
HAL Id: hal-03293482
https://hal.science/hal-03293482

Submitted on 21 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of the distance from a surface based on local
optic flow divergence

Lucia Bergantin, Thibaut Raharijaona, Franck Ruffier

To cite this version:
Lucia Bergantin, Thibaut Raharijaona, Franck Ruffier. Estimation of the distance from a surface
based on local optic flow divergence. 2021 International Conference On Unmanned Aircraft Systems
(ICUAS’21), Jun 2021, Athens, Greece. �10.1109/ICUAS51884.2021.9476751�. �hal-03293482�

https://hal.science/hal-03293482
https://hal.archives-ouvertes.fr


Estimation of the distance from a surface based on local
optic flow divergence

Lucia Bergantin
Aix-Marseille Université
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Abstract—Estimating the distance from a surface is a well-known
problem for all kinds of applications involving robots moving in an
unknown environment. For flying robots this issue is often coupled
with weight constraints, from which the importance of carrying out
the estimation of distances with minimalistic equipment. In this study,
we present a method to exploit the optic flow divergence cue in
order to assess the distance from a surface by means of an Extended
Kalman Filter. First, we demonstrated mathematically that the optic
flow divergence can be assessed by computing the subtraction between
two local optic flow magnitudes. Then, we tested this method on a
test bench consisting of two on-the-shelf optic flow sensors performing
a back-and-forth oscillatory movement in front of a static or moving
panorama. Our findings showed that the optic flow divergence measured
as a subtraction of two local optic flow magnitudes was in line with
the optic flow divergence computed theoretically under two different
lighting conditions. Thus, we were able to use the optic flow divergence
measured to assess the distance from the static or moving panorama
for low (120lux) and bright (974lux) illuminance respectively. Future
work will focus on the implementation of this method on a micro-flier to
estimate the distance from a surface, with little mass and computational
power.

I. INTRODUCTION

The problem of distance estimation while navigating in an
unknown environment is common to all types of robots. In flying
robots, and more specifically in micro-fliers, this need is often cou-
pled with weight constraints. From these considerations stems the
importance of carrying out an accurate visual distance estimation by
means of minimalistic equipment. Previous authors have suggested
the use of stereo vision to avoid obstacles in vehicle environment
perception [1, 15] and in flying robots [14], as well as the use of
monocular vision for depth perception [20]. All these approaches
rely on the use of cameras and often require the use of complex
computer vision algorithms. Optic flow (OF) cues have been used
on board flying robots to visually control landing with translational
OF [18] and with OF divergence [7, 22, 3, 8], to follow uneven
terrain [4] or to attempt visual odometry and localisation [9, 10]
(see [21] for review). Moreover, instabilities have been used to
determine the height of flight of a micro-flier by exploiting the
linear relation between the oscillation and the fixed control gain
[3]. Local OF sensors have been extensively tested in a wide range
of lighting conditions for OF based guidance. More generally, the
criteria for evaluating the suitability of translational OF sensors for
robotic applications include [23]:

• Robustness to light level variations, defined by the number of
irradiance decades in which the visual sensor can operate,

• Range of OF angular speeds (or magnitudes) covered, defined
by the minimum and maximum values measured,

• Accuracy and precision, defined by systematic errors and
coefficients of variation,

• Output refresh rate, defined by the instantaneous output fre-
quency.

To measure the translational OF, a OF sensor was based on the
M2APix (Michaelis-Menten Auto-adaptive Pixel) retina that can
auto-adapt in a 7-decade lighting range [13]. Moreover, it has been
demonstrated that a single Local Motion Sensor (LMS) fitted with
two auto-adaptive pixels allows to measure an OF range of [50◦/s;
350◦/s] despite variations in lighting conditions from ∼ 50lux to
10, 000lux [5]. A similar OF range of [50◦/s; 250◦/s] (i.e., 0.7-
decade) was measured with a semi-panoramic artificial eye, called
CurvACE [6]. The OF range can also be measured for outdoor
flights, as in [19]. In [17], LMSs were used in front of a moving
panorama to measure translational OF.
Small self-oscillatory movements have been observed in honey-
bees flying in horizontal [11] and vertical tunnels [16]. These
self-induced oscillations are different from side-to-side parallax
movements observed in insects (more specifically in locusts [2]
and in praying mantis [12]). These oscillations generate a pattern
of expansions and contractions in the OF vector field, known
as OF divergence. The changes in the vertical speed and in the
height of flight due to the oscillations make both variables locally
observable [8]. Therefore, by having a device performing back-
and-forth oscillatory movements in front of a surface, the local
observability of its speed and distance from the surface is ensured.
Taking inspiration from honeybees, in this study we exploit the OF
divergence cue to visually estimate the distance from a static or
moving surface. In previous studies, authors have used cameras to
assess the OF divergence and in some cases to estimate the distance
from a surface using an Extended Kalman Filter (EKF) on board a
flying robot [8]. In this study, we assessed the distance from a static
or moving surface by measuring the OF divergence solely based on
the subtraction of the magnitudes of two local OF sensors.
In section II, we demonstrate mathematically that the OF divergence
can be measured solely based on the subtraction of the magnitudes
of two local OF sensors: this subtraction results in the OF divergence
even in front of a static or a moving surface. In section III, we
present the test bench consisting of two OF sensors placed on a
slider performing a back-and-forth oscillatory movement in front
of a panorama. In section IV, we show experimentally that the
signal obtained was equivalent to the OF divergence computed
theoretically. Then, the signal was conveyed to the EKF to assess
the distance from the static or moving panorama under two different
lighting conditions.



Fig. 1: (a) The test bench consisted of two OF sensors set on a chariot at φ and −φ (with φ = 15◦) with respect to the horizontal axis
z and placed on a slider in front of a panorama. The DC motor connected at the end of the slider opposite to the panorama induced a
back-and-forth oscillatory movement on the chariot on the horizontal axis z. The direction of the chariot’s movement was associated with
the velocity vh, represented in blue. The panorama moved on the x axis at a varying velocity Vpanorama (in green). A lidar placed on
the chariot measured the distance D · cos(φ) to the panorama and hence provided the ground truth for the experiment. (b) The two OF
sensors measured the OF magnitudes ω(φ) and ω(−φ), respectively. When the DC motor induced a velocity vh in the direction of the
z axis, the movement of the two OF sensors coupled with the movement of the panorama mimicked an ascending flight above a static
surface. The resulting velocity V was oriented upward with an angle α and a contraction was perceived on the OF vector field. When
the DC motor induced a velocity vh in the opposite direction with respect to the z axis, the movement of the two OF sensors coupled
with the movement of the panorama mimicked a descending flight above a static surface. In this case, V was oriented downward with an
angle α and an expansion was perceived on the OF vector field.

Due to their low weight, OF sensors are particularly interesting
for flying robotic applications. Thus, we plan to test the method
presented to estimate the distance of a flying robot at about one
meter from a surface.

II. THE OPTIC FLOW DIVERGENCE

A. Definition of the local optic flow divergence

Oscillatory movements generate a sequence of expansions and
contractions in the OF vector field. This pattern is known as OF
divergence and is superimposed on the translational OF component
of the OF vector field. The OF divergence is defined as the ratio of
the velocity in the direction normal to a surface vh and the distance
from the surface h:

ωthDIV =
vh
h

(1)

These oscillations make the state vector of the oscillating system
locally observable [8] and hence allow to assess the distance
from the surface by means of an estimator, i.e. an EKF. The OF
divergence can be used by flying robots as an additional visual cue
for distance estimation purposes.

B. True local optic flow divergence measured by only two optic flow
sensors

We mathematically demonstrate here that the local OF divergence
ωmeasdiv can be computed as the subtraction between the magnitudes
of two OF sensors’ outputs.

Proof. To compute the OF divergence, we consider the case of a
device equipped with two OF sensors oriented forward at φ and
−φ with respect to the horizontal axis z and placed in front of



a surface. The device moves forward oscillating back-and-forth in
front of the surface, that moves at a speed −vx. The OF divergence
can be measured as follows

ωmeasDIV = ω(φ)− ω(−φ) (2)

with ω(φ) and ω(−φ) the OF magnitudes measured by the two
OF sensors respectively. By definition, the OF due to the translation
movement of the surface can be written as follows

ω(φ) =

∥∥∥−→V ∥∥∥
D

sin
̂( ~D, ~V ) (3)

with ̂( ~D, ~V ) =
π

2
− φ+ α (4)

We can express the two components of the velocity vector
−→
V of

the device in front of the surface as:

vx =
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∥∥∥−→V ∥∥∥ · sinα
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h

from which we obtain:
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We can then express ω(−φ) and ω(φ) as:

ω(−φ) =
vx
D

sin
(π

2
− φ

)
− vh
D

sinφ (12)

ω(φ) =
vx
D

sin
(π

2
− φ

)
+
vh
D

sinφ (13)

Thus, the OF divergence can be computed as

ω(φ)− ω(−φ) = 2.
vh
D
· sin(φ) (14)

where h = D · cos(φ) is the distance from the surface.

ω(φ)− ω(−φ) = 2 · vh
h
. sin(φ). cos(φ) (15)

Since sin(φ) · cos(φ) = 1
2
· sin(2 ·φ), we can express equation (14)

as follows:

ωmeasDIV = ω(φ)− ω(−φ) =
vh
h
. sin(2.φ) (16)

where ω is the OF magnitude, φ is the visual direction of the
OF sensor with respect to the axis z and h is the distance from the
panorama. The maximum sensitivity of such a local OF divergence
device corresponds to a OF sensor orientation of φ = 45◦.

III. MATERIALS AND METHODS

To show that it is possible for an oscillating system to retrieve
its distance from a surface solely on the basis of OF cues, we built
a test bench consisting of two OF sensors set at fixed angles φ
and −φ which performed a back-and-forth oscillatory movement in
front of a panorama. Since the system was locally observable due
to the oscillations, it was possible to estimate the distance from the
static or moving panorama by means of the EKF. The EKF received
as measurement the OF divergence computed as in equation (2),
with ω(φ) and ω(−φ) the OF magnitudes measured by the two OF
sensors. To test the robustness of this method, we considered two
lighting conditions: bright (974lux, 6.95 · 10−5W/cm2) and low
(120lux, 5.42 · 10−6W/cm2) illuminance, respectively. In the test
bench, Vx = −Vpanorama because the movement of the panorama
mimicked the flight forward above a surface of the system to which
the OF sensors were attached.

A. The test bench

The test bench built consisted of two OF sensors set on a chariot
at φ and −φ (with φ = 15◦) with respect to the horizontal axis z
and placed on a slider in front of a panorama, as shown in Figure 1.
A DC motor was connected at the end of the slider opposite to the
panorama and induced a back-and-forth movement on the chariot
along the slider on the horizontal axis z. The panorama moved
on the x axis at a varying velocity Vpanorama. A lidar set on the
chariot provided the ground truth measuring the distance D ·cos(φ)
from the panorama. The back-and-forth movement of the OF sensors
reproduced the self-oscillations observed in honeybees, while the
movement of the panorama mimicked the motion forward above a
surface. Synchronization was guaranteed by the use of an interface
that initialized the OF sensors, the lidar and the DC motor at the
same time. More specifically, we used two Flow Deck V2 from
https://www.bitcraze.io/. On each deck were set a PixArt PMW3901
OF sensor and a VL53L1x ToF lidar. The sensors were connected
to an Arduino DUE board. To compute the ground truth, we relied
on the output of the lidar on the left. The interface MyViz was
used for synchronization purposes and to change the frequency of
the chariot’s oscillation when required.

B. Calibration of the optic flow sensors

To compute the OF divergence, we relied on the OF magnitudes
ω(φ) and ω(−φ) measured by the two OF sensors set on the
chariot. The OF sensors’ raw outputs were given in [pixel/s] and
thus needed to be calibrated to be expressed in [rad/s]. To find the
calibration coefficients, a position on the slider was chosen (0.14m).
One OF sensor was kept stationary with φ = 0◦ with respect to the
axis z, while the panorama moved with nine values of velocity



Vpanorama (from 0.2m/s up to 1m/s with a step of 0.1m/s). For
each Vpanorama, were computed the theoretical translational OF
wthT and the average of the measured translational OF wmeasT . Nine
points of coordinates (wthT , wmeasT ) were obtained and used to fit
an affine line wmeasT = m · wthT + q, where m and q were the
calibration coefficients. This procedure was applied to the two OF
sensors separately.

C. The model of the test bench

Fig. 2: Block diagram of the test bench system. The system of the
test bench received as input the velocity setpoint of the DC motor
Ω [rad/s] and as output the distance h [m] of the two OF sensors
from the panorama. More specifically, the slider dynamics received
Ω as input and gave the velocity induced on the chariot by the DC
motor VΩ [rad/s] as output. VΩ was scaled by the radius R of the
pulley connecting the DC motor to the chariot in order to compute
vh [m/s]. vh was then integrated in order to obtain h.

The system of the test bench can be represented as the block
diagram in Figure 2. The system’s input was the velocity setpoint
of the DC motor Ω, while its output was the distance h of the
two OF sensors from the panorama. The slider dynamics represents
the motion control system, as to say a feedback loop over a PID
and the motor dynamics. The slider dynamics received as input the
DC motor’s velocity setpoint Ω in [rad/s] and gave as output the
velocity induced by the DC motor on the chariot VΩ in [rad/s].
VΩ was scaled by the radius R (with R = 0.012m) of the pulley
connecting the DC motor to the chariot in order to compute vh,
which was then integrated to compute h. We identified the slider’s
system between the setpoint input Ω and the chariot’s displacement
h in [m] using a transfer function that can be expressed as

G(s)Slider =
Z(s)

U(s)
=

0.3498

s(s+ 54.27)
(17)

The system’s state space representation can then be expressed as
Ẋ = A ·X +B · u =

[
0 1
0 −54.27

]
X +

[
0

0.3498

]
u

Y = C ·X +D · u =

[
1 0
0 1

]
X

(18)
where u is the velocity setpoint Ω and X =

[
h; vh

]
is the state

vector. It is important to notice that the measurement equation of
the model is nonlinear, since it can be expressed as

Y = ωDIV =
vh
h

(19)

This is the reason why the use of an EKF is necessary. Once defined
the model of the test bench system in equation (18), we proceeded
to its discretization (see Appendix A for the EKF calculations). The
EKF received as input the velocity setpoint of the DC motor Ω and
as measurement the OF divergence measured.

IV. RESULTS

To show experimentally that the measured OF divergence ob-
tained as in equation (2) was equivalent to the theoretical OF
divergence computed as in equation (16), several datasets were
collected under different conditions. The two OF sensors performed

a back-and-forth oscillatory movement in front of the panorama,
which was moving with different values of velocity Vpanorama
(0m/s, 0.25m/s, 0.5m/s and 0.75m/s). The panorama speed
Vpanorama can not exceed 0.75m/s steadily because of mechanical
constraints. For each Vpanorama, four oscillation frequencies were
considered: 0.25Hz, 0.5Hz, 0.75Hz and 1Hz. The maximum
peak-to-peak amplitude was reached for 0.25Hz (see details in
caption of the Figure 3). For oscillation frequencies below 1Hz, the
oscillation amplitude was too small to allow an effective estimation
of the distance from the panorama with the current setup. To test
the robustness of the method, the datasets were taken under two
different lighting conditions: bright (974lux, 6.95 · 10−5W/cm2)
and low (120lux, 5.42 · 10−6W/cm2) illuminance, respectively.
For each dataset we subtracted the OF magnitudes measured by
the two OF sensors as in equation (2), obtaining the corresponding
OF divergence ωmeasdiv . In parallel, we computed the theoretical OF
divergence ωthdiv as in equation (16). To compare ωmeasdiv and ωthdiv ,
all the values of ωmeasdiv measured for all the oscillation frequencies
for the panorama moving with a given Vpanorama under a set
lighting condition were put together and plotted in comparison with
the corresponding ωthdiv . Figure 3 shows experimentally that the
subtraction between the OF magnitudes obtained by means of the
two OF sensors can measure the OF divergence as demonstrated
mathematically in section II-B. The plots show that ωmeasdiv and
ωthdiv were in the same range of values for every set of conditions.
The Median Absolute Deviation (MAD) was low for every case
considered, ranging between 0.25rad/s and 0.38rad/s (see Table
I). Thus, the OF divergence measured ωmeasdiv can be considered in
line with ωthdiv under every set of conditions analysed and hence can
be given as measurement to an EKF to estimate the distance from
a static or moving surface.

Average MAD of the OF divergence low light bright light
Vpanorama = 0m/s 0.27rad/s 0.27rad/s
Vpanorama = 0.25m/s 0.26rad/s 0.25rad/s
Vpanorama = 0.5m/s 0.29rad/s 0.30rad/s
Vpanorama = 0.75m/s 0.38rad/s 0.34rad/s

TABLE I: Table of the average MAD obtained for the comparison
of ωmeasdiv and ωthdiv for four values of Vpanorama (0m/s, 0.25m/s,
0.5m/s and 0.75m/s) under bright (974lux, 6.95 · 10−5W/cm2)
and low (120lux, 5.42 · 10−6W/cm2) illuminance, respectively.
The values of the average MAD ranged between 0.25rad/s and
0.38rad/s.

Since we showed that the OF divergence can be measured reliably
as the subtraction of two OF magnitudes, we used it to estimate
the distance from the static or moving panorama by means of
the EKF. The OF sensors moved back and forth in front of the
panorama for 10s with a frequency of 0.5Hz. This was done for
four values of Vpanorama (0m/s, 0.25m/s, 0.5m/s and 0.75m/s)
under bright and low illuminance. Figure 4.a shows the results
obtained under bright illuminance. The estimates of the distance
from the panorama ĥ converged quickly (about 2s) to the ground
truth h for Vpanorama equal to 0m/s, 0.25m/s and 0.5m/s. For
Vpanorama equal to 0.75m/s the converging time increased slightly
(about 3s). In every case, the OF divergence was a sinusoidal signal
due to the pattern of expansion and contraction in the OF vector field
induced by the oscillatory movement. The OF divergence measured
presented noise, due to the OF measurement noise, the limitations
in the view-field of PixArt OF sensors and the mechanical noise
caused by the movement of the chariot on the slider. In general,



Fig. 3: The plots show a linear relation between ωmeasdiv and ωthdiv and are therefore an experimental counterpart of the mathematical
proof shown in section II-B. The Median Absolute Deviation (MAD) of each plot was low (see Table I). The OF divergence ωmeasdiv was
measured in front of the static or moving panorama under two lighting conditions: bright (974lux, 6.95 ·10−5W/cm2) and low (120lux,
5.42 · 10−6W/cm2) illuminance, respectively. For each value of Vpanorama (0m/s, 0.25m/s, 0.5m/s and 0.75m/s) four values of
oscillation frequency were considered (0.25Hz, 0.5Hz, 0.75Hz and 1Hz). For all datasets, the starting position of the chariot on the
slider was 0.14m. The peak-to-peak amplitude covered by the chariot on the slider ranged from the starting position to about 0.3m for
a frequency of 0.25Hz, 0.25m for 0.5Hz, 0.2m for 0.75Hz and 0.17m for 1Hz. The theoretical OF divergence ωthdiv was computed
for every dataset. The values of ωmeasdiv measured for all the oscillation frequencies for a velocity Vpanorama under a given lighting
condition were put together and plotted in comparison with the corresponding ωthdiv .In each plot, the median values of ωthdiv and the curves
representing its MAD are shown to display the range of values measured. The subtraction between the OF magnitudes obtained by means
of the two OF sensors can measure reliably a stimuli of OF divergence between −0.93rad/s and 1.3rad/s.

the noise increased with Vpanorama. The presence of a higher
noise magnitude explained the slightly higher convergence time for
Vpanorama = 0.75m/s. Figure 4.b shows the results obtained under
low illuminance. As in the case of bright illuminance, the estimates
of the distance from the panorama ĥ converged quickly (about 2s)
to the ground truth h for Vpanorama equal to 0m/s and 0.25m/s.
For Vpanorama equal to 0.5m/s and 0.75m/s the converging time
increased (about 3s) due to higher noise magnitudes. The noise was
present in every case and increased with Vpanorama.
To compare the estimation performances of the method under the
two lighting conditions, an analysis of the average error of the
estimates of the distance from the panorama ĥ after the convergence
to the ground truth h was performed. The results are shown in Table
II.
We considered as time of convergence 3s in order to include all
the datasets analysed. The average errors computed ranged between
0.31% and 15.73%. The errors computed under low illuminance
were slightly higher than those obtained under bright illuminance.
The only exception was Vpanorama = 0.75m/s, for which the
average error under bright illuminance was about 3% higher than
under low illuminance. The results obtained under bright and low

Estimation average errors low light bright light
Vpanorama = 0m/s 4.49% 0.31%
Vpanorama = 0.25m/s 15.73% 12.09%
Vpanorama = 0.5m/s 12.03% 3.29%
Vpanorama = 0.75m/s 5.41% 8.29%

TABLE II: Table of the average errors of the estimates of the
distance from the panorama ĥ after the convergence to the ground
truth h for four values of Vpanorama (0m/s, 0.25m/s, 0.5m/s and
0.75m/s) under bright and low illuminance (974lux and 120lux,
respectively). We computed the average error between 3s and 10s to
guarantee that all the datasets converged. The average errors ranged
between 0.31% and 15.73%.

illuminance can be considered similar. Thus, our findings show that
ωmeasdiv can be used to estimate reliably the distance from a surface
under both lighting conditions.

V. CONCLUSION

The observation of self-induced oscillatory movements in honey-
bees [11, 16] has led to consider the use of an additional OF cue: the
OF divergence. The presence of oscillations makes the oscillating



Fig. 4: The OF divergence was measured with an oscillation frequency of 0.5Hz under (a) bright (974lux, 6.95 · 10−5W/cm2) and (b)
low (120lux, 5.42 ·10−6W/cm2) illuminance in front of the panorama moving with four values of Vpanorama (0m/s, 0.25m/s, 0.5m/s
and 0.75m/s). i) The estimates of the distance from the panorama ĥ converged quickly (from about 2s to 3s) to the ground truth h
for every value of Vpanorama. The distance h covered by the chariot on the slider ranged between 0.14m and 0.25m. ii) In every case,
the OF divergence measured ωmeasdiv was a sinusoidal signal. The noise magnitude increased with Vpanorama and in general was slightly
higher for datasets taken under low illuminance. The higher noise magnitude resulted in a slightly higher convergence time in the case of
Vpanorama equal to 0.75m/s under bright illuminance and 0.5m/s and 0.75m/s under low illuminance. iii) In (a.iii), the average error
values computed after convergence were 0.31%, 12.09%, 3.29% and 8.29%, respectively. In (b.iii), the average error values computed
after convergence were 4.49%, 15.73%, 12.03% and 5.41%, respectively (see Table (II)).

system always locally observable and hence opens the possibility of
using the OF divergence cue to assess the distance from a surface,
regardless of the maneuver performed. OF divergence has already
been used to visually control landing in a micro-flier [8].
In this study, we exploit the OF divergence cue in order to assess
the distance from a surface without the need of previous knowledge
of the environment or of emissive sensors. The OF divergence can
be computed as the subtraction between the magnitudes measured
by two OF sensors. To test this method a test bench was built, con-

sisting of two OF sensors performing a back-and-forth oscillatory
movement in front of a static or moving panorama. The OF sensors
were set on a chariot at an angle of 15◦ and −15◦ respectively from
the normal to the panorama. The chariot was placed on a slider and
was actuated by a DC motor in order to move back and forth along
the slider in front of the panorama. To test the robustness of this
method, datasets were taken while the panorama was moving at
different velocities under bright and low lighting conditions.
Our findings show that it is possible to compute reliably the OF



divergence between −0.93rad/s and 1.3rad/s as the subtraction
of OF magnitudes measured by two OF sensors. Hence, the OF
divergence measured this way can be used to assess the distance
from the panorama by means of an EKF. We successfully tested
this method for distances ranging between 0.14m and 0.25m. The
estimates of the distance from the panorama were generally more
accurate for lower velocities of the panorama, due to a lower noise
magnitude. In every case considered, the estimates of the distance
from the panorama converged within 3s to the ground truth. The
ground truth was obtained by a separate mean: a lidar placed on the
chariot. The lighting conditions tested did not influence the results
obtained.
Given the low weight of the OF sensors and the low computational
power required to compute the OF divergence, this method can be
easily implemented on flying robots and more specifically on micro-
fliers. In this study, we tested the method presented only for a small
range of distances, all of them fairly short if considering the flight
of a micro-flier. Our results were promising and showed that it is
worthwhile to test the method further. Future work will include an
analysis of the estimation of the distance from the panorama for a
wider range of oscillation frequencies and of Vpanorama to prepare
for the implementation of this method on a micro-flier. Moreover,
we plan to use OF sensors with wider optical aperture lenses to
expand the range of lighting conditions. Ultimately, we plan to test
the presented method to estimate the distance of a flying robot at
about one meter from a surface.
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A. Appendix: The Extended Kalman Filter

The discretized model of the test bench can be expressed as{
X[k + 1] = Φ ·X[k] + Γ · u[k]
y[k] = Ck ·X[k] +Dk · u[k]

(20)

with
Φ = eA·dt (21)

Γ = (

∫ dt

0

eA·τdτ) ·B = (AT · eA·dt −AT ) ·B (22)

Ck = h(xk) =

[
x2[k]

x1[k]

]
(23)

Dk = 0 (24)

where dt is the discretization time.
To estimate the distance h from the panorama, the EKF took the
following iterative steps for each kth time
Prediction step
(a) One-step ahead prediction

Xk/k−1 = Φ ·Xk−1/k−1 + Γ · uk−1/k−1 (25)

(b) Covariance matrix of the state prediction error vector

Pk/k−1 = Φ · Pk−1/k−1 · ΦT +Q (26)

Correction step
(c) Measurement update

Xk/k = Xk/k−1 +Kk · (yk −Hk ·Xk/k−1) (27)

with Kk Kalman gain defined as

Kk = Pk/k−1 ·HT
k · [Hk · Pk/k−1 ·HT

k +Rk]−1 (28)

and Hk Jacobian matrix for the non linear function defined as
follows

Hk =
∂h

∂X
|X=Xk/k−1

=
[
− ẋ
x2

1
x

]
(29)

(d) Covariance matrix of state estimation error vector

Pk/k = Pk/k−1 +Kk · [Hk · Pk/k−1 ·HT
k +Rk] ·KT

k (30)

(e) Innovation
ỹk = yk −Hk · xk/k (31)


