.12) in Proposition 4.2, we have
€ € L
(T(g",9%): (%) >%

and also from (4.11), since the additional weights involved in the spaces 2~ and %} are
greater than 1,

1
S gl llg™ N2 [1(g7)~ Ml

(VAP 9°), V39 ) |, SNl gl 1 (9°) s

T,v
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Similarly, (4.11) also implies that

S Mgl llg” Nl 1(97) s

22: (Vil(g", "), Vilg)*)

L2
i=0 e
In summary, and recalling that || - |2~ and || - ||| 2~ are equivalent, we then have
1 € € € c € € e\L
(4.35) - (0% 9), 9D o < Mgl gl 11 (o™) g

for some constant C' > 0.
Denoting e, : t — €7t and ¢ = e, ¢°, we therefore obtain
1d K C
S5 llgs % < =rllogllis — = l65) 13 + =l ll2 g5l 1l (g5)
2dt € €

Thanks to Young’s inequality we write

| -

1
|

C K 1
;Hgi\lgﬂlgill%ll(gi) o < Cllgs % lgs 117, + 2—62H(g§) 1%

which then gives the following a priori estimate

1d 2 2 2 k 12
(4.36) s alloall < = (k= Cllga %) 953 — o li(os) 13-

At least formally, from this differential inequality we easily obtain that if ||g5, || 2 is
small enough then ¢° satisfies the uniform in time estimate (1.22). The proof of existence
and uniqueness of a solution ¢° to (1.7) satisfying (1.22) for small data ||¢5, || 2= < no follows
a standard iterative scheme that uses estimate (4.36) (see for example [13]). O

4.3. Regularity for the Landau equation. In this part, we provide a result of regu-
larization for the solutions to the nonlinear Landau equation which is quantified in time,
namely the regularization estimate of Theorem 1.1. Notice here that if we only wanted to
handle the case € = 1, we could have used the triple norm introduced in [31] (see [13] for
the Landau equation) which is dissipative for the whole linearized operator and equivalent
to the usual one. Here, to handle the e-dependencies, we have to use our hypocoercive
norm defined in Proposition 3.3 and separate carefully the behaviors of microscopic and
macroscopic parts of the solution. Some additional remainder terms coming from the fact
that the transport operator and the projector 7 onto the kernel of L (see (1.12)) do not
commute have to be treated. The computations are thus much more intricate.

Proof of Theorem 1.1-(ii). Let ¢g° be a global solution to (1.7) associated to the initial
data g5, € 2" satisfying (1.21), with ||¢5,|| 2~ < no, provided by Theorem 1.1-(i). As in the
proof of Theorem 1.1-(i), we shall only obtain an a priori estimate implying the desired
regularization estimates.

We recall that the spaces %1 and %27 are defined in (1.20)-(2.12) and we shall prove
that for any t € (0,1], one has

1 1
(4.37) lg@llan < 7 g5l and o)z < 5575 I9inll2

which readily implies that, for all ¢ > 0, there holds

et e
€ t 12 < e ——— 6 2 d € t ¥ E < —_—
Io° Ol S o ol snd (O 5
by using the exponential decay in £  given by Theorem 1.1-(i) and hence concludes the
proof of Theorem 1.1-(ii). We split the proof of (4.37) into several steps. We shall use
without no further mention that since 7 € %(2, %;), we have ||¢° || < l¢°]l 2~ +1(¢°)* || #
fori=1,2.

—ot

195l 2

Step 1. We consider the same functional % as defined in Step 1 of Proposition 3.4, which
we recall is given by

(438) 2%(t,%) = o711+ ont (I90(07) 1% + K[ (0) (%) %)
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+east’ (Vog® Vag®) , +ast® (IIVag 1% + KI(0) 2 Vag 1% )

with constants K > 0 and 0 < a3 < ag < a; < 1 s0 that ag < \/ajaz. We recall that the
constant K > 0 is chosen large enough in the proof of Proposition 3.4. The constants
will be chosen small enough during the proof here. We also recall that for any ¢ € (0, 1],
one has the lower bounds

(4.39) tlg*l% S %(t.g°) and £|g°|%: < %(t,9).

~

Step 2. Thanks to the proof of Theorem 1.1-(i) we already have

1d 1> € 1> 1 € 1> €
5l = (A, %) o + - (T(6°, 0,07

K 1
<= (k= Cllg®lI%) lg°1 = 55511 °) 135

for some constants «,C > 0.

(4.40)

Step 3. We first observe that since 7I'(¢%, ¢°) = 0, (¢°)* satisfies the equation

1
Ay (g°)t = (Id — m)Acg + gf(ge,ge).
We then compute

L RN F G B + 196 5 )

= K ()31 - m)Acg®, (0) 7 (g9) 1) |+ (Vo(ld = m)Acg®, Vi(g)*)

K 1 /= ~
0 +1 +1 e\ L - e € e\L
+ = (@) ). )2 ) 2 (VoL (67, 09). Valg) ),
=01 + 1>+ I3+ 14
From (3.17) in the proof of Proposition 3.4, we already know that
K1 C ad
L+l <=Zl60) 15+ 5 II(QE)LH?/1 + — 10" oa [ Vag®ll 2
for some constants x1,C > 0. Thanks to (4.12) in Proposition 4.2, we have
1 1
I 5 Zlgllllv)2 T g ll(0) 2 (0% Ml S Zllg"ll 197 22 1 (9%) s
Moreover, thanks to (4.20) in Proposition 4.3, we have
1 ~ 1
I S Zllg 2 9719211V (95) llan < gl 97l 1 (9°) s
1 i 1 1
S g l1%11(o7) o + Zllg Il 11 (97) s
We therefore obtain, using that ||kl 2 < ||h||2,
1d 2 1L S 1L
SFTRAGULORNCD H%g +11Vu(g) 1%}
K1 =~
(4.41) < -2l 15 + g *) I, + —\|(g€)l||%\|vzgs||%
c
+ — gl 19l 197 s + —ngllng(gs)lH?yg-
Step 4. We compute
d _ /o e\ © € o~ e\ © €
o <va Veg® > = <Vu(Aag ): Vayg >J + <Vx(Aag ): Vg >J
/s € €\ T € /s € €\ T
+ - <VUF(9 19°); Vag >J +2 <V$F(9 197), Vg >x

= J1+ Jo+ J3 + J4.
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Thanks to (3.20) in Proposition 3.4, we already have
C ~ 1 ~
S+ 92 < S0 s Vag®llon — —lIVag"lI%

fo some constant C' > 0. For the term J3, estimate (4.20) in Proposition 4.3 yields

1 ~
I3 S Zllo Nl lg” Nl 1V a9l

1 - 1 e
S 115 IVagllon + 9712 1) 1921 Vag®llas-

Moreover, for the term Jy, estimate (4.27) in Proposition 4.4 gives us
1 ~ ~ ~
TS (1912 1 V267 llas + 1V2g" 126 15 + 9% 11219 12 ) V06" l1a4
1 - -
Sz (19712 1V29"ll24 + 1V29" 1216 15 + 1% 11219 122 ) N9 1

1 - - N ~

S 5<H95H%5HW96H% F g 12 1Vag®llanll(97) " llzs + 197112 Vg™l 219" |24
+ 19121V ag? 2 1(97) llas + 11(97) " lla5 Vg7 |11 (97) Il 2
19715 + 197 1% 11(9%) Nl + ||98H3y||(95)LH312>-

Putting together previous estimates, we get

d

T <va Veg® >

~ C -~ ~
< _EHV:BQ&H?Z{ + 5lIVagllall(e 9% ) llas + —H(ge)lll%HVngII%H(ge)lII%
(4.42) ¢ 15 <~ C eyL €112 15 <~ c
+ Mol (1Vag™ll 1(9%) " e + o713 + g% ll24 Vg lla5

1 V. 1 1
+ gl 1 (g7) Nae + 1Veg™llan ll(97) " la + (g7 H%)

Step 5. We compute

CL|Q_,

- {IV2g7 1% + K11 (0) 3 Va7 }

- <%<A€g ). Vag®) , + K ()

<V (. 9°), Vag®)
—.R1+R2+R3+R4.

DN | =

o(Aeg), (0)3Vag")

\Y
€< W) IVLI(g7, ), (0)2Vag")

From (3.23) in the proof of Proposition 3.4, we already know that

R2 = C =
Rl +R2 < _€_2Hv$g6Hg]1 + €_2Hv$g€”%{

for some constants k2, C' > 0. Thanks to (4.27) in Proposition 4.4 for the term R3 (and a
slight adaptation of it for the term Ry), we obtain

1 - - -
Ry + RS - (Hggllgzllvxgall% +IVag®lla g%z + ||98H3z||g€\l%) IVag® Il
1 S o~ S 1
N g<||g€||3&’||vxg€”% +IVagllz g2 + IVag®ll 2 1(97)~ |

+llg7lI% + HgsH%H(ge)lH%) IVaglla -



REGULARIZATION AND HYDRODYNAMICAL LIMIT FOR THE LANDAU EQUATION 49

We therefore obtain

5 = {I9as %+ KI0) 3 VI )
(4.43) < —;;st\\%/l + g\\ﬁxge\@r + gH(ge)lH%ngeﬂgzwxgeﬂ%
+ D1 (1920711007 s+ 107 + 19567l 0% 35
Step 6. Conclusion. Gathering estimates (4.40)—(4.41)—(4.42)—(4.43) and using that

sup ||g°(t)]| 2z < mo from Theorem 1.1-(i), we then obtain
t=0

d 1
G 2(t.97) < = (5 = Ong = Cant®mo) |lg° I, — 5 (k= Cont = Con) | (5°) 1%,

dt
t COélt =~
~ 5 (min = Castng — Ceanmo) (g >H|% 195 s [ Vg
COélt ~ ~
+ ——mollg" 1 [1(9°) 125 + 2ea2t<vvg€,vxg€>

1 (a2 — Oy — Cagt) || Vg3 Vao© a4 1(9°) Il

1 1
+ Caat?[|(g) |4 1 Vg |21 (97) | 2

(

— 1% (r2a3 — Ceagmo) [Vag® |3 + Ceast®||(97) o IVasd® | 21V og 124
+ Czagt™no ([Vag® 2 [Vas®llon + 67194 Ve ls + [ Vag®llo1 1 (9% 122 ) -

+ Caot?no ( |Vag®ll 2 11(9°) Nlas + 119124 [ Vag® |24

+ 9% 21 1(9%) e + ||ng€\|%||(g€)L||%>

We now use Young’s inequality to write

COélt

VeIl 2 11(9°) 124

C(Xlt s
mollg® e [1(97)~ [l

CO{QtQ
Vg7l 11(9°) s

C??oathIIgeH%llﬁxgeH%
Cnoczt® (g% o4 1 (9 125
C t2 6 £ £ J_
N0t ||V g® |21 1(9%) || 2
Cenoast®|| g%l | Va4

Cenpast®|Vag o [1(9%) 1,
Ceasnot®(|Vag® || 2 | Vag®llo
2eqat ‘<6zge, 6v96>3{

as well as
Cart®|Vag® |2 19 a1 (9°) [l
Ceast®|Vag® | 21 (9%) o | Voo |24

t2HVzg 1% + H( ) 11
“i:;tu( )i||§,,2+0a1tnollga\|311
%ﬁumgfu%ﬁ + CO‘—E%H(gg)lH%/Q
B Vag 13 + Ol
S g >i|r%y2+06n8t3/2“—%“95|'?%
ﬁ2a3t 1Vag®1%, +Cn3t—2|!( )%,
K2a3t3\\v$g Hgyl + Ce 770043t3H9 ”6’/1
“20‘3t IV29° 115 + Cmpast®[[(9°) 113
Coz3770t3\|vz9 1%+ aanot® [ Vag® 5

a9 =~
= IVl + Cone®llg7 |l

< Cast3 [ Vog |2 11(0°) 112, + Cant ]| (5) 113,
< O2a3t3(| Voo |5 1(65) 113, +

/{2043
t3Hng 1% -
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We thus obtain

d
&%g(t, g°) < — </{ — C’ng — Casgt®ny — Cane? — Cozltng

a3 2 2 3/20‘% 2,2 3\ .£12
~Cc 2 not—Csnot a—l—Cs noast” |11g°117,

1 o
L ( ~Cont - ca—;> o) 13

€
t (k1o 9 1o%
— —2( — Ceastny — Ceagng — C—=
€ 2 Qa3

- OB Oetafagt® - O, ) 1(6°) 1By
-2 (%~ Cag — Cagt - Cagmt) [V’ s
— 4 <% — Ceagnp — Ca3770) IVag°11%
+ 08 (a2 + ) 1(6°) 1% Vg1

We now choose a; =1, ag = 77%, and ag = 77%, with 1 € (0,1) small enough as well as 7
small enough, so that we deduce, for all ¢ € [0, 1],
Lo (t,9°) < —E/H( VS — w93 — & —H( VI, — K IVeg Iy — K Vag® |
dt579\€2 a g |l W =9l — z9 [l
1L
+ CP(IVag® 1% 1(9) 112,

for some constants x’, C > 0. Integrating in time the last inequality, we hence obtain that
for any ¢ € [0, 1], there holds

K! t t
%(tg) + 5 [ 1 s+ [ g1 s
Kt eyL2 LT AR TER
+ 5 [ sl B s+ 1 [ sV G ds ' [Tt B ds
t ~
<%0 +C [ 19ag" o) 3 ds

_ 1 st
< %(0) + 2 ( sup tguvmgfn%g) = [ 1) 3 ds

te(0,1]

< U(0) + Ce” ( s t?’\\@xge\\%)

tel0,1

where we have used that I 1(g°)*113, ds < n3 from Theorem 1.1-(i) and we have de-
noted %.(0) = %-(0,45,). Since

<Sup ||g€(t)||?‘;?f> + < sup fH(ge(f))LH?yl) +e? ( sup t?’H%mge(t)H?%) S sup %(t,9°)
te[0,1] t€[0,1] t€[0,1] t€0,1]
if ny > 0 is small enough (independently of ), we finally obtain

tlg" (O3, < %(0) = llgall% < lloill% vt € [0,1]

and
llg" (O % S 2%(0) = llgall% < lgial’ ¥t €[0,1],
which gives estimates (4.37) and concludes the proof. O
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5. REFINED SEMIGROUP ESTIMATES ON THE LINEARIZED OPERATOR

In this part, we go back to the linearized problem and give some new and refined esti-
mates on it. The first and second subsections are dedicated to the introduction of a nice
splitting of the linearized operator A, coming from [11, 13] and to the proof of dissipativity,
regularization and boundedness estimates. Roughly speaking, the linearized operator A
splits into two parts: A, = A, + B, the first part A, having some good regularizing prop-
erties, the second one B. having some nice dissipativity (and also regularizing) properties.
It is worth mentioning that the regularization estimates on B, that we develop are sharp
(it was not the case in [13] where the authors did not intend to obtain optimal regulariza-
tion estimates on B;) and only the case ¢ = 1 was treated in [13]. As already mentioned,
from those properties and Duhamel formula, we can give a new proof of Theorem 3.1.
More importantly, Duhamel formula applied with this splitting will be used to prove our
hydrodynamical limit theorem in Section 6.

In the next three subsections of the present section, we study the semigroup U®(t)
associated with A, from another point of view which is based on a careful spectral analysis
carried out in Fourier in = of Ay in [60], it in particular allows us to give a decomposition
of the semigroup U¢(t), study its limit as € goes to 0 and give another type of estimates
on it.

5.1. Splitting of the operator. We now introduce a splitting of the full linearized op-
erator A.. Let x € C2°(R) be a smooth cutoff function such that 0 < x < 1, x =1 on
[-1/2,1/2] and x = 0 on R\ [~1,1], consider positive constants R, R > 0 and define
xe(v) = x(Jv|/R) as well as

(5.1) m2(v) = i|B(v)v|2 - %vv - [BT()B()] + Rxz(v)

where B(v) is defined in (2.5). Recalling the formulation of L in (2.8), we then decom-
pose A, = eigL — %v -V, as

(5.2) A=A+ B, with A, := %2.»4 and B, := 6—128 — év -V

where

(5.3) Af = —{— (aij * \/Mf) VU5 + (aii * \/Mf) + (C * \/Mf)}\/ﬂ + Rxgf
= (L2 + Rxp)f

and

(5.4) Bf = =V;Vyf —m’(v)f = (L1 — Rxp)f.

Let us now give a lemma providing estimates on m and its derivatives. We fix

if —2 <1
(5.5) o1 = TOO 1 <7
N if v =-2

Lemma 5.1. Let0 < o < 07.

(i) There are Ry and Ry large enough so that for any R > Ry and R > Ry, one has
m?(v) > o + k()2 Vv eR?,

for some 0 < k < 01— 0.

(it) For any a € R, we define
m2(v) = m2(v) — (0)22 |, () 2

There are Ry and Ry large enough so that for any R > Ry and R > Ry, one has
m2(v) = o+ k()2 VoeR3,

for some 0 < k < 01— 0.
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(iii) For any multi-index o € N3 we have, for all v € R?,
o5 m(v)] < ()l

Hereafter in the paper, for any 0 < o < oy we then fix R, R > 0 large enough so that
the results of Lemma 5.1 are in force.

Proof of Lemma 5.1. (i) See [13, Lemma 2.6].
(ii) We have
m(0) = 2 [BEpP ~ £V, - [BT@)BE)] — a2[Bu)u (o) + Bxa()
therefore
m

2(0) = Fa@)Io — 590 [@] — 0@l () + Rxg(o).

Now observe that
1 1
Zﬁl(v)]vl2 — §VU . [ﬁl(v)v} — a2y (v)|v)* (v) ™

1 1 3 _
= L@ - LV,6() v - Sh) - 0@l
and from (2.4), £1(v)|v|>(v)~* < (v)772, hence if —2 < v < 1 we have

V- [ﬁl(v)v} — a2, (v)|v)? (v) ™ ——— o0,

|v]—o00

1 5 1
151(?))’”’ ~ 35

and if v = —2, one has
1 1 1
Ta@WP = 2V, - [ )] - 2L @)™ —— 2> 0.

lv| =00 2
We then conclude the proof by taking Ry, Ry > 0 large enough.
(iii) Direct consequence of (2.9). O

Arguing as in Lemma 2.3 and recalling that [V,.,v - V,] = V,. and [V,,,v - V,] = 0,
we also obtain

Lemma 5.2. There holds
(i) For any 1 < i < 3, one has
- 1o le o <,
[vvaE]f_ __QV [vﬂz’vv]]f_ E_vvj[vvwv ]f
1 -
— 5(Vom?)f - —Vx,f [m,v 1.V, 1.
(7i) For any 1 < i < 3, one has
v lew o v le o o * 1 s x| O
[VINBE]JC = _6_2vvj [vrwvvj]f - 6_2vvj [vrwvvj]f - 6_2 [[vrwvvj]?vvj} f
Let us recall that the spaces 27, %;, (%;), %7 and (ZF)" are respectively defined

n (1.19), (1.20), (2.11), (2.14), (2.12), (2.13) and (2.15).
We also have the following bounds on the operator A:

Lemma 5.3. For any o € R one has
) * Afllzz, S 1M F]zz,
1) VoAfllzz, S 1M fllza, + [MIV,fllz
1) Vo VoA (2, SIMA e, + MV, flliz, + IMTVVyfllrz,
1) VaAfllzz, S IMTVaf|z,
1) VaVadfllrz, S IMTVaVaflLs .
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In particular, one has A € B(Z), A€ B(%) and A € B(ZF) fori=1,2 and since A
is self-adjoint in L2, we also have A € B(%) and A € B((ZF)') fori=1,2.

xT,v’

Proof. The terms coming from Rxp are easily treated because x has compact support.
The first, second and fourth estimates thus directly come from Lemma 2.6. The proofs of
the other estimates are completely similar and rely on Lemmas 2.4 and 2.5. U

5.2. Decay and regularization estimates for Sp_. In this section we provide several
results on the dissipation and regularization properties of the operator B.. We start with
the dissipative ones.

Lemma 5.4. Let o € (0,01) (where o1 is defined in (5.5)). Then for any o € R, one has
(5.6) (00, (0)Bf)rs, < I FIEs, — S0
for some constant k > 0. As a consequence, one has for allt > 0,
1S5 ()| 2 < 77"
Proof. We compute:
1~ =~ 1 1
2c _ 2c e vi o2 T
(wrr8r),, = (02 {5990 = Zmf = 2o-Vuf})

L2

1 1 /= ~ o
=l miliz, - 5 (V@™ N.Vuf)

Observing that
Vol £, V0f ), = (Vo 1) @)V ) o+ ((Volo) ) (o >0‘va> .
= [Vul@)* N3z, = (Vul(@)*F), (Vulv) f> o+ < @) Vuf)
= IV (@) N7z, = I(Valo)) IF2 |

and recalling that mg is defined in Lemma 5.1 so that (v)2*m2 = (v)2%m?2 — |V, (v)?|?,
we obtain the estimate

(0 0.8.0),, =~ S10Fmadlly, - HITuI DI

We then conclude the proof of (5.6) by using the bound by below on m,, of Lemma 5.1.

The exponential decay estimate of Sp. on 2 is then a consequence of (5.6) together
with the fact that V, commutes with B.. O

In what follows, we prove regularization results for the semigroup Sp..

Lemma 5.5. Let 0 € (0,01) (where o1 is defined in (5.5)). For any t > 0, one has

& —o 2 —0 2

as well as the dual estimates
. 63 _ot/e2
(5.8) 158 (D) llay 2 S 76 Y and || Sp.(t Mezey—2 S zpe e

The proof follows similar ideas as the proof of Proposition 3.4 but is somewhat simpler
because, the operator B. provides 1/e2-dissipativity and regularity on both macroscopic
and microscopic parts of the solution whereas the operator A. only provided a gain of 1/¢2
on the microscopic part. We thus do not need to separate microscopic and macroscopic
parts when defining our functional that will be a Lyapunov functional for our equation
Ouf = B f (see (B.3)). For sake of completeness, the proof is given in Appendix B.

Using the same method, we can push our previous result up to the next notch of
regularity (we only mention the dual results because they are the only ones that will be
used in the sequel) and the proof is also postponed to Appendix B:
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Lemma 5.6. Let 0 € (0,01) (where o1 is defined in (5.5)). For any t > 0, one has
2 6
3 _ 2 6 _ 2
IS5 Dllagr £ = and (186 (1)l gy S e
We also have the following dissipativity properties, the proof of which relies on the
same line of proof as the above regularization results. Indeed, the idea is to use the same
functionals without the weights in time. We thus skip the proof since the computations

are the same. As previously, the result is only given in the dual framework which will be
the only one useful in the sequel.

Lemma 5.7. Let 0 € (0,01) (where oy is defined in (5.5)). For anyt > 0 and i = 1,2,
one has
158. ()|l zey—(zey S € —ot/e,

In our forthcoming analysis, we will use an iterated Duhamel formula based on the
splitting A, = A.+ B.. We introduce the following definition of convolution of semigroups:
If S1 and Sy are two semigroups, their convolution product is defined by

Sy Sy(t /51 (5)Sa(t — s) ds.

We also introduce the semigroups V7 (t) defined through:

Vo (t) := Sp.(t), Vipi(t) = (Sp. x AVi)(t) = (Vi * AcSp.)(t), j €N
so that for any n € N and any t > 0, we have:

(5.9 US(t) = S VE(E) + (V] + AU )
=0

As a consequence of the previous results on A, and 5., we obtain:

Corollary 5.8. Let 0 € (0,01) (where oy is defined in (5.5)). For anyt >0, any j € N
and 1 = 1,2, we have:

VEOll2sa Se = and [VEO)(zey—izey Se 7%

Proof. Fix o € (0,01). The first estimate for j = 0 is given by Lemma 5.4. We then argue
by induction and thus suppose that the property is satisfies for some j € N. Then, we
consider o’ € (0,01). From Lemmas 5.3 and 5.4 and the induction hypothesis, we have:

Via @l S = [ 156zl Al IV5 (6= 9l ds

1/t _ ot 1 _ b 2 o /e2
< = e 0 's/e? e o(t—s)/e? ds < —e ot/e? / e (o/—0o)s/e ds <e ot/e )
~ 82 0 ~ 52 0 ~
The second estimate can be proven in a similar way by using Lemmas 5.3 and 5.7. U

Corollary 5.9. Let o € (0,01) (where o1 is defined in (5.5)). For anyt > 0 and any j €
N, we have:

3—2j 6—2j
€ —ot/e? € €

Vi Ollzey—a < = and Vi (O)ll(zsy -2 S 37

_ 2
e ot/e )

Proof. Fix 0 € (0,01). We focus on the proof of the first estimate, the second one is
treated in a similar way. We proceed by induction. The case j = 0 is given by Lemma 5.5.
Suppose then that the estimate holds for some j € N and consider ¢’ € (o,01). From
Lemmas 5.3-5.4, Corollary 5.8 and the induction hypothesis, we have:

t/2
Vi @] JE)’—wt’N/ 158, ()| 2= 2 | Aell 2 2 [IV5 (£ = $)| (25— 2 ds

+ / IVE (5)ll s o IAell oy ey 1. (¢ = 9l ey oy ds
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3-2j 3—25
1 t/2 —0'/8/62 £ Z 2.6_0(t_5)/62 ds—{-l b g9—4
—2)
~etJo (t—s)=

From this, we deduce that
o t/2 ds t ds el=2 2
V-e t EAYA % < 67025/825172] / T 3=2j +/ —2j N —25 eiot/e 9

H _]+1( )H(Qfl)%l ~ 0 (t_8)322j +/2 83221 ~ tﬂ

which yields the wanted result. O

_ A 2 _ _ 2
e o's/e N o(t—s)/e ds.
t/2 g2

5.3. Spectral study in Fourier space. We denote by F, the Fourier transform in x €
T3 with ¢ € Z3 its dual variable. Since we will only be working with Fourier transform
in z, we will also interchangeably use the classical “hat” notation. Moreover, to lighten
the reading, for any operator that acts only on velocity, with a little abuse of notation, we
will omit the “hat” in the notation for its xz-wise Fourier transform.

In this part, we are going to look at the Fourier transform in € T3 of the operator
A1: .

Al(g) = —Zf v+ L

and study the spectrum of f\l(g) for ¢ € Z3. This type of analysis was initiated in [52,
15, 22] for the Boltzmann equation for hard spheres and then with hard cutoff potentials
(see also [58]). In [60], Yang and Yu were then able to adapt it to more general kinetic
equations including the linearized Landau one for hard and moderately soft potentials.

Roughly speaking, for small frequencies, the spectrum of A;(€) is a perturbation of the
one of the homogeneous collision operator L (which acts only on velocity). As already
mentioned, in the case of hard and moderately soft potentials (y > —2), the operator L
has a spectral gap and in [60], the authors then prove that for small frequencies £, the
spectrum of /Ah (£) is made of “small” eigenvalues around 0 in the right part of the plan.
They also provide Taylor expansions of those eigenvalues as well as for their associated
projectors. For large frequencies, they prove that the operator IAXl(f) has no spectrum in
some suitable right part of the plan. All those spectral results provide a decomposition of
the semigroup which is given in Lemma 5.10.

In what follows, we write

U (t) = FLUS(t)F;

so that U€ is the semigroup associated with the operator
~ 1
A(§) = 8—2(—25§ -v+L).

We also introduce the bilinear operator W¢(¢) defined by

(5.10) WE () (fr fa) /cﬁt—s<ﬁ<>ﬁ<»m

We recall that y is a fixed, compactly supported function of the interval (—1,1), equal to
one on [—1/2,1/2].

Lemma 5.10. There exists k > 0 such that one can write
ZU€ +U(t)

with U5 (t,€) == ( 2,85) and U (t,€) == ffﬁ(giz,ag),
where for 1 < j < 4,
(1.6 = x () ev @9
with \; satisfying
X (&) = iy l€] = Bile + i (I€D),
(5.11) a1 >0, ax>0, ag=a4=0, p;>0,

W€D =jeim0 OUEP)  and ~;(l€]) < Bjlel?/2 for & <w
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and

P =P () + 1617} () + R P2O).

with Pj* bounded linear operators on L2 with operator norms uniform for |£| < K
We also have that the orthogonal projector m onto Ker L (see (1.12)) satisfies

”_ZWQJ

and is independent of £/|&|.
. ¢ .
Moreover, PP(£/|¢]), P}(£/1€]) and PF(€) are bounded from L into LZ((v)") uniformly
in|¢| < k for any £ > 0.
Finally, for any £ >0, U* satisfies

(5.12) 101 2y 2 0yt < C°

for some positive constants C and o mdependent of t and &.

Proof. The decomposition of U#(t) follows that of U(t): We recall that according to [60,
Theorem 3.2 and Remark 5.2], one can write

tfzz U;(t,€) + Ukt €),

where for 1 < j <4,
(1.6 = x (&) en© (9

and A;j(§) € C are the eigenvalues of A1 (€) with associated eigenprojections P;j(€) on L2
satisfying the expansions stated in the lemma. The fact that 7 = 3% =1 PO (‘ ‘) also comes
from [60, Theorem 3.2].

Let us now prove that PJO(£/|£|), le (&/1€]) and P]2(£) are bounded from L2 into L2({v)?)

uniformly in [£| < & for any £ > 0. We first prove that this property is satisfied for P;(&).
Recall that for |£] < k,

AL (§)P;(€) = M () Py (&)
Thanks to the splitting Ay = A+ B introduced in Section 5, denoting Bl (&) :== —i&-v+DBy,
we have for |£] < k:

Pi(&) = (A(€) — Bi(&) AP (&)
The dissipative properties of By in Lg(@)g) and the regularization properties of A; (from L2

into L2((v)")) established respectively in Lemmas 5.4 and 5.3 and the fact that from [60,
Theorem 3.2], we already know that P;j(£) is uniformly bounded in [¢] < & from L2 into
itself, imply that Pj(¢) is bounded from L? into L2((v)") for any ¢ > 0 and uniformly
in [¢] < #. To conclude that the same properties hold for P{(¢/[¢]), P/ (£/|¢]) and PF (),
we notice that P]Q(£ /€D, le (&/1€]) are given by explicit formula (see the proof of Theo-
rem 3.2 in [60]) that clearly define bounded operators from L2 into L2((v)") for €| < &

Finally, the estimate (5.12) comes from [60, Remark 5.2] for £ = 0. We can also prove
it for any ¢ > 0 thanks to Duhamel formula applied with the splitting Ay = A; + By
introduced in Section 5. We write that

o) = 07 (1a—x () evore) £
— (e, (6) + (S, + 4 U(0) 7! (10~ X(Iél) WOP) ) 7

We are able to get the wanted estimate in L2((v)*) thanks to the uniform boundedness
in |¢| < k of the projectors Pj(€) in L2, the dissipativity properties of Bj in L2((v)")
and the regularization properties of A; (from L2 to L2((v)%)) established respectively in
Lemmas 5.4 and 5.3. g



REGULARIZATION AND HYDRODYNAMICAL LIMIT FOR THE LANDAU EQUATION 57

Remark 5.11. Denoting

(5.13) P (e ) =P (i) +leme

for 1 < j < 4, we can further split U £ (t) into four parts (a main part and three remainder
terms):

US = Uy + Uy + U5y + U,

where

(t £) = emjlﬁlt*ﬁgtlﬁppo (|§|)

U’fg(t,ﬁ) = (X (%) — 1) Zay\é\—fﬁjt\gﬁpo (é')
Ajl(t7§) =X (ﬂ) cias€1 £ = BitlE]? (et% ) po (|§|)
K

R A LT
5o(t,6) 1= x (L) et g p ().

One can notice that Usg := Us, and Uy := Uj, do not depend on ¢ since a3 = ay = 0.
We set

U .= Usg + Uy.
We shall see that the operator U(t) is in some sense the limit of U®(¢) (see Lemma 5.14).

The decomposition of the semigroup U¢(t) also gives us a decomposition of the opera-
tor W.(t) defined in (5.10) (see [24, Lemma A.4] and its proof).

Lemma 5.12. The following decomposition holds

4
SN

j=1

with
PO, 1) =+ [ 0= P o) ds
and
WS = WS+ U5+ U5y + U5,

where

(© = [ = B o (£ F(f o) (o) ds

(x (%) _ 1) /Ot i1 5311301 | (%) B(f1, f2)(s) ds

=X %') /Otemjst;sﬂjas)&?((t S 1) €| P} (%)f(fl,fz)(s)ds

QL)

o
/N
S
.
(k=3
—~
~
S—
—
=
~
N—
—
in
S—
I

=2 =B (t=s)|E]P+(t—s) L5

elEP PP EOT (f1, f2)(5) ds
Remark 5.13. Let us notice that as in Remark 5.11, there holds
\Ifgo = \1’30 and \Ifio = \1’40

and we set
U= WUgg + Wy
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5.4. Limit operators U(t) and ¥(¢). The following lemma studies the limit of U(t)
as € goes to 0, its proof is completely similar as the one of [24, Lemma 3.5, the only

difference being that we use that the projectors are bounded from L? into L2 (<v>3(%+1))
(see Lemma 5.10), we thus skip the proof.

Lemma 5.14. Let f be a well-prepared data as defined in (1.25). Then, we have that

(5.14) [(U@t) = U®) fllpse 2y S Nfllmzes
and
(5.15) [(U@t) = U@) fllpse(2y S ellfllmars-

In the following lemma, we study the convergence of We(¢)(f, f) towards W(t)(f, f)
when f is a well-prepared data and its associated macroscopic quantities solve the limit
system (1.24). The proof is similar to the one of [24, Lemma 4.1], we thus omit the proof
(notice that this result relies on refined estimates on quantities related to f that can be
found in [24, Lemmas B.6 and B.7)).

Lemma 5.15. Consider f a well-prepared data as defined in (1.25) with associated macro-
scopic quantities solving the limit system (1.24) on R and with mean free initial data
(po,uo,00) € HS and associated kinetic distribution fo € 2 (as in (1.27)) satisfying
Il foll2- < m (so that f is defined globally in time), then

=@ (5 ) = U, Hlizgeay S eCllfolluzrz),
where C(|| follgzr2) is a constant only depending on || follmar2-

5.5. Decay estimates on the linearized Landau semigroup. We recall that 7 is the
projector onto the kernel of L and is given in (1.12) and that the spaces #; and (%)’ are
respectively defined in (1.20) and (2.15). From Lemma 5.10, as in [24, Lemma 3.2}, we
can prove some new decay estimates on the linearized Landau semigroup:

Lemma 5.16. Let 09 := min(«, 1, ..., 54) (where a and ; for j =1,...4 are defined in
Lemma 5.10). Then, for any o € (0,02), we have

efat

<e—, Vt>O0.

[U°@)(d =)l 22 S € T

Combining this with Corollaries 5.8-5.9, one can deduce the following result which mixes
decay and regularization estimates:

Corollary 5.17. For any o € (0,min(o1,02)), there holds
—ot

e
P < e , Vt>0,
(/?//H@lr\./ \/E

1U=()(1d =)

where oy is defined in (5.5) and oo in Lemma 5.16.

Proof. Let o € (0,min(o1,032)). From Duhamel formula, we have:
Us(t)(Id —m) = Sp.(t)(Id —=) + (SB. * AU®)(t)(Id —).

From Lemma 5.5, since 0 < o1, we have:

efot —ot

(&
155, ()(Ad =7) || 2w S & NG [d—7llo~2 Se 7

For the second term, we use Lemmas 5.3 and 5.5:

t
(S, + AU =) 05 S [ 1S5 (¢ = ) AU(5)(1d =) 5 s

t efo(tfs) 6
< /0 U= (5)(1d =), - dis.

Vi—s

Finally, from Lemma 5.16,

1(Ss. * AU)()(Id —)

t ,—o(t—s) ,—os
e e _
gﬁ%ga/ ds <ee 7,
0

t—s s "~
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which yields the conclusion. O

By using an interpolation argument, one can deduce the following result:

Lemma 5.18. For any o € (0, min(og, 01, 02)), we have:

—ot

101 =m) gy 2y S VE Ts VE>0,
where og, o1 and oo are respectively defined in Proposition 3.2, in (5.5) and Lemma 5.16.
Proof. Step 1. First, by using an enlargement argument (from [31]), we prove that
(5.16) 1U=(£)(Ad =TD) || zgy— (25 y S €

For sake of completeness and in order to carefully handle the e-dependencies, we write the
proof. From Duhamel formula, we have that

3
US(t) = D VE(t) + (U°  V5)(2).
=0

Moreover, we have U®(t)(Id —II) = (Id —=II)U®(¢). Then, from Corollary 5.8 and the fact
that II € #((Z5)), for any j =0,...,3, we have:

—ot/e2
(5.17) 1A =IO VE ()|l 2y 25y S e 7

For the last term, using that 2~ < (25 )" (independently of €) and Theorem 3.1, we have:
t
[(1d =IO * V5) Ol 25y -2y S /0 1(1d —INU(t = $)V5 (s)ll 25y .2~ ds

t
S [ eI Vg ds.

Corollary 5.9 allows us to conclude that
t 2
(5.18) 1A —ID)(U® * Vi) ()l 2y 25y S /0 e 0(t=9) =05/ 45 < 7O,

From estimates (5.17) and (5.18), we can conclude that (5.16) holds.
Step 2. From (5.16) and the fact that U¢(¢t)II =11 € B((Z5)"), we deduce
||U€(t)‘|(gf25)/*>(gf28)l 5 1.
Since ™ € B((Z5)'), it implies that
1U°(@)(Ad =) (zgy—(2z5y S 1.

Consequently, combining this with Lemma 5.16, we can conclude the proof by interpolation

because from (2.16), we have (27) = [27, (Z5)"]1/2,2- O

6. HYDRODYNAMICAL LIMIT

We first state a quantitative result which provides estimates on the difference on the
solution ¢° to the Landau equation constructed in Theorem 1.1 and the solution g defined
in (1.28) whose first macroscopic quantities are solution to the fluid system (1.24). As
explained in Subsection 6.2, this theorem combined with a density argument allows to
prove Theorem 1.5. It is important to notice that thanks to the estimates obtained on the
kinetic equation in Theorem 1.1, under some suitable smallness assumptions on the initial
data of both kinetic and fluid equations, only extra-regularity in x on the initial data of
the fluid system is needed to obtain a quantitative rate of convergence in ¢, as can be seen

in (6.1) and (6.2).
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Theorem 6.1. Let g5, € 2 N (KerA)* for e € (0,1) such that ||g5,||2- < no (where
no is defined in Theorem 1.1) and ¢° € L{°(Z") being the associated solutions of (1.7)
with initial data g5, constructed in Theorem 1.1. Consider also go € H3OL? N (Ker A.)*-
for some 6 € [0,1/2] such that ||goll 2= < m and g defined respectively in (1.27) and (1.28)
(where we recall that n1 has been chosen small enough so that g is defined globally in time).

There exists na € (0, min(ng,m)) such that if max (||g5, || 2, [l90ll27) < 12, then we have
&
(6.1) lg* = gllzge(2) S €°C (g0l gavaras llgfall o) + g = goll -
and
&
(6.2) 9" = gllr @)+ L0 (2) S €°C (H90||Hg+6L%, ||91€n\|3{) + mgin — goll 2

where C (||go||Hg+5L%, Hgangg) is a contant only depending on HQOHH;’“Lg and ||g5, || 2 -

Remark 6.2. Since gg € Ker L, it decays better than any polynomial in velocity at infinity,
it explains the fact that we only use classical Sobolev spaces for gg in the RHS of the above
inequalities, as already noticed, we have

lgollmzrz < llgoll2 < llgollms

and similar inequalities could be obtained for higher order Sobolev spaces.

Remark 6.3. We restrict ourselves to the case § € [0,1/2] in our estimates but one can
of course suppose more regularity on the initial data gy, notice however that we will still
have a rate of y/z. It should be noted that we did not look for optimality in terms of rate
in our estimates.

6.1. Reformulation of the hydrodynamical problem. Before starting the proof of
Theorem 6.1, we reformulate the problem. Using the definition of the operator We(t)
in (5.10), we have that the solution ¢ of (1.7) constructed in Theorem 1.1 writes

9" () = U (t)gin + ¥° (1) (9", 9°)-

It also follows from [5] that given a well-prepared data gy € 2~ of the form (1.27), the
function g defined in (1.28) satisfies

(6.3) g(t) =U(t)go + ¥ (t)(g,9),

where, as explained in Subsection 5.4, the operators U(t) and W(t) (defined respectively
in Remarks 5.11 and 5.13) are in some sense the limiting operators of U¢(t) and We(¢).
Formulation (6.3) is thus a way to reformulate the fluid equation in a kinetic fashion.

Lg°-estimate. We first reformulate the problem in order to prove the estimate (6.1). To
this end, we write the relation satisfied by h® := ¢ — ¢g:

h® = U*(t)gi, + ¥°(t) (9%, 9°) — U(t)go — ¥(t)(9,9)
= (U=(t) = U(t))go + U*(t)(gin — 90) + (¥=(t) — ¥(t))(9,9)
+ W) ((9°) 7 (9°)7) + ¥ (1)((¢°) 5, mg°) + ¥ () (mg®, (9°) )
+ Ue(t)(wh®, mg®%) + VUE(t)(g, 7h°).

In the next subsection, we are going to study each term in the RHS of the above equality.
Some terms are going to vanish in the limit ¢ — 0 and other ones will be absorbed in
the LHS under suitable smallness assumptions on the initial data. Let us underline that
the singularity in ¢ in the definition of W€ is going to be handled thanks to Lemma 5.16
which provides a gain of € when the semigroup U¢(¢) acts on microscopic quantities. Using
that 7I'(f1, f2) = 0 for any suitable functions f1, f2, we are thus going to be able to remove
the singularity in € in the operator ¥¢. In what follows, we shall prove that:

(6.4)

- The three first terms tend to 0 as € go to 0 (see Lemmas 6.4 and 6.5): For this purpose,
we use that the limits of U®(¢) and V¢(¢) as € — 0 are U(t) and ¥(t) (see Lemmas 5.14
and 5.15).
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- The fourth, fifth and sixth terms tend to 0 as ¢ — 0 (see Lemma 6.6) because those
three terms involve the microscopic part of the kinetic solution ¢, which provides us
some extra smallness in € in L?(%) thanks to Theorem 1.1.

- The last two terms are bounded by some quantity that involves the norms of the
kinetic and fluid initial data multiplied by the L°(:Z")-norm of h° (see Lemma 6.8).
It will thus be absorbed in the LHS of the equality if initial data g;, and gg are chosen
to be small enough. Notice that one can not hope smallness in ¢ for those terms
because they only involve macroscopic quantities.

L} + L§°-estimate. We now reformulate the problem in order to prove (6.2). To this end,
we introduce R¥(t) := U®(t)(g5,)* and we write that

U=(t)gin — U(t)go = (U°(t) = U(t))g0 + U (t)(mgin — g0) + R (1)

From Corollary 5.17, we have that for o € (0, min(oq,02)),

£ _
(6.5) IR (O)llon < e llginll

~Vi
and thus
(6.6) IR N 21 ) < ellginll2-

To conclude, it is thus enough to prove that for § € [0,1/2],
é
I6° - 9 = Fellizeo S °C (lgollgzropas Igll) + gt — goll-

We then write the relation satisfied by he = g° —g— R

he = (U(t) = U(t))go + U (t)(mgin — g0) + (¥°(t) — ¥(2))(g,9)
+ U6 ((9°) ", (6)T) + T @((9°) " mg7) + U (1) (g7, (9°) )
+ V() (R, 7g") + ¥°(t)(g, mR%)
+ W () (mht, mgf) + W (t) (g, ThY).

In what follows, we shall study each term in the RHS of this equality, the ideas between
this decomposition being the same as the ones explained after (6.4). Notice furthermore
that thanks to estimate (6.5), we are also going to be able to prove that the seventh and
eighth terms tend to 0 when £ — 0 (see Lemma 6.7).

(6.7)

6.2. Proofs of Theorems 6.1 and 1.5. From now on, assumptions of Theorem 6.1 are
supposed to hold. As explained above, in order to prove Theorem 6.1, we have to estimate
the Lg°(2 )-norm of each term of the decompositions (6.4) and (6.7).

In both decompositions, concerning the first and third terms, Lemmas 5.14 and 5.15
immediately give by interpolation the following lemma:

Lemma 6.4. We have: For anyt >0 and § € [0,1/2],
I (0) = U)ol + 1080 = ¥ 09Dl < = C(llgoll v ) -

Concerning the second terms of (6.4) and (6.7), from Theorem 3.1, we have that U¢(¢)
is bounded in 2" uniformly in time and €. As a consequence, we obtain:

Lemma 6.5. We have:
[U=()(9in — 901 (2) S g5 — 9ol and U (t)(7wg5, — 90)lLse(2) S 179 — goll2-

The fourth, fifth and sixth terms of decompositions (6.4) and (6.7) are the most difficult
ones to estimate. Indeed, they involve microscopic quantities, we thus have to be sharp
in terms of regularity in velocity in order to obtain the following lemmas:

Lemma 6.6. We have: For anyt > 0,
=) (o) (99) D + 12O ((97) w2 + 195 (1) (mg, (97) D) 2 S Vellgiall
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Proof. In the whole proof, we fix o € (0,min(og,01,02)) where o; for j = 0,1,2 are
respectively defined in Proposition 3.2, (5.5) and Lemma 5.16. We focus on the first term
which is the most intricate. We are going to use (5.9) with n = 2 to decompose W¢(t) into
several parts, it yields

2 t
T () =31 [ Vi 9r(e) 6 ) ds
=0
4 / (V5 AUt = 90 (67 ) 6) s
2
=y )0 O (),

7=0

We first estimate W5(¢)((¢°)*, (¢°)*) for j = 0,1,2. From Propositions 4.2 and Corol-
lary 5.9, we obtain:

O G S 7 [ e ) Ol ) Ol s

Then, from (1.22)-(1.23) in Theorem 1.1, we have:

70 (t—s) 67303/2

1950((6) " ()l / N RO VA S

Using Holder inequality and (1.22), we obtain

1T () ((6°)", (%) )l S H(t_s);lﬂsl/zl

1/2

3/2
H” Iz

1o 19l

L3

([ o i 16" 1 Il
~\Jo (t—s)2/3sl/3 LY (%)
S VEllgaly-

Let us now deal with W2(t)((¢°)*, (¢°)*). Performing a change of variable and recalling
that 7T'((¢°)*, (¢°)*) = 0, one can notice that

B0 6 = £ [ [V - AU - DI -mN(e) () ) ) dr ds.

Remark then that Corollary 5.9 for j = 2 implies that for ¢’ € (o, 01), we have
IV Ollzpyorr § Leme* g oot

Using now Lemma 5.3, it implies that

5 (o)™, (97) D)l

S [ [ - DI -mn(e) L 6 Ol drds:

Lemma 5.18 and the fact that % — (Z7)’ (independently of &) then imply that

IS ((9°) ", (97)*

s
S [ e e I 6l dr s

From Proposition 4.2 and the fact that H( 2 < 198 ll2, we deduce that

L) ((g )L( )l

—o(s—7
s e
S et )1/4ug< g (7l drds.
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Using Cauchy-Schwarz inequality in the variable 7 and (1.22) in Theorem 1.1, we obtain

1 t —o(l—s) /2
1T ((g%)", (6F) )l S 6?%/0 e ds gl S Ve llgally

which concludes the proof of the term W= (¢)((¢%)*, (¢°)F).
The proof for the second and third terms W&(¢)((¢°)*, 7g%) and We(¢)(mg®, (¢°)L) is
completely similar once one has noticed that from Proposition 4.2,

IT((9%) ™ mg%)lay + T (g7, (97) D)y
S llaslmg®llor + 1) N llmgllas < 11(°) Mlan llg Il 2
where we used the facts that % — 2" and 7 € B(Z",%). O

For the proof of (6.2), we also need the following lemma:
Lemma 6.7. We have: For anyt > 0,
W= () (m ke, wg")l| 2 + [ W5 (8) (g, 7R)l| 2 < & (Iginll 2 + lgoll2) llginll 2

Proof. From Lemma 5.16, Proposition 4.5, the fact that 7 € Z(2°,%,) and g = 7g, we
obtain:

W () (r R, mg™) |2 + 105 (2) (g, TR || 2

6—0@ s)
S [ S I ()l + 17l ds

Using now (6.5), (1.22) from Theorem 1.1 and (1.29), we obtain:

W5 (8)(r R, mg™) | + 195 (2) (g, TR || 2

o(t s) —os 7ot s) e~ S
sef aslgilly + < [ =S ds gl ol
0 Vi—s s Vi—s /s

which yields the final result. O
Concerning the last two terms of (6.4) and (6.7), we prove the following lemma:
Lemma 6.8. For any f € L{°(Z"), we have: For anyt > 0,
@) (mf,mg )Mo + 19 () (g 7f)ll 2 S (lgill2 + lgoll2) [[fll e 2)-

Proof. The proof is similar to the one of Lemma 6.7. We use Lemma 5.16, Proposition 4.5,
the fact that m € Z(2", %) and g = 7g, and we conclude thanks to (1.22) and (1.29). O

End of the proof of Theorem 6.1. Gathering results from Lemmas 6.4, 6.5, 6.6 and 6.8,
we can conclude the proof of (6.1) by taking ||¢5,||2- and ||go||2 small enough. Concern-
ing (6.2), Lemmas 6.4, 6.5, 6.6, 6.7 and 6.8 imply that

I6° — 9~ Bl S °C (Igolgavogas gl ) + st — goll -
The estimate (6.6) then allows to conclude the proof of (6.2). O

Proof of Theorem 1.5. As mentioned above, in order to obtain results of convergence in
Theorem 1.5, we are going to use a density argument that is explained in what follows.
We consider a smooth family (go,,)ye(,1) of (Ker A.)*t such that for any n € (0,1), 9o
writes

v|? —
o (2, v) = V() <p07n(m) F (@) v+ 2 390,,7(x)>

with Vz-up, =0 and pg,+ 6y, =0
and

(6.8) lgo — gonlle <n and  |goglle- <m, VYne(0,1).
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We have stability for the Navier-Stokes-Fourier system (see for example [24, Appen-
dix B.3]), namely, we know that

9y(t) == U(t)go + ¥ (t) (g, 9y)
satisfies
(6.9) 71]1_{% lgn — gllLee(2) = 0.
Then, to study the convergence of ¢g° towards g, we write
(6.10) 9 —9=9 —gypt+9y—9-
We then apply estimate (6.1) from Theorem 6.1 with go, and g, instead of gy and g.

Notice that for go and n small enough, go, will also satisfy |/goy|/2~ < 72. Coming back
to (6.10), we deduce that

é
g — gHLf"(%‘) Sllg— gnHL?’(%‘) +e°C(llginll 2 ”90,77 2) + 1950 — 9ol + [l90 — 90,9.2-
Using (6.9), we can conclude the proof of (1.31). The proof of (1.33) is similar. O

APPENDIX A. PROOF OF PROPOSITION 3.2

We start by recalling that for any suitable function g, we write
2
-3
g=g-+mg, mwg(x,v) = pg(x)VM(v) + ug(x) - vvV M(v) + Gg(x)LﬁvM(v)

with pg, ug, 6, defined in (1.14), (1.15) and (1.16). In what follows, we also use the
following notations: plg] = pg, ulg] = ug, O[g] = 0,.

For g € L2(T3), we introduce the following notation: (g) := [psgdz. Recall the
following classical result (it can be proven straightforwardly thanks to Fourier transform).
For any ¢ € L2(T3) with null mean (i.e. (¢) = 0), there is a unique solution u € H2(T3)
to the equation

~Ayu=¢ in T3 with (u)=0.
Denote by (—A,)~! the following bounded operator:
AT BN =00 — EATYA () =0)
' ¢ — u.

-1

Notice that in particular, we have that the operator (—A,)™" is also bounded from

L3(T?) N {(:) = 0} into H(T?) N {() = 0}.
Let f € Dom A, N (Ker A.)*. Remark that in particular we have for k = 1,2, 3:
(plf1) = (urlf1) = (0[f1) = 0
where we have denoted by wug[f] the k-th coordinate of u[f]. We thus deduce that
(—=A)1o[f], (=AL)"tug[f], and (—A,)"0[f] are well-defined, and more precisely we

have
1(=22) " plf 2 < ol
1(=20) k[l S Nunlf]l 2
1(=22) 7 00z S 60| 2-

In what follows, we shall use without further mention the following explicit computa-
tions: for k € {1,2,3},

/ vIM dv =1, / lv|> M dv = 3,
R3 R3
/ viv|*M dv = 5, / lo|* M dv = 15,
R3 R3
/ vi|v[*M dv = 35, / |v|® M dv = 105,
R3 R3

as well as that for any odd polynomial function p = p(v), one has [gs p(v)M dv = 0.
We split the proof into five steps.
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Step 1. Microscopic part. From (2.10) and the skew-adjointness of the transport operator
one has

1 1
e fhrz, = 5 LFH Nz, — 20 Vaf flrs

(A.2) .
< -2 ke )

Step 2. Energy estimate. Define for any k € {1,2,3} and any suitable function g

2 _
(A3) wilal = [ o D v an
R3
and remark that
(A.4) Urlg] = vrlgt]:
We first compute
OIA-f) = SOLF"] - —9[ V. f]

———Vgg- (MQ )vf\/_dv

(A.5) R?

———V / vf\/_dv——V / ’U vf\/_dv

and using some aforementioned classical results on the moments of M, we also obtain
(A.6)
1 1,1
Yr[Ac f] = —ka[Lf ] - gibk[v -V f]
! (lv]* - 5)
= S0lLf = 20y, [ o 8 1w

1

2 _
= Sl - 2o, [ o 12D

3

(p[f] Fulf] v+ H[f]WT_?’)> Mo

——BW/ vkwi‘v‘ — )fl\/ﬂdv
21/%[[’]0] __8$[/ VU ——F—— ’U —5) l\/Mdv.

We now estimate the term

(Val=20) 0L UL, +(Val-20) 0L WA, = D1+ 1,

x

We start by estimating I;. First, using integrations by parts and (A.5), we have

192(=22)"0[ASI7; = (OAT1 (—20)'0IAS])

_ _é <§u[ 1+ mf],vx(—Am)—lH[AefQLQ

Using now Cauchy-Schwarz inequality in = and (A.4), we obtain:

_ 1
1Va(~20) 012z % - (Il f ez + 1912
Then, from (A.4) and Cauchy-Schwarz inequality in velocity, we have:

1ol ez = 100 e S 1Nz, -
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We deduce that 1
101 S 2 (llfllz + 17 ez, ) 1 D,

Concerning o, from the computation (A.6), we have:

= (0 (=820 L), = 25 (Or (= 00) 70171 00,6111

- é <8xk(_Ax)_16[f]7axe /R3 VkVy WT_) flmd?}>

=: o1 + Ioo + Io3.

We treat each term of the above splitting in succession. For I, we notice first that from
the self-adjointness of L in L2:

2
ot i = [ (5 (o520 ) s

so that from Cauchy-Schwarz inequality:
(A7) DI ez S I Mz,
We thus have:
1 _
In S 5[Ve(-A0) Ozl e, S 2 Sl ezl F ez,

where we used (A.1). The term I, is computed exactly thanks to an integration by parts:

b = 22 (0,00, (- 207 010 0111),, =~ 26113

We bound the last term Io3 using an integration by parts, (A.1) and Cauchy-Schwarz
inequality:

I, =
L3

LE

L3

ta = {000,807 000, oo P52 i
L2
équ( 20U 2l e,
1
< 161 el F 42z .

Finally, we have obtained for some k, C' > 0:

(Va(=20) 08 AL 0111) , + (Va(=20) 01 UIALS])

(A.8) . c c
< =Z10UA13; + Tl e, + S4B,

Step 3. Momentum estimate. Define, for any k,¢ € {1,2,3} and any suitable function g

1
?/R?’ vpvelv|2gV M dv if k#Y,
(A.Q) ekf[g] = 1 1
/ (——i—v,%——\v\z) gVMdv if k=,
R3 \ 2 2

and remark that, using some classical aforementioned results on the moments of M, we
have

(A.10) Orelg] :@M[gJ_] it k£
and
(lv[* =3)
(A.11) Ouelg] = Ourly +/ ( +”k——!v!2) (P[g]—i-u[g].v—i—@[g]f)Mdv
= Oplg™] - 59[9].



REGULARIZATION AND HYDRODYNAMICAL LIMIT FOR THE LANDAU EQUATION 67
We now compute for any k € {1,2,3}, writing f = 7f + f*,

urlAef] = ZurlLf] = Zunle - Vaf]

3
v —
__16”/R3vkvz <,0[f]+u[f] 'U+9[f]w>]\/[dv

T e
1
——(3;,3[/ vEve fV M dv
5 R3

= 20,111~ 20,601~ 20, [ vewes VAT dv.

(A.12)

We also obtain

Ope[Acf] = éGkZ[LfL] - é@kz[v Ve f] — égké[v v

(A.13) 1 o 1 |
= —z@kg[Lf ] — —@kg [1} . Vx (u[f] . U\/M)} — —@M[U . Vg;f ]
€ € €
If k # ¢, then
GM [U . Vm (U[f] . U\/M)}
1
=0 U [f]—/ VRV |V|> M dv
(A14) pq '17 R3 pr¥q )
= Onudlflz [ ool M v+ Ol sz [ oboFloParav
k 7 JR3 ¢ 7 JR3
= Oz ug[f] + Op,uf]
because
/ vivZ|v|> M dv = / VRVE(vE +vf i) )M dv =17,
R3 R3
If kK =¥, then
(A.15)

Ok [v Vg (u[f] v\/ﬂ)}
= 0u,uglf) [ (5 + 0k = 310 i o
1 2

1 1 1
— 0y, upl] /RS <§ +ol— 5|v|2) v2M dv +z§€ampup[f] /RS <§ 4ol — 5|v|2) v2M dv
= 0w ui[f] = Y Ouyuplf],
pFk
because

1 1 Lo 15\ o
/113(5—%1),%—5]1)]2)1),%]\4(1@:1 and /R3(§+vk_§’1)’)vadU:_l'

We now estimate the term
(Dee(=00) kA f), Oel 1), + (De(=A0) Murlf], OelAf]) , =5 i + T

For Ji, we first notice that using (A.10) and (A.11) and Cauchy-Schwarz inequality, one
can prove that

1©kel 1z S 1011z + 1Ml z, -

Performing integrations by parts and using (A.12), we also have that

192(=20) M un[Acf1lE = (unlAef], (=22)HulAef])

_ _é <a$,€p[f] + 05, 01f] + 05, /RB vpoefVM dv, (—Ax)lwe[/\ef]>

L2

x

= 2 {plf1+ 0111, By (—A0) " ur[A f )

3
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e L[ et VAT v o, (-80S

L2.

T

From Cauchy-Schwarz inequality (in z and also in v for the third term), we obtain:

1Va(-0) " ulAe g < 2 (ol eg + 160002z + 17 ez, )
Gathering the two previous estimates, by Cauchy-Schwarz inequality, we deduce
[Tl S 1(=20) ™ un[Ac £z [|Onel ] 2
< = (hol ez + 160102z + 0542z, ) (100 Nze + 1 e,

For the term J3, the computation made in (A.13) yields
1

Jo = 6_2 <amg(_A1')_1uk[f]? GM[LleL%
_ é <8$Z(—Ax)_1uk[f]7 Oy [U - Va(ulf] '”\/M)} >Lg
1

= = (On () Mkl f]. Onele - Vaf ),
=: Ja1 + Joz + Jos.

To bound Jo1, we first notice that as in (A.7), one can prove that

1Oke[LS ez S I ez,

Then, (A.1) and Cauchy-Schwarz inequality give

1 _
J21 S 5 110z,(=Aq) [zl ez, S QHU[ Mz llf ez,

The term Jys is computed explicitly thanks to (A.14) and (A.15) and integrations by parts:

s = =2 303 (0= A0)  url ), Oyl + Ol )

E £k "
iy <amk<—Ax>—1uk[ DRATE WRAT
= p#k L2
=L X (nde Al uld])
k O£k ‘
- _ZZ< 83&[8&:[ $)71uk[f]’uk[f]>L2
k £k :
- Z< O Oy (— x)‘luk[f],uzc[fDL%
+ - Z Z < 89:p893k x)_luk[f]’up[f]>L2
k p#k :
so that
Joo = _é Z <_Am(_A:v)_1uk[f]auk > -z Z Huk HL2 - _éHU[f]H%%
k

The term Jos is treated thanks to an integration by parts, (A.1) and Cauchy-Schwarz
inequality:

—_

Jo3 S —IVA(=A2) ulfll2 1 ez,

< —lulflllzz 1f N2z, -

oM | =M
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Finally, we have obtained for some constants x,C > 0

(0r (= 80) ik Ac £, Ol 1) |, + (Br(~20) " unlf], OelAeS])

C C
(A.16) < —gHu[f]H%g + — el Nz 100 zs + —Nelf ezl /- N1zs,,

C C
+ 210U + S0 13s

Step 4. Mass estimate. We first compute

] = 5plLF] ~ Zplo - Ve f

(A.17) :-évx-/ vfVM dv
Rd

1

We now estimate the term
(Our (=20) T pIA L wrlf]) , + (O (= A0) T plf) uklAf]) | = Ry + Ro.

For Ry, from the computation (A.17) and (A.1), we have

1
By S (=80) " plA Al 1l flllze < Zllulf]lIZ2-

From (A.12) we rewrite the term Ry as

1

Ry === (00, (=A2) lf1. 00 plf1) , — 25

~5 (0e(=20) 11, 00 0111
1

Tz <8J1 (_Aar)ilp[f]a 8@/ / 4 Ukvéfl Vv Mdv>
R
=: Ro1 + Roo + Ros.

L3

L3

The first term Ro; is computed exactly thanks to an integration by parts:

Ror =~ (=000, (-2 0l 4111),, =~ 011

L3

69

The second one is estimated thanks to and integration by parts, Cauchy-Schwarz inequality

and (A.1):

Ryy S —[IVE(=20) " psll 2 1101f]ll 2

oAz 101112 -

<

~

M=M=

Similarly, we obtain

1 _
Ry3 S g”vi(—Ax) 1P[f]”Lg

1 1
S Zlelflezllf ez,

/ Uk?}gfL\/MdU
Rd

L3

Gathering the previous estimates, we obtain for some constants x,C > 0

(Ou (=00) " oA flowrlf]) , + (0 (=80) " plfl urlAS])
(A.18) : :

5 C ¢ ¢
< =2l + Zulf g + 210U + 21541,
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Step 5. Conclusion. We introduce the following inner product on L2 ,:
(A.19)

(F )iz, = (F.0)02, +me(De(=00) 0L Ule]) , +me (O (~A0) "0l ilS])
e (Or (=) k[ 1], Okel]) , + 72 (D (~20) M uklo), Okelf1)
156 (O (=22) ol ulg]) , + e (O (=22) " plo], e[ 1)

with constants 0 < 13 < 72 < 11 < 1 to be chosen below, and denote by [|g||3. =

L3

(9,9) 2 the associated norm. We observe that

91l 2

2, Sllgllzz, <llgllzz,
where the multiplicative constants are uniform in ¢ € (0,1]. The norms ||-|[z2 and [|-[[z2

are thus equivalent independently of ¢ € (0,1]. Gathering estimates (A.2)—(A.8)—(A.16)-
(A.18) and using Young’s inequality, we obtain:
1 /oy
(AL SDiz, <~ (% = Om = Cm— O ) 15 Bagu
km

(5 on - o) 10111

— (5m2 — Ot = Cos) Iul£117
2 77% 2
- (mys — O - CE) lolf1113:-

By choosing 1 = n, n2 = n%, Ny = 77% with » > 0 small enough and recalling that
1FIBs = 1712, + IolA1IZ2 + lulflIZ + 1617112 we thus obtain

K
(At iz, < —olfI3s, = S0 .

for some constants o, x > 0, which completes the proof. O

APPENDIX B. PROOFS OF LEMMAS 5.5 AND 5.6

Proof of Lemma 5.5. Let us first recall that B, = ¢ 2B — e v - V, with B and v - V,
that are respectively self-adjoint and skew-adjoint operators in Li,v. Proving that Sp.
regularizes from % to 2" and from (ZF) to 2 is similar to prove that Sp. regularizes
from 2" to %1 and from 2" to Z7 with same rates. We will only focus on the proof of (5.7)
and explain the adaptation to make to prove (5.8) in the first step of the proof.

Moreover, to prove (5.7), it is sufficient to prove that for any a € R and (v)* fi, € L2,
one has: For any t € (0,¢%],

(B.1) 14007 5.0 flzz s S 5100l
and
(B:2) [[(v)*S. (1) finllz,, + 10)*S5. (1) finll L2 (a2 .y + €1 Ve (0)*Sp. (8) fin)ll 12,

83
S ) fullsz,

Indeed, since V, commutes with B, from estimate (B.1) (resp. (B.2)), we already obtain
the first (resp. second) estimate of (5.7) for t € (0,%]. Then, fix o0 € (0,01). We obtain
the estimates given in (5.7) for all ¢ > 0 by using the exponential decay of Sz_ in 2" given
in Lemma 5.4. More precisely, using that for t > €2, Sp_(t) = Sp.(c?)Sp.(t — %), we
obtain that for ¢’ € (0,01) and for any ¢ > 0,

3
g —o"t/a2

€ e—a’t/52
min(g3, 3/2)

min(e, /1)

158 )| 2 »2 S and  [|Sp.(t)||2 2 S
1
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It implies the wanted conclusion using that ¢’ > o.

For the remainder of the proof, we let @ € R and fi, be such that (v)*fi, € L2, and

consider the solution f(t) = Sp.(t)fin to the equation 0;f = B. f with initial data fm, and
we shall prove (B.1) and (B.2).

Step 1. Define the functional
(B3) £.(0) = [0 Fl%s, + o1 (KN @)1y + 1) Tufs )
+ ean (ai?f <<v>a6vfa <U>a§xf>L% .
+tay (L) (I00°Tarly, + KN 039015,

where a1, a9, a3, K > 0 are positive constants such that 0 < ag € as € a3 < 1 and
az < /ajasz. Notice that in order to prove (5.8), one just has to change the sign in front
of the term which mixes derivatives in x and v in the definition of the functional &.. It will
allow to conclude that (5.7) holds for the adjoint of B instead of B; and thus imply (5.8).
The constants a; will be chosen small enough in Step 6, and K will be chosen large enough
in Step 3 and Step 5. We remark that

H<U>°‘in;(HU{*) S KH<U>°‘<U>%“J”H%;,U + H<U>a€vf”%gw S ) Iz
and
H(@“ﬁxﬂ\%gm S H(Wﬁxflligm +K|!<v>°‘(v>%vxf”%gm S H(@“ﬁxfl!%gm-

Therefore, we can already observe that for any ¢ € (0,£2], one has the following lower
bounds

t [e%
) P gy S €0
and 5
i a2 o £(2 2 a% 2 < £
=) (K0 flZs, + 1) F iz ) + M) VaflZs ) S E0).
Therefore, in order to prove (B.1) and (B.2), it is sufficient to prove that %Ee(t) < 0 for
all t € (0,e2]. We then compute
d d o aq [e% it a
Cet) = SN Tz, + (KN 0T 12, + 100D
d ol o
+ St (KN )Tl + 10°Vof s )

F2t (W Vel 0 Vaf) , + TG (@ Vaf 0V,

+3—t2(||< 1°Vaf 32+ K@) @) V.13, )

d ~ 2
010 Vad s, + Kl @) VaflZs )

and we shall estimate each term separately in the sequel.

Step 2. From Lemma 5.4, we already have
K

(B.4) Sl T3, <~ S0 ey

for some constant x > 0.
Step 3. We prove in this step that, choosing K > 0 large enough, we have

1d 5 B
©5) s @ )2 f Iy + 1) VuflT, |

(0)*Vaflx,

K o c a
< 5l Az + 1@ Az )
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for some constants x,C' > 0. From Lemma 5.4, we already have
1d ol K Y41 2
§all<v>°‘<v>2+1fllig’v < =102 s,
for some k > 0. Moreover, we have

1d ~ ~ -
Sl Voslie, = (Vi f Vo (B:-1)

= (Vo f, BV f)) , + {0V, f, [V, BIS)
Thanks to Lemma 5.4, there holds

9 .
Lz,v

K

(Vi d BV D), < —Z5l0) Vol lagm,)
for some constant x > 0. From Lemma 5.2-(i), we have

<<U>2a6vif7 [6vi785]f>

Lz,
_ _632 (o, (0T ), [T ) f>% - 6i2 (93,002, £, [V 6:j1f>%
B 6i2 <<U>2a6wf, (6vim2)f>[z%,v B 6% <<U>2a6wf, [[61}“ 6:1], 61}]} f>L92c,v
1

- <<U>2a6vif, 6:131'!)0>L926’U

e

1 Ly, 1.9

Writing ﬁvj((wh%vif) = <v>°‘€1}j((v>a€wf)+(€vj <v>°‘)(v>a€wf, using that \ﬁvj () <
()27 () and thanks to Lemma 2.2-(iii), we obtain
K < o
Ty < 0D B ) + CI0) )V B
In a similar way, observing now that
V5, (0)2V0,f) = =(0)° Vo, (002 Vi f) = [ (D Bie) (0)* + (Vi (0))] (0)°V o f

and using Lemma 2.2-(iv), we get
K ay @ @
T < S0Vl iz ) + ClO* ) flizz, + Cllw)* ) Vufllzz

~ 3
Using that [V,,m?2| < (v)2 T2 from Lemma 5.1, we also get
K

Ts < gl Vol Iz, + Cll)* @) Iz,

For the term T}, we use Lemma 2.2-(vii) to obtain
K = -
Ty < S0 Vol agn ) + Cl@ @) 7 s |+l ) Vol
Hence, we obtain

1d e K e C o
5&“@» vaH%gw < —2—52H<U> VufH%g(H;*) + 5—2”<U> <U>V+1f|’%gw

c « C a e
+ 5 li(v) (W) fll7e, + ~ 0V fllzz H0)*Vaflrz -

We conclude to (B.5) by gathering previous estimates, observing that ||(v>°‘(v>“/+1f\|L% o+
@) @19, 2, S 1) (0) 3+ Fl 2. and taking K > 0 large enough.

Step 4. In this step, we show that
(B.6)
C

d ag ay 1 ay @
i OV 00Var) <20 VSl + S0 ez,

<U>a6foL§(H57*)a
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for some constant C' > 0. We compute, using (

5.4),
3 (09t 09at) = (Vs Va { 58S = oVt })

L2

T,v

4 <<U>2a€$if7 Vo, {E%Bf - év ' vxf}>L§,v

1/~ ~ 1/~ - 1 -
= =5 (Va0 Vuh).BE) 4 5 (Vi Va ). BS) = 0 Vaf s

where we have used Lemma 2.2-(i). We hence conclude to (B.6) by using the fact that
l{v >O‘Bf||L2v S K0 fll2mz,) (see (3.19) for a similar estimate) together with esti-
mates (3.15) and (3.18).

Step 5. We prove in this step that, choosing K > 0 large enough, we have
X K =
B7) 2SI Vsl + KI0) 03 Val 2} < g 10 Vaf By

for some constants «, C' > 0. We first remark that, since V, commutes with B,, we already
have from Lemma 5 4 that

K @ ol
. d,5||<> ()2 Vallis, <~ o) )7 Vaf Iz

for some constant x > 0.
We then write

Sl 0 Vfl, = (V. Y B),,

= <<v>2a6$ifa B€(6$1f)>L2 + <<v>2a6$¢f? [612, BE]f>
Thanks to Lemma 5.4, there holds

2
Lz,v

K

(Y0t BeVad)),, <=l @ Vel I
for some constant x > 0. From Lemma 5.2-(ii), we have

(Ve Vi BLS )

L2

_ —&%Ww(( PV Ve Vo)), 5 (T (1), 9, 93,05
5 (090t (192 93,0, 90 1)

a 62 i Lz,
R+ Ry + Rg).

(
Writing V (<v>2avx1f) (v >a€vj(<v>a€$if) + (ﬁvj ()*)()*V,, f, using the fact that
]VUJ( v)?| < ()27 (v)* and thanks to Lemma 2.2-(v), we obtain

K as N
B < GI0)*Val gy + CN0) 0)7 VSl

In a similar way, observing now that

Vi, (012 V0, f) = =)V, (0)°Va, ) = [00, Bie) ) + (T4, 0)*)] (0)° Vo,
we get p N
Ry < 20} Val I35y, + Cll0)* ) 1V f3s

For the term R3, we use Lemma 2.2-(viii) to obtain

K e .
R < G0 Vel lZaan )+ ClO @)Vl
Hence, we obtain

C

a K e «
4w Vafliz, < =5z 1@ Vaflizm ) + S0 @ Vaflis -

2 dt 2¢2?
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We conclude to (B.7) by gathering previous estimates as well as noticing the fact that
() )V fllpz . < ||(v>“(v>%vxf\|L%(H5 ,) and taking K > 0 large enough.
Step 6. Proof of (B.1) and (B.2). Gathering (B.4)—(B.5)-(B.6)—(B.7), we obtain

d 2/‘:} a 2 0410 a 2
35O < — M iz ) + — 10 Fllzz )

o K a C «
+ 2t (- S0 By + TI0 Flgen.

+ 254 (@0, 0)°Var ),

<v>a%fux)

a9 1 s C @
+ 58 (<210t By, + G100 g

ORI

043 K
+ O T Iy, S ) T
Using Young’s inequality, we have
t ~ 042 12 ~ a? 1
Car 5 I0) Mlzzan, o N0)*Vaflliz, < Fopl00 sy, + O S0 F By

a9 o

25t () Vof (0)°Vaf) < 2t4\\< )*VaflZz, + O F 3.

t2 & ae Ckg/ﬁ;t 9
Cmg”(@ f||L§(H§’*)H<U> vrf”L%(H%’*) < S5 2 — [l ()* foL%(HU{*)

a3t
—2g|’<v>af|’ig(H3,*)-
We thus deduce, for any ¢ € (0, 2], that

d 1 o? o r12
agg(t)g—g—z 2/1—0@1—0@2—0&—2 [[{v) fHLQ%(H%’*)

CO[% a N2 t2 g C a% 2
T ailk — a_3 [[{v) fHL%(Hg’*)_e_zl 9 as ) [[{v) l“f”L%,v

———||( YV f 12z -

We now choose a; =7, ay = */2, and a3 = 7°/® with 5 € (0,1) small enough such that
each quantity appearing inside the parentheses in above inequality is positive. Therefore
one obtains that %Ee(t) <0, for any ¢ € (0, 2], which concludes the proof as explained in
Step 1. O

Proof of Lemma 5.6. The proof follows the same lines as the proof of Lemma 5.5. More
precisely, as explained in the Step 1 of the proof of Lemma 5.5, in order to obtain the
desired result it is sufficient to prove that %561(25) < 0 for all t € (0, 2] for some well-chosen
functional &7

Let a € R and fi, be such that (v)®fi, € L2,,. We then consider the solution f(t) =
Sg.(t) fin to the equation Oy f = B.f with initial data f;,. Recalling that & is defined
in (B.3), we then define the functional

E:(t) = E(t)
+,81( ) KlH v+2f|’L2 +K2H< > < >%+16vf”%%71 +H<U>a%v6vf”%%v)
+ &2, (%) (K1H< ) <v>’7+1v FIZ + Kol (0)* () +1vmf||L2

+ () Y VafI2s )
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e (i)5<<v>a6 R RBEANY
reti (5) (K 0D Ty, + Rl 3.,

A (ORI

where 1, B2, B3, B4, K1, Ko > 0 are positive constants to be chosen later such that 0 <
By < B3 < o< B < 1, By < /B3Py and K1 > Ko > 1.

Step 1. From the proof of Lemma 5.5 (Step 6), we already have that for any t € (0,&?],
there holds

d K o ’I’]l‘it
350 < —5zlw) fH%;(Hg* -

3/2152 775/ nt s

for some constant x > 0 and where 7 € (0,1) is small enough.

oot I Il 2 )
(B.8)
n

Step 2. From Lemma 5.4, we already have

d K
(B.9) &”@W”WHJCH%%,U < —g|!<v>a<v>”+2f\\%;(1{g,*)
for some k > 0. Moreover, from the proof of Lemma 5.5 (Step 3), we already know that
d Y1
Sl @ FIT 1B,
K Y1 C 3y
(B10) <50} ) T gy + ) () T2,

v,k

3_ C o = — (0% a5 V.
+ 5 ll(0)*{v) 2PV, fll7e, + — v (@) 3V f iz I(0)* @) 2V fllrz,

for some constants x,C' > 0. We now compute

2dt|y<v> VoVofliz,

< Vvivvjf’ <v>av”iv”185f>L§,v
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VoV, £ (0) Vo BV, 1)) )+ (007 F0 Vo, £, 00V, BV f),

+ ()"0, Vi, £, (0)[V vz,[vvj,rsnf>
=1+ 1)+ Is.

T,v

From the proof of Lemma 5.5 (Step 3), we already know that
K ~ ~ C .
I+ < —2—52H<U>avvvvf\|%g(1{g’*) + €—2||<U>a<v>y+1vvf\|%gm

Ci e - Croine = P
+ S @IV flLs |+ 1@ Ve Voflliz 10 Ve Vol ,-

For the term I3, we use Lemma 2.2 to get

(Voo V0, B| £ = =5 [vvl, Vi Ve, Vi ]
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Expanding the first two terms, we observe that
(Vour Vi [V VoI + [V, Vi [V, V3]
— VviV:jk [Vv]., Vol — V:jk [Vv]., VoV, + Vi, Vo, [ij, V:k] - Vo, [ij, Vzk]Vvi
= Vi, (Voo Vo Vil + Vo [Vors [V, Vi ]| + V0 ViV, Vi
+ [V, Vol [V, Vi, |y

whence

Iy = =25 (o, ((02°9090,1) s [0 190, D)) £ )iz,
— 5 (V5 (V090 1) [T 190, 93,]] 1 )iz,
- S T £ ) P V1 s Tl
_ ELQ () V0,V £ () Vi, VoIV, Vi, 1 >L
- S T To 01 [T (90,950 9] £,
- 5 (0T 0T Ty ),

1

)T, £ 00, T, 1)

L3
L 1/, ae = e o
=: _5_2(131 + I3g + I33 + I34 + I35 + I36) — z <<v> Vo, Vo, £, (0)* [V, sz]f>L2
Now remark that
[(0) =V, ()Y, Vo, |z, + [10) ™V (0)** Vi, Vo, Az, S 10 VoV f 2z
and using Lemma 2.2, we obtain
~ o~ 3 3
I + I S 10)°VoVud iz, (100 @) F IV fllz, +110)* ) F £z, )
Thanks to Lemma 2.2, we observe that
Vi Vo Vs Vo L1+ [V Vi Ve, VRIS 0072V Vo] + (0)7 |V |
and thus we obtain
~ o~ 3 3
Iy + Iy S 1(0)* )3V, Vo f Nz, (1000 (0) 2Vl iz, + 1(0)*(0) F Voflliz, )
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For the term I35, we write

3y
5 +

and using Lemma 2.2, we thus get
< ayy O o Eo g | o 3y
Iss S 1 (0)*VoVuf iz (100 0) T 1V fllzz, + 1 (0)*(0) 2 fllzz,,
+[[(0) @) VoV fll1z,, ).
Using that |6Ui%1}j m?| < (v)?7+2 we also obtain
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Gathering previous estimates and using Young’s inequality, we thus get
(B.11)

d,  we = K s = C. a ~
IO VoV fliEs | < =S VoVl ) + S0 @ Vo IZe
C ~ C 3y
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3 3
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~ 3 ~
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we then gather (B.9)—(B.10)—(B.11) choosing K; > K3 > 1 large enough, which yields
(B.12)
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Step 3. From the proof of Lemma 5.5 (Step 5) we already have, with K large enough
with respect to Ko,
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The term J3 can be estimated as the term I3 in Step 2 above. Therefore, we obtain,
gathering these estimates and using Young’s inequality,

4 K e e /oy iriie
&H<U> vvvxf”%gm < _4_52||<U> vvvmf”%g(H%’*) + €—2||(v> (v)“/"'lvmfﬂigm
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we then gather (B.13)—(B.14) and choose K > Ks > 1 large enough, which yields
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Step 4. Arguing as in the proof of Lemma 5.5 (Step 4), we obtain
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Step 5. Since V, commutes with ﬁx and B, we already know from the proof of Lemma 5.5
(Step 5) that, with K large enough with respect to Ko,
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for some constant x > 0. We now compute
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The term R3 can be estimated in a similar way as the term I3 in Step 2 above. Therefore
we obtain, using Young’s inequality,
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Observing that

~ 3 ~
1) (@) Vo Ve fllzz, + 10)* @) 2 Ve Ve fllzz, S 10)* @) 2 VaVa fllrz )

we then gather (B.17)—(B.18) and choose K > K» > 1 large enough, which yields

d 1 = ~ =
gy LI TaTafy + Kallo) 039, T+ o) Ve )
. . o
< SN0V f I
Step 6. We can then conclude the proof as in Step 6 of the proof of Lemma 5.5. O
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