Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects and management

Johann Faouzi, Jean-Christophe Corvol, Louise-Laure Mariani

To cite this version:
Johann Faouzi, Jean-Christophe Corvol, Louise-Laure Mariani. Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects and management. Current Opinion in Neurology, Lippincott, Williams & Wilkins, 2021, Publish Ahead of Print, 10.1097/WCO.0000000000000955. hal-03298526

HAL Id: hal-03298526
https://hal.archives-ouvertes.fr/hal-03298526
Submitted on 23 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impulse control disorders and related behaviors in Parkinson’s disease: risk factors, clinical and genetic aspects and management

Johann Faouzi1,2, Jean-Christophe Corvol1,3 and Louise-Laure Mariani1,3

1- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, F-75013, Paris, France
2- Inria Paris, Aramis project-team, F-75013, Paris, France
3- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Centre for Neurosciences, F-75013, Paris, France

Corresponding author:
Louise-Laure Mariani
Clinical Investigation Centre for Neurosciences
Pitié-Salpêtrière Hospital,
47-83, boulevard de l’Hôpital, 75651 Paris Cedex 13, France
Phone : 01 42 16 57 66
E-mail : louise-laure.mariani@aphp.fr

Length constraints

Abstract word count: 200
Manuscript word count: 2592
Number of figures and/or tables: 1 table, 1 figure
Abstract

Purpose of review: To review recent findings and research directions on impulse control disorders and related behaviors (ICDRBs) in Parkinson’s disease (PD).

Recent findings: Longitudinal studies found that prevalence increases during PD progression, incident ICDRBs being around 10% per year in patients treated with dopaminergic therapies. Screening tools and severity scales already developed have been validated and are available in several countries and languages. Main clinical risk factors include young age, male gender, type, doses and duration of the dopaminergic therapy, PD motor severity and dyskinesia, depression, anxiety, apathy, sleep disorders and impulsivity traits. Genetic factors are suspected by a high estimated heritability, but individual genes and variants remain to be replicated. Management of ICDRBs is centered on dopamine agonists decrease, with the risk to develop withdrawal symptoms. Cognitive behavioral therapy and subthalamic nucleus deep brain stimulation also improve ICDRBs. In the perspective of precision medicine, new individual prediction models of these disorders have been proposed, but they need further independent replication.

Summary: Regular monitoring of ICDRB during the course of PD is needed, particularly in subject at high risk of developing these complications. Precision medicine will require appropriate use of machine learning to be reached in the clinical setting.

Keywords: impulse control disorders, Parkinson’s disease, dopamine agonists, dopamine replacement therapy, prediction medicine
Introduction

Impulse control disorders (ICDs) are behavioral disorders that are common complications in Parkinson’s disease (PD) treated by dopamine replacement therapies (DRT). Related behaviors, such as hobbyism and dopamine dysregulation syndrome (DDS), have also been reported. These disorders negatively impact the quality of life of the patients and caregivers [1].

This article reviews previous and recent findings on ICDs in PD regarding their frequency, phenomenology, screening tools, and risk factors (Figure 1). The current and future strategies to manage these behaviors are also discussed.

Definition and description of impulse control disorders

PD is a frequent neurodegenerative disorder, affecting over 6 million patients worldwide [2]. Apart from the characteristic motor symptoms of PD, a wide variety of non-motor symptoms have been described, among which impulse control disorders and related behaviors (ICDRBs). ICDRBs are characterized by impairment in behavioral self-control with a failure to resist an urge to an enjoyable activity, that can lead to harmful situations and interfere with various areas of daily life when performed excessively. Despite the possible negative consequences, the behaviors are repeated without control, defining those behaviors as impulsive and compulsive. ICDRBs have shown to negatively impact life and social-occupational functioning of PD patients and their caregivers [1,3–7]. Among available dopamine replacement therapies (DRTs), dopamine agonists (DA) are the main treatment and risk factor associated with the occurrence of ICDRBs.

Description of ICDRBs reported in PD

The wide variety of ICDRBs reported in PD are summarized in Table 1 and Figure 1.
The main ICDs are pathological gambling, binge eating, compulsive shopping and hypersexuality. Pathological gambling is defined as recurrent and persistent dysfunctional patterns of gambling behavior leading to clinically significant distress or impairment [8]. Binge eating is characterized by recurrent episodes of high food intake in a short span of time [8]. Compulsive shopping is defined as excessive shopping and buying behavior that leads to distress or impairment [9]. Hypersexuality is characterized by recurrently or persistently present sexual or erotic thoughts or fantasies and desire for sexual activity [8,10]. Repetitive behaviors such as, punding, hobbyism, walkabouts and hoarding and, as in DDS, the compulsive use of DRT medication, have also been described as related behaviors [11–16]. Punding results in repetitive, purposeless behaviors focused on specific activities or motor tasks such as unnecessary repetitive home repair or assembling and disassembling objects repetitively. Hobbyism pertains to more complex repetitive behaviors such as arts, sports or online gaming. Walkabouts are excessive, aimless wanderings. In hoarding, patients collect a large number of items with little objective value, without being able to discard them, leading to impaired living conditions.

Assessment and diagnosis

Given their potentially devastative consequences, prompt identification of these disorders is important, especially as the patients may not be aware, or hide, their behaviors. Several screening tools and scales have been developed to screen, diagnose or assess severity of ICDs in PD (Table 1).

The Movement Disorder Society Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) includes an item entitled *Features of dopamine dysregulation syndrome* in the part assessing non-motor aspects of experiences of daily living (part I) [17]. This single item encompasses impulse control disorders, DDS, hobbyism, and punding.
The Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) was developed as a screening instrument for ICDRBs, structured to be consistent with diagnostic criteria as described in the fourth edition of Diagnostic and Statistical Manual (DSM) of Mental Disorders [18]. Its three sections focus on (i) the four most common ICDs, (ii) punding and hobbyism, and (iii) compulsive medication use. A rating scale version of the QUIP, the QUIP-RS, assess their frequency [19] and has been validated in several countries [20–22]. The QUIP can be used for screening for ICDRBs, while the QUIP-RS can be used for both screening and severity rating of ICDRBs [23].

The Ardouin Scale of Behavior in PD (ASBPD) consists of eighteen items addressing psychological and behavioral symptoms, grouped in four parts: general psychological evaluation, apathy, non-motor fluctuations and hyperdopaminergic behaviors [24]. This scale was validated in comparison to other scales and is particularly useful for the assessment of the severity across the range of ICDRBs [23,25].

The Scale for Outcomes in PD – Psychiatric Complications is a screening and severity scale with a 7-item questionnaire [26]. Each item score ranges from 0 (no symptom) to 3 (severe symptoms). Two items are related to ICD: one for compulsive shopping and pathological gambling, and another for hypersexuality [23]. This scale is only recommended for the evaluation of these three ICDRBs [23].

The Minnesota Impulsive Disorders Interview (MIDI) was originally developed in 2008 for the diagnosis of compulsive buying, trichotillomania, kleptomania, pyromania, intermittent explosive disorder, pathological gambling, and compulsive sexual behavior [27,28]. The original version was revised to match the changes made in the fifth edition of the DSM of Mental Disorders [27]. This semi-structured interview is used to assess the impulsive aspect of a compulsive behavior.
This large number of screening tools and scales may introduce heterogeneity in the assessment of ICDRBs in PD, which is already inherently high because of socio-cultural differences. So far, the QUIP-RS seems the most prominent tool given its validation in several languages. For severity rating across the range of ICBs, the QUIP-RS and the ASBPD are recommended [23]. Further testing of established scales against gold standard diagnostic criteria is required for all individual ICDRBs in PD, in the perspective of studies focusing on a specific subtype of ICD for instance, and such as the South Oaks Gambling Screen (SOGS) for gambling.

Frequency

ICDRBs are common in PD, the prevalence ranging from 14 to 33% in cross-sectional and longitudinal studies [3,29–36]. The prevalence increases during disease progression, incident ICDRBs being around 10% per year in patients treated with DRT [29,37]. The frequency and severity seem higher in specific subpopulations such as PD patients with Parkin mutations or GBA variants [38,39]. A recent review focused on the geographical analysis of ICD prevalence in PD, in regards to the socio-cultural aspects that may influence their occurrence [40]. The overall prevalence in European and American countries (20.8%) was significantly higher than in Asian countries (12.8%). The relative frequency of each subtype of ICDs also varied across countries. Binge eating was reported as the most frequent in European countries and American states, followed by hypersexuality and compulsive buying; whereas hypersexuality seems the most frequent in Asian countries, followed by pathological gambling. Studies in Turkey and India reported very low pathological gambling prevalences [41,42], possibly explained by the fact that gambling is prohibited in Turkey and heavily restricted in India.

Regarding ICD-related behaviors, less characterized, prevalence data are scarcer. Punding prevalence rates vary from 1.4% to 14% [12,13,43] depending on the clinical profile
of patients such as higher dosage of treatment. The prevalence of hoarding has been estimated at 12.2%, although in a specialized PD clinic, hence possibly overestimated [44]. DDS prevalence rate has been reported at 2.3% [45].

Pharmacological, clinical and genetic risk factors

Many risk factors of ICDs in PD have been reported, including demographic, PD-related, pharmacological and genetic risk factors.

Pharmacological variables

DRT, especially dopamine agonists (DA), has been strongly associated with ICDs. Ever use, longer cumulative duration, and higher cumulative dose of DAs have been correlated with ICDs [29]. Lifetime average daily dose and duration of treatment by DA were reported as independently associated with ICDs with significant dose-effect relationships [29,33,34,46]. The six DA approved by the US FDA (pramipexole, ropinirole, bromocriptine, cabergoline, rotigotine, and apomorphine) have all been associated with ICDs [47]. The strongest associations were reported for DA with a preferential affinity for D2-like receptors (D2 and D3 receptors) [48], and were higher with oral short-lasting DA than oral long-lasting or transdermal DA suggesting that pharmaceutical formulation and delivery route may also be important [49,50]. To a lesser extent, associations with levodopa [36,46] and amantadine [36] have been reported. Associations of ICDRBs with zonisamide, istradefylline, monoamine oxidase inhibitors but also antidepressants and sleep inductors were also suggested [33,35,51]. ICDRBs have been reported in drug-naïve PD patients with the same prevalence as in the general population, and in patients with restless leg syndrome (RLS) treated by DA [52–56], suggesting that ICDRBs are not related to PD only, but rather to the DRTs. The lack of association found between a PD genetic risk score and ICDRBs in PD supports this hypothesis [57].
Demographic features

A younger age, younger age at PD onset and male sex have been associated with ICDRBs [36,45,46,58–60]. Differences between sexes depending on ICDRBs subtypes were observed, with women developing more compulsive buying and eating disorders and men developing more pathological gambling and hypersexuality disorders [61,62], although the same differences have been reported in the general population [63]. A personal pre-PD history of an ICD and personal or family history of substance abuse are also risk factors for ICDRBs [64].

Personality traits

The most associated personality trait is impulsivity, with studies reporting higher impulsivity scores [64,65] and greater choice impulsivity [65]. PD patients with ICDs show a higher level of neuroticism and lower levels of agreeableness and conscientiousness [58], particularly among PD patients with pathological gambling [66] or hypersexuality [10]. Such patients are also reported to have ineffective coping skills [67], premorbid personality (novelty seeking and harm avoidance) [60], and anxiety [68].

Psychiatric disturbances

Symptoms and a history of depression [58,62,64,66,69–72], and a history of or higher scores of anxiety [10,46,64,72,73] have been reported as associated with ICDs. A recent study reported that the majority of PD patients with ICDs also suffered from clinically significant apathy and more than a third of apathetic PD patients suffered from ICDs [74].

Cognition
The relationship between ICDRBs and cognitive decline is not clear yet. A recent study reported higher prevalence and severity of all ICDRBs in PD patients with dementia than without dementia [75] whereas others reported less common ICDs in PD demented patients, but they were older, and less treated by DAs [59].

Worse set-shifting and reward-related decision-making were reported in PD patients with ICDs [70]. They may show different neuropsychological profiles depending on ICD subtype, with distinct dysexecutive or memory impairments [13,76]. But these alterations may be reversible modifications, only subsequent to DRT use [77,78].

Sleep disturbances

PD patients with ICDs have been reported to have an increased prevalence of sleep disturbances, including worse sleep efficiency, RLS symptoms, and daytime sleepiness [46,79–82]. Recent results suggest a common phenomenology of urge to move between RLS and ICDs [83]. PD patients with RLS develop more ICD, especially compulsive eating disorders, and show a different psycho-behavioral profile with more hyperdopaminergic behaviors on the ASBPD scale [82]. A strong association has been reported between ICDs, especially pathological gambling, and rapid eye movement sleep behavior disorder (RBD) both in early PD and longitudinally [68,82,84–88], although some recent findings did not reproduce this association [88,89].

PD-related factors

Several PD-related factors have been associated with ICDs such as younger age at PD onset [46,58,61,90], longer disease duration [46,58,61], and higher motor impairment [34,58,73]. A negative association between motor fluctuations or dyskinesias and ICDs has been reported [87], but others reported a positive association between dyskinesia and ICDs [91]. A higher
MDS-UPDRS Part I score, assessing non-motor disturbances of daily living, was reported [65,92], but one of the MDS-UPDRS Part I items concerns DDS.

Genetic data

Heritability of ICDRBs was estimated at 50-60% both in non PD twin studies and PD studies [93,94].

Studies reporting associations of genetic variants with ICDs in PD usually performed candidate gene analyses. Associations were reported with variants in genes encoding receptors or enzymes from dopamine, norepinephrine, serotonin, glutamate and opioid pathways in PD: DAT1 [95], DRD1 [96,97], DRD2 [93,97], DRD3 [98–100], DDC [93,101], GRIN2B [97,100], HTR2A [93,102], OPRK1 [93], ANKK1 [103], OPRM1 [95], and SLC22A1 [104] and in the general population [105]. Several of these associations were not always confirmed [95,106], most of these studies being underpowered in PD and without independent replication. The reader can refer to a recent review for a more extensive list of variants investigated in ICDRBs [107].

Exome sequencing suggests genes implicated in signaling pathways linked to G protein-coupled receptors such as the “Adenylate cyclase activating” pathway could participate to genetic susceptibility to ICDs in PD [108].

Management

There is no specific pharmacological agent approved for the management of ICDRBs [107]. Nonetheless, several strategies to manage these disorders have been investigated.

Since DA use is the most important risk factors to develop ICDRBs in PD, a common approach is to reduce the dose or withdraw DA use, with reports suggesting ICDRB resolution or improvement after a few weeks to several months [1,78,109,110]. DA withdrawal may
however have significant drawbacks, including DA withdrawal syndrome with anxiety and depression [111], and may precipitate motor complications. Some patients may require low doses of DA over a large span of time to prevent psychological disorders, but persistence of ICDRBs also occur [112].

Pharmacological agents, including naltrexone [113], citalopram [114], amantadine, and atomoxetine [115,116], have been trialed with modest results and no definitive demonstration of efficacy.

Cognitive behavioral therapy has been investigated to manage ICDRBs, with encouraging results. A randomized controlled trial reported improvement in ICDRBs as well as anxiety and depression levels for 28 patients enrolled in a cognitive behavioral therapy in comparison to 17 wait-listed controls [117], who also demonstrated beneficial response to therapy six months later [118].

Subthalamic nucleus deep brain stimulation (STN-DBS) seems to possibly improve ICDRBs in most reported cases [119] and in prospective observational studies, possibly related to DA medication decrease [120–122]. Yet, worsening of ICDRBs, no change, and development of de novo ICDRBs after STN-DBS have also been reported [119,122].

Prediction

Given the difficulties to screen for ICDs in clinical practice, and the limited treatment strategies to manage ICDs in PD, developing predictive tools would be of great interest. Although risk factors are useful clinical clues, they still cannot reach prediction medicine level for individual risk prediction, which would require machine learning approaches, applied in a few recent studies.

Studies that investigated the predictability of ICDs in PD [93,96,101] trained and evaluated a logistic regression model with clinical and genetic variables as inputs, each in a
different cohort. Adding genetic variables input increased the predictive performance of the models.

These studies have important limitations as they included a single cohort in their analyses, and none of the studies performed cross-validation to evaluate the predictive performance of their models. The same dataset was used as the training set but also as the test set. The predictive performances of these models may thus be highly overestimated. None of the three studies evaluated the performance of their models on an independent replication cohort, which would help estimate the generalizability of the models. Some publicly available cohorts could be used in the next studies to train algorithms on one dataset and evaluated them on another dataset.

Conclusion

Since the first reports of ICDRBs in PD in the early 2000s, dedicated clinical cohorts allowed to determine the frequency and risk factors of ICDRBs, and screening tools and severity scales have been validated. Genetic liability of ICDRBs remains mostly unknown, and larger genetic association studies with independent replication are still needed. The clinical management of ICDRBs includes the decrease in DA use, cognitive behavioral therapy, and eventually STN-DBS. Preliminary studies have proposed predictive models of ICDRBs in the perspective of precision medicine development. Further discoveries on the pathophysiology and predictability of these disorders will likely integrate the use of deep-learning approaches to combine clinical and genetic risk factors for a potential application in the clinical setting.
Key points

- Impulse control disorders and related behaviors are frequent in Parkinson’s disease, with an incidence estimated to 10% per year in patients treated with dopamine replacement therapy.
- The main risks factors are the dose and duration of the dopamine replacement therapy, a younger age and male gender, motor and non-motor features of Parkinson’s disease profile, and potential genetic factors that remain to be explored.
- Management relies on the decrease of the dopamine agonist doses with the risk of withdrawal symptoms, cognitive behavioral therapy, and eventually deep brain stimulation in eligible patients.
- Clinical-genetic models to predict patients at high risk of developing these disorders would be ideal, but are in need of further development with accurate deep-learning approaches and replication.
Acknowledgements

None

Financial support and sponsorship

No funding

Conflicts of interest

Johann Faouzi - *Reports no conflict of interests*

Jean-Christophe Corvol - *Reports no conflict of interests related to the present work*

Has served in scientific advisory boards for Biogen, Denali, Ever Pharma, Isdorsia, Prevail Therapeutics, UCB, and received grants from Sanofi, the Michael J Fox Foundation, ANR, France Parkinson, the French Ministry of Health

Louise-Laure Mariani - *Reports no conflict of interests related to the present work*

Has received research support grants from INSERM, JNLF, The L’Oreal Foundation; speech honoraria from CSL, Sanofi-Genzyme, Teva; consultant for Biophytis and received travel funding from the Movement Disorders Society, ANAINF, Merck, Merz, Medtronic, Teva and AbbVie, outside the submitted work.
Figure legend

Figure 1. Overview of the frequency, screening tools, risk factors, clinical and genetic aspects, management and predictive models of impulse control disorders and related behaviors in Parkinson’s disease.

Abbreviations: ASBPD, Ardouin scale of behavior in Parkinson’s disease; DD, disease duration; ICDs, impulse control disorders; ICDRBs, impulse control disorders and related behaviors; MAO, monoamine oxidase; MDS-UPDRS, Movement Disorders Society revision of the unified Parkinson’s disease rating scale; MIDI, Minnesota impulsive disorders interview; PD, Parkinson’s disease; QUIP, questionnaire for impulsive-compulsive disorders in Parkinson’s disease; QUIP-RS, questionnaire for impulsive-compulsive disorders in Parkinson’s disease – rating scale; RBD, rapid eye moment sleep behavior disorder; RLS, restless leg syndrome; SCOPA, scales for outcomes in Parkinson’s disease; SOGS, South Oaks gambling screen; STN-DBS, subthalamic nucleus deep brain stimulation.
References

Report of the worldwide global burden of Parkinson’s disease between 1990 and 2016 with determination trends of evolution and influencing factors. Through a systematic analysis of epidemiological studies, global, regional, and country-specific prevalence and years of life lived with disability for Parkinson’s disease were estimated from 1990 to 2016.

* Review from the Movement Disorder Society on the screening tools and severity scales to assess impulse control disorders in Parkinson’s disease, including recommendations on which tools to use for diagnostic screening and severity rating.

* One of the first study with a longitudinal analysis of impulse control disorders in Parkinson’s disease showing that almost half of PD patients experience impulse control disorders after five years of follow-up.

* Systematic review of the impact of the country on impulse control disorders in Parkinson’s disease, reporting different profiles in different geographical areas, which may be attributable to genetic, socio-economic, cultural or political influences in the phenomenology of these disorders.

* First study investigating the association between a Parkinson’s disease genetic risk score and impulse control disorders in Parkinson’s disease; no significant association was found.

* Systematic review with meta-analysis of the evidence for an association between impulse control disorders in Parkinson’s disease and cognitive, affective, and motivational abnormalities, reporting associated with worse set-shifting and reward-related decision-making, and increased depression, anxiety, anhedonia, and impulsivity.

* Study highlighting the high co-occurrence of apathy and impulse control disorders in Parkinson’s disease and challenging the concept of apathy and impulse control disorders as opposite ends of a spectrum.

* Study investigating the replacement of dopamine agonists with an equivalent dose of levodopacarbidopa slow-release formulation for PD subjects with impulse control disorders, and reporting alleviated impulse control disorders in PD patients leading to improvement in daily activities but no improvement in neuropsychiatric traits associated with ICD after the 12-week therapy.

* Study investigating the “urge” to move through the suggested immobilization test supporting the diagnosis of restless leg syndrome, and reporting significantly higher score for PD subjects with impulse control disorders than those without.

* Study suggesting that probable rapid eye movement sleep behavior disorder is not clearly associated with impulse control disorders in Parkinson’s disease.

* Study investigating the severity of impulse control disorders in Parkinson’s disease using a relatively large cohort with longitudinal follow-up, reporting association with dopamine agonist use, motor complications, and apathy but not rapid eye movement sleep behavior disorder.

* Study suggesting a novel association of the opioid receptor gene OPRM1 with impulse control disorders and related behaviors in Parkinson’s disease and confirming a previous association with DAT1.

* Study investigating the predictability of impulse control disorders in Parkinson’s disease, using clinical and genetic data as input of a logistic regression model.

* Study investigating new pathways for impulse control disorders in Parkinson’s disease and suggesting that genes implicated in the signaling pathways linked to G protein-coupled receptors participate to the genetic susceptibility to impulse control disorders in Parkinson’s disease.

* Study on the impact of deep brain stimulation of the subthalamic nucleus, confirming the resolution of impulse control disorders in most cases afterward (but an increased risk of developing apathy) and the increased risk of developing impulse control disorders for subjects with preoperative apathy.
Impulse control disorders

Pathological gambling: 3.8%
Binge eating: 4.9%
Compulsive shopping: 4.7%
Hypersexuality: 5.4%

Related behaviors

Hobbyism: NA
Punding: 4.9%
Walkabouts: NA
Hoarding: 12.2%
Dopamine Dysregulation Synd: 2.3%

Risk factors

Socio-demographics
- Young age
- Male sex
- Marital status: single
- Pre-PD history of ICD
- Personal/family history substance abuse

Psychiatric and cognitive
- Apathy
- Depression
- Anxiety
- Alexithymia
- Dysexecutive syndrome
- Personality traits: impulsivity, neuroticism, novelty seeking, harm avoidance

Sleep
- RBD?
- RLS
- Daytime sleepiness

PD-related
- Younger age at PD onset
- DD since PD onset
- Motor impairment
- Dyskinesia
- Parkin and GBA status

Pharmacological
- Dopamine agonists (longer duration, higher dose, pulsatile treatment)
 - Levodopa
 - Amantadine
 - Possibly also: MAO inhibitors, Istradefylline, antidepressants, ...

Screening tools
- MDS-UPDRS item 1.6
- QUIP, QUIP-RS
- SOGS
- ASBP D
- SCOPA
- MIDI

Genetics and precision medicine
- Overall estimated heritability 50-60%
- Suggestive variants in individual genes to be confirmed in independent studies (DAT1, DRD1, DRD2, DRD3, DDC, GRIN2B, HTR2A, OPRK1, ANKK1, OPRM1, SLC22A1)
- A few studies with clinical-genetic prediction models
- Precision medicine not reached

Management
- Dopamine agonist withdrawal
- Cognitive behavioral therapy
- STN-DBS may improve ICDs
Table 1. Different types of impulse control disorders and related behaviors in Parkinson’s disease, their frequency and the relevant screening and evaluation tools.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Description</th>
<th>Frequency % [range]</th>
<th>Relevant screening tools in PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse control disorders</td>
<td>Pathological gambling</td>
<td>Addiction to casino games and slot machines, scratch card games, online gambling, with potentially devastating financial repercussions</td>
<td>3.8% [0% - 14.0%]</td>
<td>ABSPD, MDS-UPDRS 1.6, MIDI, QUIP, QUIP-RS, SCOPA, SOGS</td>
</tr>
<tr>
<td></td>
<td>Binge eating</td>
<td>Recurrent episodes characterized by eating, in a small span of time, an excessive amount of food</td>
<td>4.9% [0.3% - 34.8%]</td>
<td>ABSPD, MDS-UPDRS 1.6, QUIP, QUIP-RS</td>
</tr>
<tr>
<td></td>
<td>Compulsive shopping</td>
<td>Excessive shopping and buying behavior that leads to distress or impairment, with devotion of excessive time or money to these behaviors</td>
<td>4.7% [0% - 20%]</td>
<td>ABSPD, MDS-UPDRS 1.6, MIDI, QUIP, QUIP-RS, SCOPA</td>
</tr>
<tr>
<td></td>
<td>Hypersexuality</td>
<td>Persistent or recurrent sexual or erotic thoughts or fantasies and desire for sexual activity</td>
<td>5.4% [0.7% - 23.8%]</td>
<td>ABSPD, MDS-UPDRS 1.6, MIDI, QUIP, QUIP-RS, SCOPA</td>
</tr>
<tr>
<td>Other behavioral addictions</td>
<td>Hobbyism</td>
<td>Recurrent and repetitive excessive activities such as physical exercise, gardening, handiwork, taking a stroll on</td>
<td></td>
<td>ABSPD, QUIP, QUIP-RS</td>
</tr>
<tr>
<td>Effect</td>
<td>Description</td>
<td>Prevalence</td>
<td>Abbreviations</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Punding</td>
<td>Intense fascination with repetitive manipulations of technical equipment, and continual handling, examining, sorting common objects</td>
<td>4.9% [0.3% - 14%]</td>
<td>ABSPD, MDS-UPDRS 1.6, QUIP, QUIP-RS</td>
<td></td>
</tr>
<tr>
<td>Dopamine dysregulation syndrome</td>
<td>Intake of large doses of dopamine drugs in excess of that required to control motor symptoms, repetitive requests to physicians for larger doses of dopamine replacement therapy or self-escalation of these doses without medical approval</td>
<td>2.3%</td>
<td>ABSPD, MDS-UPDRS 1.6, QUIP, QUIP-RS</td>
<td></td>
</tr>
<tr>
<td>Walkabouts</td>
<td>Excessive strolling and difficulties to sit still</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsive hoarding</td>
<td>Procurement of an excessive number of worthless objects that may lead to unsafe living conditions</td>
<td>12.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:

ASBPD, Ardouin Scale of Behavior in Parkinson’s Disease; MDS-UPDRS, Movement Disorders Society Revision of the Unified Parkinson’s Disease Rating Scale; MIDI, Minnesota Impulsive Disorders Interview; PD, Parkinson’s disease; QUIP, Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease; QUIP-RS, Questionnaire for Impulsive-
Compulsive Disorders in Parkinson’s Disease – Rating Scale; SCOPA, Scales for Outcomes in Parkinson’s Disease; SOGS, South Oaks Gambling Screen.