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FLUCTUATIONS OF THE STIELTJES TRANSFORM OF THE EMPIRICAL
SPECTRAL DISTRIBUTION OF SELFADJOINT POLYNOMIALS IN WIGNER

AND DETERMINISTIC DIAGONAL MATRICES

SERBAN BELINSCHI, MIREILLE CAPITAINE, SANDRINE DALLAPORTA, AND MAXIME FEVRIER

Abstract. We investigate the fluctuations around the mean of the Stieltjes transform of the empirical
spectral distribution of any selfadjoint noncommutative polynomial in a Wigner matrix and a determin-
istic diagonal matrix. We obtain the convergence in distribution to a centred complex Gaussian process
whose covariance is expressed in terms of operator-valued subordination functions.

1. Introduction

From the pioneering work of Wigner to the latest developments, properties of eigenvalues of Wigner ma-
trices have been a major subject in Random Matrix Theory. The celebrated Wigner Theorem states that
the empirical spectral distribution of a Wigner matrix – which means a complex Hermitian or real sym-
metric matrix whose entries are centered, with variance σ2, and independent up to the symmetry condition
– weakly converges in probability to the semicircle law µσ2 with density (2πσ2)−1√4σ2 − x21[−2σ,2σ](x).
It is then straightforward to deduce the convergence of linear statistics N−1∑N

i=1 f(λi) of eigenvalues
λ1, . . . , λN of N×N Wigner matrices associated to bounded continuous test functions f : R→ R towards∫
R fdµσ2 .
Among the questions that have been addressed, fluctuations of linear statistics have attracted some

attention. Initiated in the mid-nineties by investigations on traces of resolvents of real Wigner matrices,
central limit theorems for linear spectral statistics of Wigner matrices progressively emerged. Sinai and
Soshnikov [SS98], by the method of moments, and Bai and Yao [BY05] (see also Bao and Xie [BX16]),
by applying a central limit theorem for martingale differences to the trace of the resolvent, obtained the
fluctuations of linear spectral statistics associated to analytic test functions. These central limit theorems
have been progressively extended to functions with less regularity: by Pastur and Lytova [LP09b, LP09a]
using Fourier analysis, for functions with sufficiently fast decaying Fourier transform, by Bai, Wang and
Zhou [BWZ09] for C4 functions, making use of Bernstein polynomials, by Shcherbina [Shc11], Sosoe
and Wong [SW13] for Hs functions by a density argument, and Kopel [Kop15] by precise computations
on complex Gaussian Wigner matrices. Recently, Bao and He [BH21] provided a near optimal rate of
convergence for these central limit theorems in Kolmogorov-Smirnov distance.

Gaussian fluctuations with different scale, mean and variance also hold for linear spectral statistics
when the entries of the Wigner matrix have an infinite fourth moment ([BGM16]; see also [BGGM14] for
the case of non square integrable entries, in which case Wigner’s Theorem fails to hold [BAG08]). When
entries of the Wigner matrix are not identically distributed in such a way that their variances differ (these
matrices are called band matrices or sometimes Wigner matrices with variance profile), fluctuations of
linear spectral statistics have also been described (see [AJS19] and references therein). Fluctuations of
linear spectral statistics were also investigated at the mesoscopic scale. In this type of study, the object
of interest is

∑N
i=1 f

(
Nα(E − λi)

)
, where α ∈ (0, 1) and E ∈ (−2σ, 2σ), see [BK99, LS15, HK17] for

Wigner matrices and [LX21] for Wigner matrices with variance profile.
When a Wigner matrix is deformed by an additive (random or deterministic) perturbation, it is a

natural question to characterize the effect of the perturbation on fluctuations of linear spectral statistics.
This question was raised very early by Khorunzhy [Kho94], who proved in the case of deformed real
Gaussian Wigner matrices that the fluctuations were still Gaussian, but without providing an explicit
covariance kernel. After contributions by Dembo, Guionnet and Zeitouni [DGZ03] still in the Gaussian
case by a dynamical approach, and by Su [Su13] in the case of a random diagonal perturbation on another
scale, the topic has been recently revived. Motivated by the analysis of spherical Sherrington-Kirkpatrick
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model or by the problem of statistical detection of noisy signals, the case of a deterministic rank one
perturbation has been considered by Baik and Lee [BL17], Baik, Lee and Wu [BLW18], Chung and Lee
[CL19], Jung, Chung and Lee [CJL20, CJL21]. Diagonal perturbations with general rank were further
investigated by Ji and Lee [JL19], Dallaporta and Fevrier [DF19]. Recently, Li, Schnelli and Xu provided
the fluctuations of the linear spectral statistics for deformed Wigner matrices at mesoscopic scale [LSX20].

These papers make naturally use of free probability theory. Indeed, in an influential paper, Voiculescu
gave evidence that the noncommutative probability theory he had previously introduced, called free
probability theory, was a convenient framework for dealing with the convergence of the process of traces
of noncommutative polynomials in several complex Gaussian Wigner matrices [Voi91]. Dykema proved
then that polynomials in more general Wigner and deterministic matrices also fit in this framework
[Dyk93]. See also the book [MS10] and the paper [BC17]. An analog of the free probability framework for
dealing with fluctuations of the process of traces of noncommutative polynomials in Gaussian Wigner and
deterministic matrices was designed in a series of papers [MS06, MSS07, CMSS07], building on the work
of Mingo and Nica [MN04] (see also the dynamical approach to a close question by Cabanal-Duvillard
and Guionnet [CD01, Gui02, CG01, DGZ03]). However, this so-called second order free probability
theory does not seem to be the relevant framework to describe fluctuations of the process of traces of
noncommutative polynomials in more general Wigner and deterministic matrices, as witnessed by the
recent combinatorial analysis by Male, Mingo, Péché and Speicher [MMPS20].

In this paper, we tackle the slightly different question of fluctuations of the Stieltjes transform of the
empirical spectral distribution of general polynomials in a Wigner matrix and a diagonal deterministic
matrix. Less is known on this question beyond the case of linear polynomials, which is equivalent to
that of deformed Wigner matrices. Using a well-known linearization trick to convert our initial general
noncommutative polynomial with complex coefficients into a linear polynomial with matrix coefficients
and then adapting the strategy used by Bai and Yao [BY05] for a single Wigner matrix and upgraded
independently by Ji and Lee [JL19] and Dallaporta and Fevrier [DF19] to deal with deformed Wigner
matrices, we establish a central limit theorem for the analytic process of traces of the resolvent. Since
complex coefficients are replaced by matrix coefficients, one has to rely on the operator-valued version of
free probability to express and analyze the limiting covariance kernel. The latter involves the logarithm
of an operator and a highly non-trivial first task is to prove that this logarithm is well defined, making
use of the contractivity of analytic self-maps on hyperbolic domains. Moreover, to adapt the strategy
previously used for deformed Wigner matrices to general polynomials, many commutativity issues arise
and require very technical preliminary results and new approaches. A typical example of these difficulties
is the study of the second and third terms in the so-called hook process (see Sections 7.3.2 and 7.3.3): it
requires a new trick consisting in writing these terms as the trace of the sum of images of matrix tensors
by fit operators and in proving that each of these matrix tensors satisfies an approximated fixed point
equation; then, a non-trivial study of spectral radius of operators is still necessary.

Besides the Introduction, the paper is organized as follows. Section 2 introduces the random matri-
ces considered in this work whereas Section 3 presents our main results. Section 4 is devoted to basic
background on linearization trick and operator-valued free probability theory that are central in our
approach. In Section 5, we prove that the limiting covariance kernel involved in our central limit theo-
rem is well defined and Section 6 gathers numerous preliminary results (bounds, concentration bounds,
convergence results...) used in its proof. The proof of the convergence of finite-dimensional distributions
of the process of Stieltjes transforms is detailed in Section 7. In Section 8, we establish the tightness of
this sequence of random analytic functions. Three appendices conclude the paper: the first one gathers
tools from elementary linear algebra, random quadratic forms, martingale theory and complex analysis
used in the proofs; the second one establishes results on moments and norm of Wigner matrices that are
used throughout the paper; the last one details the truncation argument allowing to assume that entries
of Wigner matrices considered in this paper are almost surely bounded by a sequence slowly converging
to 0.

2. Presentation of the model

The complex algebra C〈t1, . . . , tn〉 of polynomials with complex coefficients in n noncommuting inde-
terminates t1, . . . , tn becomes a ∗-algebra by anti-linear extension of

(ti1ti2 · · · til)∗ = til · · · ti2ti1 , i1, . . . , il = 1, . . . , n, l ∈ N.
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We consider, on a probability space, a sequence of random matrices

XN := P (WN , DN ), N ∈ N,

where :
(1) P ∈ C〈t1, t2〉 is a selfadjoint polynomial in two noncommuting indeterminates;
(2) entries {Wij}1≤i≤j≤N of the N ×N Hermitian matrix WN are independent random variables;
(3) off-diagonal entries {Wij}1≤i<j≤N of WN are identically distributed complex random variables

such that, for some ε > 0, E[|
√
NWij |6(1+ε)] ≤ C6. We assume that E[Wij ] = 0 and that

σ2
N := E[|Wij |2] ≥ 0, θN := E[W 2

ij ] ∈ C, κN := E[|Wij |4]− 2σ4
N − |θN |2 ∈ R.

satisfy

lim
N→+∞

Nσ2
N = σ2 > 0, lim

N→+∞
NθN = θ ∈ R, lim

N→+∞
N2κN = κ ∈ R.

The assumption θ ∈ R means that correlations between the real and imaginary parts of off-
diagonal entries of WN are negligible.

(4) diagonal entries {Wii}1≤i≤N of WN are identically distributed real random variables such that,
for some ε > 0, E[|

√
NWii|4(1+ε)] ≤ C4. We assume that E[Wii] = 0 and that σ̃2

N := E[W 2
ii] ≥ 0

satisfies limN→+∞Nσ̃2
N = σ̃2 > 0;

(5) DN is a N ×N deterministic real diagonal matrix. We assume that supN∈N ‖DN‖ <∞ and, for
some Borel probability measure ν on R,

νN := 1
N

∑
λ∈sp(DN )

δλ ⇒ ν.

Here and below, we use the notation sp(A) for the (multi)set of eigenvalues (counted with their algebraic
multiplicity) of a square matrix A. We will also assume that all entries of WN are almost surely bounded
by δN , where (δN )N∈N is a sequence of positive numbers slowly converging to 0 (at rate less than N−ε
for any ε > 0); this may be assumed without loss of generality, as proved in Appendix C. We will use
the notation mN := E[|Wij |4] = κN + 2σ4

N + |θN |2. In Assumptions (3) and (4), we ask the entries
to be identically distributed. This assumption does not seem to be necessary for our main result to
hold, but leads to a simplification of truncation-centering-homogeneization arguments. Therefore, for the
readibility of the paper, we will not pursue the task to relax this assumption.

We are interested in the empirical spectral measure µN of XN , defined by:

µN := 1
N

∑
λ∈sp(XN )

δλ.

More precisely, we study the fluctuations of the Stieltjes transform C \ R 3 z 7→
∫
R(z − x)−1µN (dx) of

µN around its mean.

3. Main result

Before stating our main result, we introduce the necessary material.

3.1. Definitions.

3.1.1. Free probability. Let A be a complex algebra with a unit 1A and ϕ : A → C be a linear functional
satisfying ϕ(1A) = 1. One usually calls (A, ϕ) a noncommutative probability space and its elements
noncommutative random variables.

We say that a noncommutative random variable a ∈ (A, ϕ) is distributed according to a Borel prob-
ability measure µ on R when ϕ(an) =

∫
R t

nµ(dt) holds for all n ∈ N. In particular, a semicircular
element with mean 0 and variance σ2 is a noncommutative random variable distributed according to the
absolutely continuous probability measure with density (2πσ2)−1√4σ2 − t21[−2σ;2σ](t) in some noncom-
mutative probability space.

Two noncommutative random variables s, d in a noncommutative probability space (A, ϕ) are said
to be freely independent if the following holds : for each n ∈ N and any polynomials with complex
coefficients P1, . . . , Pn, Q1, . . . , Qn ∈ C[t],

ϕ((P1(s)− ϕ(P1(s))1A)(Q1(d)− ϕ(Q1(d))1A) · · · (Pn(s)− ϕ(Pn(s))1A)(Qn(d)− ϕ(Qn(d))1A)) = 0.
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3.1.2. Linearization. A powerful tool to deal with noncommutative polynomials in random matrices
or in operators is the so-called “linearization trick” that goes back to Haagerup and Thorbjørnsen
[HT05, HST06] in the context of operator algebras and random matrices (see [MS10]). We use the
procedure introduced in [And13, Proposition 3].

Given a polynomial P ∈ C〈t1, . . . , tn〉, we call linearization of P any

LP :=
(

0 u
v Q

)
∈Mm(C)⊗ C〈t1, . . . , tn〉,

where
(1) m ∈ N,
(2) Q ∈Mm−1(C)⊗ C〈t1, . . . , tn〉 is invertible,
(3) u is a row vector and v is a column vector, both of size m− 1 with entries in C〈t1, . . . , tn〉,
(4) the polynomial entries in Q, u and v all have degree ≤ 1,
(5) P = −uQ−1v.

Given a selfadjoint polynomial P ∈ C〈t1, . . . , tn〉, it is described in Section 4 of [BC17], from Anderson
[And13] (see also [Mai17]), how to build a particular selfadjoint linearization LP ∈Mm(C)⊗C〈t1, . . . , tn〉
of P . We call this particular linearization the canonical linearization of P .

3.2. Statement of results. Let P ∈ C〈t1, t2〉 be the selfadjoint polynomial in two noncommuting
indeterminates involved in the definition of XN (see (1) in Section 2). Let LP = γ0⊗ 1 + γ1⊗ t1 + γ2⊗ t2
be the canonical linearization of P ; γ0, γ1, γ2 are selfadjoint matrices in Mm(C).

Let s be a semicircular element with mean 0 and variance σ2 which is freely independent from a
noncommutative variable d distributed according to the probability measure ν (see (5) in Section 2) in
some noncommutative probability space (A, ϕ). We denote idm : Mm(C) → Mm(C) the identity map
and define a map ω by

ω(b) = b− σ2γ1(idm ⊗ ϕ)
[
(b⊗ 1A − γ1 ⊗ s− γ2 ⊗ d)−1

]
γ1,

for any b ∈ Mm(C) such that b ⊗ 1A − γ1 ⊗ s − γ2 ⊗ d is invertible in Mm(C) ⊗ A. As explained in
Lemma 4 below, ω is well-defined on {ze11 − γ0, z ∈ C \ R}. Section 4.3 will describe the occurence of
this so-called subordination map.

We denote, for β1, β2 ∈ {β ∈Mm(C), ω(β)⊗Im−γ2⊗d is invertible}, by T{β1,β2} the operator defined
on Mm(C)⊗Mm(C) by

T{β1,β2}(x) =
∫
R
((ω(β1)− tγ2)−1γ1 ⊗ Im)x(Im ⊗ γ1(ω(β2)− tγ2)−1)dν(t), x ∈Mm(C)⊗Mm(C).

The limiting distribution of our central limit theorem involves the logarithms of some operators of the
form

idm ⊗ idm − T : Mm(C)⊗Mm(C)→Mm(C)⊗Mm(C),
with T some scalar multiples of T{z1e11−γ0,z2e11−γ0}. Thus, our first result consists in proving that these
logarithms are well-defined. Since log (idm ⊗ idm − T ) is well defined by the convergent series expansion

(1) log [idm ⊗ idm − T ] = −
∞∑
k=1

1
k
T k

as soon as the spectral radius of T is less than 1 (see (6.5.11) in [HJ91]), one proves the following
proposition.

Proposition 1. For any z1, z2 ∈ C \ R, the spectrum of the operator

T{z1e11−γ0,z2e11−γ0} : Mm(C)⊗Mm(C)→Mm(C)⊗Mm(C)

is included in the open disk of radius σ−2.

Denote byH(C\R) the space of complex analytic functions on C\R, endowed with the uniform topology
on compact sets. The space H(C \ R) is equipped with the (topological) Borel σ-field B(H(C \ R)).
We are now in position to state our central limit theorem.
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Theorem 2. Let XN be the random matrix introduced in Section 2. For any z ∈ C \ R, set

ξN (z) := Tr
(
(zIN −XN )−1)− E

[
Tr
(
(zIN −XN )−1)] .

The sequence of H(C\R)-valued random variables (ξN )N∈N converges in distribution to a centred complex
Gaussian process {G(z), z ∈ C \ R} determined by G(z) = G(z̄) and

E (G(z1)G(z2)) = Γ(z1, z2) := ∂2

∂z1∂z2
γ(z1, z2), z1, z2 ∈ C \ R,

γ(z1, z2) = −Tr⊗Tr
{

log
[
idm ⊗ idm − σ2T{z1e11−γ0,z2e11−γ0}

]
(Im ⊗ Im)

}
− Tr⊗Tr

{
log
[
idm ⊗ idm − θT{z1e11−γ0,z2e11−γ0}

]
(Im ⊗ Im)

}
+ (σ̃2 − σ2 − θ) Tr⊗Tr{T{z1e11−γ0,z2e11−γ0}(Im ⊗ Im)}
+ κ/2 Tr⊗Tr{T 2

{z1e11−γ0,z2e11−γ0}(Im ⊗ Im)}

4. Review of background

In this section, we gather properties which will be used several times in the sequel.

4.1. Generalized resolvent. Let M be a unital C∗-algebra and B be a unital C∗-subalgebra of M.
For A ∈ M, we denote by RA = (A+ A∗)/2 and IA = (A− A∗)/2i the real and imaginary parts of A,
so A = RA+ iIA. For a selfadjoint operator A ∈ M, we write A ≥ 0 if the spectrum of A is contained
in [0,+∞) and A > 0 if the spectrum of A is contained in (0,+∞). The operator upper half-plane of B
is the set H+(B) = {b ∈ B : Ib > 0}.

The generalized resolvent of an element A ∈ M in this context is the analytic map R defined on the
open subset {b ∈ B, b − A is invertible inM} of B by R(b) := (b − A)−1. Note that the generalized
resolvent of a selfadjoint element is in particular defined on the operator upper half-plane H+(B) and
satisfies

(2) ‖R(b)‖ ≤ ‖(Ib)−1‖, b ∈ H+(B).

In particular, when M = Mn(C) and B = CIn ' C, the resolvent R : z 7→ (zIn − A)−1 of a n × n
Hermitian matrix with complex entries A ∈Mn(C) is defined on C \ R and satisfies

(3) ‖R(z)‖ ≤ |Iz|−1, z ∈ C \ R.

The following Lemma is elementary but useful.

Lemma 3 (Resolvent identity). Let A1 and A2 be elements of M and denote by R1 and R2 their
respective resolvents. Then, for all b1, b2 in the respective domains of R1 and R2,

R1(b1)−R2(b2) = R1(b1)
(
b2 − b1 +A1 −A2

)
R2(b2).

4.2. Linearization. In this Section, we collect a few properties of linearizations of polynomials in non-
commuting indeterminates introduced above.

Lemma 4. Let P = P ∗ ∈ C〈t1, . . . , tn〉 and let LP ∈ Mm(C) ⊗ C〈t1, . . . , tn〉 be a linearization of P
with the properties outlined above. Let y = (y1, . . . , yn) be a n-tuple of selfadjoint operators in a unital
C∗-algebra A. Then, for any z ∈ C, ze11⊗1A−LP (y) is invertible if and only if z1A−P (y) is invertible
and we have

(4) (ze11 ⊗ 1A − LP (y))−1 =
(

(z1A − P (y))−1
?

? ?

)
.

Beyond the equivalence described above, we will use the following bound.

Lemma 5. [BBC19] Let z ∈ C be such that z1A − P (y) is invertible. There exist two polynomials Q1
and Q2 in n commuting indeterminates, depending only on LP , such that∥∥(ze11 ⊗ 1A − LP (y))−1∥∥ ≤ Q1 (‖y1‖, . . . , ‖yn‖)

∥∥(z1A − P (y))−1∥∥+Q2 (‖y1‖, . . . , ‖yn‖) .



FLUCTUATIONS OF THE STIELTJES TRANSFORM OF ESD OF SELFADJOINT POLYNOMIALS 6

4.3. Operator-valued free probability theory. There exists an extension of free probability the-
ory, operator-valued free probability theory, which still shares the basic properties of free probability
but is much more powerful because of its wider domain of applicability. The concept of freeness with
amalgamation and some of the relevant analytic transforms were introduced by Voiculescu in [Voi95].

Definition 6. Let M be a unital complex algebra and B ⊂ M be a unital subalgebra. A linear map
E : M → B is a conditional expectation if E(b) = b for all b ∈ B and E(b1Ab2) = b1E(A)b2 for all
A ∈ M and b1, b2 ∈ B. Then (M, E) is called a B-valued probability space. If in addition M is a
C∗-algebra (von Neumann algebra), B is a C∗-subalgebra (von Neumann subalgebra) ofM, then we have
a B-valued C∗-probability space (B-valued W ∗-probability space).

In our applications, the algebra B is (isomorphic to) Mm(C) for some m ∈ N. More precisely, let
A be a von Neumann algebra endowed with a normal faithful tracial state τ , and let m ∈ N. Then
Mm(C) can be identified with the subalgebra Mm(C)⊗ 1A of Mm(A) = Mm(C)⊗A. Moreover, the von
Neumann algebraMm(A) is endowed with the normal faithful tracial state m−1 Tr⊗τ , and idm⊗τ is the
trace-preserving conditional expectation from Mm(A) to Mm(C). In other words, (Mm(A), idm ⊗ τ) is
a Mm(C)-valued W ∗-probability space. As mentioned in Section 3 of [BBC19], the distributional limits
of random matrices as considered in our models are realized in II1-factors, with respect to their unique
normal faithful tracial states, so that there is no loss of generality in assuming (A, τ) to be a von Neumann
algebra endowed with a normal faithful tracial state (also called W ∗-probability space).

Definition 7. Let (M, E) be a B-valued probability space. The B-valued distribution of a noncommutative
random variable A ∈M is given by all B-valued moments E(Ab1Ab2 · · · bn−1A), n ∈ N, b1, . . . , bn−1 ∈ B.

If s is a (scalar-valued) semicircular element with mean 0 and variance σ2 in some W ∗-probability
space (A, τ), then, for any Hermitian matrix γ ∈Mm(C), γ⊗s ∈Mm(A) is aMm(C)-valued semicircular
element in the Mm(C)-valued probability space (Mm(A), idm⊗ τ), in the sense of [Spe98]. The B-valued
distribution of a general centred B-valued semicircular element S ∈ M is uniquely determined by its
operator-valued variance η : b 7→ E(SbS) ; a characterization in terms of moments and cumulants via η is
provided by Speicher in [Spe98]. The operator-valued variance of theMm(C)-valued semicircular element
γ ⊗ s is η : b 7→ σ2γbγ.

As in scalar-valued free probability, one defines [Voi95] freeness with amalgamation over B via an
algebraic relation similar to freeness, but involving E and noncommutative polynomials with coefficients
in B.

Definition 8. Let (M, E) be a B-valued probability space. Let (Ai)i∈I be a family of subalgebras with
B ⊂ Ai for all i ∈ I. The subalgebras (Ai)i∈I are free with respect to E or free with amalgamation over
B if E(A1 · · ·An) = 0 whenever Aj ∈ Aij , ij ∈ I, i1 6= i2 6= · · · 6= in and E(Aj) = 0, for all j.
Noncommutative random variables in M or subsets of M are free with amalgamation over B if the
algebras generated by B and the variables or the algebras generated by B and the subsets, respectively, are
so.

The following result from [NSS02] explains why the particular case B = Mm(C), M = Mm(A),
E = idm ⊗ τ , where (A, τ) is a W ∗-probability space, is relevant in our work using linearizations of
polynomials.

Proposition 9. Let (A, ϕ) be a noncommutative probability space, let a1, . . . , an ∈ (A, ϕ) be freely
independent noncommutative random variables and let m ∈ N. Then the map idm⊗ϕ : Mm(A)→Mm(C)
is a conditional expectation, and α1 ⊗ a1, . . . , αn ⊗ an are free with amalgamation over Mm(C) for any
α1, . . . , αn ∈Mm(C).

The analytic subordination phenomenon for free convolutions was first noted by Voiculescu and Biane
in the scalar case and later approached from an abstract coalgebra point of view by Voiculescu in [Voi00]
and this approach extends the results to the operator-valued case. In [BMS17], Belinschi, Mai and
Speicher develop an analytic theory.

Proposition 10. [Voi00],[BMS17](see Theorem 5 p 259 [MS10]) Let (M, E) be a B-valued C∗-probability
space. Let A1, A2 ∈M be selfadjoint noncommutative random variables which are free with amalgamation
over B.
There exists a unique pair of Fréchet analytic maps ω1, ω2 : H+(B)→ H+(B) such that, for all b ∈ H+(B),

(1) Iωj(b) ≥ Ib, ωj(b∗) = ωj(b)∗, j = 1, 2;
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(2) E[(b− (A1 +A2))−1] = E[(ω1(b)−A1)−1] = E[(ω2(b)−A2)−1];
(3) E[(b− (A1 +A2))−1]−1 + b = ω1(b) + ω2(b).

Moreover, if b ∈ H+(B), then ω1(b) is the unique fixed point of the map fb : H+(B)→ H+(B) defined by
fb(ω) = hA2(hA1(ω) + b) + b, where hAi(b) = E[(b−Ai)−1]−1 − b and ω1(b) = limk→+∞ f◦kb (w), for any
ω ∈ H+(B).

Moreover, if M is a W ∗-probability space and B ⊂ D ⊂ M are von Neumann subalgebras (hence
unital by definition) such that A2 ∈ D and D is free with amalgamation over B from A1 (with respect
to the trace-preserving conditional expectation fromM onto B), then the following strengthened result
holds:

ED[(b− (A1 +A2))−1] = (ω2(b)−A2)−1
, b ∈ H+(B),

where ED is the trace-preserving conditional expectation fromM onto D.
If, in Proposition 10, A1 is a centred B-valued semicircular element with operator-valued variance η,

the subordination function ω2 has a more explicit form (see [MS10, Chapter 9] and the end of the proof
of Theorem 8.3 in [ABFN13]):

(5) ω2(b) = b− η(E[(b− (A1 +A2))−1]), b ∈ H+(B).

It follows that ω2 may be analytically extended to the open subset {b ∈ B, b−(A1+A2) is invertible in A}.
Moreover, for b in the connected component of {b ∈ B, b−(A1 +A2) is invertible in A} containing H+(B),

(6) ED[(b− (A1 +A2))−1] = (ω2(b)−A2)−1

holds. Note also that ω2(b) satisfies the fixed point equation

(7) ω2(b) = b− η(E[(ω2(b)−A2)−1]).

5. Definition of the limiting object: proof of Proposition 1

Our strategy of proof for Proposition 1 is the following : in Section 5.1, one proves that the operator
σ2T{z1e11−γ0,z2e11−γ0} : Mm(C)⊗Mm(C) → Mm(C)⊗Mm(C) has the same eigenvalues as the operator
uz1e11−γ0,z2e11−γ0 , where uβ1,β2 : Mm(C)→Mm(C) is defined by

b 7→ σ2(idm ⊗ τ)
[
(ω(β1)⊗ 1A − γ2 ⊗ d)−1((γ1bγ1)⊗ 1A)(ω(β2)⊗ 1A − γ2 ⊗ d)−1] .

The key point of this section is then to prove the following Proposition 11.

Proposition 11. Let s, d ∈ (A, τ) be freely independent selfadjoint noncommutative random variables
in a W ∗-probability space (A, τ). Assume that s is a semicircular element with mean 0 and variance
σ2. Let also γ0, γ1, γ2 be non-zero selfadjoint matrices in Mm(C) such that the lower right (m − 1) ×
(m − 1) corner of γ0 ⊗ 1A + γ1 ⊗ s + γ2 ⊗ d is invertible in Mm−1(A). For any (z1, z2) ∈ C2 such that
(zje11 − γ0)⊗ 1A − γ1 ⊗ s− γ2 ⊗ d is invertible in Mm(A), j = 1, 2, the spectrum of the linear operator
uz1e11−γ0,z2e11−γ0 : Mm(C)→Mm(C) defined by

b 7→ σ2(idm ⊗ τ)
[
(ω(z1e11 − γ0)⊗ 1A − γ2 ⊗ d)−1((γ1bγ1)⊗ 1A)(ω(z2e11 − γ0)⊗ 1A − γ2 ⊗ d)−1]

is included in the open unit disk. Recall that

ω(β) = β − σ2γ1(idm ⊗ τ)
[
(β ⊗ 1A − γ1 ⊗ s− γ2 ⊗ d)−1

]
γ1.

Note that the conclusion of Proposition 11 holds for any (z1, z2) ∈ (C\R)2 as explained at the beginning
of the proof.

The first step in the proof of Proposition 11, detailed in Section 5.2, consists in proving that the
spectrum of uβ1,β2 is included in the open unit disk when β1, β2 ∈ Mm(C) have positive-definite or
negative-definite imaginary parts. Then, in a second step in Section 5.3, by using the maximum principle
for plurisubharmonic functions, we deduce from the first step the result for β1 = z1e11−γ0, β2 = z2e11−γ0,
as required.
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5.1. An equality of spectra. The aim of this section is to prove that the operators σ2T{z1e11−γ0,z2e11−γ0}
and uz1e11−γ0,z2e11−γ0 have the same eigenvalues (not counting multiplicities).

Proposition 12. The operators σ2T{z1e11−γ0,z2e11−γ0} : Mm(C) ⊗ Mm(C) → Mm(C) ⊗ Mm(C) and
uz1e11−γ0,z2e11−γ0 : Mm(C)→Mm(C) have the same eigenvalues.

Proof. We will use the following identifications between algebras Mn(C)⊗Mn(C) and L(Mn(C)) : define
an isomorphism of algebras Mn(C) ⊗Mn(C) → L(Mn(C)) by requiring that the image of A ⊗ B is the
operator X 7→ AXBT for any A,B ∈ Mn(C). Using these identifications, one may observe that the
following equalities hold in Mm(C)⊗4 :

σ2T{z1e11−γ0,z2e11−γ0}

= σ2
∫
R

(ω(z1e11 − γ0)− tγ2)−1γ1 ⊗ Im ⊗ Im ⊗ (ω(z2e11 − γ0)− tγ2)−1γ1dν(t)

= F ⊗ F (Im ⊗ σ2
∫
R

(ω(z1e11 − γ0)− tγ2)−1γ1 ⊗ (ω(z2e11 − γ0)− tγ2)−1γ1dν(t)⊗ Im)

= F ⊗ F (Im ⊗ uz1e11−γ0,z2e11−γ0 ⊗ Im),
where F : Mm(C) ⊗Mm(C) → Mm(C) ⊗Mm(C) is the automorphism of the algebra Mm(C) ⊗Mm(C)
determined by F (A⊗B) = B⊗A. It follows that σ2T{z1e11−γ0,z2e11−γ0} : Mm(C)⊗Mm(C)→Mm(C)⊗
Mm(C) on the one hand and uz1e11−γ0,z2e11−γ0 : Mm(C) → Mm(C) on the second hand have the same
minimal polynomial, hence the same eigenvalues (but not with the same multiplicities though). �

5.2. First step in the proof of Proposition 11. Consider an arbitrary C∗-algebra B, a completely
positive map η : B → B, and a centred B-valued semicircular element S with operator-valued variance η.
Recall that a completely positive map η is automatically completely bounded: ‖η‖cb := supm∈N ‖idm ⊗
η‖ <∞. Assume that D = D∗ is free from S with amalgamation over B with respect to the conditional
expectation E. As in (5), we may write

ω(b) = b− η
(
E
[
(b− S −D)−1]) = b− η

(
E
[
(ω(b)−D)−1]) .

Proposition 13. For any β1, β2 in B such that either {β1, β2 ∈ H+(B)}, or {−β1,−β2 ∈ H+(B)}, or
{β1,−β2 ∈ H+(B)}, or {−β1, β2 ∈ H+(B)}, the spectrum of the linear operator uβ1,β2 on B defined by

v 7→ E
[
(ω(β1)−D)−1η(v)(ω(β2)−D)−1]

is included in the open unit disk.

The context that will be of interest in our paper corresponds to B = Mm(C), S = γ1 ⊗ s,D = γ2 ⊗ d
for an arbitrary selfadjoint noncommutative random variable d, freely independent from the semicircular
element s with mean 0 and variance σ2 in someW ∗-probability space (A, τ). In that case η : b 7→ σ2γ1bγ1
and E = idm ⊗ τ . The proof of Proposition 13 given above would benefit little in terms of simplification
from the assumption that B is finite dimensional, so there is no reason not to give it in full generality.
The idea of the proof is to make use of the contractivity of analytic self-maps on hyperbolic domains.

Proof. The cases {β1, β2 ∈ H+(B)} and {−β1,−β2 ∈ H+(B)} are covered in [Bel19, Proposition 4.1].
Thus, we will focus exclusively on the case {−β1, β2 ∈ H+(B)}, the case {β1,−β2 ∈ H+(B)} being
identical. However, the reader will find that the methods we employ in our proof below cover the other
two cases with virtually no modification.

We assume without loss of generality that Iβ1 < 0, Iβ2 > 0. Consider the convex set

H =
{[
w1 v
0 w2

]
:
[
−w1 v

0 w2

]
∈ H+(M2(B))

}
.

Note that for any a = a∗, b and c = c∗ in B,(
a b
b∗ c

)
=
(

1 bc−1

0 1

)(
(a− bc−1b∗) 0

0 c

)(
1 0

c−1b∗ 1

)
holds. Thus,

(
a b
b∗ c

)
> 0 if and only if c > 0 and a− bc−1b∗ > 0, that is if and only if c > 0, a > 0, and

a−1/2bc−1b∗a−1/2 < 1.
It is interesting to note that I

[
w1 v
0 w2

]
=
[
Iw1

v
2i(

v
2i
)∗ Iw2

]
is invertible in M2(B). Indeed, the two
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diagonal entries are assumed to be invertible, and the Schur complement formula tells us that as long
as we can guarantee that Iw1 − v

2i (Iw2)−1 ( v
2i
)∗ is invertible, we are done. But Iw1 < 0, so that

0 > Iw1 ≥ Iw1− 1
4v(Iw2)−1v∗ makes Iw1− v

2i (Iw2)−1 ( v
2i
)∗ = Iw1− 1

4v(Iw2)−1v∗ invertible regardless
of the size of v! Trivially, so is any element w ∈ H. The maps

(id2 ⊗ E)
[([

w1 v
0 w2

]
−
[
S+D 0

0 S+D

])−1
]

=
[
E
[
(w1−S−D)−1] −E [(w1−S−D)−1v(w2−S−D)−1]

0 E
[
(w2−S−D)−1] ]

and

(id2 ⊗ E)
[([

w1 v
0 w2

]
−
[
D 0
0 D

])−1
]

=
[
E
[
(w1−D)−1] −E [(w1−D)−1v(w2−D)−1]

0 E
[
(w2−D)−1] ]

are well-defined (this is a trivial observation) and moreover are the unique extensions through the set
{b ∈M2(B) : ‖b−1‖ < 1

‖S‖+‖D‖} of the usual operator-valued Cauchy transforms defined on H±(M2(B)).
Of course, H is not open in M2(B). However, as the set of invertible bounded operators on a Hilbert

space is open, it is clear that for each
[
w1 v
0 w2

]
∈ H one finds a norm-neighborhood V of this point in

M2(B) (and depending on this point) such that both w−
[
S+D 0

0 S+D

]
and w−

[
D 0
0 D

]
are invertible

for all w ∈ V . Thus, the above defined extensions are indeed unique by the identity principle for analytic
functions.

While not open in M2(B), the space H is nevertheless an analytic space, open in the complex algebra
of upper triangular matrices in M2(B), so that we may define analytic functions on it and apply analytic
function theory results to them. To begin with, observe that both

(id2 ⊗ E)
[([

w1 v
0 w2

]
−
[
S+D 0

0 S+D

])−1
]
, (id2 ⊗ E)

[([
w1 v
0 w2

]
−
[
D 0
0 D

])−1
]

send H to −H. Indeed, for any selfadjoint noncommutative random variable Y

(id2 ⊗ E)
[([

w1 v
0 w2

]
−
[
Y 0
0 Y

])−1
]

= (id2 ⊗ E)
[
(w1 − Y )−1 −(w1 − Y )−1v(w2 − Y )−1

0 (w2 − Y )−1

]
=
[
E[(w1 − Y )−1] −E[(w1 − Y )−1v(w2 − Y )−1]

0 E[(w2 − Y )−1]

]
.

Now Iw1 < 0 =⇒ IE[(w1 − Y )−1] > 0, and Iw2 > 0 =⇒ IE[(w2 − Y )−1] < 0. On the other hand,

I(id2 ⊗ E)
[([
−w1 v

0 w2

]
−
[
−Y 0
0 Y

])−1
]

= I(id2 ⊗ E)
[
−(w1 − Y )−1 (w1 − Y )−1v(w2 − Y )−1

0 (w2 − Y )−1

]
= I

[
−E[(w1 − Y )−1] E[(w1 − Y )−1v(w2 − Y )−1]

0 E[(w2 − Y )−1]

]
< 0.

This shows that (id2 ⊗ E)
[([

w1 v
0 w2

]
−
[
Y 0
0 Y

])−1
]
∈ −H.

In addition, η is completely positive, so (id2 ⊗ η)(H) ⊆ H. Thus, the map

f : H×H → H, fβ(w) = β − (id2 ⊗ η) ◦ (id2 ⊗ E)
[(

w−
[
D 0
0 D

])−1
]

is a well-defined map, and for each β ∈ H, fβ is an analytic self-map of H.
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Considering the level one relation from (5) for our given β1, β2, we automatically have

(id2 ⊗ E)
[([

β1 0
0 β2

]
−
[
S+D 0

0 S+D

])−1
]

=
[
E
[
(β1 − S −D)−1] 0

0 E
[
(β2 − S −D)−1]]

=
[
E
[
(ω(β1)−D)−1] 0

0 E
[
(ω(β2)−D)−1]]

= (id2 ⊗ E)
[([

ω(β1) 0
0 ω(β2)

]
−
[
D 0
0 D

])−1
]
.

This guarantees that, for β =
[
β1 0
0 β2

]
, we have

fβ

([
ω(β1) 0

0 ω(β2)

])
= β −

[
(η ◦ E)

[
(ω(β1)−D)−1] 0

0 (η ◦ E)
[
(ω(β2)−D)−1]]

=
[
β1 − (η ◦ E)

[
(ω(β1)−D)−1] 0
0 β2 − (η ◦ E)

[
(ω(β2)−D)−1]]

=
[
ω(β1) 0

0 ω(β2)

]
,

so that
[
ω(β1) 0

0 ω(β2)

]
is a fixed point of fβ. Let us limit ourselves now to the subset

Hβ1,β2,R =
{
w =

[
w1 v
0 w2

]
∈ H : I

[
−w1 v

0 w2

]
>

1
2I
[
−β1 0

0 β2

]
, ‖w‖ < R

}
.

It is clear that for R > 0 sufficiently large, Hβ1,β2,R is a nonempty open connected subset of H (in fact
convex). According to what precedes, we have

I
([
−β1 0

0 β2

]
−
[
−(η◦E)

[
(w1−D)−1] −(η◦E)

[
(w1−D)−1v(w2−D)−1]

0 (η◦E)
[
(w2−D)−1] ])

≥ I
[
−β1 0

0 β2

]
>

1
2I
[
−β1 0

0 β2

]
and

‖fβ(w)‖ =
∥∥∥∥[β1 0

0 β2

]
−
[
(η◦E)

[
(w1−D)−1] −(η◦E)

[
(w1−D)−1v(w2−D)−1]

0 (η◦E)
[
(w2−D)−1] ]∥∥∥∥

≤
∥∥∥∥[β1 0

0 β2

]∥∥∥∥+ ‖η‖cb

∥∥∥∥[(w1−D)−1 −(w1−D)−1v(w2−D)−1

0 (w2−D)−1

]∥∥∥∥
=
∥∥∥∥[β1 0

0 β2

]∥∥∥∥+ ‖η‖cb

∥∥∥∥∥
[
w1 −D v

0 w2 −D

]−1
∥∥∥∥∥

=
∥∥∥∥[β1 0

0 β2

]∥∥∥∥+ ‖η‖cb

∥∥∥∥∥
([
w1 −D v

0 w2 −D

] [
−1 0
0 1

])−1
∥∥∥∥∥

=
∥∥∥∥[β1 0

0 β2

]∥∥∥∥+ ‖η‖cb

∥∥∥∥∥
[
−w1 +D v

0 w2 −D

]−1
∥∥∥∥∥

=
∥∥∥∥[β1 0

0 β2

]∥∥∥∥+ ‖η‖cb

∥∥∥∥∥
([
−w1 v

0 w2

]
−
[
−D 0

0 D

])−1
∥∥∥∥∥

≤ ‖β1‖+ ‖β2‖+ ‖η‖cb

∥∥∥∥∥
(
I
[
−w1 v

0 w2

])−1
∥∥∥∥∥

< ‖β1‖+ ‖β2‖+ 2‖η‖cb

∥∥∥∥∥
[
−Iβ1 0

0 Iβ2

]−1
∥∥∥∥∥≤‖β1‖+ ‖β2‖+ 2‖η‖cb

[
‖(Iβ1)−1‖+‖(Iβ2)−1‖

]
.

(We have used (2) and the hypothesis on elements in Hβ1,β2,R.) Observe that the majorization of ‖fβ(w)‖
is independent of R and w. Thus, if we choose R = 2‖β1‖+‖β2‖+2‖η‖cb

[
‖(Iβ1)−1‖+‖(Iβ2)−1‖

]
, then we
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are guaranteed that fβ(Hβ1,β2,R) is at positive norm-distance from H\Hβ1,β2,R. Theorem 74 guarantees
that fβ has a unique attracting fixed point in H, which, unsurprisingly, belongs to Hβ1,β2,R, and that fβ is
a strict contraction in the hyperbolic metric on H. Since fβ maps Hβ1,β2,R strictly inside itself, of course
fβ is a strict contraction in the hyperbolic metric of Hβ1,β2,R itself, hence any hyperbolic ball around the

fixed point
[
ω(β1) 0

0 ω(β2)

]
is mapped strictly inside itself. In particular, given an arbitrary finite-radius

hyperbolic ball B ( Hβ1,β2,R around the fixed point, f◦nβ (w)→
[
ω(β1) 0

0 ω(β2)

]
as n→∞ for all w ∈ B,

uniformly on B. Since on any subset at positive distance from the complement of Hβ1,β2,R the norm

topology and the hyperbolic topology are equivalent, there exists r > 0 such that
[
ω(β1) v

0 ω(β2)

]
∈ B

for all v ∈ B, ‖v‖ ≤ r.
Now assume towards contradiction that the spectral radius of the linear completely bounded map

U : B 3 v 7→ (η ◦ E)
[
(ω(β1)−D)−1v(ω(β2)−D)−1] ∈ B is greater than or equal to one. According to

the spectral radius formula, this forces lim
n→∞

‖Un‖ 1
n = inf

n≥1
‖Un‖ 1

n ≥ 1. However, by direct computation,

with β =
[
β1 0
0 β2

]
, we obtain

f◦2β

([
ω(β1) v

0 ω(β2)

])
= fβ

(
fβ

([
ω(β1) v

0 ω(β2)

]))

= fβ

([
β1− (η ◦E)

[
(ω(β1)−D)−1] (η ◦E)

[
(ω(β1)−D)−1v(ω(β2)−D)−1]

0 β2 − (η ◦ E)
[
(ω(β2)−D)−1] ])

= fβ

([
ω(β1) Uv

0 ω(β2)

])
=
[
ω(β1) U2v

0 ω(β2)

]
, so that

f◦nβ

([
ω(β1) v

0 ω(β2)

])
=
[
ω(β1) Unv

0 ω(β2)

]
, n ∈ N.

Since, as mentioned above, the norm and hyperbolic topologies coincide locally and fβ is a strict

hyperbolic contraction, there exists an n0 ∈ N such that f◦nβ

([
ω(β1) v

0 ω(β2)

])
=
[
ω(β1) Unv

0 ω(β2)

]
∈{[

ω(β1) ξ
0 ω(β2)

]
: ‖ξ‖ ≤ r/2

}
for all v, ‖v‖ ≤ r, n ≥ n0. Thus, ‖Un0v‖ ≤ r

2 for all v, ‖v‖ ≤ r, so that

‖Un0‖ ≤ 1
2 . Of course, this means that lim

n→∞
‖Un‖ 1

n = lim
m→∞

‖Umn0‖
1

mn0 ≤ lim
m→∞

‖Un0‖
m
mn0 = 1

n0
√

2
< 1,

contradicting our hypothesis. Thus, the spectral radius of U is strictly less than one.
Since U is the composition of η with E

[
(ω(β1)−D)−1 · (ω(β2)−D)−1] and uβ1,β2 is the composition

of E
[
(ω(β1)−D)−1 · (ω(β2)−D)−1] with η, the spectral radius of U coincides with the spectral radius

of uβ1,β2 . This concludes the proof of our proposition. �

Remark 14. (1) The proof given above works with almost no modification for the case {β1, β2 ∈ H+(B)},
case already covered by [Bel19, Proposition 4.1].
(2) Although not directly useful in our paper, we mention that another side benefit of Proposition 13 is
that it allows the subordination function ω(β) to be extended to a neighborhood of H as a fixed point of
fβ(·).

5.3. Second step in the proof of Proposition 11. The following theorem will be useful in order to
deduce Proposition 11 from Proposition 13.

Theorem 15. Assume that Ω ⊂ Cd is an open connected set, A is a Banach algebra, and f : Ω → A
is analytic. Denote by ρ(x) the spectral radius of the element x ∈ A. The function Ω 3 z 7→ ρ(f(z)) ∈
[0,+∞) is plurisubharmonic.

The result is well-known (see for instance [Cha20, Section 4.1]), but we provide a brief sketch of a proof.
First, recall that the function A 3 x 7→ ρ(x) ∈ [0,+∞) is upper semicontinuous [Mü03, I.1,Theorem 31].
Obviously, Ω 3 z 7→ ‖f(z)‖ ∈ [0,+∞) is continuous. We claim it is also plurisubharmonic. Indeed, in any
Banach space, the norm of an element is equal to the value at it of a certain norm-one linear functional
defined on the Banach space. In particular, for any x ∈ A, there exists a norm-one continuous linear
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functional x? : A → C such that ‖x‖ = x?(x). Thus, for any given z0 ∈ Ω, one may find a norm-one
linear functional φz0 : A → C such that φz0(f(z0)) = ‖f(z0)‖. The function Ω 3 z 7→ φz0(f(z)) ∈ C is
analytic because of the continuity of the linear functional φz0 and the assumption of analyticity imposed
on f . According to [GZ17, Proposition 1.29], the map Ω 3 z 7→ |φz0(f(z))|α ∈ [0,+∞) becomes then
a continuous plurisubharmonic function satisfying |φz0(f(z0))|α = ‖f(z0)‖α, |φz0(f(z))|α ≤ ‖f(z)‖α,
z ∈ Ω, α > 0. If we let Ω? = {φz : z ∈ Ω} ⊆ {φ : A → C : φ linear, continuous, ‖φ‖ = 1}, then for any
α > 0,

‖f(z)‖α = max{|φw(f(z))|α : φw ∈ Ω?,w ∈ Ω}, z ∈ Ω,
so that, according to [GZ17, Proposition 1.40], it is indeed plurisubharmonic.

Finally, as already mentioned, the spectral radius formula is given as

ρ(f(z)) = lim
n→∞

‖f(z)n‖ 1
n = inf

n≥1
‖f(z)n‖ 1

n ,

that is, the upper semicontinuous function Ω 3 z 7→ ρ(f(z)) ∈ [0,+∞) is the infimum of a family of
plurisubharmonic functions, hence itself plurisubharmonic (see [GZ17, Proposition 1.28.(2)]).

The property useful for our purposes of plurisubharmonic functions is that they satisfy a maximum
principle [GZ17, Corollary 1.37]: if z0 is a local maximum for ρ(f(z)), then z 7→ ρ(f(z)) is constant on a
neighborhood of z0 in Ω.

Remark 16. Consider an open connected set Ω ⊆ Cd for some integer d ≥ 1, a Banach algebra A, an
analytic function f : Ω→ A, and a number M > 0. Assume that ρ(f(z)) ≤M for all z ∈ Ω. Then either
ρ(f(z)) ≡ M for all z ∈ Ω, or ρ(f(z)) < M for all z ∈ Ω. In the second case, there exists a sequence
zn ∈ Ω such that zn → ∞ as n → ∞, ρ(f(zn)) < ρ(f(zn+1)), n ∈ N, and M ≥ sup{ρ(f(z)) : z ∈ Ω} =
limn→∞ ρ(f(zn)). By zn → ∞ we mean that for any compact K ⊂ Ω there exists nK ∈ N such that
zn 6∈ K for all n ≥ nK .

Observe that our boundedness hypothesis automatically excludes the possibility that f is not constant
and simultaneously Ω = Cd.

Proof. The statements are trivial: the first one is a consequence of the maximum principle for plurisub-
harmonic functions [GZ17, Corollary 1.37] and Theorem 15, and the second of the very definition of
supremum. �

Proof of Proposition 11. First observe that (ze11 − γ0) ⊗ 1A − γ1 ⊗ s − γ2 ⊗ d is invertible for all z ∈
C+∪C−∪ (R\σ((γ0)1,1 ·1A+(γ1)1,1s+(γ2)1,1d+u∗Q−1u)). Indeed, splitting this element in four blocks

(ze11 − γ0)⊗ 1A − γ1 ⊗ s− γ2 ⊗ d =
[
((ze11 − γ0)⊗ 1A − γ1 ⊗ s− γ2 ⊗ d)1,1 u∗

u Q

]
as in Section 4.2, where Q ∈ Mm−1(A) is assumed to be invertible. By our choice, u and Q do not
depend on z, but only on s, d, and the γ’s. The Schur complement formula guarantees that the above is
invertible in Mm(A) whenever ((ze11 − γ0)⊗ 1A − γ1 ⊗ s− γ2 ⊗ d)1,1 − u∗Q−1u is invertible in A. Since
(u∗Q−1u)∗ = u∗Q−1u and (γ0⊗1A+γ1⊗s+γ2⊗d)1,1 = (γ0)1,1 ·1A+(γ1)1,1s+(γ2)1,1d is also selfadjoint
in A, it follows that for any z ∈ C+∪C−∪(R\σ((γ0)1,1 ·1A+(γ1)1,1s+(γ2)1,1d+u∗Q−1u)) – a connected
set which is also a neighborhood of infinity – the random variable (ze11 − γ0) ⊗ 1A − γ1 ⊗ s − γ2 ⊗ d is
invertible, as claimed.

Direct computation shows that points (ze11 − γ0), z ∈ C, belong to the topological closure of
H+(Mm(C)) ∪ H−(Mm(C)). Since the set of invertible elements in a Banach algebra is open in the
norm topology, it follows immediately that if z is such that (ze11− γ0)⊗ 1A− γ1⊗ s− γ2⊗ d is invertible
in Mm(A), then there is a small enough neighborhood V in Mm(C) such that w ⊗ 1A − γ1 ⊗ s− γ2 ⊗ d
is invertible in Mm(A) for all w ∈ V and, of course, V ∩ (H+(Mm(C)) ∪H−(Mm(C))) 6= ∅.

This guarantees in particular that ω(w) = w−σ2γ1(idm⊗τ)
[
(w ⊗ 1A − γ1 ⊗ s− γ2 ⊗ d)−1

]
γ1 extends

analytically to a neighborhood of {ze11 − γ0 : z ∈ C+ ∪ C− ∪ (R \ σ((γ0)1,1 · 1A + (γ1)1,1s + (γ2)1,1d +
u∗Q−1u))} in Mm(C). We use that the spectral radius of operators on Mm(C) is continuous to conclude
thanks to Proposition 13 that for any z1, z2 ∈ C+∪C−∪(R\σ((γ0)1,1 ·1A+(γ1)1,1s+(γ2)1,1d+u∗Q−1u)),
we may write

1 ≥ lim
βj→0,βj∈H•j (Mm(C))

ρ (uz1e11−γ0+β1,z2e11−γ0+β2) = ρ (uz1e11−γ0,z2e11−γ0) ,
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where •j is the sign of the imaginary part of zj , j = 1, 2, and if one or both of zj are real, then we
agree to make the choice •j = +. Since the correspondence (z1, z2) 7→ uz1e11−γ0,z2e11−γ0 is an analytic
map from the open subset {C+ ∪ C− ∪ (R \ σ((γ0)1,1 · 1A + (γ1)1,1s + (γ2)1,1d + u∗Q−1u))}2 of C2

into the Banach algebra of (bounded) linear self-maps of Mm(C), it follows that the correspondence
(z1, z2) 7→ ρ (uz1e11−γ0,z2e11−γ0) ∈ [0,+∞) is plurisubharmonic on the same set, according to Theorem
15. Since plurisubharmonic functions satisfy the maximum principle, it follows (see Remark 16) that
either ρ (uz1e11−γ0,z2e11−γ0) ≡ 1 for all pairs (z1, z2) in the above-described domain of this function, or
that ρ (uz1e11−γ0,z2e11−γ0) < 1 for all pairs (z1, z2) in this domain. Thus, in order to show that the
second case holds, it is enough to find a single such pair in which this spectral radius is strictly less than
one. The pair we focus on will be of the form (z1, z2) = (y, y) for y ∈ R sufficiently large. Note that,
for such a pair, uz1e11−γ0,z2e11−γ0 : Mm(C) → Mm(C) is completely positive. We apply to it Theorem
67. Assume towards contradiction that the completely positive map uye11−γ0,ye11−γ0 has spectral radius
equal to one. This map is the composition of two completely positive maps, namely v 7→ σ2γ1vγ1
and v 7→ (idm ⊗ τ)

[
(ω(ye11 − γ0)⊗ 1A − γ2 ⊗ d)−1(v ⊗ 1A)(ω(ye11 − γ0)⊗ 1A − γ2 ⊗ d)−1]. Since the

spectral radius of AB coincides with the spectral radius of BA for any linear maps A,B on a Banach
space, it follows that ρ(uye11−γ0,ye11−γ0) = 1 if and only if
(8)
ρ
(
σ2γ1(idm ⊗ τ)

[
(ω(ye11 − γ0)⊗ 1A − γ2 ⊗ d)−1( · ⊗ 1A)(ω(ye11 − γ0)⊗ 1A − γ2 ⊗ d)−1] γ1

)
= 1.

Thus, according to Theorem 67, there exists a matrix v0 6= 0 such that

σ2γ1(idm ⊗ τ)
[
(ω(ye11 − γ0)⊗ 1A − γ2 ⊗ d)−1(v0 ⊗ 1A)(ω(ye11 − γ0)⊗ 1A − γ2 ⊗ d)−1] γ1 = v0.

Recalling that ω(w) = w − σ2γ1(idm ⊗ τ)
[
(ω(w)⊗ 1A − γ2 ⊗ d)−1

]
γ1, it follows that

ω′(w)(c) = c+ σ2γ1(idm ⊗ τ)
[
(ω(w)⊗ 1A − γ2 ⊗ d)−1

ω′(w)(c) (ω(w)⊗ 1A − γ2 ⊗ d)−1
]
γ1,

for all w ∈ H±(Mm(C)). Extending this to our point ye11−γ0, we have two options: either ω′(ye11−γ0)
is bijective, and then there exists a cy ∈ Mm(C) such that ω′(ye11 − γ0)(cy) = v0, or there is no such
cy and then ω′(ye11 − γ0) is not bijective, which in finite dimensional spaces means it has a nontrivial
kernel. In the first situation, we obtain

v0 = ω′(ye11 − γ0)(cy)

= cy+σ2γ1(idm⊗τ)
[
(ω(ye11−γ0)⊗1A−γ2⊗d)−1

ω′(ye11−γ0)(cy) (ω(ye11−γ0)⊗1A−γ2⊗d)−1
]
γ1

= cy+σ2γ1(idm⊗τ)
[
(ω(ye11−γ0)⊗1A−γ2⊗d)−1

v0 (ω(ye11−γ0)⊗1A−γ2⊗d)−1
]
γ1

= cy+v0,

which implies cy = 0, so that 0 = ω′(ye11−γ0)(cy) = v0 6= 0, which implies that the first situation cannot
occur. If 0 6= c ∈ ker(ω′(ye11 − γ0)), then 0 = ω′(ye11−γ0)(c) = c + 0 = c 6= 0, again a contradiction.
Thus, it is impossible that (8) takes place. This concludes the proof of Proposition 11. �

Unlike for the case of Proposition 13, here there were several points where the finite dimensionality
of Mm(C) was used. However, we cannot think at this moment of a situation in which Proposition 11
would have an appropriate formulation involving an infinite-dimensional algebra of scalars.

The reader might be concerned by one element in our proof, namely the fact that we have not hesitated
to extend analytically ω around (ye11−γ0). This problem has been essentially addressed in [BBC19].
However, the reader can find a simple argument for this extension by recalling Voiculescu’s result [Voi00],
namely

(ω(w)⊗ 1A − γ2 ⊗ d)−1 = EMm(C〈d〉)

[
(w ⊗ 1A − γ1 ⊗ s− γ2 ⊗ d)−1

]
.

As y ∈ R is taken so that (ye11 − γ0) ⊗ 1A − γ1 ⊗ s − γ2 ⊗ d is invertible, we are guaranteed that
it will remain invertible on a neighborhood of ye11 − γ0 in Mm(C). On the one hand this guarantees
(via (5)) the existence and analyticity of ω on this neighborhood, and on the other, the boundedness
of the conditional expectation of (w ⊗ 1A − γ1 ⊗ s− γ2 ⊗ d)−1 on this neighborhood guarantees that
ω(w)⊗ 1A − γ2 ⊗ d stays invertible on the same neighborhood. This shows that taking the derivative of
ω at w = ye11 − γ0 ∈Mm(C) is permissible.
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6. Preliminary results

6.1. Notations. We start by fixing some notations. We consider the canonical linearization
LP (t1, t2) = γ0 ⊗ 1 + γ1 ⊗ t1 + γ2 ⊗ t2 ∈Mm(C)⊗ C〈t1, t2〉

of the selfadjoint polynomial P with the properties outlined in Section 3. By (4), Tr(zIN − XN )−1 is
related to the generalized resolvent

RN (β) := (β ⊗ IN − γ1 ⊗WN − γ2 ⊗DN )−1,

by
Tr(zIN −XN )−1 = (Tr⊗Tr)((e11 ⊗ IN )RN (ze11 − γ0)), z ∈ C \ R.

Denoting by (Eij)1≤i,j≤N the canonical basis of MN (C), we define the matrices Rij(β), 1 ≤ i, j ≤ N , by

RN (β) =
N∑

i,j=1
Rij(β)⊗ Eij .

Schur inversion formula (Proposition 60 applied to A = β ⊗ IN − γ1 ⊗WN − γ2 ⊗DN and Ic = {k, k +
N, . . . , k + (N − 1)m}) relates RN (β) to its Schur complements

β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k , k = 1, . . . , N,
where

R(k)(β) = (β ⊗ IN−1 − γ1 ⊗W (k)
N − γ2 ⊗D(k)

N )−1.

Here W (k)
N , D

(k)
N denote the (N − 1)× (N − 1) matrices obtained respectively from WN , DN by deleting

the k-th row/column and C(k)
k is the (N − 1)-dimensional vector obtained from the k-th column of WN

by deleting its k-th component.
An immediate consequence of Lemma 3 is the following relation between RN and the generalized

resolvent
R(ab)(β) = (β ⊗ IN − γ1 ⊗W (ab)

N − γ2 ⊗DN )−1,

where W (ab)
N is obtained from WN by replacing its (a, b) and (b, a) entries by 0:

(9) R(ab)(β)−RN (β) = −R(ab)(β)(1− 1
2δab)(γ1 ⊗WabEab + γ1 ⊗WabEba)RN (β).

One deduces from (9) the following bound:

‖R(ab)(β)−RN (β)‖ ≤ 2δN‖γ1‖‖R(ab)(β)‖‖RN (β)‖.
Analogously, we denote by R(kab) the generalized resolvent

R(kab)(β) = (β ⊗ IN − γ1 ⊗W (kab)
N − γ2 ⊗D(k)

N )−1,

where W (kab)
N is obtained from W

(k)
N by replacing its (a, b) and (b, a) entries by 0; and by R(kabcd) the

generalized resolvent

R(kabcd)(β) = (β ⊗ IN − γ1 ⊗W (kabcd)
N − γ2 ⊗D(k)

N )−1,

where W (kabcd)
N is obtained from W

(k)
N by replacing its (a, b), (b, a), (c, d) and (d, c) entries by 0.

Martingales appearing in this paper will be with respect to the filtration
(Fk := σ(Wij , 1 ≤ i ≤ j ≤ k))k≥1;

E≤k denotes the conditional expectation on the sigma-field Fk and Ek the expectation with respect to
the k-th column {Wik, 1 ≤ i ≤ N} of WN .

We will consider, for each N ∈ N, a W ∗-probability space (AN , τN ), a semicircular element sN ∈ AN
of mean 0 and variance Nσ2

N and a von Neumann subalgebra DN ⊂ AN isomorphic to the algebra
of N × N diagonal matrices with complex entries and freely independent from sN . As we have seen,
γ1 ⊗ sN ∈ Mm(AN ) is a centered Mm(C)-valued semicircular element of variance ηN : b 7→ Nσ2

Nγ1bγ1
which is free with amalgamation over Mm(C) from Mm(DN ) in the Mm(C)-valued W ∗-probability space
(Mm(AN ), idm ⊗ τN ). For DN ∈ DN ' DN (C), the generalized resolvent

rN (β) := (β ⊗ 1AN − γ1 ⊗ sN − γ2 ⊗DN )−1

and the subordination map
ωN (β) := β − ηN

(
(idm ⊗ τN )[rN (β)]

)
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are related according to (6) by

(10) R̂(β) := EMm(DN )[rN (β)] = (ωN (β)⊗ 1AN − γ2 ⊗DN )−1
.

By analogy, one defines
(11) ΩN (β) := β − ηN

(
E[(idm ⊗N−1 Tr)(RN (β))]

)
.

In the sequel, we will use the notation O(vN ) when a quantity depending on N ∈ N, z ∈ C \ R, and
sometimes on k ∈ {1, . . . , N}, satisfies the following : for any compact subset K of C \ R, there exists
NK ∈ N and CK > 0 such that for any N ≥ NK , for any z ∈ K, (for any k ∈ {1, . . . , N},) this quantity
is bounded by CKvN .

Throughout the paper, C, c denote some positive constants and Q denotes some deterministic polyno-
mial in one or several commuting indeterminates ; they can depend on m, γ0, γ1, γ2 and they may vary
from line to line.

6.2. Free probability bounds and convergences. For β ∈ H+(Mm(C)) and k = 1, . . . , N , as observed
in Section 4.1,
(12) ‖rN (β)‖ ≤ ‖(Iβ)−1‖
and

‖(ωN (β)⊗ 1AN − γ2 ⊗DN )−1‖ ≤ ‖(IωN (β))−1‖ ≤ ‖(Iβ)−1‖.
It is a consequence of Lemma 4 that rN is also defined on {ze11 − γ0, z ∈ C \ R} and it follows from
Lemma 5 with y = (sN , DN ), Assumptions 3, 5 and (3) that, for z ∈ C \ R,

(13) ‖rN (ze11 − γ0)‖ ≤ Q1(2N1/2σN , ‖DN‖)‖(zIN − P (sN , DN ))−1‖+Q2(2N1/2σN , ‖DN‖) = O(1).

Lemma 17.
‖(ωN (ze11 − γ0)⊗ 1AN − γ2 ⊗DN )−1‖ = O(1);∥∥∥∥ ∂∂z (ωN (ze11 − γ0)⊗ 1AN − γ2 ⊗DN )−1

∥∥∥∥ = O(1).

Proof. For z ∈ C \ R, it follows from (6) that

EMm(DN )

[
((ze11 − γ0)⊗ 1AN − γ1 ⊗ sN − γ2 ⊗DN )−1

]
= (ωN (ze11 − γ0)⊗ 1AN − γ2 ⊗DN )−1

holds and therefore
‖(ωN (ze11 − γ0)⊗ 1AN − γ2 ⊗DN )−1‖ ≤ ‖(ze11 ⊗ 1AN − LP (sN , DN ))−1‖.

Since moreover∥∥∥e11 + ηN

(
(idm ⊗ τN )

[
(ze11 ⊗ 1AN − LP (sN , DN ))−1 (e11 ⊗ 1AN ) (ze11 ⊗ 1AN − LP (sN , DN ))−1

])∥∥∥
≤ 1 +Nσ2

N‖γ1‖2‖ (ze11 ⊗ 1AN − LP (sN , DN ))−1 ‖2,
it follows that

‖ ∂
∂z

(ωN (ze11 − γ0)⊗ 1AN − γ2 ⊗DN )−1‖

≤ ‖(ze11 ⊗ 1AN − LP (sN , DN ))−1‖2(1 +Nσ2
N‖γ1‖2‖ (ze11 ⊗ 1AN − LP (sN , DN ))−1 ‖2).

Using Lemma 5 with y = (sN , DN ),

‖(ze11 ⊗ 1AN − LP (sN , DN ))−1‖ ≤ Q1(N1/2σN , ‖DN‖)|Iz|−1 +Q2(N1/2σN , ‖DN‖)
and we are done. �

For β ∈Mm(C) such that β = ze11 − γ0 with z ∈ C \ R, define

(14) R̂k(β) = (β −Nσ2
Nγ1(idm ⊗ τ)(rN (β))γ1 −Dkkγ2)−1 = (ωN (β)−Dkkγ2)−1.

It readily follows from Lemma 17 that
(15) ‖R̂k(ze11 − γ0)‖ = O(1),

(16)
∥∥∥∥ ∂∂z R̂k(ze11 − γ0)

∥∥∥∥ = O(1),
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and that
(17) sup

t∈supp(νN )
‖(ωN (ze11 − γ0)− tγ2)−1‖ = O(1).

Lemma 18. The map C± ×R 3 (z, t) 7→ (ω(ze11 − γ0)− tγ2)−1 is well-defined and analytic. Thus, it is
bounded on any compact subset of C± × R.

Proof. Fix M > ‖d‖ and a compact K ⊂ C+. We use the equality ω(ze11− γ0) = ze11− γ0− γ1G(ze11−
γ0)γ1, where G denotes the generalized Cauchy transform of γ1⊗ s+ γ2⊗d (i.e. G(b) = (idm⊗ τ)(r(b))),
together with the structure of the linearization and normal families. The boundedness statement is
obvious if t ∈ σ(d), by Equation (6) and the boundedness of evaluation maps. We show that, given
M > 0 (which we assume for convenience sufficiently large so that σ(d) ⊂ [−M,M ]), there exists an
r > 0 (depending on it) so that ωN (ze11− γ0)− tγ2 = ze11− γ0− γ1G(ze11− γ0)γ1− tγ2 is invertible for
all |z| > r. We recall the shape of G(ze11 − γ0) ∈Mm(C):
G(ze11 − γ0)

=
[

τ
(
(z − u∗Q−1u)−1) −(id1×(m−1) ⊗ τ)

(
(z − u∗Q−1u)−1u∗Q−1)

−(id(m−1)×1 ⊗ τ)
(
Q−1u(z − u∗Q−1u)−1) (idm−1 ⊗ τ)

(
Q−1 +Q−1u(z − u∗Q−1u)−1u∗Q−1)] ,

where u,Q, u∗ are the (obvous size) constituents of the linearization of P , evaluated in (s, d). It is useful
to note that the above matrix can be re-written as

G(ze11 − γ0)

=
[
0 0
0 (idm−1 ⊗ τ)

(
Q−1)]+ (idm ⊗ τ)

[[
1

−Q−1u

] (
z − u∗Q−1u

)−1 [1 −u∗Q−1] ]
.

It is shown in [BBC19, Lemma 4.2] that there exist permutation matrices T1, T2 ∈ Mm−1(C) and a
strictly lower triangular matrix N ∈ Mm−1(C〈s, d〉) such that Q−1 = −T1(Im−1 + N)T2. We multiply

G(ze11 − γ0) left with
[
1 0
0 T−1

1

]
and right with

[
1 0
0 T−1

2

]
to get[

0 0
0 −Im−1 − (idm−1 ⊗ τ)(N)

]
+

(idm ⊗ τ)
[[

1
(Im−1 +N)T2u

] (
z − u∗Q−1u

)−1 [1 u∗T1(Im−1 +N)
] ]

=
[
0 0
0 −Im−1 − (idm−1 ⊗ τ) (N)

]
+ O

(
1
z

)
.

(The O
( 1
z

)
part can be easily made precise: it is 1

z (idm⊗τ)
[[

1
(Im−1 +N)T2u

] [
1 u∗T1(Im−1 +N)

]]
+

O
( 1
z2

)
.) We recall that Q = P ∗m−1(γ0−γ1−γ2)Pm−1, where we have denoted by Pm−1 the operator that

embeds Cm−1 ↪→ (0,Cm−1) ⊂ Cm. It is known that T2P
∗
m−1γ0Pm−1T1 = −Im−1, while T1P

∗
m−1(γ1 +

γ2)Pm−1T1 is strictly lower triangular (nilpotent). Moreover, the Schur product of γ1 and γ2 is known to
have all but possibly the (1, 1) entry equal to zero, and T1P

∗
m−1γ1Pm−1T1, T1P

∗
m−1γ2Pm−1T1 are both

strictly lower triangular. In particular, neither the structure of N nor the presence of Im−1 is affected if
one replaces γ2 with tγ2 for an arbitrary t ∈ R. Thus,[

1 0
0 T2

]
(ze11 − γ0 − γ1 − tγ2)

[
1 0
0 T1

]
=
[
z + constt x∗tT1
T2xt −Im−1 + Ñt

]
,

where Ñt is a strictly lower triangular matrix, some of whose entries might depend linearly of t ∈ R, and
the same holds for the column vector xt. The constant constt might be affine in t. It is trivial that the
above matrix is invertible for all z 6∈ R, and equally obvious that −Im−1 + Ñt is invertible. Writing the
Schur complement wrt the (1, 1) entry, we obtain that z + constt − x∗tT1(Ñt − Im−1)−1T2xt is invertible.
We study how adding γ1− γ1G(ze11− γ0)γ1 to ze11− γ0− γ1− tγ2 influences this invertibility. We write[

1 0
0 T2

]
(γ1 − γ1G(ze11 − γ0)γ1)

[
1 0
0 T1

]
=
[
1 0
0 T2

]
γ1

[
1 0
0 T1

]
−
[
1 0
0 T2

]
γ1

[
1 0
0 T1

] [
1 0
0 T−1

1

]
G(ze11 − γ0)

[
1 0
0 T−1

2

] [
1 0
0 T2

]
γ1

[
1 0
0 T1

]
.
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As seen above, the lower right (m − 1) × (m − 1) corner of
[
1 0
0 T2

]
γ1

[
1 0
0 T1

]
is a sub-matrix of Ñt,

namely the constant entries; the same holds for the vectors above and to the left of this corner, and the
(1, 1) entry is the constant part of the affine map t 7→constt, all those with a minus in front. It was seen

above that
[
1 0
0 T−1

1

]
G(ze11 − γ0)

[
1 0
0 T−1

2

]
=
[
0 0
0 −Im−1 − (idm−1 ⊗ τ) (N)

]
+ O

( 1
z

)
. It follows that[

1 0
0 T2

]
γ1

[
1 0
0 T1

] [
1 0
0 T−1

1

]
G(ze11 − γ0)

[
1 0
0 T−1

2

] [
1 0
0 T2

]
γ1

[
1 0
0 T1

]
=
[
? ?
? n

]([
0 0
0 −Im−1 − (idm−1 ⊗ τ)(N)

]
+ (idm ⊗ τ)

[[
1

(Im−1 +N)T2u

] (
z − u∗Q−1u

)−1 [1 u∗T1(Im−1 +N)
] ])[

? ?
? n

]
.

As already mentioned, n in the above is a constant sub-matrix of Ñt, hence strictly lower triangular,
and the stars stand for constant/constant vectors, whose precise identity is irrelevant for our purposes.
The second summand in the above is still O

( 1
z

)
, and the lower right corner of the first summand is

−n(Im−1 + N)n = −n2 − nNn, a sum of products of strictly lower triangular matrices, is strictly lower
triangular (in fact guaranteed to have also all entries (i, i−1) equal to zero as well). It follows immediately
that[

1 0
0 T2

]
(ω(ze11 − γ0)− tγ2)

[
1 0
0 T1

]
=

[
z + constt + ? x∗tT1 + ?
T2xt + ? −Im−1 + Ñt − n2 − nNn

]
+ O

(
1
z

)
.

Since the lower right corner is invertible for all z, t, and the other t-dependent terms only depend affinely
of it, it follows by the Schur complement that for |z| sufficiently large the first term in the right-hand side is
invertible. Since the second is O

( 1
z

)
, the same Schur complement guarantees that, by slightly increasing

|z| if necessary, the invertibility statement remains valid. As the invertibility of ω(ze11 − γ0) − tγ2 is

equivalent to the invertibility of
[
1 0
0 T2

]
(ω(ze11−γ0)−tγ2)

[
1 0
0 T1

]
, we have established the invertibilty

of ω(ze11 − γ0)− tγ2 for |z| sufficiently large.
Since Iω(ze11 − γ0) ≥ 0 for all z ∈ C+ and γ2 = γ∗2 , it follows that I(ω(ze11 − γ0) − tγ2)−1 ≤ 0

whenever ω(ze11 − γ0) − tγ2 is invertible. The argument employed in [BBC19, Lemma 5.5] guarantees
that z 7→ (ω(ze11 − γ0) − tγ2)−1 extends analytically to C+ ∪ C−, in addition to the neighborhood
of infinity on which we have already shown it is well-defined. Since M > ‖d‖ is arbitrary, the map
C± × R 3 (z, t) 7→ (ω(ze11 − γ0) − tγ2)−1 is well-defined and analytic. Thus, it is bounded on any
compact subset of C± × R, and in particular on K × [−M,M ]. �

Lemma 19. For any compact subset K of C \ R,
lim

N→+∞
sup
z∈K

sup
t∈supp(νN )

‖(ωN (ze11 − γ0)− tγ2)−1 − (ω(ze11 − γ0)− tγ2)−1‖ = 0.

Proof. Let K ⊂ C+ be a compact set. Let M > 0 be such that for all large N , support(νN ) ⊂ [−M,M ].
sup
z∈K

sup
t∈supp(νN )

‖(ωN (ze11 − γ0)− tγ2)−1 − (ω(ze11 − γ0)− tγ2)−1‖(18)

≤ sup
z∈K,t∈supp(νN )

‖(ωN (ze11 − γ0)− tγ2)−1‖ · sup
z∈K,|t|≤M

‖(ω(ze11 − γ0)− tγ2)−1‖

× sup
z∈K
‖ωN (ze11 − γ0)− ω(ze11 − γ0)‖ = 0.

Thus, Lemma 19 readily follows from Lemma 18, (17) and the uniform convergence of ωN to ω on compact
subsets of C±e11 − γ0 (see Remark 29) �

6.3. Concentration bounds on quadratic forms. Applying Proposition 60 to β ⊗ IN − γ1 ⊗WN −
γ2 ⊗DN leads to expressions involving random quadratic maps γ1 ⊗C(k)∗

k R(k)(β)γ1 ⊗C(k)
k . It is easy to

compute the expectation of such quadratic maps. (Recall that Ek denotes the expectation with respect
to {Wik, 1 ≤ i ≤ N}.)

E
[
γ1 ⊗C(k)∗

k R(k)(β)γ1 ⊗C(k)
k

]
= E

[
Ek[γ1 ⊗C(k)∗

k R(k)(β)γ1 ⊗C(k)
k ]
]

= ηN (E[(idm ⊗N−1 Tr)(R(k)(β))]
)
.

Their variance may be deduced from the following Lemma:
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Lemma 20. For m(N − 1)×m(N − 1) random matrices A′ =
∑
i,j 6=k α

′
ij ⊗Eij , A′′ =

∑
i,j 6=k α

′′
ij ⊗Eij,

m×m random matrices β′, β′′, γ′, γ′′, all independent of {Wik, 1 ≤ i ≤ N}, and h ∈ {1, . . . , N},

Ek
[
E≤h[Tr

(
(γ′ ⊗ C(k)∗

k A′γ′ ⊗ C(k)
k − γ′(idd ⊗ σ2

N Tr)(A′)γ′)β′
)
]

× E≤h[Tr
(
(γ′′ ⊗ C(k)∗

k A′′γ′′ ⊗ C(k)
k − γ′′(idd ⊗ σ2

N Tr)(A′′)γ′′)β′′
)
]
]

= σ4
N

∑
i,j 6=k≤h

E≤h[Tr(γ′α′ijγ′β′)]E≤h[Tr(γ′′α′′jiγ′′β′′)]

+ |θN |2
∑

i,j 6=k≤h
E≤h[Tr(γ′α′ijγ′β′)]E≤h[Tr(γ′′α′′ijγ′′β′′)]

+ κN
∑
i6=k≤h

E≤h[Tr(γ′α′iiγ′β′)]E≤h[Tr(γ′′α′′iiγ′′β′′)] + εk,

where

εk =
∑

i 6=j 6=k≤h

(
E[Wki

2]E[W 2
kj ]− |θN |2

)
E≤h[Tr(γ′α′ijγ′β′)]E≤h[Tr(γ′′α′′ijγ′′β′′)].

Moreover, if A′ and A′′ are bounded in L2 and β′, β′′, γ′, γ′′ are bounded deterministic, then

N∑
k=1

εk
P−→

N→+∞
0.

Proof of Lemma 20. It is sufficient to prove the result for A′ = α′ ⊗M ′, A′′ = α′′ ⊗M ′′. Since

E≤h
[

Tr
(
(γ′ ⊗ C(k)∗

k α′ ⊗M ′γ′ ⊗ C(k)
k − γ′(idd ⊗ σ2

N Tr)(α′ ⊗M ′)γ′)β′
)]

= E≤h[Tr
(
(C(k)∗

k M ′C
(k)
k − σ2

N Tr(M ′))γ′α′γ′β′
)
]

=
∑

i′ 6=j′ 6=k≤h
Wki′Wkj′E≤h[Tr(γ′M ′i′j′α′γ′β′)] +

∑
i′ 6=k≤h

(|Wki′ |2 − σ2
N )E≤h[Tr(γ′M ′i′i′α′γ′β′)]

=
∑

i′ 6=j′ 6=k≤h
Wki′Wkj′E≤h[Tr(γ′α′i′j′γ′β′)] +

∑
i′ 6=k≤h

(|Wki′ |2 − σ2
N )E≤h[Tr(γ′α′i′i′γ′β′)]

and

E≤h
[

Tr
(
(γ′′ ⊗ C(k)∗

k α′′ ⊗M ′′γ′′ ⊗ C(k)
k − γ′′(id⊗ σ2

N Tr)(α′′ ⊗M ′′)γ′′)β′′
)]

=
∑

i′′ 6=j′′ 6=k≤h
Wki′′Wkj′′E≤h[Tr(γ′′α′′i′′j′′γ′′β′′)] +

∑
i′′ 6=k≤h

(|Wki′′ |2 − σ2
N )E≤h[Tr(γ′′α′′i′′i′′γ′′β′′)],

it follows that

Ek
[
E≤h[Tr

(
(γ′ ⊗ C(k)∗

k A′γ′ ⊗ C(k)
k − γ′(idd ⊗ σ2

N Tr)(A′)γ′)β′
)
]

× E≤h[Tr
(
(γ′′ ⊗ C(k)∗

k A′′γ′′ ⊗ C(k)
k − γ′′(idd ⊗ σ2

N Tr)(A′′)γ′′)β′′
)
]
]

=
∑

i 6=j 6=k≤h
E[|Wki|2]E[|Wkj |2]E≤h[Tr(γ′α′ijγ′β′)]E≤h[Tr(γ′′α′′jiγ′′β′′)]

+
∑

i6=j 6=k≤h
E[Wki

2]E[W 2
kj ]E≤h[Tr(γ′α′ijγ′β′)]E≤h[Tr(γ′′α′′ijγ′′β′′)]

+
∑
i 6=k≤h

E
[
(|Wki|2 − σ2

N )2]E≤h[Tr(γ′α′iiγ′β′)]E≤h[Tr(γ′′α′′iiγ′′β′′)].

Note that, for i 6= j, E[Wki
2]E[W 2

kj ] = |θN |2 if i and j are both smaller than k or greater than k. If it is
not the case, this term equals θ2

N or θ̄2
N , according to whether i < j or i > j. By Assumption 3 and the
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fact that limNθN ∈ R, IθN = o(N−1) and θ2
N = |θN |2 + o(N−2) (and so does θ̄2

N ). Therefore

Ek
[
E≤h[Tr

(
(γ′ ⊗ C(k)∗

k A′γ′ ⊗ C(k)
k − γ′(id⊗ σ2

N Tr)(A′)γ′)β′
)
]

× E≤h[Tr
(
(γ′′ ⊗ C(k)∗

k A′′γ′′ ⊗ C(k)
k − γ′′(id⊗ σ2

N Tr)(A′′)γ′′)β′′
)
]
]

= σ4
N

∑
i,j 6=k≤h

E≤h[Tr(γ′α′ijγ′β′)]E≤h[Tr(γ′′α′′jiγ′′β′′)]

+ |θN |2
∑

i,j 6=k≤h
E≤h[Tr(γ′α′ijγ′β′)]E≤h[Tr(γ′′α′′ijγ′′β′′)]

+ κN
∑
i6=k≤h

E≤h[Tr(γ′α′iiγ′β′)]E≤h[Tr(γ′′α′′iiγ′′β′′)] + εk,

where εk has the expected expression.
In order to show that

∑N
k=1 εk → 0 in probability, we consider the L1 norm ‖εk‖1. We denote by εijk

the quantity E[Wki
2]E[W 2

kj ]− |θN |2.

‖εk‖1 ≤ d2‖γ′‖2‖γ′′‖2‖β′‖‖β′′‖ sup
i 6=j 6=k≤h

|εijk|
∑

i 6=j 6=k≤h
E
[
‖α′ij‖‖α′′ij‖

]
≤ d2

2 ‖γ
′‖2‖γ′′‖2‖β′‖‖β′′‖ sup

i 6=j 6=k≤h
|εijk|

∑
i 6=j 6=k≤h

E
[
‖α′ij‖2 + ‖α′′ij‖2

]
≤ d3

2 ‖γ
′‖2‖γ′′‖2‖β′‖‖β′′‖ sup

i 6=j 6=k≤h
|εijk|(N − 1)E

[
‖A′‖2 + ‖A′′‖2

]

using Lemma 64. Recall that ‖γ′‖, ‖γ′′‖, ‖β′‖, ‖β′′‖, E[‖A′‖2] and E[‖A′′‖2] are bounded. Together with
supi 6=j 6=k≤h |εijk| = o(N−2), it leads to ‖εk‖1 = o(N−1), uniformly in k. Therefore, as claimed,

N∑
k=1

εk
P−→

N→+∞
0.

�

6.4. Bounds on RN and R(k). For β ∈ H+(Mm(C)) and k = 1, . . . , N , by a direct application of (2),

(19) ‖RN (β)‖ ≤ ‖(Iβ)−1‖, ‖R(k)(β)‖ ≤ ‖(Iβ)−1‖.

It is a consequence of Lemma 4 that RN and R(k) are also defined on {ze11 − γ0, z ∈ C \ R}.

Lemma 21. For p ≥ 1, E[‖RN (ze11 − γ0)‖p] = O(1).

Proof. Using Lemma 5 with y = (WN , DN ), one gets
‖RN (ze11 − γ0)‖ ≤ Q1(‖WN‖, ‖DN‖)‖(zIN −XN )−1‖+Q2(‖WN‖, ‖DN‖).

Then, using Assumption 5 and the bound (3), there is a polynomial Q such that
‖RN (ze11 − γ0)‖ ≤ (1 + |Iz|−1)Q(‖WN‖).

It follows from Proposition 78 that Q(‖WN‖)is bounded in all Lp, p ≥ 1. �

Remark 22. The same argument with y = (W (k)
N , D

(k)
N ) (and the observation that ‖W (k)

N ‖ ≤ ‖WN‖ and
‖D(k)

N ‖ ≤ ‖DN‖) proves that E[‖R(k)(ze11−γ0)‖p] = O(1). With y = (W (kab)
N , D

(k)
N ) (and the observation

that ‖W (kab)
N ‖ ≤ ‖WN‖+2δN and ‖D(k)

N ‖ ≤ ‖DN‖), we get that E[‖R(kab)(ze11−γ0)‖p] = O(1), uniformly
in a, b 6= k.

By Proposition 60, for z ∈ C \ R, ze11 − γ0 −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0)γ1 ⊗ C(k)

k is
invertible,

(ze11 − γ0 −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0)γ1 ⊗ C(k)

k )−1 = Rkk(ze11 − γ0)
and therefore
(20) ‖(ze11 − γ0 −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0)γ1 ⊗ C(k)
k )−1‖ ≤ ‖RN (ze11 − γ0)‖.
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Note that the same argument implies the bound

‖(β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1‖ ≤ ‖RN (β)‖ ≤ ‖(Iβ)−1‖

for β ∈ H+(Mm(C)).

Lemma 23. For p ∈ [2, 4(1 + ε)],

E[‖γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0)γ1 ⊗ C(k)

k − σ2
Nγ1(idm ⊗ TrR(k)(ze11 − γ0))γ1]‖p] = O(N−p/2).

Proof. The result easily follows from Lemmas 69, 77 and Remark 22. �

Lemma 24. For p ≥ 1,

E
[
‖idm ⊗ TrR(k)(ze11 − γ0)− idm ⊗ TrRN (ze11 − γ0)‖p

]
= O(1),

(21) E
[
‖ ∂
∂z

(idm ⊗ TrR(k)(ze11 − γ0)− idm ⊗ TrRN (ze11 − γ0))‖p
]

= O(1).

Proof. For z ∈ C \ R, by Proposition 60, since idm ⊗ TrR = idm ⊗ Tr(RI + RIc) with Ic = {k, k +
N, . . . , k + (N − 1)m},
idm ⊗ TrRN (ze11 − γ0)− idm ⊗ TrR(k)(ze11 − γ0)

= s−1
k + idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)

k s−1
k γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0)),

where sk = ze11 − γ0 −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0)γ1 ⊗ C(k)

k . Observe that

‖idm⊗Tr(R(k)(ze11−γ0)γ1⊗C(k)
k s−1

k γ1⊗C(k)∗
k R(k)(ze11−γ0))‖ ≤ m4‖γ1‖2‖R(k)(ze11−γ0)‖2‖C(k)

k ‖
2‖s−1

k ‖,

so that

‖idm ⊗ TrR(k)(ze11 − γ0)− idm ⊗ TrRN (ze11 − γ0)‖

≤ ‖s−1
k ‖(1 +m4‖γ1‖2‖R(k)(ze11 − γ0)‖2‖C(k)

k ‖
2)

≤ ‖RN (ze11 − γ0)‖‖(1 +m4‖γ1‖2‖R(k)(ze11 − γ0)‖2‖WN‖2)

is bounded in all Lp, p ≥ 1, by Lemma 21, Remark 22 and Proposition 78. Similarly one can prove
(21). �

Lemma 25. For any even integer p ∈ N,

E[‖idm ⊗ TrRN (ze11 − γ0)− E[idm ⊗ TrRN (ze11 − γ0)]‖p] = O(Np−1),

E[‖ ∂
∂z

[idm ⊗ TrRN (ze11 − γ0)− E(idm ⊗ TrRN (ze11 − γ0))] ‖p] = O(Np−1).

Proof. Observe that Mk := E≤k[idm ⊗ TrRN (ze11 − γ0)], k ≥ 0, satisfies

Mk −Mk−1 = (E≤k − E≤k−1)[idm ⊗ TrRN (ze11 − γ0)]
= (E≤k − E≤k−1)[idm ⊗ TrRN (ze11 − γ0)− idm ⊗ TrR(k)(ze11 − γ0)]

so that, using Jensen’s inequality,

E[‖Mk −Mk−1‖p] ≤ 2pE[‖idm ⊗ TrRN (ze11 − γ0)− idm ⊗ TrR(k)(ze11 − γ0)‖p] = O(1)

by Lemma 24. Apply then Lemma 71 to the martingale (Mk = E≤k[idm ⊗ TrRN (ze11 − γ0)])k≥0
to obtain the first statement. Similarly, one can obtain the second statement by considering Mk :=
E≤k[ ∂∂z idm ⊗ TrRN (ze11 − γ0)]. �

Remark 26. Using Lemma 24, one may deduce from the Lemma 25 that, for any even integer p ∈ N,

E[‖idm ⊗ TrR(k)(ze11 − γ0)− E[idm ⊗ TrR(k)(ze11 − γ0)]‖p] = O(Np−1).
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6.5. Qualitative asymptotic freeness. We first prove the asymptotic freeness of WN and DN .

Lemma 27. For any polynomial in two noncommuting indeterminates H ∈ C〈t1, t2〉,
(22) E[N−1 Tr (H (WN , DN ))] −→N→∞ τ(H(s, d)).

Proof. One may assume, without loss of generality, that σ2
N = σ2N−1. Define a N ×N random matrix

AN by Aij = Wij when i 6= j and Aii = σN σ̃
−1
N Wii. It is straightforward that

‖WN −AN‖ ≤ |1− σN σ̃−1
N |δN →N→+∞ 0.

Since supN ‖DN‖ < +∞ and, by Proposition 78, (‖WN‖)N and (‖AN‖)N are bounded in all Lp, p ≥ 1,
it follows that

|E[N−1 Tr (H (WN , DN ))]− E[N−1 Tr (H (AN , DN ))]|
≤ E[‖H(WN , DN )−H(AN , DN )‖] −→N→+∞ 0.

Since E[Aij ] = 0, E[|Aij |2] = σ2N−1 and, for any m > 2, supi,j≤N E[|Aij |m] = o(N−1), one can apply
Theorem 1 of [Rya98], and obtain that E[N−1 TrH(AN , DN )] converges towards τ(H(s, d)). �

The following result is a consequence of the above asymptotic freeness.

Lemma 28. For z ∈ C \ R,
E[
(
idm ⊗N−1 Tr

)
(RN (ze11 − γ0))]− (idm ⊗ τN ) (rN (ze11 − γ0)) −→N→+∞ 0.

∂

∂z

(
E[
(
idm ⊗N−1 Tr

)
(RN (ze11 − γ0))]− (idm ⊗ τN ) (rN (ze11 − γ0))

)
−→N→+∞ 0.

Proof. Let LP =
(

0 u
v Q

)
be the canonical linearization of P . Remember that the entries of the row

vector u, the column vector v and the matrix Q−1 are all polynomials and that P = −uQ−1v. It
readily follows from Proposition 60 applied to z − LP , that for each p, q ∈ {1, . . . ,m}, there exist two
polynomials H(p,q)

1 and H
(p,q)
2 such that, for any z ∈ C \ R, for any N , the entry (p, q) of the m × m

matrix (idm ⊗ τN ) [rN (ze11 − γ0)] (respectively of the m×m matrix
(
idm ⊗N−1 Tr

)
[RN (ze11 − γ0)]) is

equal to τN
(

(z1AN − P (sN , DN ))−1H
(p,q)
1 (sN , DN ) +H

(p,q)
2 (sN , DN )

)
(respectively of them×mmatrix

N−1 Tr
(

(zIN − P (WN , DN ))−1H
(p,q)
1 (WN , DN ) +H

(p,q)
2 (WN , DN )

)
).

We have for any selfadjoint operators y1 and y2, for any z ∈ C \ R, for any nonzero integer r,

(23) (z − P (y1, y2))−1 =
r−1∑
k=0

z−1(z−1P (y1, y2))k + (z − P (y1, y2))−1 (z−1P (y1, y2))r.

For any K > 0, define
OK = {z ∈ C \ R, I(z) > K}.

Let 0 < c < 1. For any κ > 0, there exists K = K(κ, P, c) > 0 such that if z ∈ OK , for any y1 and y2
such that ‖y1‖ ≤ κ and ‖y2‖ ≤ κ then
(24) ‖(z−1P (y1, y2))‖ ≤ c,
so that

(25) sup
z∈OK

∥∥∥(z − P (y1, y2))−1 (z−1P (y1, y2))rH(p,q)
1 (y1, y2)

∥∥∥ ≤ c′ cr
K
→r→+∞ 0.

Fix K > 0 such that (24) holds for (y1, y2) = (sN , DN ) and (y1, y2) = (WN , DN ) on EN = {‖WN‖ ≤ C}
where C is defined in Proposition 78. Using Proposition 78, it readily follows from (22) that for any
polynomial H in two noncommuting indeterminates,
(26) E[1IENN−1 Tr (H (WN , DN ))] −→N→+∞ τ(H(s, d)).
By the convergence in noncommutative distribution of (sN , DN ) to (s, d), we have that, for any polynomial
H in two noncommuting indeterminates,
(27) τN (H(sN , dN )) −→N→+∞ τ (H(s, d)) .
Using (23), (25), (26), (27), letting N and then r go to infinity, we obtain that for any z ∈ OK ,

E[1IEN
(
idm ⊗N−1 Tr

)
(RN (ze11 − γ0))]− (idm ⊗ τN ) (rN (ze11 − γ0)) −→N→+∞ 0,
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and then, using Lemma 21 and P (EcN )→N→+∞ 0, we readily deduce that, for any z ∈ OK ,

E[
(
idm ⊗N−1 Tr

)
(RN (ze11 − γ0))]− (idm ⊗ τN ) (rN (ze11 − γ0)) −→N→∞ 0.

Functions ΦN (z) = E[
(
idm ⊗N−1 Tr

)
(RN (ze11 − γ0))] − (idm ⊗ τN ) (rN (ze11 − γ0)), N ∈ N, are holo-

morphic on C+. Moreover, using Lemma 5 and Proposition 78, there exists a polynomial Q such that,

(28) ||ΦN (z)|| ≤ Q((Iz)−1), z ∈ C+.

It readily follows that (ΦN )N∈N is a bounded sequence in the set of analytic functions on C+ endowed
with the uniform convergence on compact subsets. We can apply Vitali’s theorem to conclude that the
convergences of (ΦN )N∈N and (∂zΦN )N∈N to 0 hold on C+. Of course, this convergence similarly holds
on C−. The proof of Lemma 28 is complete. �

Remark 29. Note that, following the strategy of the proof of Lemma 28, we obtain the uniform conver-
gence of ωN to ω on compact subsets of C±e11 − γ0.

As a consequence of Lemma 25 and Lemma 28, we obtain the following

Lemma 30. For z ∈ C \ R and p ≥ 1,

(29) E[‖idm ⊗N−1 Tr(RN (ze11 − γ0))− idm ⊗ τN (rN (ze11 − γ0))‖p] −→
N→+∞

0,

(30) E[‖ ∂
∂z

[
idm ⊗N−1 Tr(RN (ze11 − γ0))− idm ⊗ τN (rN (ze11 − γ0))

]
‖p] −→

N→+∞
0.

Lemma 31.
‖(ΩN (ze11 − γ0)⊗ IN − γ2 ⊗DN )−1‖ = O(1)

Proof. It follows from Lemma 17 that ωN (ze11− γ0)⊗ IN − γ2⊗DN is invertible for every z ∈ C \R and

‖(ωN (ze11 − γ0)⊗ IN − γ2 ⊗DN )−1‖ = O(1).

One deduces from Lemma 28 that

‖(ΩN (ze11 − γ0)⊗ IN − γ2 ⊗DN )− (ωN (ze11 − γ0)⊗ IN − γ2 ⊗DN )‖ −→
N→+∞

0.

Note that this convergence is uniform on compact subsets of C \ R. Hence, it follows from Lemma 62
that, for any compact subset K of C \ R, ΩN (ze11 − γ0) ⊗ IN − γ2 ⊗ DN , z ∈ K, are all invertible for
large enough N and

‖(ΩN (ze11 − γ0)⊗ IN − γ2 ⊗DN )−1‖ = O(1).
�

Remark 32. By a similar argument based on Lemma 62, one may deduce from Lemma 31 and Lemma
24 that ∥∥∥((ze11 − γ0 − ηN (E[(idm ⊗N−1 Tr)(R(k)(ze11 − γ0))])⊗ IN − γ2 ⊗DN

)−1 ∥∥∥ = O(1).

Lemma 33. For z ∈ C \ R and p ≥ 1,

max
k=1,...,N

E[‖Rkk(ze11 − γ0)− R̂k(ze11 − γ0)‖p] −→
N→+∞

0,

where R̂k is defined by (14).

Proof. With the notation β = ze11 − γ0, and

(31) R̂k(β) = (ωN (β)−Dkkγ2)−1,

by Proposition 60, since for any k ∈ {1, . . . , N}, Rkk(β) is the submatrix of RN (β) corresponding to rows
and columns indexed by {k, k +m, . . . , k +m(N − 1)},

Rkk(β) = (β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1

= R̂k(β) + R̂k(β)(Wkkγ1 + γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k − ηN ((idm ⊗ τN )(rN (β))))Rkk(β).
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Observe that, for n ≥ 2,

3−n+1E[‖Wkkγ1 + γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k − ηN ((idm ⊗ τN )(rN (β)))‖n]

≤ ‖γ1‖nE[|Wkk|n] + E[‖γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k − ηN ((idm ⊗N−1 Tr)(R(k)(β)))‖n]

+ E[‖ηN ((idm ⊗N−1 Tr)(R(k)(β)))− ηN ((idm ⊗ τN )(rN (β)))‖n].

The first term is bounded by ‖γ1‖nδn−1
N σ̃N by assumption; the second term asymptotically vanishes by

Lemma 69; the third term asymptotically vanishes by Lemma 30 and Lemma 24. Then, choosing q, r ≥ 1
such that 1

q + 1
r = 1 and pq ≥ 2,

E[‖Rkk(β)− R̂k(β)‖p]

≤ ‖R̂(β)‖pE
[
‖Wkkγ1 + γ1 ⊗ C(k)∗

k R(k)(β)γ1 ⊗ C(k)
k − ηN ((idm ⊗ τN )(rN (β)))‖pq

]1/qE[‖RN (β)‖pr
]1/r

vanishes uniformly in k by using Lemma 21 and Lemma 17. �

Remark 34. Similarly, E[‖R(k)
ll (β) − R̂l(β)‖p] vanishes uniformly in 1 ≤ k 6= l ≤ N . Indeed, using in

this Remark only the notation R(kl)(β) = (β ⊗ IN−2 − γ1 ⊗W (kl)
N − γ2 ⊗ D(kl)

N )−1, where W (kl)
N , D

(kl)
N

denote the (N − 2) × (N − 2) matrices obtained respectively from WN , DN by deleting the k-th and l-th
rows/columns,

R
(k)
ll (β) = (β −Wllγ1 −Dllγ2 − γ1 ⊗ C(kl)∗

l R(kl)(β)γ1 ⊗ C(kl)
l )−1

= R̂l(β) + R̂l(β)(Wllγ1 + γ1 ⊗ C(kl)∗
l R(kl)(β)γ1 ⊗ C(kl)

l − ηN ((idm ⊗ τN )(r(k)
N (β))))R(k)

ll (β).
Observe that, for n ≥ 2,

3−n+1E
[
‖Wllγ1 + γ1 ⊗ C(kl)∗

l R(kl)(β)γ1 ⊗ C(kl)
l − ηN ((idm ⊗ τN )(rN (β)))‖n

]
≤ ‖γ1‖nE

[
|Wll|n

]
+ E

[
‖γ1 ⊗ C(kl)∗

l R(kl)(β)γ1 ⊗ C(kl)
l − ηN ((idm ⊗N−1 Tr)(R(kl)(β)))‖n

]
+ E

[
‖ηN ((idm ⊗N−1 Tr)(R(kl)(β)))− ηN ((idm ⊗ τN )(rN (β)))‖n

]
.

The first term is bounded by ‖γ1‖nδn−1
N σ̃N by assumption; the second term asymptotically vanishes by

Lemma 69; the third term asymptotically vanishes by Lemma 30 and Lemma 24. Then, choosing q, r ≥ 1
such that 1

q + 1
r = 1 and pq ≥ 2,

E
[
‖R(k)

ll (β)− R̂l(β)‖p
]

≤ ‖R̂(β)‖pE
[
‖Wllγ1 + γ1 ⊗ C(kl)∗

l R(kl)(β)γ1 ⊗ C(kl)
l − ηN ((idm ⊗ τN )(rN (β)))‖pq

]1/qE[‖R(k)(β)‖pr
]1/r

vanishes uniformly in l 6= k by using Remark 22 and Lemma 17.

Remark 35. One may also prove that E[‖R(kil)
ll (β)− R̂l(β)‖p] vanishes uniformly in 1 ≤ i 6= k 6= l ≤ N ,

using E[‖R(k)
ll (β)−R(kil)

ll (β)‖p] = o(1).

6.6. Concentration bounds on RN and R(k).

Lemma 36. For any c > 0,
E[‖idm ⊗ TrRN (ze11 − γ0)− E[idm ⊗ TrRN (ze11 − γ0)]‖4] = O(N2+c).

Proof. Observe as in the proof of Lemma 25 that Mk := E≤k[idm ⊗ TrRN (ze11 − γ0)], k ≥ 0, satisfies
Mk −Mk−1 = (E≤k − E≤k−1)[idm ⊗ TrRN (ze11 − γ0)]

= (E≤k − E≤k−1)[idm ⊗ TrRN (ze11 − γ0)− idm ⊗ TrR(k)(ze11 − γ0)]
and write as in the proof of Lemma 24: for z ∈ C \ R,

idm ⊗ TrRN (ze11 − γ0)− idm ⊗ TrR(k)(ze11 − γ0)

= s−1
k + idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)

k s−1
k γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0)),

where sk = ze11 − γ0 −Wkkγ1 − Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0)γ1 ⊗ C(k)

k . It follows from Remark
32 that for any compact subset K of C \ R, E[sk], z ∈ K, are all invertible for N large enough and
‖E[sk]−1‖ = O(1). Observe that, for such N ,

(E≤k − E≤k−1)[E[sk]−1 + Ek[idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)
k E[sk]−1γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0))]] = 0
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so that

−(E≤k − E≤k−1)[idm ⊗ TrR(k)(ze11 − γ0)− idm ⊗ TrRN (ze11 − γ0)]
= (E≤k − E≤k−1)[s−1

k − E[sk]−1]

+ (E≤k − E≤k−1)[idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)
k (s−1

k − E[sk]−1)γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0))]

+ (E≤k − E≤k−1)[idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)
k E[sk]−1γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0))

− Ek[idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)
k E[sk]−1γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0))]].(32)

From

s−1
k − E[sk]−1

= s−1
k (Wkkγ1 + γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0)γ1 ⊗ C(k)
k − E[γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0)γ1 ⊗ C(k)
k ])E[sk]−1,

Hölder’s inequality, together with (20), Lemmas 5, 77, 23, 21, Remarks 22 and 32, deduce that, for large
N , for any k, for small enough t > 0,

E[‖s−1
k − E[sk]−1‖4(1+t)]

≤ E[‖s−1
k ‖

4(1+t)‖Wkkγ1 + γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0)γ1 ⊗ C(k)

k

− E[γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0)γ1 ⊗ C(k)

k ]‖4(1+t)]‖E[sk]−1‖4(1+t)

≤ O(1)E[‖s−1
k ‖

4(1+t)(2+1/t)]t/(1+2t)
{

(‖γ1‖σN )8(1+2t)

× E
[∥∥idm ⊗ TrR(k)(ze11 − γ0)− E[idm ⊗ TrR(k)(ze11 − γ0)]

∥∥4(1+2t)
]

+O(N−2(1+2t)))
}(1+t)/(1+2t)

≤ O(1)E[‖RN (ze11 − γ0)‖4(1+t)(2+1/t)]t/(1+2/t)
{

(‖γ1‖σN )8(1+2t)

× E
[
(2N‖R(k)(ze11 − γ0)‖)9t∥∥idm ⊗ TrR(k)(ze11 − γ0)− E

(
idm ⊗ TrR(k)(ze11 − γ0)

)∥∥4−t
]

+O(N−2(1+2t))
}(1+t)/(1+2t)

≤ O(1)
{
N9t−4(1+2t)E

(∥∥idm ⊗ TrR(k)(ze11 − γ0)− E
(
idm ⊗ TrR(k)(ze11 − γ0)

)∥∥4)1−t/4
+O(N−2(1+2t))

}(1+t)/(1+2t)

=
{
O(N−1+t/4) +O(N−2(1+2t))

}(1+t)/(1+2t)

= O(N (−1+t/4)(1+t)/(1+2t))
(33)

where we use Remark 26 in the last line.
It follows that

E[‖s−1
k − E[sk]−1‖4] ≤ E[‖s−1

k − E[sk]−1‖4(1+t)]1/(1+t)

= O(N (t/4−1)/(1+2t))(34)

and

E[‖idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)
k (s−1

k − E[sk]−1)γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0))‖4]

≤ m16‖γ1‖8E[‖R(k)(ze11 − γ0)‖8‖C(k)
k ‖

8‖s−1
k − E[sk]−1‖4]

≤ m16‖γ1‖8E[‖R(k)(ze11 − γ0)‖8(1+1/t)‖C(k)
k ‖

8(1+1/t)]t/(1+t)E[‖s−1
k − E[sk]−1‖4(1+t)]1/(1+t)

= O(N (t/4−1)/(1+2t)),(35)
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by using (33), Remark 22 and Proposition 78.
Finally, if R(k) =

∑
i,j 6=k

R
(k)
ij ⊗ Eij and R(k)pT =

∑
i,j 6=k

R
(k)
ij ⊗ Eji, then

idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)
k E[sk]−1γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0))

=
∑

a,b,c6=k
R

(k)
ab γ1E[sk]−1γ1R

(k)
ca WbkW ck

= Im ⊗ C(k)
k

∗
ΣIm ⊗ C(k)

k ,

where the fourth moment of the norm of
Σ =

∑
a,b,c 6=k

R
(k)
ab γ1E[sk]−1γ1R

(k)
ca ⊗ Ebc = R(k)(ze11 − γ0)pT (γ1E[sk]−1γ1 ⊗ IN−1)R(k)(ze11 − γ0)pT

is O(1) by using Proposition 61, Remarks 22 and 32. It follows from Lemma 69 that

E[‖idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)
k E[sk]−1γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0))

− Ek[idm ⊗ Tr(R(k)(ze11 − γ0)γ1 ⊗ C(k)
k E[sk]−1γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0))]‖4]
≤ Km,4E[‖Σ‖4]((NmN )2 +O(N−3)N) = O(N−2),(36)

where we use Lemma 77 in the last line. (32), (34), (35) and (36) yield

E[‖(E≤k − E≤k−1)[idm ⊗ TrR(k)(ze11 − γ0)− idm ⊗ TrRN (ze11 − γ0)]‖4] = O(N−1+c),
by choosing t > 0 small enough. We conclude by Lemma 71. �

Remark 37. Using Lemma 24, one may deduce from Lemma 36 that, for c > 0,

E[‖idm ⊗ TrR(k)(ze11 − γ0)− E[idm ⊗ TrR(k)(ze11 − γ0)]‖4] = O(N2+c).

Lemma 38. For p ∈ [1, 4) and c > 0

E[‖Rkk(ze11 − γ0)− (ΩN (ze11 − γ0)⊗ IN − γ2 ⊗DN )−1
kk ]‖p] = O(N (c−2)p/4).

Proof. Recall that ΩN was defined in (11) by
ΩN (β) = β − ηN

(
E[(idm ⊗N−1 Tr)(RN (β))]

)
.

According to Lemma 31 and its proof, for any compact subset K of C\R, for large enough N , ΩN (ze11−
γ0) ⊗ IN − γ2 ⊗ DN , z ∈ K, are all invertible with uniformly bounded inverses. For such N and any
k = 1, . . . , N ,
Rkk(ze11−γ0)− (ΩN (ze11 − γ0)−Dkkγ2)−1

= Rkk(ze11 − γ0)
(
Wkkγ1 + γ1 ⊗ C(k)∗

k R(k)(ze11 − γ0)γ1 ⊗ C(k)
k

− ηN
(
E
[
(idm ⊗N−1 Tr)(RN (ze11 − γ0))

]))(
ΩN (ze11 − γ0)−Dkkγ2

)−1
.

Then, using Lemmas 77, 23, 24 and 36, for p < 4,
E
[
‖Rkk(ze11 − γ0)− (ΩN (ze11 − γ0)−Dkkγ2)−1‖p

]
≤ E

[
‖Rkk(ze11 − γ0)‖4p/(4−p)

]1−p/4(
O(N−2) +O(N c−2)

)p/4
O(1)

= O(N (c−2)p/4).
�

6.7. Quantitative asymptotic freeness.

Lemma 39. The family of operators defined on Mm(C) by

uN (z1, z2) : b 7→ σ2
N

N∑
i=1

R̂i(z1e11 − γ0)γ1bγ1R̂i(z2e11 − γ0), z1, z2 ∈ C \ R, N ∈ N,

satisfies the following: for any compact subset K of C \ R, lim supN→+∞ supz1,z2∈K ρ(uN (z1, z2)) < 1
and lim supN→+∞ supz1,z2∈K ‖(idm − uN (z1, z2))−1‖ < +∞.
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Proof. By Proposition 11, we know that the supremum over z1, z2 ∈ K of the spectral radii of operators
uz1e11−γ0,z2e11−γ0 : Mm(C)→Mm(C) defined by

b 7→ σ2idm ⊗ τ
(
(ω(z1e11 − γ0)− γ2 ⊗ d)−1(γ1bγ1)⊗ 1A(ω(z2e11 − γ0)− γ2 ⊗ d)−1) , z1, z2 ∈ C \ R,

is strictly smaller than 1. Since (DN )N∈N converges in ∗-moments towards d, limN→+∞Nσ2
N = σ2, we

can easily deduce (using Lemmas 17, 18 and Lemma 19) that the family of operators defined for all N ∈ N
and for all z1, z2 in C \ R, by

uN (z1, z2) :
b 7→ σ2

N idm ⊗ τN
(
(ωN (z1e11 − γ0)− γ2 ⊗DN )−1(γ1bγ1)⊗ 1A(ωN (z2e11 − γ0)− γ2 ⊗DN )−1) ,

satisfies supz1,z2∈K ‖uN (z1, z2)− uz1e11−γ0,z2e11−γ0‖ −→N→+∞ 0. The first assertion of the lemma readily
follows by continuity of the spectral radius in finite dimension and the second one follows from the
continuity of X 7→ X−1 and of the norm on GLm2(C). �

Corollary 40. For any z1, z2 in C \ R, the sequence of operators defined on Mm(C)⊗Mm(C) by

TN (z1, z2) : b1 ⊗ b2 7→ N−1
N∑
i=1

R̂i(z1e11 − γ0)γ1b1 ⊗ b2γ1R̂i(z2e11 − γ0), N ∈ N,

satisfies lim supN→+∞ ρ(TN (z1, z2)) < σ−2.

Lemma 41. For q ∈ [2, 4(1 + ε)),

E[‖idm ⊗N−1 Tr(RN (ze11 − γ0))− idm ⊗ τ(rN (ze11 − γ0))‖q] = O(N−min(2−ε,q/2)).

Proof. Define Ĝ =
∑N
i=1Eii ⊗ R̂i(ze11 − γ0), and G =

∑N
i=1Eii ⊗ Rii(ze11 − γ0). Recall from (14) that

R̂i(ze11 − γ0) = (ωN (ze11 − γ0)−Diiγ2)−1. We have by (7)

ωN (ze11 − γ0)−Diiγ2 = ze11 − γ0 −Nσ2
Nγ1N

−1
N∑
k=1

(ωN (ze11 − γ0)−Dkkγ2)−1
γ1 −Diiγ2

= ze11 − γ0 −Nσ2
Nγ1N

−1
N∑
k=1

R̂k(ze11 − γ0)γ1 −Diiγ2.

Thus,

(37) Ĝ−1 = IN ⊗
[
ze11 − γ0 −Nσ2

Nγ1N
−1 Tr⊗idm(Ĝ)γ1

]
−DN ⊗ γ2.

On the other hand, by Schur formula,

(Rii(ze11 − γ0))−1 = ze11 − γ0 −Wiiγ1 −Diiγ2 − γ1 ⊗ C(i)∗
i R(i)(ze11 − γ0)γ1 ⊗ C(i)

i

= ze11 − γ0 −Diiγ2 −Nσ2
Nγ1N

−1 Tr⊗idm (G) γ1 + ∆i,

where

∆i = −Wiiγ1 − γ1 ⊗ C(i)∗
i R(i)(ze11 − γ0)γ1 ⊗ C(i)

i +Nσ2
Nγ1N

−1 Tr⊗idm (G) γ1

= −Wiiγ1 − γ1 ⊗ C(i)∗
i R(i)(ze11 − γ0)γ1 ⊗ C(i)

i +Nσ2
Nγ1(idm ⊗N−1 Tr)(RN (ze11 − γ0))γ1.

Define ∆ =
N∑
i=1

Eii ⊗∆i. Thus,

(38) G−1 = IN ⊗
[
ze11 − γ0 −Nσ2

Nγ1N
−1 Tr⊗idm (G) γ1

]
−DN ⊗ γ2 + ∆.

Set

ΞN = N−1 Tr⊗idm
(
Ĝ−G

)
= idm ⊗ τN (rN (ze11 − γ0))− idm ⊗N−1 Tr(RN (ze11 − γ0)).

Note that, by Lemma 5, all moments of ‖ΞN‖ are O(1). By substracting (37) from (38),

Ĝ−G = G
(
IN ⊗Nσ2

Nγ1ΞNγ1
)
Ĝ+G∆Ĝ

= Ĝ
(
IN ⊗Nσ2

Nγ1ΞNγ1
)
Ĝ+

(
G− Ĝ

) (
IN ⊗Nσ2

Nγ1ΞNγ1
)
Ĝ+G∆Ĝ.
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Hence

ΞN = N−1
N∑
k=1

R̂k(ze11 − γ0)Nσ2
Nγ1ΞNγ1R̂k(ze11 − γ0)

+N−1 Tr⊗idm
[(
G− Ĝ

) (
IN ⊗Nσ2

Nγ1ΞNγ1
)
Ĝ+G∆Ĝ

]
= uN (z, z)ΞN +N−1 Tr⊗idm

[(
G− Ĝ

) (
IN ⊗Nσ2

Nγ1ΞNγ1
)
Ĝ+G∆Ĝ

]
According to Lemma 39, for large enough N, the operators idm − uN (z, z) on Mm(C) are invertible with
uniformly bounded inverses. Therefore

ΞN = (idm − uN (z, z))−1
{
N−1 Tr⊗idm

[(
G− Ĝ

) (
IN ⊗Nσ2

Nγ1ΞNγ1
)
Ĝ+G∆Ĝ

]}
and

(39) ‖ΞN‖ ≤ ‖(idm − uN (z, z))−1‖
∥∥∥N−1 Tr⊗idm

[(
G− Ĝ

) (
IN ⊗Nσ2

Nγ1ΞNγ1
)
Ĝ+G∆Ĝ

]∥∥∥ .
We have

N−1 Tr⊗idm
[ (
G− Ĝ

) (
IN ⊗Nσ2

Nγ1ΞNγ1
)
Ĝ
]

= N−1
N∑
i=1

(Rii(ze11 − γ0)− R̂i(ze11 − γ0))Nσ2
Nγ1ΞNγ1R̂i(ze11 − γ0).

Thus (39) yields

‖ΞN‖ ≤ ‖(idm − uN (z, z))−1‖
[
‖γ1‖2

∥∥Ĝ∥∥σ2
N

{ N∑
i=1

∥∥Rii(ze11 − γ0)− R̂i(ze11 − γ0)
∥∥}‖ΞN‖

+
∥∥N−1 Tr⊗idm(G∆Ĝ)

∥∥].
Therefore, if σ2

N

{∑N
i=1
∥∥Rii(ze11 − γ0) − R̂i(ze11 − γ0)

∥∥} ≤ (2‖γ1‖2
∥∥Ĝ∥∥‖(idm − uN (z, z))−1‖)−1, then

by using Lemma 5,
‖ΞN‖ ≤ 2‖(idm − uN (z, z))−1‖‖N−1 Tr⊗idm(G∆G̃)‖

≤ 2‖(idm − uN (z, z))−1‖‖N−1
N∑
i=1

Rii(ze11 − γ0)∆iR̂i(ze11 − γ0)‖

≤ 2‖(idm − uN (z, z))−1‖‖RN (ze11 − γ0)‖‖R̂(ze11 − γ0)‖{N−1
N∑
i=1
‖∆i‖}.

Set E =
{
σ2
N

N∑
i=1

∥∥Rii(ze11 − γ0)− R̂i(ze11 − γ0)
∥∥ > (2‖γ1‖2

∥∥Ĝ∥∥‖(idm − uN (z, z))−1‖)−1
}
. For q ∈

(0, 4(1 + ε)), using Lemmas 21 and 39, we have
E (‖ΞN‖q) = E (‖ΞN‖q1IE) + E (‖ΞN‖q1IEc)

≤ O(1)P (E)1/p +O(1)E
({
N−1

N∑
i=1

∥∥∆i

∥∥}4(1+ε))q/4(1+ε)

where p ≥ 1 will be choosen later on.
Note that, for q ∈ [2, 4(1 + ε)),

E
({
N−1

N∑
i=1

∥∥∆i

∥∥}4(1+ε))q/4(1+ε)
≤ max
i=1,...,N

E
(∥∥∆i

∥∥4(1+ε)
)q/4(1+ε)

= O
(
N−2(1+ε)

)q/4(1+ε)
= O

(
N−q/2

)
,

where we use the convexity of x 7→ x4(1+ε) and Lemmas 23, 24 and 77. Now, according to Lemma 28
and Lemma 62,

‖R̂(ze11 − γ0)− (ΩN (ze11 − γ0)⊗ IN − γ2 ⊗DN )−1‖ −→
N→+∞

0.
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For those N for which

Nσ2
N‖R̂(ze11 − γ0)− (ΩN (ze11 − γ0)⊗ IN − γ2 ⊗DN )−1‖ ≤ (4‖γ1‖2

∥∥Ĝ∥∥‖(idm − uN (z, z))−1‖)−1,

the probability of the event E satisfies, for ε′ ≤ ε:

P(E) ≤ P
(
σ2
N

N∑
i=1

∥∥Rii(ze11 − γ0)− (ΩN (ze11 − γ0)⊗ IN − γ2 ⊗DN )−1
ii

∥∥
> (4‖γ1‖2

∥∥Ĝ∥∥‖(idm − uN (z, z))−1‖)−1
)

≤ inf
x∈[1,4)

(4‖γ1‖2
∥∥Ĝ∥∥‖(idm − uN (z, z))−1‖Nσ2

N )x

× max
i=1,...,N

E
[∥∥Rii(ze11 − γ0)− (ΩN (ze11 − γ0)⊗ IN − γ2 ⊗DN )−1

ii

∥∥x]
= O(N−2+ε′)

by Lemma 38.
Finally choosing p = 2−ε′

2−ε , we obtain

E (‖ΞN‖q) = O(N−(2−ε)) +O(N−q/2) = O(N−min(2−ε;q/2)).

�

7. Proof of convergence in finite-dimensional distributions in Theorem 2

In this section, we will give a proof of the convergence in finite-dimensional distributions of the complex
process (ξN (z) = Tr(zIN −XN )−1 − E

[
Tr(zIN −XN )−1] , z ∈ C \ R) to the centred complex Gaussian

process G, based on Theorem 72.

7.1. Reduction of the problem. One has to prove that any linear combination of ξN (z), z ∈ C \ R,
converges in distribution to a complex Gaussian variable Z ∼ NC(0, V,W ). In the following, we prove
the convergence of (ξN (z))N∈N. The case of a general linear combination does not need any additional
argument and is left to the reader. Notice that

(40) ξN (z) =
N∑
k=1

(E≤k − E≤k−1)
[

Tr(zIN −XN )−1].
For each N ∈ N, the random variable Tr(zIN − XN )−1 being bounded, (E≤k[Tr(zIN − XN )−1])k≥1 is
a square integrable complex martingale, hence (E≤k[Tr(zIN − XN )−1] − E≤k−1[Tr(zIN − XN )−1])k≥1
is a martingale difference. Our strategy is to apply the central limit theorem for sums of martingale
differences. More precisely, we will decompose (E≤k − E≤k−1)[Tr(zIN −XN )−1] in two parts and apply
Theorem 72 to the first part.

Proposition 42. For z ∈ C \ R and k ∈ {1, . . . , N},

(E≤k − E≤k−1)
[

Tr(zIN −XN )−1] = ∆(N)
k + ε

(N)
k ,

where

∆(N)
k = E≤k

[
− ∂

∂z
Tr
(
(Wkkγ1 + Φk(ze11 − γ0))R̂k(ze11 − γ0)

)]
,

with

Φk(ze11 − γ0) := γ1 ⊗ C(k)∗
k R(k)(ze11 − γ0)γ1 ⊗ C(k)

k − γ1(idm ⊗ σ2
N Tr)

(
R(k)(ze11 − γ0)

)
γ1,

and
N∑
k=1

ε
(N)
k −→

N→+∞
0 in probability.
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Proof. By (4) and then Proposition 60, with the notation β = ze11 − γ0,

Tr(zIN −XN )−1 = (Tr⊗Tr)
(
(e11 ⊗ IN )RN (β)

)
= (Tr⊗Tr)

(
(e11 ⊗ IN−1)R(k)(β)

)
+ Tr

(
e11
(
β −Wkkγ1 −Dkkγ2 − (γ1 ⊗ C(k)∗

k )R(k)(β)(γ1 ⊗ C(k)
k )
)−1
)

+ (Tr⊗Tr)
(

(e11 ⊗ IN−1)R(k)(β)(γ1 ⊗ C(k)
k )

×
(
β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗

k R(k)(β)γ1 ⊗ C(k)
k

)−1(γ1 ⊗ C(k)∗
k )R(k)(β)

)
.

By traciality, the third term of the right-hand side rewrites

Tr(γ1 ⊗ C(k)∗
k R(k,1)(β)γ1 ⊗ C(k)

k (β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1),

where R(k,1)(β) := R(k)(β)(e11⊗ IN−1)R(k)(β) = − ∂
∂zR

(k)(β) and combines with the second term to get

Tr(zIN −XN )−1

= (Tr⊗Tr)((e11 ⊗ IN−1)R(k)(β))

+ Tr
(
(e11 + γ1 ⊗ C(k)∗

k R(k,1)(β)γ1 ⊗ C(k)
k )(β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗

k R(k)(β)γ1 ⊗ C(k)
k )−1).

In the second term of the right-hand side, decompose

e11 + γ1 ⊗ C(k)∗
k R(k,1)(β)γ1 ⊗ C(k)

k = (e11 + γ1(idm ⊗ σ2
N Tr)(R(k,1)(β))γ1)− ∂

∂z
Φk(β)

and

(β −Wkkγ1 −Dkkγ2−γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1

= R̂k(β) + R̂k(β)
(
Wkkγ1 + Ψk(β)

)
R̂k(β)

+ R̂k(β)
(
Wkkγ1 + Ψk(β)

)
R̂k(β)

(
Wkkγ1 + Ψk(β)

)
×
(
β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗

k R(k)(β)γ1 ⊗ C(k)
k

)−1
,

where Ψk(β) = Φk(β) + γ1((idm ⊗ σ2
N Tr)(R(k)(β))−Nσ2

N (idm ⊗ τ)(rN (β)))γ1 so that Tr(zIN −XN )−1

is the sum of seven terms. Observe that the first two terms satisfy

(E≤k − E≤k−1)
[
(Tr⊗Tr)

(
(e11 ⊗ IN−1)R(k)(β)

)
+ Tr

(
(e11 + γ1(idm ⊗ σ2

N Tr)(R(k,1)(ze11 − γ0))γ1)R̂k(β)
)]

= 0

and that the following two terms combine to get

Tr
(
(e11 + γ1(idm⊗σ2

N Tr)(R(k,1)(β))γ1)R̂k(β)(Wkkγ1 + Ψk(β))R̂k(β)− ∂

∂z
Φk(β)R̂k(β)

)
= − ∂

∂z
Tr((Wkkγ1 + Φk(β))R̂k(β)) + ε

(N)
k,4 + ε

(N)
k,5 ,

where

ε
(N)
k,4 := −Tr(γ1

∂

∂z
((idm ⊗ σ2

N Tr)(R(k)(β))−Nσ2
N (idm ⊗ τ)(rN (β)))γ1R̂k(β)(Wkkγ1 + Φk(β))R̂k(β)),

and

ε
(N)
k,5 := Tr

((
e11 + γ1(idm ⊗ σ2

N Tr)(R(k,1)(β))γ1
)

× R̂k(β)
(
γ1((idm ⊗ σ2

N Tr)(R(k)(β))−Nσ2
N (idm ⊗ τ)(rN (β)))γ1

)
R̂k(β)

)
.

Note that

E≤k−1

[
− ∂

∂z
Tr
(
(Wkkγ1 + Φk(β))R̂k(β)

)]
= 0.
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It remains to prove that the last three terms

ε
(N)
k,1 := Tr

(
(e11 + γ1(idm ⊗ σ2

N Tr)(R(k,1)(β))γ1)R̂k(β)(Wkkγ1 + Ψk(β))

× R̂k(β)(Wkkγ1 + Ψk(β))(β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1
)
,

ε
(N)
k,2 := Tr(− ∂

∂z
Φk(β)R̂k(β)(Wkkγ1 + Ψk(β))R̂k(β)),

ε
(N)
k,3 := Tr

(
− ∂

∂z
Φk(β)R̂k(β)(Wkkγ1 + Ψk(β))R̂k(β)(Wkkγ1 + Ψk(β))

× (β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1
)
,

are such that
ε

(N)
k = (E≤k − E≤k−1)

[
ε

(N)
k,1 + ε

(N)
k,2 + ε

(N)
k,3 + ε

(N)
k,4 + ε

(N)
k,5

]
satisfies

∑N
k=1 ε

(N)
k −→

N→+∞
0 in probability. This is the object of Lemma 45 below (assuming that the

entries of WN are bounded by δN ). �

Lemma 43. For all p ≥ 2,

E
(∥∥∥ ∂
∂z

Φk(β)
∥∥∥p) = O

(
N−min(p/2,2+3ε)).

Proof. For β = ze11 − γ0, z ∈ C \ R, by Lemma 69, for p ≥ 2,

E
(∥∥∥ ∂
∂z

Φk(β)
∥∥∥p) ≤ C[(E[|W12|4]NE

(∥∥R(k)(β)
∥∥4
))p/2

+NE
(∥∥R(k)(β)

∥∥2p
)
E[|W12|2p]

]
.

As E[|W12|4] = O(N−2), (
E[|W12|4]NE

(∥∥R(k)(β)
∥∥4
))p/2

= O(N−p/2).

Now, if p ≥ 3(1 + ε),
E[|W12|2p] = O(δ2p−6(1+ε)

N N−3(1+ε)) = O
(
N−3(1+ε)).

Therefore,
NE
(∥∥R(k)(β)

∥∥2p
)
E[|W12|2p] = O

(
N−(2+3ε)).

As a consequence, for p ≥ 3(1 + ε),

E
(∥∥∥ ∂
∂z

Φk(β)
∥∥∥p) = O

(
N−min(p/2,2+3ε)).

If 2 ≤ p < 3(1 + ε), E[|W12|2p] = O(N−p) and

E
(∥∥∥ ∂
∂z

Φk(β)
∥∥∥p) = O

(
N−p/2

)
.

Note that in this case, min(p/2, 2 + 3ε) = p/2, which concludes the proof. �

Lemma 44. ∀q ∈ [2, 4(1 + ε)),

E
(∥∥Ψk(β)

∥∥q) = O
(
N−min(2−ε,q/2)).

Proof. For q ≥ 1,

‖Ψk(β)‖Lq ≤ ‖Φk(β)‖Lq + ‖γ1‖2‖(idm ⊗ σ2
N Tr)(R(k)(β))− idm ⊗ σ2

N Tr)(RN (β))‖Lq

+ ‖γ1‖2‖(idm ⊗ σ2
N Tr)(RN (β))−Nσ2

N (idm ⊗ τ)(rN (β))‖Lq .

Thus, for q ∈ [2, 4(1 + ε)), Lemmas 23, 24 and 41 readily yield that

‖Ψk(β)‖Lq = O
(
N−min(1/2,(2−ε)/q)),

which concludes the proof. �

Lemma 45. ∥∥∥∑
k≥1

ε
(N)
k

∥∥∥
L2
−→

N→+∞
0.
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Proof. Using Hölder’s inequality with q ∈ [1, 1 + ε), p, r ≥ 1 such that p−1 + q−1 + r−1 = 1,

E[|ε(N)
k,1 |

2] ≤ m2‖R̂k(β)‖4E
[
‖e11 + γ1(idm ⊗ σ2

N Tr)(R(k,1)(β))γ1‖2‖Wkkγ1 + Ψk(β)‖4‖RN (β)‖2
]

≤ m2‖R̂k(β)‖4E
[
‖e11 + γ1(idm ⊗ σ2

N Tr)(R(k,1)(β))γ1‖2p
]1/p

× E
[
‖Wkkγ1 + Ψk(β)‖4q

]1/qE[‖RN (β)‖2r
]1/r

≤ m2‖R̂k(β)‖4E[‖RN (β)‖2r]1/r(1 + C‖γ1‖2E[‖RN (β)‖4p]1/2p)2

×
(
‖γ1‖‖Wkk‖L4q + ‖Ψk(β)‖L4q

)4
.

Therefore, by Lemmas 17, 21, 77 and 44, E[|ε(N)
k,1 |2] = o(N−1), uniformly in k.

Using Hölder’s inequality with q ∈ [1, 1 + ε), 1
p + 1

q = 1,

E[|ε(N)
k,2 |

2] ≤ m2‖R̂k(β)‖4
[
E[‖ ∂

∂z
Φk(β)‖2p]

]1/p
(‖γ1‖‖Wkk‖L2q + ‖Ψk(β)‖L2q )2

Therefore, by Lemmas 17, 43, 77 and 44 E[|ε(N)
k,2 |2] = o(N−1), uniformly in k.

Using Hölder’s inequality with q ∈ [1, 1 + ε), 1
p + 1

q + 1
r = 1, by Lemmas 17, 21, 77 and 44,

E[|ε(N)
k,3 |

2] ≤ m2‖R̂k(β)‖4
[
E[‖ ∂

∂z
Φk(β)‖2p]

]1/p
(‖γ1‖‖Wkk‖L4q + ‖Ψk(β)‖L4q )4E[‖RN (β)‖2r]1/r

=
(
O
(
N−min(p,1+ε)))1/p(

O
(
N−

1
2q+ ε

4q
))4

so that, noticing that 2−ε
q > 1 for any ε < 1/2, E[|ε(N)

k,3 |2] = o(N−1), uniformly in k.
Finally, by Hölder’s inequality,

E[|ε(N)
k,4 |

2]

≤ m2‖γ1‖4‖R̂k(β)‖4E[‖ ∂
∂z

((idm ⊗ σ2
N Tr)(R(k)(β))−Nσ2

N (idm ⊗ τ)(rN (β)))‖2‖Wkkγ1 + Φk(β)‖2]

≤ 24m2‖γ1‖4‖R̂k(β)‖4
{
E(‖ ∂

∂z
((idm ⊗ σ2

N Tr)(R(k)(β)− (idm ⊗ σ2
N Tr)(RN (β))‖4)

+E(‖ ∂
∂z

((idm ⊗ σ2
N Tr)(RN (β)−Nσ2

N (idm ⊗ τ)(rN (β)))‖4
}1/2

× (‖γ1‖2E[‖Wkk‖4]1/2 + E[‖Φk(β)‖4]1/2)
= o(N−1),

where we use Lemmas 17, 23, 24, 77 and 30 in the last line.
Noticing that (E≤k − E≤k−1)[ε(N)

k,5 ] = 0, by Lemma 70 and Jensen’s inequality,

E
[∣∣ N∑
k=1

(E≤k − E≤k−1)
[
ε

(N)
k,1 + ε

(N)
k,2 + ε

(N)
k,3 + ε

(N)
k,4 + ε

(N)
k,5
]∣∣2]

=
N∑
k=1

E
[∣∣(E≤k − E≤k−1)

[
ε

(N)
k,1 + ε

(N)
k,2 + ε

(N)
k,3 + ε

(N)
k,4
]∣∣2]

≤
N∑
k=1

8
4∑
j=1

(
E
[∣∣(E≤k−1

[
ε

(N)
k,j

]∣∣2]+ E
[∣∣(E≤k[ε(N)

k,j

]∣∣2])
≤ 16

N∑
k=1

E
[∣∣ε(N)

k,1
∣∣2 +

∣∣ε(N)
k,2
∣∣2 +

∣∣ε(N)
k,3
∣∣2 +

∣∣ε(N)
k,4
∣∣2] = o(1).

so that
∥∥∥ N∑
k=1

ε
(N)
k

∥∥∥
L2

= o(1). �
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As announced at the beginning of the section, the strategy is now to apply Theorem 72 to

∆(N)
k = E≤k

[
− ∂

∂z
Tr((Wkkγ1 + Φk(ze11 − γ0))R̂k(ze11 − γ0))

]
= (E≤k − E≤k−1)

[
− ∂

∂z
Tr((Wkkγ1 + Φk(ze11 − γ0))R̂k(ze11 − γ0))

]
.

7.2. Verification of Lyapounov condition. To check condition (69), one first uses Markov inequality
to get, for p ∈ (2, 4(1 + ε)) :

L(ε,N) ≤ ε2−p
N∑
k=1
‖∆(N)

k ‖pLp .

It is therefore sufficient to prove that

(41) ‖∆(N)
k ‖Lp = O(N− 1

2 ).

By Jensen’s and triangular inequalities, for 1 ≤ k ≤ N ,

‖∆(N)
k ‖Lp =

∥∥∥E≤k[− ∂

∂z
Tr((Wkkγ1 + Φk(ze11 − γ0))R̂k(ze11 − γ0))]

∥∥∥
Lp

≤
∥∥∥∥Tr( ∂

∂z
Φk(ze11 − γ0))R̂k(ze11 − γ0))

∥∥∥∥
Lp

+
∥∥∥∥Tr((Wkkγ1 + Φk(ze11 − γ0)) ∂

∂z
R̂k(ze11 − γ0))

∥∥∥∥
Lp

≤ m
∥∥R̂k(ze11 − γ0)

∥∥∥∥ ∂
∂z

Φk(ze11 − γ0))
∥∥
Lp

+m
∥∥ ∂
∂z
R̂k(ze11 − γ0)

∥∥(‖Wkk‖Lp‖γ1‖+
∥∥Φk(ze11 − γ0)

∥∥
Lp

)
.

One deduces (41) by using (15), (16), Lemmas 23, 77 and 43.

7.3. Convergence of the hook process. By bilinearity, the verification of conditions (70) and (71) is
equivalent to the convergence in probability of the hook process:

ΓN (z1, z2) :=
N∑
k=1

E≤k−1

[
E≤k

[ ∂
∂z

Tr((Wkkγ1 + Φk(β1))R̂k(β1))
]
E≤k

[ ∂
∂z

Tr((Wkkγ1 + Φk(β2))R̂k(β2))
]]
,

β1 = z1e11 − γ0, β2 = z2e11 − γ0, z1, z2 ∈ C \ R.

Proposition 46. For all z1, z2 ∈ C \ R

ΓN (z1, z2) −→
N→+∞

Γ(z1, z2)

in probability, where

Γ(z1, z2) := ∂2

∂z1∂z2
γ(z1, z2),

γ(z1, z2) := −Tr⊗Tr
{

log
[
idm ⊗ idm − σ2T{z1e11−γ0,z2e11−γ0}

]
(Im ⊗ Im)

}
− Tr⊗Tr

{
log
[
idm ⊗ idm − θT{z1e11−γ0,z2e11−γ0}

]
(Im ⊗ Im)

}
+ (σ̃2 − σ2 − θ) Tr⊗Tr{T{z1e11−γ0,z2e11−γ0}(Im ⊗ Im)}
+ κ/2 Tr⊗Tr{T 2

{z1e11−γ0,z2e11−γ0}(Im ⊗ Im)}.

In what follows, we focus on the convergence in probability of

(42) γN (z1, z2) :=
N∑
k=1

E≤k−1

[
E≤k

[
Tr((Wkkγ1 + Φk(β1))R̂k(β1))

]
E≤k

[
Tr((Wkkγ1 + Φk(β2))R̂k(β2))

]]
.
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This will be enough to establish the convergence of the hook process, as explained in Subsection 7.3.5.
Using the independence of Φk and Wkk, one can easily see that

N∑
k=1

E≤k−1

[
E≤k

[
Tr((Wkkγ1 + Φk(β1))R̂k(β1))

]
E≤k

[
Tr((Wkkγ1 + Φk(β2))R̂k(β2))

]]

= σ̃2
N

N∑
k=1

Tr(γ1R̂k(β1)) Tr(γ1R̂k(β2)) +
N∑
k=1

E≤k−1

[
Tr(E≤k

[
Φk(β1)

]
R̂k(β1)) Tr(E≤k

[
Φk(β2)

]
R̂k(β2))

]
.

(43)

Thus, by Lemma 20,

γN (z1, z2) = σ̃2
N

N∑
k=1

Tr(γ1R̂k(β1)) Tr(γ1R̂k(β2))(44)

+ σ4
N

N∑
k=1

∑
i,j<k

Tr
(
γ1E≤k[R(k)

ij (β1)]γ1R̂k(β1)
)

Tr
(
γ1E≤k[R(k)

ji (β2)]γ1R̂k(β2)
)

+ |θN |2
N∑
k=1

∑
i,j<k

Tr
(
γ1E≤k[R(k)

ij (β1)]γ1R̂k(β1)
)

Tr
(
γ1E≤k[R(k)

ij (β2)]γ1R̂k(β2)
)

+ κN

N∑
k=1

∑
i<k

Tr
(
γ1E≤k[R(k)

ii (β1)]γ1R̂k(β1)
)

Tr
(
γ1E≤k[R(k)

ii (β2)]γ1R̂k(β2)
)

+
N∑
k=1

εk,

where
N∑
k=1

εk
P−→

N→+∞
0.

Therefore, what remains to study is the sum of four terms. They will be studied separately in the
following paragraphs. The first and the fourth terms are studied very easily, whereas the second and
third ones need quite long computations, making repeated use of linear algebra properties which were
collected in Section 4. These second and third terms are very similar.

7.3.1. Contribution of the first term of (44).

Lemma 47. Define f(ω, t) := Tr(γ1(ω− tγ2)−1) for ω ∈Mm(C), t ∈ R such that ω− tγ2 is invertible in
Mm(C). Then ∫

R
f(ωN (β1), t)f(ωN (β2), t)νN (dt) −→

N→+∞

∫
R
f(ω(β1), t)f(ω(β2), t)ν(dt).

Proof.∣∣∣ ∫
R
f(ωN (β1), t)f(ωN (β2), t)νN (dt)−

∫
R
f(ω(β1), t)f(ω(β2), t)ν(dt)

∣∣∣
=
∣∣∣ ∫

R
f(ωN (β1), t)f(ωN (β2), t)− f(ω(β1), t)f(ω(β2), t)νN (dt)

+
∫
R
f(ω(β1), t)f(ω(β2), t)[νN (dt)− ν(dt)]

∣∣∣
≤
∫
R

∣∣∣f(ωN (β1), t)f(ωN (β2), t)− f(ω(β1), t)f(ω(β2), t)
∣∣∣νN (dt)

+
∣∣∣ ∫

R
f(ω(β1), t)f(ω(β2), t)[νN (dt)− ν(dt)]

∣∣∣
≤ sup
t∈supp(νN )

∣∣∣f(ωN (β1), t)f(ωN (β2), t)− f(ω(β1), t)f(ω(β2), t)
∣∣∣

+
∣∣∣ ∫

R
f(ω(β1), t)f(ω(β2), t)[νN (dt)− ν(dt)]

∣∣∣.
The first summand tends to zero as N → ∞ by ((17), Lemma 18 and) Lemma 19, and the second
summand tends to zero according to the hypothesis that νN weakly converges to ν, the function t 7→
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f(ω(β1), t)f(ω(β2), t) being bounded continuous on a compact set containing the supports of all νN , N ∈ N
(by Lemma 18). �

Hence, since N−1∑N
k=1 Tr(γ1R̂k(β1)) Tr(γ1R̂k(β2)) =

∫
R f(ωN (β1), t)f(ωN (β2), t)νN (dt) (see (31)), it

follows that

σ̃2
N

N∑
k=1

Tr(γ1R̂k(β1)) Tr(γ1R̂k(β2)) −→
N→+∞

σ̃2
∫
R
f(ω(β1), t)f(ω(β2), t)ν(dt).

7.3.2. Contribution of the second term of (44). Denote by TN,k,t(z1, z2) the operator defined onMm(C)⊗
Mm(C) by

TN,k,t(z1, z2)(b1 ⊗ b2) = N−1
∑
i<k

R̂i(z1e11 − γ0)γ1b1 ⊗ b2γ1R̂i(z2e11 − γ0)

+N−1tR̂k(z1e11 − γ0)γ1b1 ⊗ b2γ1R̂k(z2e11 − γ0).

The key idea is to note that this second term can be rewritten as follows

σ4
N

N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (β1)]γ1R̂k(β1)) Tr(γ1E≤k[R(k)

ji (β2)]γ1R̂k(β2))

= Nσ2
N Tr⊗TrTN (z1, z2)(∇k),

where, for any k ∈ {1, . . . , N},

∇k = σ2
N

∑
i,j<k

E≤k[R(k)
ij (β1)]γ1 ⊗ γ1E≤k[R(k)

ji (β2)] ∈Mm(C)⊗Mm(C)

satisfies the approximate equation

∇k = Nσ2
NTN,k,0(z1, z2)(Im ⊗ Im +∇k) + oL1(1).

In order to deduce an estimate of ∇k we need to study the spectral radius of TN,k,0(z1, z2).

Proposition 48. For any z ∈ C \ R, there exists K(z) ∈ (0, 1) such that for all large N , for any
k ∈ {1, . . . , N}, for any t ∈ [0; 1], the spectral radius of Nσ2

NTN,k,t(z, z̄) is smaller than K(z).

Proof. According to Corollary 40, we know that one may find K(z) ∈ (0, 1) such that, for large N ∈ N,
the spectral radius of Nσ2

NTN (z, z̄) is smaller than K(z). Now, note that for any choice of k ∈ {1, . . . , N}
and t ∈ [0; 1], the operator TN,k,t(z, z̄) satisfies TN,k,t(z, z̄) ≤ TN (z, z̄). Thus, by Lemma 68, the spectral
radius of Nσ2

NTN,k,t(z, z̄) is smaller than K(z) for large N . Corollary 48 follows. �

Lemma 49. Around any z1 ∈ C \ R, there is an open set Oz1 such that, for z ∈ Oz1 , for N ≥ Nz1 ,
for any k ≤ N , for any t ∈ [0, 1], the spectrum of the operator Nσ2

NTN,k,t(z, z̄1) : Mm(C) ⊗Mm(C) →
Mm(C)⊗Mm(C) is included in the open unit disk and {(idm ⊗ idm −Nσ2

NTN,k,t(z, z̄1))−1, z ∈ Oz1 , N ≥
Nz1 , k ≤ N, t ∈ [0, 1]} is bounded.

Without loss of generality, one may assume that z ∈ Oz1 satisfy Iz ≥ cIz1 for some c > 0.

Proof. By (15), {TN,k,t(z1, z̄1), N ∈ N, k ≤ N, t ∈ [0, 1]} is included in a centered ball with some radius
rz1 in Mm4(C). Moreover, by (15) and Lemma 3, the family of functions {z 7→ TN,k,t(z, z̄1), N ∈ N, k ≤
N, t ∈ [0, 1]} is equicontinuous on any compact set of C \ R. Therefore, the assertions easily follow from
Proposition 48 by using the uniform continuity of the spectral radius and of the norm on compact sets
of Mm4(C) and Lemma 63. �

Proposition 50. Fix z1 ∈ C\R and z ∈ Oz1 (defined in Lemma 49). Set β = ze11−γ0 and β∗1 = z̄1e11−γ0
in Mm(C). The following convergence holds in probability:

σ4
N

N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (β)]γ1R̂k(β)) Tr(γ1E≤k[R(k)

ji (β∗1)]γ1R̂k(β∗1))

→N→+∞ −Tr⊗ Tr
{

log
[
idm ⊗ idm − σ2T{β,β∗1}

]
(Im ⊗ Im)

}
− σ2Tr⊗ Tr

{
T{β,β∗1}(Im ⊗ Im)

}
.
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Proof. Define for any k ∈ {1, . . . , N},

(45) ∇k = σ2
N

∑
i,j<k

E≤k[R(k)
ij (β)]γ1 ⊗ γ1E≤k[R(k)

ji (β∗1)] ∈Mm(C)⊗Mm(C).

Note that

σ4
N

N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (β)]γ1R̂k(β)) Tr(γ1E≤k[R(k)

ji (β∗1)]γ1R̂k(β∗1))

= Nσ2
N Tr⊗TrTN,k,0(z, z̄1)(∇k).(46)

Lemma 51. With the notation of Proposition 50,

∇k = σ2
N

∑
i<k

R̂i(β)γ1 ⊗ γ1E≤k−1
(
R

(k)
ii (β∗1)

)
+ σ2

N

∑
i,j,l<k

WilR̂i(β)γ1E≤k−1
(
R

(kil)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
+ o

(u)
L2 (1).

Proof. By definition of R(k)(β), for all i, j 6= k,

(β1 −Diiγ2)R(k)
ij (β) = δijIm +

∑
l 6=k

Wilγ1R
(k)
lj (β).

We want to remove the dependence between Wil and R(k)(β), using (9):

(β −Diiγ2)R(k)
ij (β) = δijIm +

∑
l 6=k

{
Wilγ1R

(kil)
lj (β)

+ (1− 1
2δil)

(
W 2
ilγ1R

(kil)
li (β)γ1R

(k)
lj (β) + |Wil|2γ1R

(kil)
ll (β)γ1R

(k)
ij (β)

)}
.

Hence, noticing that

N−1
N∑
l=1

R̂l(β) = idm ⊗ τN ((β ⊗ 1A − γ1 ⊗ sN − γ2 ⊗DN )−1),

we can deduce that

(ωN (β)−Diiγ2)R(k)
ij (β) = δijIm +

∑
l 6=k

Wilγ1R
(kil)
lj (β)

+
∑
l 6=k

(1− 1
2δil)W

2
ilγ1R

(kil)
li (β)γ1R

(k)
lj (β)

+
∑
l 6=k

[
(1− 1

2δil)|Wil|2γ1R
(kil)
ll (β)γ1 − σ2

Nγ1R̂l(β))γ1
]
R

(k)
ij (β)

− σ2
Nγ1R̂k(β)γ1R

(k)
ij (β),

and

R
(k)
ij (β) = δijR̂i(β) +

∑
l 6=k

WilR̂i(β)γ1R
(kil)
lj (β)

+
∑
l 6=k

(1− 1
2δil)W

2
ilR̂i(β)γ1R

(kil)
li (β)γ1R

(k)
lj (β)

+
∑
l 6=k

R̂i(β)
[
(1− 1

2δil)|Wil|2γ1R
(kil)
ll (β)γ1 − σ2

Nγ1R̂l(β)γ1
]
R

(k)
ij (β)(47)

− σ2
N R̂i(β)γ1R̂k(β)γ1R

(k)
ij (β).
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Therefore, for i, j < k,

E≤k−1
(
R

(k)
ij (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
= δijR̂i(β)γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
+
∑
l<k

WilR̂i(β)γ1E≤k−1
(
R

(kil)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
+
∑
l 6=k

(
1− 1

2δil
)
R̂i(β)γ1E≤k−1

(
W 2
ilR

(kil)
li (β1)γ1R

(k)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
+
∑
l 6=k

R̂i(β)γ1E≤k−1

([
(1− 1

2δil)|Wil|2 − σ2
N

]
R̂l(β)γ1R

(k)
ij (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
+
∑
l 6=k

R̂i(β)γ1E≤k−1

((
1− 1

2δil
)
|Wil|2

[
R

(kil)
ll (β)− R̂l(β)

]
γ1R

(k)
ij (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
− σ2

N R̂i(β)γ1R̂k(β)γ1E≤k−1
(
R

(k)
ij (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
= δijR̂i(β)γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
+
∑
l<k

WilR̂i(β)γ1E≤k−1
(
R

(kil)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
+ Ik,i,j + IIk,i,j + IIIk,i,j + IVk,i,j .

We are going to prove that the contribution of the last four terms of the right-hand side is negligible. We
have

‖σ2
N

∑
i,j<k

Ik,i,j‖L2 ≤ σ2
N

∑
i<k

‖
∑
j<k

Ik,i,j‖L2

with

‖
∑
j<k

Ik,i,j‖2L2

= E
(∥∥∑

j<k

∑
l 6=k

(1− 1
2δil)R̂i(β)γ1E≤k−1

(
W 2
ilR

(kil)
li (β)γ1R

(k)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)∥∥2
)
.

Using the fact that for any matrices A, B and X, we have

(48) vec [AXB] =
(
BT ⊗A

)
vecX

where vecX = (X11, . . . , Xm1, . . . , X1m, . . . , Xmm)T , and that there exist permutation matrices P and Q
such that for any matrices A, B,

A⊗B = P (B ⊗A)Q

(see [HJ91, Chapter 4]), we have∥∥∥∑
j<k

∑
l 6=k

(
1− 1

2δil
)
R̂i(β)γ1E≤k−1

(
W 2
ilR

(kil)
li (β)γ1R

(k)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)∥∥∥
= sup

X∈Mm(C)
Tr(XX∗)=1

∥∥∥∑
l 6=k

∑
j<k

γ1E≤k−1
(
R

(k)
ji (β∗1)

)
XγT1

× E≤k−1

(
(R(k)(β)T )jl(R(kil)(β)T )il(1− 1

2δil)W
2
il

)
γT1 R̂i(β)T

∥∥∥
HS
.

Now, for any X ∈Mm(C) such that Tr(XX∗) = 1, denoting by P the orthogonal projection onto the
subspace generated by the first k−1 vectors of the canonical basis of CN−1 and using Lemma 17, Lemma
64 and Lemma 5, we have the following inequalities where C(z1) denotes a positive constant depending
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on z1 and m which may vary from line to line,∥∥∥∑
l 6=k

∑
j<k

γ1E≤k−1
(
R

(k)
ji (β∗1)

)
XγT1 E≤k−1

(
(R(k)(β)T )jl(R(kil)(β)T )il(1− 1

2δil)W
2
il

)
γT1 R̂i(β)T

∥∥∥
HS

=
∥∥∥∑
l 6=k

γ1E≤k−1

(∑
j<k

E≤k−1
(
R

(k)
ji (β∗1)

)
XγT1 (R(k)(β)T )jl(R(kil)(β)T )il(1− 1

2δil)W
2
il

)
γT1 R̂i(β)T

∥∥∥
HS

≤ ‖γ1‖2
∑
l 6=k

E≤k−1

(∥∥∥∑
j<k

E≤k−1
(
R

(k)
ji (β∗1)

)
XγT1 (R(k)(β)T )jl(R(kil)(β)T )il

∥∥∥(1− 1
2δil)|Wil|2

)
×
∥∥R̂i(β)T

∥∥
HS

= ‖γ1‖2
∑
l 6=k

E≤k−1

(∥∥∥[E≤k−1
(
Θ(R(k)(β∗1))

)
(XγT1 ⊗P)R(k)(β)T

]
il

(R(kil)(β1)T )il
∥∥∥(1− 1

2δil
)
|Wil|2

)
×
∥∥R̂i(β)T

∥∥
HS

≤ C(z1)‖γ1‖2E≤k−1

{(∑
l 6=k

∥∥∥[E≤k−1
(
Θ(R(k)(β∗1))

)
(XγT1 ⊗P)R(k)(β)T

]
il

∥∥∥2)1/2

×
(∑
l 6=k

∥∥(R(kil)(β)T )il
∥∥2(1− 1

2δil)
2|Wil|4

)1/2}
≤ C(z1)‖γ1‖2E≤k−1

{∥∥∥E≤k−1
(
Θ(R(k)(β∗1))

)
(XγT1 ⊗P)R(k)(β)T

∥∥∥
×
(∑
l 6=k

∥∥(R(kil)(β)T )il
∥∥2(1− 1

2δil)
2|Wil|4

)1/2}
≤ C(z1)E≤k−1

{
E≤k−1

(
Q
( 1
|Iz1|

, ‖W (k)
N ‖

))
Q
( 1
|Iz|

, ‖W (k)
N ‖

)
×
(∑
l 6=k

Q( 1
|Iz|

, ‖W (kil)
N ‖)2(1− 1

2δil)
2|Wil|4

)1/2}
,

where Θ denotes the partial transpose map onMm(C)⊗MN (C), defined by Θ(
∑
k Ak⊗Bk) :=

∑
k Ak⊗BTk

and we use Proposition 61. Hence

‖
∑
j<k

Ik,i,j‖2L2 ≤ C(z1)
∑
l 6=k

E
(
E≤k−1

([
Q
( 1
|Iz2|

, ‖W (k)
N ‖

)]2)[
Q
( 1
|Iz|

, ‖W (k)
N ‖

)]2
Q
( 1
|Iz|

, ‖W (kil)
N ‖

)2
× (1− 1

2δil)
2|Wil|4

)
≤ C(z1)

∑
l 6=k

E
(
E≤k−1

([
Q
( 1
|Iz2|

, ‖W (kil)
N ‖+ 2δN

)]2)[
Q
( 1
|Iz|

, ‖W (kil)
N ‖+ 2δN

)]2
×Q

( 1
|Iz|

, ‖W (kil)
N ‖

)2(1− 1
2δil
)2|Wil|4

)

= C(z1)
∑
l 6=k

E
(
E≤k−1

([
Q
( 1
|Iz1|

, ‖W (kil)
N ‖+ 2δN

)]2)[
Q
( 1
|Iz|

, ‖W (kil)
N ‖+ 2δN

)]2
×Q

( 1
|Iz|

, ‖W (kil)
N ‖

)2)(1− 1
2δil
)2E(|Wil|4

)
≤ C(z1)

∑
l 6=k

E
(
E≤k−1

([
Q
( 1
|Iz1|

, ‖WN‖+ 4δN
)]2)[

Q
( 1
|Iz|

, ‖WN‖+ 4δN
)]2

×Q
( 1
|Iz|

, ‖WN‖+ 2δN
)2)(1− 1

2δil
)2E(|Wil|4

)
≤ C(z1)

∑
l 6=k

(
1− 1

2δil
)2E(|Wil|4

)
,
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where we use Proposition 78 in the last line. Thus,

‖σ2
N

∑
i,j<k

Ik,i,j‖L2 ≤ C(z1)σ2
N

∑
i<k

{∑
l 6=k

E
(
|Wil|4

)}1/2
≤ C(z1)Nσ2

N (δ2
N σ̃

2
N+(N−2)mN )1/2 = O(N−1/2).

Now, similarly, using again (48),

‖σ2
N

∑
i,j<k

IIk,i,j‖L2 ≤ σ2
N

∑
i<k

‖E(i, k)‖L2

where

E(i, k) = sup
X∈Mm(C)
Tr(XX∗)=1

∥∥∥γ1E≤k−1

{[
E≤k−1

(
Θ(R(k)(β∗1))

)
(XγT1 ⊗P)R(k)(β)T

]
ii
γT1 (R̂l(β))T

×
(∑
l 6=k

[(1− 1
2δil)|Wil|2 − σ2

N ]
)}
γT1 R̂i(β)T

∥∥∥
HS

≤ ‖γ1‖3E≤k−1

{∥∥∥[E≤k−1

(
Θ(R(k)(β∗1))

)
(XγT1 ⊗P)R(k)(β)T

]
ii

∥∥∥∣∣∣∑
l 6=k

[(1− 1
2δil)|Wil|2 − σ2

N ]
∣∣∣}

×
∥∥(R̂l(β))T

∥∥∥∥R̂i(β)T
∥∥
HS

≤ C(z1)E≤k−1

{
E≤k−1

(
Q( 1
|Iz1|

, ‖W (k)
N ‖)

)
Q( 1
|Iz|

, ‖W (k)
N ‖)

∣∣∣∑
l 6=k

[(1− 1
2δil)|Wil|2 − σ2

N ]
∣∣∣}.

Hence, using Hölder’s inequality and Proposition 78, we obtain that

∥∥σ2
N

∑
i,j<k

IIk,i,j
∥∥
L2 ≤ C(z1)σ2

N

∑
i<k

E
(∣∣∣∑

l 6=k
[(1− 1

2δil)|Wil|2 − σ2
N ]
∣∣∣4)1/4

= o(1),

where, in the last equality, we use that, uniformly in i and l,

E
(

[(1− 1
2δil1)|Wil1 |2 − σ2

N ]
)

= δil1O(1/N),

and for p = 2, 3, 4,

E
({

[(1− 1
2δil1)|Wil1 |2 − σ2

N

}p)
= o(1/N).

Similarly, using again (48),

‖
∑
j<k

IIIk,i,j‖

≤ sup
X∈Mm(C)
Tr(XX∗)=1

‖γ1‖3
∥∥R̂i(β)T

∥∥
HS

× E≤k−1

{∥∥∥[E≤k−1
(
Θ(R(k)(β∗1))

)
(XγT1 ⊗P)R(k)(β)T

]
ii

∥∥∥∥∥∥∑
l 6=k

(1− 1
2δil)|Wil|2∆T

ilk

∥∥∥}
≤ C(z1)E≤k−1

{
E≤k−1

(
Q( 1
|Iz1|

, ‖W (k)
N ‖)

)
Q( 1
|Iz|

, ‖W (k)
N ‖)

∑
l 6=k

(1− 1
2δil)|Wil|2

∥∥∥∆T
ilk

∥∥∥},
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where ∆ilk = R
(kil)
ll (β)− R̂l(β)). Thus,∥∥∑

j<k

IIIk,i,j
∥∥2
L2

≤ C(z1)E
[
E≤k−1

(
Q2( 1
|Iz1|

, ‖W (k)
N ‖)

)
Q2( 1
|Iz|

, ‖W (k)
N ‖)

×
∑
l,l′ 6=k

(1− 1
2δil)|Wil|2(1− 1

2δil
′)|Wil′ |2

∥∥∆T
ilk

∥∥∥∥∆T
il′k

∥∥]
≤ C(z1)

∑
l,l′ 6=k

{
E
[(

E≤k−1

(
Q2( 1
|Iz1|

, ‖W (k)
N ‖)

)
Q2( 1
|Iz|

, ‖W (k)
N ‖)

)p∥∥∆T
ilk

∥∥p∥∥∆T
il′k

∥∥p]}1/p

×
{
E
(

(1− 1
2δil)

q|Wil|2q(1−
1
2δil

′)q|Wil′ |2q
)}1/q

,

where q = 1 + ε and p−1 + q−1 = 1. (3) and (4) readily yield that{
E
(

(1− 1
2δil)

q|Wil|2q)(1−
1
2δil

′)q|Wil′ |2q)
)}1/q

= O(N−2)

uniformly in i, l, l′ so that ‖
∑
j<k IIIk,i,j‖L2 = o(1) uniformly in i, k by using Remark 35 and Proposition

78. Therefore ∥∥∥σ2
N

∑
i,j<k

IIIk,i,j

∥∥∥
L2

= o(1).

Finally, similarly,∥∥∑
j<k

IVk,i,j
∥∥ ≤ σ2

N sup
X∈Mm(C)
Tr(XX∗)=1

∥∥γ1
∥∥3∥∥R̂i(β)

∥∥∥∥R̂k(β)T
∥∥
HS

×
∥∥∥[E≤k−1

(
Θ(R(k)(β∗1))

)
(XγT1 ⊗P)E≤k−1

(
R(k)(β)T

)]
ii

∥∥∥
≤ C(z1)σ2

NE≤k−1
(
R(k)(β∗1)

)
E≤k−1

(
R(k)(β)

)
≤ C(z1)σ2

NE≤k−1

(
Q( 1
|Iz1|

, ‖W (k)
N ‖)

)
E≤k−1

(
Q( 1
|Iz|

, ‖W (k)
N ‖)

)
,

so that by using Proposition 78, ‖
∑
j<k IVk,i,j‖L2 = O(σ2

N ). Thus∥∥σ2
N

∑
i,j<k

IVk,i,j
∥∥
L2 ≤ σ2

N

∑
i<k

‖
∑
j<k

IVk,i,j‖L2 = O(N−1).

Lemma 51 readily follows. �

Lemma 52. With the notation of Proposition 50,

∇k = Nσ2
NTN,k,0(z, z̄1)(Im ⊗ Im +∇k) + oL1(1).

Proof. Let us consider the second term of the right hand side of Lemma 51. Using (9), we have

σ2
N

∑
i,j,l<k

WilR̂i(β)γ1E≤k−1

(
R

(kil)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
= σ2

N

∑
i,j,l<k

WilR̂i(β)γ1E≤k−1

(
R

(kil)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(kil)
ji (β∗1)

)
(49)

+ σ2
N

∑
i,j,l<k

(1− 1
2δil)W

2
ilR̂i(β)γ1E≤k[R(kil)

lj (β)]γ1 ⊗ γ1E≤k[R(kil)
ji (β∗1)γ1R

(k)
li (β∗1)](50)

+ σ2
N

∑
i,j,l<k

(1− 1
2δil)|Wil|2R̂i(β)γ1E≤k[R(kil)

lj (β)]γ1 ⊗ γ1E≤k[R(kil)
jl (β∗1)γ1R

(k)
ii (β∗1)].(51)

Set
αil =

∑
j<k

γ1E≤k−1

(
R

(kil)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(kil)
ji (β∗1)

)
.
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Note that αil and Wil are independent. Let us consider the L2 norm of the term (49):

‖σ2
N

∑
i<k

∑
l<k

WilR̂i(β)αil‖L2 ≤ σ2
N

∑
i<k

‖R̂i(β)‖‖
∑
l<k

Wilαil‖L2

≤ σ2
NQ(|Iz|−1, ‖DN‖, N1/2σN )

∑
i<k

{ ∑
l<k,l′<k

E
(
WilWil′ Trαilα∗il′

)}1/2
(52)

by using (15). First,∑
l<k

E
(
|Wil|2 Trαilα∗il

)
=
∑
l<k

E
(
|Wil|2

)
E (Trαilα∗il)

≤ m2σ2
N

∑
l<k,l 6=i

E
(
‖αil‖2

)
+m2σ̃2

NE
(
‖αii‖2

)
.

Replacing R(kil) by R(k) yields the following.

αil =
∑
j<k

γ1E≤k−1
(
R

(k)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ji (β∗1)

)
+
∑
j<k

γ1E≤k−1
(
R

(kil)
lj (β)−R(k)

lj (β)
)
γ1 ⊗ γ1E≤k−1

(
R

(kil)
ji (β∗1)

)
+
∑
j<k

γ1E≤k−1
(
R

(k)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(kil)
ji (β∗1)−R(k)

ji (β∗1)
)

:= Iil + IIil + IIIil.

Set A(k) = (γ1 ⊗ IN−1)R(k)(β)γ1 ⊗ IN−1, B(k, i, l) = γ1 ⊗ IN−1E≤k−1
(
R(kil)(β∗1)−R(k)(β∗1)

)
, and

C
(il)
s,t =

∑
j<k A(k)sj⊗B(k, i, l)jt. By Lemma 65, we obtain ‖C(il)

s,t ‖ ≤ ‖A(k)‖‖B(k, i, l)‖ so that, choosing
s = l and t = i, we have

‖IIIil‖ ≤ ‖γ1‖3E≤k−1
(
Q(‖WN‖, |Iz|−1)

)
E≤k−1

(
‖R(kil)(β∗1)−R(k)(β∗1)‖

)
≤ ‖γ1‖4δNE≤k−1

(
Q(‖WN‖, |Iz|−1)

)
E≤k−1

(
Q(‖WN‖, |Iz1|−1)

)
,

where we use the resolvent identity and Lemma 5. Similarly,

‖IIil‖ ≤ ‖γ1‖4δNE≤k−1
(
Q(‖WN‖, |Iz|−1)

)
E≤k−1

(
Q(‖WN‖, |Iz1|−1)

)
.

Thus, using Proposition 78, we obtain

E
(
‖IIil‖2 + ‖IIIil‖2

)
= O(δ2

N ).

Now, set B(k) = γ1 ⊗ IN−1E≤k−1
(
R(k)(β2)

)
and Cs,t =

∑
j<k A(k)sj ⊗B(k)jt. By Lemma 65,

(∑
l 6=k
‖Cl,i‖2

)1/2
≤ ‖A(k)‖‖B(k)‖

that is
N∑
l 6=k
‖Iil‖2 ≤ ‖γ1‖6E≤k−1

(
‖R(k)(β)‖2

)
E≤k−1

(
‖R(k)(β∗1)‖2

)
.

It readily follows by Remark 22 that
∑
l<k E‖αil‖2 = O(Nδ2

N ) +O(1) = O(Nδ2
N ) and then that∑

l<k

E
(
|Wil|2 Trαilα∗il

)
= O(δ2

N ),

uniformly in k.
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It remains to control the sum of the cross terms E[WilWil′ Tr(αilαil′∗)], l 6= l′, i < k, l < k, l′ < k. Let
us replace R(kil′) and R(kil) by R(kil′il):

αil =
∑
j<k

γ1E≤k−1

(
R

(kilil′)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(kilil′)
ji (β∗1)

)
+
∑
j<k

γ1E≤k−1

(
R

(kil)
lj (β)−R(kilil′)

lj (β)
)
γ1 ⊗ γ1E≤k−1

(
R

(kil)
ji (β∗1)

)
+
∑
j<k

γ1E≤k−1

(
R

(kilil′)
lj (β)

)
γ1 ⊗ γ1E≤k−1

(
R

(kil)
ji (β∗1)−R(kilil′)

ji (β∗1)
)

:= αill′ + βill′ + γill′ .

Note that, due to independence properties, the sum vanishes when αil is replaced by αill′ or when αil′ is
replaced by αill′ . It remains to control the four error terms:

E[WilWil′ Tr(βill′βil′l∗)],E[WilWil′ Tr(βill′γil′l∗)],E[WilWil′ Tr(γill′βil′l∗)] and E[WilWil′ Tr(γill′γil′l∗)].

(9) yields (note that we can remove one E≤k−1):

E[WilWil′ Tr(βill′βil′l∗)] = (1− 1
2δil)(1−

1
2δil

′)

×
{
E
[
|Wil|2|Wil′ |2 Tr

{
E≤k−1

(
γ1R

(kilil′)
li (β)γ1

∑
j<k

R
(kil)
l′j (β))γ1 ⊗ γ1E≤k−1

(
R

(kil)
ji (β∗1)

))
×
(
γ1R

(kil′il)
l′i (β)γ1

∑
j<k

R
(kil′)
lj (β)γ1 ⊗ γ1E≤k−1

(
R

(kil′)
ji (β∗1)

))∗}]
(53)

+ E
[
W 2
il|Wil′ |2 Tr

{
γ1E≤k−1

(
R

(kilil′)
li (β)γ1

∑
j<k

R
(kil)
l′j (β)γ1 ⊗ γ1E≤k−1[R(kil)

ji (β∗1)]
)

×
(
γ1R

(kil′il)
l′l (β)γ1

∑
j′<k

R
(kil′)
ij′ (β)γ1 ⊗ γ1E≤k−1[R(kil′)

j′i (β∗1)]
)∗}]

(54)

+ E
[
|Wil|2Wil′

2 Tr
{
γ1R

(kilil′)
ll′ (β)γ1

∑
j<k

R
(kil)
ij (β)γ1 ⊗ γ1E≤k−1[R(kil)

ji (β∗1)]

×
(
γ1E≤k−1

(
R

(kil′il)
l′i (β)γ1

∑
j′<k

R
(kil′)
lj′ (β)γ1 ⊗ γ1E≤k−1[R(kil′)

j′i (β∗1)]
)])∗}

(55)

+ E
[
W 2
ilWil′

2 Tr
{
γ1E≤k−1

(
R

(kilil′)
ll′ (β)γ1

∑
j<k

R
(kil)
ij (β)γ1 ⊗ γ1E≤k−1[R(kil)

ji (β∗1)]
)

×
(
γ1R

(kil′il)
l′l (β)γ1

∑
j′<k

R
(kil′)
ij′ (β)γ1 ⊗ γ1E≤k−1[R(kil′)

j′i (β∗1)]
)∗}]}

.(56)

Using Lemmas 65 and 5, there exist polynomials Q1 and Q2 such that∥∥∥∑
j<k

R
(kil)
l′j (β)γ1 ⊗ γ1E≤k−1

(
R

(kil)
ji (β∗1)

)∥∥∥ ≤ ‖γ1‖2Q1(‖WN‖, |Iz|−1)E≤k−1

(
Q2(‖WN‖, |Iz1|−1)

)
.

Thus, using Hölder’s inequality and Proposition 78, the sum over l 6= l′ of (53) can be bounded as follows:∣∣∣∑
l 6=l′

(1− 1
2δil)(1−

1
2δil

′)
{
E
[
|Wil|2|Wil′ |2 Tr

{
γ1E≤k−1

(
R

(kilil′)
li (β)γ1

∑
j<k

R
(kil)
l′j (β)γ1 ⊗ γ1

× E≤k−1

(
R

(kil)
ji (β∗1)

))
(γ1R

(kil′il)
l′i (β)γ1

∑
j<k

R
(kil′)
lj (β)γ1 ⊗ γ1E≤k−1

(
R

(kil′)
ji (β∗1)

)
)∗
}]∣∣∣
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≤ O(1)
∑
l 6=l′

E[|Wil|4|Wil′ |4E≤k−1

(
‖R(kilil′)

li (β)‖2
)
E≤k−1

(
‖R(kil′il)

l′i (β)‖2
)

]1/2

≤ O(1)N−2
∑
l 6=l′

E[E≤k−1

(
‖R(kilil′)

li (β)‖2
)
E≤k−1

(
‖R(kil′il)

l′i (β)‖2
)

]1/2 by independence

≤ O(1)
(
N−2

∑
l 6=l′

E[E≤k−1

(
‖R(kilil′)

li (β)‖2
)
E≤k−1

(
‖R(kil′il)

l′i (β)‖2
)

]
)1/2

by concavity of x 7→ x1/2

≤ O(1)
(
N−2

∑
l,l′

E[E≤k−1(‖R(k)(β)li‖2)E≤k−1(‖R(k)(β)l′i‖2] +O(δN )
)1/2

by (9), Lemmas 5 and Proposition 78

≤ O(1)(N−2E[(
∑
l

E≤k−1(‖R(k)(β)li‖2))2] +O(δN ))1/2

≤ O(1)(N−2E[(E≤k−1(‖R(k)(β)‖2))2] +O(δN ))1/2 by Lemma 64

≤ O(1)(O(N−2) +O(δN ))1/2 = O(δ1/2
N ) using Remark 22,

uniformly in k. The sums over l and l′ of the three other terms (54), (55) and (56) can be treated
similarly: they are of order O(δN ), uniformly in k.

Using again the resolvent identity and very similar computations, the sums over l and l′ of the other
three error terms E[WilWil′ Trβill′γil′l∗], E[WilWil′ Tr γill′βil′l∗] and E[WilWil′ Tr γill′γil′l∗] are proved to
be of order O(

√
δN ), uniformly in k. As a consequence, from (52) we can deduce that the first term (49)

σ2
N

∑
i,j,l<k

WilR̂i(β)γ1E≤k−1

(
R(kil)(β)lj

)
γ1 ⊗ γ1E≤k−1

(
R(kil)(β∗1)ji

)
= oL2(1)

uniformly in k.
The L2 norm of the second term (50) is bounded by

σ2
N‖R̂(β)‖‖γ1‖

×
∑
i<k

E
[∣∣∣∑
l<k

(1− 1
2δil)|Wil|2E≤k[‖

∑
j<k

E≤k[R(kil)(β)lj ]γ1 ⊗ γ1R
(kil)
ji (β∗1)‖‖γ1‖‖R(k)

li (β∗1)‖]
∣∣∣2]1/2,

and then, using Jensen’s inequality (with respect to E≤k−1) and Cauchy-Schwarz inequality (with respect
to the l-sum), by

σ2
N‖R̂(β)‖‖γ1‖2

∑
i<k

E[
∑
l<k

|Wil|4‖
∑
j<k

E≤k[R(kil)
lj (β)]γ1 ⊗ γ1R

(kil)
ji (β∗1)‖2

∑
l<k

‖R(k)
li (β∗1)‖2]1/2.

From Lemma 65 and Lemma 64, and then Lemma 5 one can deduce the following bounds of the L2

norm of (50):

σ2
N‖R̂(β)‖‖γ1‖4

∑
i<k

E[
∑
l<k

|Wil|4‖E≤k[R(kil)(β)]‖2‖R(kil)(β∗1)‖2‖R(k)(β∗1)‖2]1/2

≤ σ2
N‖R̂(β)‖‖γ1‖4

∑
i<k

E[
∑
l<k

|Wil|4‖E≤k[R(kil)(β)]‖2‖R(kil)(β∗1)‖2Q(‖W (k)
N ‖, |Iz1|−1)2]1/2

≤ σ2
N‖R̂(β)‖‖γ1‖4

×
∑
i<k

{∑
l<k

E(|Wil|4)E
(
‖E≤k[R(kil)(β)]‖2‖R(kil)(β∗1)‖2Q1(‖W (kil)

N ‖+ 2δN , |Iz1|−1)2
)}1/2

≤ σ2
N‖R̂(β1)‖‖γ1‖4

∑
i<k

{∑
l<k

E(|Wil|4)E
(
|E≤k[Q2(‖WN‖, δN , |Iz|−1)]|2Q3(‖WN‖, δN , |Iz1|−1)

)}1/2

= O(N−1/2),

where we use Lemma 17, Lemmas 77 and 78 in the last line. Let us consider the last term (51). Replacing
successively (1− 1

2δil)|Wil|2, R(k)
ii (β∗1), R(kil)

lj (β), R(kil)
jl (β∗1) by σ2

N , R̂i(β∗1), R(k)
lj (β), R(k)

jl (β∗1), this last term
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can be written as follows:

σ2
N

∑
i,j,l<k

(1− 1
2δil)|Wil|2R̂i(β)γ1E≤k[R(kil)

lj (β)]γ1 ⊗ γ1E≤k[R(kil)
jl (β∗1)γ1R

(k)
ii (β∗1)]

= σ4
N

∑
i,j,l<k

R̂i(β)γ1E≤k[R(k)
lj (β)]γ1 ⊗ γ1E≤k[R(k)

jl (β∗1)]γ1R̂i(β∗1)

+ σ2
N

∑
i,j,l<k

((1− 1
2δil)|Wil|2 − σ2

N )R̂i(β)γ1E≤k[R(kil)
lj (β)]γ1 ⊗ γ1E≤k[R(kil)

jl (β∗1)γ1R
(k)
ii (β∗1)]

+ σ4
N

∑
i,j,l<k

R̂i(β)γ1E≤k[R(kil)
lj (β)]γ1 ⊗ γ1E≤k[R(kil)

jl (β∗1)γ1(R(k)
ii (β∗1)− R̂i(β∗1))]

+ σ4
N

∑
i,j,l<k

R̂i(β)γ1E≤k[R(kil)
lj (β)−R(k)

lj (β)]γ1 ⊗ γ1E≤k[R(kil)
jl (β∗1)]γ1R̂i(β∗1)

+ σ4
N

∑
i,j,l<k

R̂i(β)γ1E≤k[R(k)
lj (β)]γ1 ⊗ γ1E≤k[R(kil)

jl (β∗1)−R(k)
jl (β∗1)]γ1R̂i(β∗1)

:= Nσ2
NTN,k,0(z, z̄1)(∇k) + h

(N)
k + p

(N)
k + q

(N)
k + r

(N)
k .

By triangular inequality, Jensen’s inequality and Cauchy-Schwarz inequality, the L1 norm of term h
(N)
k

can be bounded as follows:

‖h(N)
k ‖1 ≤ σ2

N‖R̂(β1)‖‖γ1‖

×
∑
i<k

‖‖
∑
l<k

((1− 1
2δil)|Wil|2 − σ2

N )
∑
j<k

E≤k[R(kil)(β)lj ]γ1 ⊗ γ1R
(kil)
jl (β∗1)γ1‖‖R(k)

ii (β∗1)‖‖1

≤ σ2
N‖R̂(β)‖‖γ1‖

×
∑
i<k

‖
∑
l<k

((1− 1
2δil)|Wil|2 − σ2

N )
∑
j<k

E≤k[R(kil)(β)lj ]γ1 ⊗ γ1R
(kil)
jl (β∗1)γ1‖2‖R(k)

ii (β∗1)‖2

≤ σ2
N‖R̂(β)‖‖γ1‖

× ‖R(k)(β∗1)‖2
∑
i<k

E[‖
∑
l<k

((1− 1
2δil)|Wil|2 − σ2

N )
∑
j<k

E≤k[R(kil)(β)lj ]γ1 ⊗ γ1R
(kil)
jl (β∗1)γ1‖2]1/2

= O
(
δ

1/2
N

)
,(57)

if one may prove that

(58) E[‖
∑
l<k

((1− 1
2δil)|Wil|2 − σ2

N )
∑
j<k

E≤k[R(kil)(β)lj ]γ1 ⊗ γ1R
(kil)
jl (β∗1)γ1‖2HS ] = O(δN ),

uniformly in i, k, using also Remark 22 and Lemma 17.
Develop the Hilbert-Schmidt norm of the l-sum: the sum of “squares" is bounded by

m(mN − σ4
N )

∑
l<k,l 6=i

E
[
‖
∑
j<k

E≤k[R(kil)(β)lj ]γ1 ⊗ γ1R
(kil)
jl (β∗1)γ1‖2

]
+m(1

4δ
2
N σ̃

2
N − σ2

N σ̃
2
N + σ4

N )E
[
‖
∑
j<k

E≤k[R(kii)(β)ij ]γ1 ⊗ γ1R
(kii)
ji (β∗1)γ1‖2

]
which is O(N−1), uniformly in i, k, using Lemma 65 and Remark 22.

It remains to control the sum of the cross terms

E[((1− 1
2δil)|Wil|2 − σ2

N )((1− 1
2δil

′)|Wil′ |2 − σ2
N )〈Cilll , Cil

′

l′l′〉],

where Cilll =
∑
j<k E≤k[R(kil)

lj (β)]γ1 ⊗ γ1R
(kil)
jl (β∗1)γ1 and 〈A,B〉 = TrAB∗. Define

Cilil
′

ll =
∑
j<k

E≤k[R(kilil′)
lj (β)]γ1 ⊗ γ1R

(kilil′)
jl (β∗1)γ1.
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Note that by Lemma 65
‖Cilll ‖ ≤ ‖γ1‖2E≤k[‖R(kil)(β)‖]‖R(kil)(β∗1)‖,

‖Cilil
′

ll ‖ ≤ ‖γ1‖2E≤k[‖R(kilil′)(β)‖]‖R(kilil′)(β∗1)‖.

Observe that, by independence, since at least one of l, l′ 6= i,

|E[((1− 1
2δil)|Wil|2 − σ2

N )((1− 1
2δil

′)|Wil′ |2 − σ2
N )〈Cilll , Cil

′

l′l′〉]|

= |E[((1− 1
2δil)|Wil|2 − σ2

N )((1− 1
2δil

′)|Wil′ |2 − σ2
N )(〈Cilll , Cil

′

l′l′〉 − 〈Cilil
′

ll , Cilil
′

l′l′ 〉)]|

≤ E[|(1− 1
2δil)|Wil|2 − σ2

N |2]1/2E[|(1− 1
2δil

′)|Wil′ |2 − σ2
N |2]1/2E[|〈Cilll , Cil

′

l′l′〉 − 〈Cilil
′

ll , Cilil
′

l′l′ 〉|2]1/2.

Now, from (9),

(59)
∥∥R(kil)(β)−R(kilil′)(β)

∥∥ ≤ 2δN‖γ1‖
∥∥R(kil)(β)

∥∥∥∥R(kilil′)(β)
∥∥.

Thus, using Cauchy-Schwarz inequality and Lemma 64, one can easily obtain that∥∥Cilll − Cilil′ll

∥∥ ≤ O(δN )
(
E≤k[‖R(kil)(β)‖2

∥∥R(kilil′)(β)
∥∥2]
)1/2
‖R(kil)(β∗1)‖

+O(δN )
(
E≤k

[
‖R(kilil′)(β)‖2

])1/2
‖R(kil)(β∗1)‖

∥∥R(kilil′)(β∗1)
∥∥.

Then Remark 22 readily implies that

E[|〈Cilll , Cil
′

l′l′〉 − 〈Cilil
′

ll , Cilil
′

l′l′ 〉|2]1/2 = O(δN )

uniformly in i, k, l, l′ and then that E[((1− 1
2δil)|Wil|2−σ2

N )((1− 1
2δil′)|Wil′ |2−σ2

N )〈Cilll , Cil
′

l′l′〉] = O(δNN−2)
uniformly in i, k, l, l′. There are less than N2 such cross terms. Therefore, (58) and then (57) are true.

The L1 norm of p(N)
k can be bounded as follows (using (15), Lemma 65, Remarks 34 and 22:

‖p(N)
k ‖1 ≤ σ4

N

∑
i,l<k

‖R̂i(β)‖‖γ1‖E[‖
∑
j<k

E≤k[R(kil)
lj (β)]γ1 ⊗ γ1R

(kil)
jl (β∗1)γ1‖‖R(k)

ii (β∗1)− R̂i(β∗1)‖]

= O(Nσ4
N

∑
i<k

E[‖R(k)
ii (β∗1)− R̂i(β∗1)‖p]1/p) = o(1)

uniformly in k.
Using Lemma 65 and (9),∥∥∥∑
j<k

E≤k[R(kil)
lj (β)−R(k)(β)lj ]γ1 ⊗ γ1R

(kil)
jl (β∗1)

∥∥∥ ≤ ‖γ1‖2‖E≤k−1[R(kil)(β)−R(k)(β)]‖‖R(kil)(β∗1)‖

≤ 2δN‖γ1‖3E≤k−1[‖R(kil)(β)‖‖R(k)(β)‖]‖R(kil)(β∗1)‖.

Hence, using Remark 22, the L1 norm of q(N)
k is O(δN ), uniformly in k. Similarly, the L1 norm of r(N)

k is
O(δN ), uniformly in k. Thus, we have established that (51) is equal to Nσ2

NTN,k,0(z, z̄1)(∇k) + oL1(1).
Since moreover we also established that (49) and (50) are oL1(1) uniformly in k, Lemma 51 yields that

∇k = σ2
N

∑
i<k

R̂i(β)γ1 ⊗ γ1E≤k−1

(
R

(k)
ii (β∗1)

)
+Nσ2

NTN,k,0(z, z̄1)(∇k) + oL1(1).

Lemma 52 readily follows by using Remark 34.
�

Thus, for any z1 ∈ C \ R and z ∈ Oz1 (see Lemma 49), setting β = ze11 − γ0 and β∗1 = z̄1e11 − γ0 in
Mm(C), we obtain from Lemma 52 that

∇k =
(
idm ⊗ idm −Nσ2

NTN,k,0(z, z̄1)
)−1 (

Nσ2
NTN,k,0(z, z̄1)(Im ⊗ Im)

)
+ o

(u)
L1 (1)

= −Im ⊗ Im +
(
idm ⊗ idm −Nσ2

NTN,k,0(z, z̄1)
)−1 (Im ⊗ Im) + o

(u)
L1 (1).

Therefore,
Nσ2

NTN (z, z̄1)(∇k) = −Nσ2
NTN (z, z̄1)(Im ⊗ Im)

+Nσ2
NTN (z, z̄1)

(
idm ⊗ idm −Nσ2

NTN,k,0(z, z̄1)
)−1 (Im ⊗ Im) + oL1(1).
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Thus from (46), the term under study in Proposition 50 can be rewritten as follows

σ4
N

N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (β)]γ1R̂k(β)) Tr(γ1E≤k[R(k)

ji (β∗1)]γ1R̂k(β∗1))

= −σ2
N

N∑
k=1

Tr
(
R̂k(β)γ1

)
Tr
(
γ1R̂k(β∗1)

)
+N−1

N∑
k=1

fk,k,N (0) + oP(1),

where for t ∈ [0; 1], with the notations of Section 7.3.2,

fk,k,N (t) = Nσ2
N Tr⊗Tr

[
R̂k(β)γ1 ⊗ Im

(
idm ⊗ idm −Nσ2

NTN,k,t(z, z̄1)
)−1 (Im ⊗ Im) Im ⊗ γ1R̂k(β∗1)

]
.

The first term can be analysed as in Section 7.3.1. The second term can be analysed as follows: for any
t ∈ [0; 1],

fk,k,N (t)− fk,k,N (0)

= tNσ4
N Tr⊗Tr

[
R̂k(β)γ1 ⊗ Im

(
idm ⊗ idm −Nσ2

NTN,k,t(z, z̄1)
)−1

R̂k(β)γ1 ⊗ Im

×
(
idm ⊗ idm −Nσ2

NTN,k,0(z, z̄1)
)−1(

Im ⊗ Im
)
Im ⊗ γ1R̂k(β∗1), Im ⊗ γ1R̂k(β∗1)

]
.

It readily follows from Lemma 17 and Lemma 49 that there exists some constant C(z1) > 0 such that for
any t ∈ [0, 1],

|fk,k,N (t)− fk,k,N (0)| ≤ C(z1)Nσ4
N .

Integrating with respect to t ∈ [0, 1] and summing on k we obtain that∣∣∣N−1
N∑
k=1

fk,k,N (0)−N−1
N∑
k=1

∫ 1

0
fk,k,N (t)dt

∣∣∣ ≤ C(z1)Nσ4
N = o(1).

Now, set for k = 1, . . . , N ,
Ak : X 7→ σ2

N R̂k(β)γ1 ⊗ ImXIm ⊗ γ1R̂k(β∗1),
Bk = Nσ2

NTN,k,0(z, z̄1),
and for any t ∈ [0, 1],

gk(t) = log(idm ⊗ idm −Bk − tAk) = −
+∞∑
p=1

1
p

(Bk + tAk)p.

Note that fk,k,N (t) = N(Tr⊗Tr)
[
Ak(idm ⊗ idm −Bk − tAk)−1(Im ⊗ Im)

]
.

Lemma 53.
(Tr⊗Tr)(g′k(t)(Im ⊗ Im)) = (Tr⊗Tr)

[
−Ak(idm ⊗ idm −Bk − tAk)−1(Im ⊗ Im)

]
.

Proof. First observe that T 7→ Tr⊗Tr(T (Im ⊗ Im)) is a trace on the algebra generated by A1, . . . , AN
(to which belong B1, . . . , BN ). Note that

g′k(t) = −
∞∑
p=1

1
p

p−1∑
i=0

(Bk + tAk)iAk(Bk + tAk)p−1−i

Hence

Tr⊗Tr[g′k(t)(Im ⊗ Im)] = −
∞∑
p=1

1
p

p−1∑
i=0

Tr⊗Tr[(Bk + tAk)iAk(Bk + tAk)p−1−i(Im ⊗ Im)]

= −
∞∑
p=1

1
p

p−1∑
i=0

Tr⊗Tr[Ak(Bk + tAk)p−1(Im ⊗ Im)]

= −Tr⊗Tr
[ ∞∑
p=0

Ak(Bk + tAk)p(Im ⊗ Im)
]

= Tr⊗Tr
[
−Ak(idm ⊗ idm −Bk − tAk)−1(Im ⊗ Im)

]
.

�
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Lemma 53 readily implies that∫ 1

0
(Tr⊗ Tr)

[
−Ak(idm ⊗ idm −Bk − tAk)−1(Im ⊗ Im)

]
dt

= (Tr⊗Tr) [log(idm ⊗ idm −Bk −Ak)(Im ⊗ Im)]− (Tr⊗Tr) [log(idm ⊗ idm −Bk)(Im ⊗ Im)] .

Therefore, noticing that Bk+1 = Ak +Bk, we obtain that

N−1
N∑
k=1

∫ 1

0
fk,k,N (t)dt = (Tr⊗Tr)

[
log
(
idm ⊗ idm −Nσ2

NTN (z, z̄1)
)

(Im ⊗ Im)
]
.

Lemma 54. For any β1 = z1e11 − γ0, z1 ∈ C \ R and any β2 = z2e11 − γ0, z2 ∈ C \ R, we have

lim
N→∞

(Tr⊗Tr)
[

log
(
idm ⊗ idm−Nσ2

NTN (z1, z2)
)
(Im ⊗ Im)

]
= (Tr⊗Tr)

[
log
(
idm ⊗ idm − σ2T{β1,β2}

)
(Im ⊗ Im)

]
.

Proof. For any α⊗ υ ∈Mm(C)⊗Mm(C), we have[
Nσ2

NTN (z1, z2)
](
α⊗ υ

)
= Nσ2

N (idm2 ⊗ τN )
[
(ωN (β1)⊗ 1− γ2 ⊗DN )−1(γ1α⊗ 1)

]
⊗
[
(υγ1 ⊗ 1)(ωN (β2)⊗ 1− γ2 ⊗DN )−1],(60)

where by (idm2 ⊗ τN ) we mean that τN is applied entrywise to the matrix belonging to Mm2(C∗〈DN 〉) '
Mm(C∗〈DN 〉) ⊗Mm(C∗〈DN 〉) ' Mm(C) ⊗ C∗〈DN 〉 ⊗Mm(C) ⊗ C∗〈DN 〉. Since (DN )N∈N converges
in ∗-moments towards d, limN→+∞Nσ2

N = σ2 and using Lemma 19, we can easily deduce from (60)
(using also Lemmas 17 and 18) that for any z1, z2 in C \R, the sequence of operators (Nσ2

NTN (z1, z2))N
converges in operator norm to σ2T{β1,β2}. We know by Corollary 40 that there exists 0 < ε0 < 1
such lim supN→+∞ ρ(Nσ2

NTN (z1, z2) < 1 − ε0. Thanks to the Cauchy formula, for all x ∈ C such that
|x| < 1 − ε0/2, for any k ≥ 0, xk = 1

2iπ
∫
|w|=1−ε0/2

wk

w−xdw. Therefore, using the holomorphic functional
calculus, we have for all large N ,

∀k ≥ 0 , (Nσ2
NTN (z1, z2))k = 1

2iπ

∫
|w|=1−ε0/2

wk(widm ⊗ idm −Nσ2
NTN (z1, z2))−1dw,

and therefore

∀k ≥ 0 , ‖(Nσ2
NTN (z1, z2))k‖ ≤ sup

|w|=1−ε0/2
‖(widm ⊗ idm −Nσ2

NTN (z1, z2))−1‖(1− ε0/2)k+1
.

Now, using Lemmas 17 and 63, there exists C(m, ε0) > 0 such that we have for all large N ,

sup
|w|=1−ε0/2

‖(widm ⊗ idm −Nσ2
NTN (z1, z2))−1‖ ≤ C(m, ε0),

and thus
∀k ≥ 0 , ‖(Nσ2

NTN (z1, z2))k‖ ≤ C(m, ε0)‖(1− ε0/2)k+1.

Therefore, using dominated convergence Theorem, it readily follows that

log
[
idm ⊗ idm −Nσ2

NTN (z1, z2)
]

= −
∞∑
k=1

1
k

(Nσ2
NTN (z1, z2))k

→N→+∞ −
∞∑
k=1

1
k

(σ2T{β1,β2})
k = log

[
idm ⊗ idm − σ2T{β1,β2}

]
.

�

Thus Proposition 50 is proved. �
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Proposition 55. For β1 = z1e11 − γ0 and β2 = z2e11 − γ0, for any z1 ∈ C \R, z2 ∈ C \R, the following
convergence holds in probability:

σ4
N

N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (β1)]γ1R̂k(β1)) Tr(γ1E≤k[R(k)

ji (β2)]γ1R̂k(β2))

→N→+∞ −Tr⊗ Tr
{

log
[
idm ⊗ idm − σ2T{β1,β2}

]
(Im ⊗ Im)

}
(61)

− σ2Tr⊗ Tr
{
T{β1,β2}(Im ⊗ Im)

}
.

Proof. Recall that a sequence (XN )N≥1 of random variables converges in probability to a random variable
X if and only if, from any subsequence extracted from (XN )N≥1, one can further extract a subsubsequence
almost surely converging to X. We will use this criterion in the following argument.

Let C be as in Proposition 78. If ‖WN‖ ≤ C, there exists M > 0 such that for any k ∈ {1, . . . , N},
‖P (W (k)

N , D
(k)
N )‖ ≤ M. Let K > 0 be such that ‖P (sN , DN )‖ ≤ K. Thus, for any z ∈ R such that

|z| > K, z1AN − P (sN , DN ) is invertible and the, according to Lemma 4, ze11 ⊗ 1AN − LP (sN , DN ) is
invertible.

Let us fix z1 ∈ C \ R. We know, using (17), Lemma 65, Remark 22 and Proposition 78, that by
Proposition 50, for any z ∈ Oz1 ,

f
(z1)
N (z) := 1I{‖WN‖≤C}σ

4
N

N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (ze11 − γ0)]γ1R̂k(ze11 − γ0))

× Tr(γ1E≤k[R(k)
ji (z̄1e11 − γ0)]γ1R̂k(z̄1e11 − γ0))

converges in probability towards

f (z1)(z) = −Tr⊗Tr
{

log
[
idm ⊗ idm − σ2T{ze11−γ0,z̄1e11−γ0}

]
(Im ⊗ Im)

}
− σ2 Tr⊗Tr

[
T{ze11−γ0,z̄1e11−γ0}(Im ⊗ Im)

]
.

For N ≥ 1, f (z1)
N is an holomorphic function on C \ [−max(M,K); max(M,K)].

Fix an arbitrary subsequence extracted from (f (z1)
N )N≥1. By diagonal extraction from the convergence

in probability above, given a countable subset of uniqueness of Oz1 , one can extract a subsubsequence,
let us say (f (z1)

Ψ(N))N≥1, almost surely converging to f (z1) pointwise on this subset.
Using Lemma 65 and Lemma 5, (f (z1)

N )N≥1 is a bounded sequence inH(C\[−max(M,K); max(M,K)]).
We conclude by Vitali’s Theorem that almost surely (f (z1)

Ψ(N)) converges towards an holomorphic function
on C \ [−max(M,K); max(M,K)].
Note that f (z1) is holomorphic on C\R. Hence almost surely, for any z ∈ C\R, f (z1)

Ψ(N)(z) converges towards
f (z1)(z). Therefore for any z ∈ C \ R, f (z1)

N (z) converges in probability towards f (z1)(z). Proposition 55
readily follows since, by Proposition 78, Remark 22 and Lemma (17),

1I{‖WN‖>C}σ
4
N

N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (ze11 − γ0)]γ1R̂k(ze11 − γ0))

× Tr(γ1E≤k[R(k)
ji (z̄1e11 − γ0)]γ1R̂k(z̄1e11 − γ0)) = oL1(1).

�

7.3.3. Contribution of the third term of (44).

Proposition 56. Fix z1, z2 ∈ C\R and set β1 = z1e11−γ0 and β2 = z2e11−γ0 in Mm(C). The following
convergence holds in probability:

|θN |2
N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (β1)]γ1R̂k(β1)) Tr(γ1E≤k[R(k)

ij (β2)]γ1R̂k(β2))

→N→+∞ −Tr⊗ Tr
{

log
[
idm ⊗ idm − θT{β1,β2}

]
(Im ⊗ Im)

}
− θTr⊗ Tr{T{β1,β2}(Im ⊗ Im)}.
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The proof of Proposition 56 is very similar to the proof of Propositions 50 and 55. Therefore, we only
notice the main differences. Instead of (45), we define for any k ∈ {1, . . . , N},

∇̃k = |θN |
∑
i,j<k

E≤k[R(k)
ij (β1)]γ1 ⊗ γ1E≤k[R(k)

ij (β2)] ∈Mm(C)⊗Mm(C),

and note that

|θN |2
N∑
k=1

∑
i,j<k

Tr(γ1E≤k[R(k)
ij (β1)]γ1R̂k(β1)) Tr(γ1E≤k[R(k)

ij (β2)]γ1R̂k(β2))

= N |θN |Tr⊗TrTN (z1, z2)(∇̃k).
Sticking to the proof of Lemma 51, we can prove the following

Lemma 57.
∇̃k = |θN |

∑
i<k

R̂i(β1)γ1 ⊗ γ1E≤k−1

(
R

(k)
ii (β2)

)
+ |θN |

∑
i,j,l<k

WilR̂i(β1)γ1E≤k−1

(
R

(kil)
lj (β1)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ij (β2)

)
+ o

(u)
L2 (1).

We can also establish the following lemma which is an analog of Lemma 52.

Lemma 58.
∇̃k = N |θN |TN,k,0(z1, z2)(Im ⊗ Im + ∇̃k) + oL1(1).

The proof of the last lemma starts as the proof of Lemma 52 by writing

|θN |
∑
i,j,l<k

WilR̂i(β1)γ1E≤k−1
(
R

(kil)
lj (β1)

)
γ1 ⊗ γ1E≤k−1

(
R

(k)
ij (β2)

)
= |θN |

∑
i,j,l<k

WilR̂i(β1)γ1E≤k−1
(
R

(kil)
lj (β1)

)
γ1 ⊗ γ1E≤k−1

(
R

(kil)
ij (β2)

)
+ |θN |

∑
i,j,l<k

(1− 1
2δil)W

2
ilR̂i(β1)γ1E≤k[R(kil)

lj (β1)]γ1 ⊗ γ1E≤k[R(kil)
ii (β2)γ1R

(k)
lj (β2)]

+ |θN |
∑
i,j,l<k

(1− 1
2δil)|Wil|2R̂i(β1)γ1E≤k[R(kil)

lj (β1)]γ1 ⊗ γ1E≤k[R(kil)
il (β2)γ1R

(k)
ij (β2)].

But now, it is the second term (and note the third one) of the right-hand side that leads to a significant
term whereas the other ones are negligible:

|θN |
∑
i,j,l<k

(1− 1
2δil)W

2
ilR̂i(β1)γ1E≤k[R(kil)

lj (β1)]γ1 ⊗ γ1E≤k[R(kil)
ii (β2)γ1R

(k)
lj (β2)]

= |θN |
∑
i<k

TN,k,0(z1, z2)(∇̃k) + oL1(1).

The rest of the proof of Proposition 56 sticks to the proof of Propositions 50 and 55, using that 0 ≤
|θN | ≤ σ2

N ensuring the invertibility of the involved operators.

7.3.4. Contribution of the fourth term of (44). To handle the fourth term, define

f (1)(ω, x, y) = Tr
(
γ1(ω − xγ2)−1γ1(ω − yγ2)−1)

for ω ∈Mm(C), x, y ∈ R such that ω − xγ2 and ω − yγ2 are invertible. Note that
N∑
k=1

κN
∑
i<k

Tr(γ1E≤k[R(k)
ii (β1)]γ1R̂k(β1)) Tr(γ1E≤k[R(k)

ii (β2)]γ1R̂k(β2))

= κN
∑

1≤i<k≤N
f (1)(ωN (β1), Dii, Dkk)f (1)(ωN (β2), Dii, Dkk) + I1 + I2,

where

I1 =
N∑
k=1

κN
∑
i<k

Tr(γ1E≤k[R(k)
ii (β1)− R̂i(β1)]γ1R̂k(β1)) Tr(γ1E≤k[R(k)

ii (β2)]γ1R̂k(β2))
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and

I2 =
N∑
k=1

κN
∑
i<k

Tr(γ1R̂i(β1)γ1R̂k(β1)) Tr(γ1E≤k[R(k)
ii (β2)− R̂i(β2)]γ1R̂k(β2)).

Using (15), Remark 34, Remark 22 and Proposition 78, we readily obtain that for any p ≥ 1, ‖I1 +
I2‖Lp →N→+∞ 0. Now, noticing that f (1)(ω, x, y) = f (1)(ω, y, x) and using Lemma 19, one can easily see
that

κN
∑

1≤i<k≤N
f (1)(ωN (β1), Dii, Dkk)f (1)(ωN (β2), Dii, Dkk)

= N2κN
2

∫∫
R2
f (1)(ωN (β1), x, y)f (1)(ωN (β2), x, y)(νN ⊗ νN )(x, y) +O(N−1)

−→
N→+∞

κ

2

∫∫
R2
f (1)(ω(β1), x, y)f (1)(ω(β2), x, y)(ν ⊗ ν)(x, y)

Therefore,
N∑
k=1

κN
∑
i<k

Tr(γ1E≤k[R(k)
ii (β1)]γ1R̂k(β1)) Tr(γ1E≤k[R(k)

ii (β2)]γ1R̂k(β2))

= κ

2

∫∫
R2
f (1)(ω(β1), x, y)f (1)(ω(β2), x, y)(ν ⊗ ν)(x, y) + oP(1).

7.3.5. Conclusion. We obtained that for any z1, z2 ∈ (C \ R)2, γN (z1, z2), defined in (42), converges in
probability towards γ(z1, z2). As already observed in (43),

γN (z1, z2) =
N∑
k=1

{
σ̃2
N Tr(γ1R̂k(β1)) Tr(γ1R̂k(β2))

+ Ek
[
E≤k

[
Tr(Φk(β1))R̂k(β1))

]
E≤k

[
Tr(Φk(β2))R̂k(β2))

]]}
.

Let C be as in Proposition 78. If ‖WN‖ ≤ C, then there exists M > 0 such that for any k ∈
{1, . . . , N}, ‖P (W (k)

N , D
(k)
N )‖ ≤ M. Let K > 0 be such that ‖P (xN , DN )‖ ≤ K. Set γ̃N (z1, z2) =

γN (z1, z2)1I{‖WN‖≤C}. Fix z1 ∈ C \ R and set g(z1)
N (z) = γ̃N (z1, z), g(z1)(z) = γ(z1, z). Fix an arbi-

trary subsequence extracted from (g(z1)
N )N≥1. By diagonal extraction from the convergence in probability

above, given a countable subset of C\R, one can extract a subsubsequence, let us say (g(z1)
Ψ(N))N≥1, almost

surely converging to g(z1) pointwise on this subset. Cauchy-Schwarz inequality (with respect to E≤k and
then to the sum over k), (17), Lemmas 5 and 69 readily yield that (g(z1)

N ) is a bounded sequence in
H(C \ [−max(M,K); max(M,K)]). We conclude by Vitali’s Theorem that almost surely (g(z1)

Ψ(N)) con-
verges, uniformly on any compact set of C\[−max(M,K); max(M,K)], towards an holomorphic function
on C \ [−max(M,K); max(M,K)].
Note that g(z1) is holomorphic on C\R. Hence almost surely, g(z1)

Ψ(N) converges, uniformly on any compact
set of C \ [−max(M,K); max(M,K)], towards g(z1). This implies that almost surely, d

dz g
(z1)
Ψ(N) converges,

uniformly on any compact set of C \ [−max(M,K); max(M,K)], towards d
dz g

(z1). Thus, we obtain that
for any z1, z2 ∈ (C \ R)2, ∂

∂z2
γ̃N (z1, z2) converges in probability towards ∂

∂z2
γ(z1, z2).

Now, fix z2 ∈ C \ R and set h(z2)
N (z) = ∂

∂z2
γ̃N (z, z2), h(z2)(z) = ∂

∂z2
γ(z, z2). The same procedure applied

to h(z2)
N as the one used for g(z1)

N above yields that for any z1, z2 ∈ (C \ R)2, ∂2

∂z1∂z2
γ̃N (z1, z2) converges

in probability towards ∂2

∂z1∂z2
γ(z1, z2).

Finally, γN (z1, z2) is bounded in L2 so that by Lemma 78, γN (z1, z2)1I{‖WN‖>C} = oP(1). Proposition 46
follows.

8. Tightness of {ξN (z), z ∈ C \ R}N∈N in H(C \ R) and conclusion

For each N ∈ N, ξN : z 7→ Tr((zIN − P (WN , DN )−1) − E[Tr((zIN − P (WN , DN ))−1)] is a random
analytic function on C \R. Let K be a compact set in C \R. According to Lemma 76, there exists δ > 0
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such that Kδ ⊂ C \ R and for any r > 0,

‖ξN‖rK ≤ (πδ2)−1
∫
Kδ

|ξN (z)|rm(dz).

Therefore

E (‖ξN‖rK) ≤ (πδ2)−1
∫
Kδ

E (|ξN (z)|r)m(dz)(62)

≤ (πδ2)−1 sup
z∈Kδ

E (|ξN (z)|r)m(Kδ).(63)

In order to prove the tightness of {ξN}N∈N in H(C \ R), using Proposition 75, (72) and (63), it is
sufficient to prove that
(64) E (|ξN (z)|) = O(1).
This will readily follows from the following

Proposition 59.
Var[Tr(RN (z))] = O(1).

Proof. From the decomposition (40), apply Lemma 70 to the martingale (E≤k[Tr(zIN −XN )−1])k≥1 and
deduce that

Var[Tr(zIN −XN )−1] =
N∑
k=1

E
[∣∣(E≤k − E≤k−1)[Tr(zIN −XN )−1]

∣∣2].
Recall from the preceding section that, setting β := ze11 − γ0,
Tr(zIN −XN )−1

= (Tr⊗Tr)((e11 ⊗ IN−1)R(k)(β))

+ Tr((e11 + γ1 ⊗ C(k)∗
k R(k,1)(β)γ1 ⊗ C(k)

k )(β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1).
In the second term of the right-hand side, decompose

e11 + γ1 ⊗ C(k)∗
k R(k,1)(β)γ1 ⊗ C(k)

k = (e11 + γ1(idm ⊗ σ2
N Tr)(R(k,1)(β))γ1)− ∂

∂z
Φk(β)

and
(β −Wkkγ1−Dkkγ2 − γ1 ⊗ C(k)∗

k R(k)(β)γ1 ⊗ C(k)
k )−1

= R̂k(β) + R̂k(β)(Wkkγ1 + Ψk(β))(β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1,

so that
Tr(zIN −XN )−1 = (Tr⊗Tr)

(
(e11 ⊗ IN−1)R(k)(β)

)
+ Tr

(
(e11 + γ1(idm ⊗ σ2

N Tr)(R(k,1)(β))γ1)R̂k(β)
)
− Tr

( ∂
∂z

Φk(β)R̂k(β)
)

+ Tr
(

(e11 + γ1 ⊗ C(k)∗
k R(k,1)(β)γ1 ⊗ C(k)

k )R̂k(β)

× (Wkkγ1 + Ψk(β))(β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗
k R(k)(β)γ1 ⊗ C(k)

k )−1
)
.

Observe that the first two terms satisfy

(E≤k − E≤k−1)[(Tr⊗Tr)((e11 ⊗ IN−1)R(k)(β)) + Tr((e11 + γ1(idm ⊗ σ2
N Tr)(R(k,1)(β))γ1)R̂k(β))] = 0

and denote by T1 and T2 the last two terms. Using Jensen’s inequality (with respect to E≤k) after writing
E≤k−1 = E≤kEk,

E[|(E≤k − E≤k−1)[Tr(zIN −XN )−1]|2] = E[|(E≤k − E≤k−1)[T1 + T2]|2]
≤ E[|T1 + T2 − Ek[T1 + T2]|2]
≤ E[Ek[|T1 + T2 − Ek[T1 + T2]|2]
≤ E[Ek[|T1 + T2|2]]
≤ 2(E[Ek[|T1|2]] + E[Ek[|T2|2]]).
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Bound on E[Ek[|T1|2]]:

|T1| ≤ m‖
∂

∂z
Φk(β)‖‖R̂k(β)‖

and deduce from Lemma 43 and (15) that

(65) E[|T1|2] = O(N−1).

Bound on E[Ek[|T2|2]]: by traciality and using (15),

|T2| =
∣∣∣Tr

(
(β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗

k R(k)(β)γ1 ⊗ C(k)
k )−1

× (e11 + γ1 ⊗ C(k)∗
k R(k,1)(β)γ1 ⊗ C(k)

k )R̂k(β)(Wkkγ1 + Ψk(β))
)∣∣∣

≤ m
∥∥(β −Wkkγ1 −Dkkγ2 − γ1 ⊗ C(k)∗

k R(k)(β)γ1 ⊗ C(k)
k )−1

× (e11 + γ1 ⊗ C(k)∗
k R(k,1)(β)γ1 ⊗ C(k)

k )
∥∥‖R̂k(β)‖‖Wkkγ1 + Ψk(β)‖

Then,

|T2|2 ≤ 4m2‖R̂k(β)‖2‖RN (β)‖2(1 + ‖γ1‖4‖C(k)
k ‖

4‖R(k)(β)‖4)(|Wkk|2‖γ1‖2 + ‖Ψk(β)‖2),

and consequently, by Hölder’s inequality with q ∈ [1, 2(1+ε))] and p, r ≥ 1 such that p−1 +q−1 +r−1 = 1.

E[|T2|2] ≤ O(1)E
[
‖RN (β)‖2p

]1/pE[(1 + ‖γ1‖4‖C(k)
k ‖

4‖R(k)(β)‖4)r
]1/r

× E
[
(|Wkk|2‖γ1‖2 + ‖Ψk(β)‖2)q

]1/q
≤ O(1)

(
1 + ‖γ1‖4E

[
‖C(k)

k ‖
8r]1/2rE[‖R(k)(β)‖8r

]1/2r)
×
(
‖γ1‖2E

[
|Wkk|2q

]1/q + E
[
‖Ψk(β)‖2q

]1/q)
≤ O(1)(‖γ1‖2N−1 +O(N−1)) = O(N−1),

because of Lemma 21, Remark 22, Lemma 44 and assumptions on entries of WN . �

Conclusion. It follows from the discussion above that {ξN}N∈N is tight in H(C \ R). Then, according
to Theorem 5.1 in [Bil99], it is relatively compact. According to Section 7, the finite dimensional distri-
butions converge towards those of the Gaussian process G defined in Theorem 2. Since the class of finite
dimensional sets

{
{f ∈ H(C \ R), (f(z1), . . . , f(zk)) ∈ B}, k ∈ N, (z1, . . . , zk) ∈ (C \ R)k, B ∈ B(Ck)

}
is a

separating class, we can deduce Theorem 2 by Theorem 2.6 in [Bil99].

Appendix A. Tools

A.1. Linear algebra.

Proposition 60 (Schur inversion formula). Let A be a unital complex algebra. For non-empty subsets
I, J of {1, . . . , n} and A ∈Mn(A), we denote by AI×J the submatrix of A corresponding to rows indexed
by I and columns indexed by J . In the particular case where I = J , we will use the notation AI .
Let I be a non-empty subset of {1, . . . , n} and A ∈Mn(A) such that AI is invertible, then A is invertible
if and only if AIc −AIc×IA−1

I AI×Ic is invertible, in which case the following formulas hold:

(A−1)I = (AI)−1 + (AI)−1AI×Ic(AIc −AIc×IA−1
I AI×Ic)−1AIc×I(AI)−1,

(A−1)I×Ic = −(AI)−1AI×Ic(AIc −AIc×IA−1
I AI×Ic)−1,

(A−1)Ic×I = −(AIc −AIc×IA−1
I AI×Ic)−1AIc×I(AI)−1,

(A−1)Ic = (AIc −AIc×IA−1
I AI×Ic)−1.

Proposition 61. (Theorem 2.9 in [AS08]) The transpose map on MN (C) induces the well-defined linear
map Θ on Mm(C)⊗MN (C), called the partial transpose map: for X =

∑
k Ak ⊗Bk,

Θ(X) :=
∑
k

Ak ⊗BTk .

For every unitarily invariant norm ‖·‖,

‖Θ(X)‖ ≤ min(m,N) ‖X‖ .



FLUCTUATIONS OF THE STIELTJES TRANSFORM OF ESD OF SELFADJOINT POLYNOMIALS 52

Lemma 62. Assume that an operator A is invertible and ‖A−1‖ ≤ K. Then if ‖∆‖ ≤ (2K)−1, A + ∆
is invertible and ‖(A+ ∆)−1‖ ≤ 2K.

Lemma 63. Let A be in Mn(C) with spectral radius ρ(A). Then for any z ∈ C \ spect(A), we have

‖(z −A)−1‖ ≤
n∑
p=1

(d(z, spect(A))−p [‖A‖+ ρ(A)]p−1
.

Proof. Using Schur decomposition, A = P (D+N )P ∗, where P is a unitary matrix, D is a diagonal with
the same spectrum as A and N is a strictly upper triangular matrix. Note that for any z ∈ C \ spect(A),
(zIn −D)−1N is a nilpotent matrix so that [(zIn −D)−1N ]n = 0

(zIn −A)−1 = P
( n−1∑
p=0

[(zIn −D)−1N ]p
)

(zIn −D)−1P ∗

Hence

‖(zIn −A)−1‖ ≤
n∑
p=1
‖(zIn −D)−1‖p‖N‖p−1

≤
n∑
p=1

(d(z, spect(A))−p [‖A‖+ ρ(A)]p−1
.

where we use ‖N‖ ≤ ‖P ∗AP‖+ ‖D‖ ≤ ‖A‖+ ρ(A) in the last line. �

Lemma 64. (Lemma 8.1 [BC17]) For any matrix M =
∑n
i,j=1Mij ⊗ Eij ∈ Mm(C) ⊗Mn(C) and for

any fixed k,

(66)
n∑
i=1
‖Mik‖2 ≤ m‖M‖2;

n∑
j=1
‖Mkj‖2 ≤ m‖M‖2.

Hence,

(67)
n∑

i,j=1
‖Mij‖2 ≤ mn‖M‖2

Lemma 65. Let m ∈ N, 1 ≤ k ≤ n and A =
∑n
i,j=1Aij⊗Eij , B =

∑n
i,j=1Bij⊗Eij ∈Mm(C)⊗Mn(C).

Define C ∈ Mm(C) ⊗Mm(C) ⊗Mn(C) by C =
∑n
i,j=1 Cij ⊗ Eij where Cij =

∑
l<k Ail ⊗ Blj, for

1 ≤ i, j ≤ n. Then ‖C‖ ≤ ‖A‖‖B‖. In particular,
‖Cij‖ ≤ ‖A‖‖B‖, 1 ≤ i, j ≤ n;( n∑

i=1
‖Cij‖2

)1/2 ≤ ‖A‖‖B‖, 1 ≤ j ≤ n.

Proof. Let Ã :=
∑n
i,l1=1Ail1 ⊗ Im ⊗ Eil1 , P =

∑
l<k Im ⊗ Im ⊗ Ell and B̃ :=

∑n
l2,j=1 Im ⊗ Bl2j ⊗ El2j .

Then
ÃP B̃ =

∑
i,l1,l<k,l2,j

Ail1 ⊗Bl2j ⊗ Eil1EllEl2j

=
n∑

i,j=1

∑
l<k

Ail ⊗Blj ⊗ Eij

=
n∑

i,j=1
Cij ⊗ Eij

= C.

Hence ‖C‖ ≤ ‖Ã‖‖P‖‖B̃‖. Observe that
‖B̃‖ = ‖Im ⊗B‖ = ‖B‖,

‖P‖ = ‖Im ⊗ Im ⊗
∑
l<k

Ell‖ = ‖
∑
l<k

Ell‖ = 1
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and

‖Ã‖ = ‖Im ⊗
n∑

i,l1=1
Eil1 ⊗Ail1‖ = ‖

n∑
i,l1=1

Eil1 ⊗Ail1‖ = ‖A‖.

�

Lemma 66. If ϕ : R→ C is Lipschitz continuous, then, for n×n Hermitian matrices M1,M2 and p ≥ 1,
|Tr(ϕ(M1))− Tr(ϕ(M2))|p ≤ ‖ϕ‖pLipn

p−1‖M1 −M2‖pSp ,

where ‖A‖Sp =
(∑

λ∈sp(A) |λ|p
)1/p is the Schatten p-norm of the normal matrix A.

Proof. Denote by λ1 ≥ · · · ≥ λn the eigenvalues of M1 and µ1 ≥ · · · ≥ µn the eigenvalues of M2. Then,

|Tr(ϕ(M1))− Tr(ϕ(M2))| ≤
n∑
i=1
|ϕ(λi)− ϕ(µi)| ≤ ‖ϕ‖Lip

n∑
i=1
|λi − µi|.

Using Hölder’s and Hoffman-Wielandt inequalities,

|Tr(ϕ(M1))− Tr(ϕ(M2))|p ≤ ‖ϕ‖pLipn
p−1

n∑
i=1
|λi − µi|p ≤ ‖ϕ‖pLipn

p−1‖M1 −M2‖pSp .

�

Theorem 67. ([EH78]Theorem 2.5) Let Φ be a positive linear map on a finite-dimensional C∗-algebra
A. If ρ is the spectral radius of Φ, there is a non-zero positive element z in A such that Φ(z) = ρz.

Lemma 68. Let Φ and Ψ be positive linear maps on Mm(C) such that Φ ≤ Ψ. Then their spectral radii
satisfy ρ(Φ) ≤ ρ(Ψ).

Proof. The proof we give here follows the proof of Theorem 2.5 in [EH78]. One may assume without loss
of generality that Φ and Ψ are irreducible. Indeed, given χ a fixed irreducible positive linear map on
Mm(C), Φn = Φ + n−1χ and Ψn = Ψ + n−1χ are irreducible positive linear maps on Mm(C) such that
Φn ≤ Ψn and converging respectively to Φ and Ψ in norm. If the result holds for Φn and Ψn, letting n
tend to +∞ in ρ(Φn) ≤ ρ(Ψn) gives the conclusion by continuity of the spectral radius in finite dimension.
Assume then that Φ and Ψ are irreducible. According to Theorem 2.4 in [EH78] and sentences below this
Theorem 2.4 in [EH78], the spectral radius of irreducible positive linear maps χ on a finite dimensional
C∗-algebra satisfy
(68) ρ(χ) = max

y≥0
inf{α ∈ R, αy ≥ χ(y)}.

We have by assumption that for any y ≥ 0, Ψ(y) ≥ Φ(y). Thus, (68) readily implies that ρ(Ψ) ≥ ρ(Φ). �

A.2. Concentration bounds for quadratic forms. One can easily deduce the following result from
Lemma 2.7 in [BS98]:

Lemma 69. Let m,n ∈ N, γ ∈ Mm(C) and A =
∑m
i,j=1 eij ⊗ Aij ∈ Mm(C) ⊗Mn(C). Let p ≥ 2 and

Y = (Y1, . . . , Yn) be a n-tuple of independent identically distributed standard complex random variables
with finite 2p-th moment, then

E
[
‖γ ⊗ Y ∗Aγ ⊗ Y − γidm ⊗ Tr(A)γ‖p

]
≤ Km,p‖γ‖2p

((
E
[
|Y1|4

]
max
i,j

Tr(AijA∗ij)
)p/2 + E

[
|Y1|2p

]
max
i,j

Tr((AijA∗ij)p/2)
)
.

A.3. Martingales. The proofs of our variance bounds and of our CLT rely on martingale theory.

Lemma 70. Let (Mk)k∈N be a martingale with values in C and satisfying E[|Mk|2] < +∞, k ∈ N. Then

E[|
N∑
k=1

(Mk −Mk−1)|2] =
N∑
k=1

E[|(Mk −Mk−1)|2], N ∈ N.

Lemma 71. Let (Mk)k∈N be a Mn(C)-valued martingale and p ∈ N be an even integer. Then

E[‖MN −M0‖p] ≤ np/2p!
(
N + p− 2
p− 1

)
max

k=1,...,N
E[‖Mk −Mk−1‖p], N ∈ N.
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Proof. We assume that maxk=1,...,N E[‖Mk −Mk−1‖p] < +∞. Recall that ‖ · ‖ ≤ ‖ · ‖HS ≤ n1/2‖ · ‖.
Observe that

‖MN −M0‖pHS = ‖
N∑
k=1

(Mk −Mk−1)‖pHS

=
∑

i:{1,...,p}→{1,...,N}

〈Mi1 −Mi1−1,Mi2 −Mi2−1〉 · · · 〈Mip−1 −Mip−1−1,Mip −Mip−1〉.

Note that, using Hölder’s inequality,

E[|〈Mi1 −Mi1−1,Mi2 −Mi2−1〉 · · · 〈Mip−1 −Mip−1−1,Mip −Mip−1〉|]
≤ E[‖Mi1 −Mi1−1‖HS · · · ‖Mip −Mip−1‖HS ]
≤ max
k=1,...,N

E[‖Mk −Mk−1‖pHS ]

≤ np/2 max
k=1,...,N

E[‖Mk −Mk−1‖p].

It follows that

E[‖MN −M0‖pHS ] =
∑

i:{1,...,p}→{1,...,N}

E[〈Mi1−Mi1−1,Mi2−Mi2−1〉 · · · 〈Mip−1−Mip−1−1,Mip−Mip−1〉].

Consider a term indexed by i such that i−1(max i) is a singleton. Then

E[〈Mi1−Mi1−1,Mi2 −Mi2−1〉 · · · 〈Mip−1 −Mip−1−1,Mip −Mip−1〉]
= E[E[〈Mi1 −Mi1−1,Mi2 −Mi2−1〉 · · · 〈Mip−1 −Mip−1−1,Mip −Mip−1〉|Fmax i−1]]

= E
[
〈Mi1 −Mi1−1,Mi2 −Mi2−1〉 · · · 〈E[Mmax i −Mmax i−1|Fmax i−1], ∗〉

× · · · 〈Mip−1 −Mip−1−1,Mip −Mip−1〉
]

= 0.

There are at most p!
(
N+p−2
p−1

)
choices of indices i such that i−1(max i) is not a singleton. Indeed, for

a map i : {1, . . . , p} → {1, . . . , N}, there are p! ways to rank i1, . . . , ip in increasing order. Now, since
i−1(max i) is not a singleton, we know that at least the two last values of the increasing sequence are
equal; since there are

(
N+p−2
p−1

)
choices of increasing sequence of p− 1 numbers in {1, . . . , N}, the result

follows. �

The following result may be deduced from its real-valued analogue (Theorem 35.12 in [Bil95]).

Theorem 72. Suppose that, for all N ≥ 1, (M (N)
k )k∈N is a square integrable complex martingale and

define, for k ≥ 1, ∆(N)
k := M

(N)
k −M (N)

k−1. If

(69) ∀ε > 0, L(ε,N) :=
N∑
k=1

E[|∆(N)
k |21|∆(N)

k
|≥ε] −→N→+∞

0,

(70) VN :=
N∑
k=1

E≤k−1[|∆(N)
k |2] −→

N→+∞
v ≥ 0,

and

(71) WN :=
N∑
k=1

E≤k−1[(∆(N)
k )2] −→

N→+∞
w ∈ C

(convergences in (70) and (71) have to be understood in probability), then
N∑
k=1

∆(N)
k ⇒N→+∞ NC(0, v, w).
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A.4. Complex analysis.

Theorem 73. [Vitali, see [Sch05] Exercise 1.4.37] Let D ⊂ Cl be a domain, A ⊂ D a set of uniqueness
(for instance an open set) and (fn)n∈N a bounded sequence in the set H(D) of holomorphic functions on
D (that is supn∈N supx∈K ‖fn(x)‖ < +∞ for any compact subset K ⊂ D), which converges pointwise on
A. Then the sequence (fn)n∈N converges towards a holomorphic function f ∈ H(D).

Theorem 74. [Earle-Hamilton] Let D be a nonempty domain in a complex Banach space X and let f :
D 7→ D be a bounded holomorphic function. If f(D) lies strictly inside D, then f is a strict contraction in
the Carathéodory-Riffen-Finsler metric and thus has a unique fixed point in D. Furthermore, (fn(x0))n∈N
converges in norm, for any x0 ∈ D, to this fixed point.

We recall here a criterion of tightness for random analytic functions from [Shi12]. Let D ⊂ C be an
open set of the complex plane. Denote by H(D) the space of complex analytic functions on D, endowed
with the uniform topology on compact sets. For f ∈ H(D) and K a compact set of D, we denote
‖f‖K = supz∈K |f(z)|. The space H(D) is equipped with the (topological) Borel σ-field B(H(D)) and
the set of probability measures on (H(D);B(H(D))) is denoted by P(H(D)). By a random analytic
function on D we mean an H(D)-valued random variable on a probability space.

Proposition 75. (Proposition 2.5. in [Shi12]) Let (fn)n∈N be a sequence of random analytic functions
on D. If {‖fn‖K}n∈N is tight for any compact set K, then {L(fn)}n∈N is tight in P(H(D)).

Using that, by Markov’s inequality, for any C > 0 and any r > 0,

(72) P (‖fn‖K > C) ≤ 1
Cr

E (‖fn‖rK) ,

the following lemma turns out to be useful to prove tightness results.

Lemma 76. (lemma 2.6 [Shi12]) For any compact set K in D, there exists δ > 0 such that

‖f‖rK ≤ (πδ2)−1
∫
Kδ

|f(z)|rm(dz), f ∈ H(D),

for any r > 0, where Kδ ⊂ D is the closure of the δ-neighborhood of K and m denotes the Lebesgue
measure.

Appendix B. Norm of Wigner matrices

Lemma 77. Let, for each N ∈ N, WN be a N ×N Hermitian matrix such that entries {Wij}1≤i≤j≤N
are random variables bounded by δ and such that for i 6= j, for some ε > 0, E[|

√
NWij |6(1+ε)] ≤ C6, and

E[|
√
NWii|4(1+ε)] ≤ C4. Then

∀p ∈ [2; 4(1 + ε)], E[|Wij |2p] = O(N−p/2−1) and E[|Wii|p] = O(N−p/2).

Proof. By Jensen’s inequality, for p ∈ [2; 4(1 + ε)],

E[|Wii|p] ≤ E[|Wii|4(1+ε)]p/4(1+ε) ≤ Cp/4(1+ε)
4 N−p/2 = O(N−p/2).

Similarly, by Jensen’s inequality, for p ∈ [2; 3(1 + ε)[,

E[|Wij |2p] ≤ E[|Wij |6(1+ε)]p/3(1+ε) ≤ Cp/3(1+ε)
6 N−p = O(N−p) = O(N−p/2−1),

the last equality following from the fact that p ≥ 1 + p/2 when p ≥ 2.
Now, for p ∈ [3(1 + ε); 4(1 + ε)],

E[|Wij |2p] ≤ δ2p−6(1+ε)E[|Wij |6(1+ε)] ≤ δ2p−6(1+ε)C6N
−3(1+ε) = O(N−3(1+ε)) = O(N−p/2−1),

the last equality following from the fact that 1 + p/2 ≤ 3(1 + ε) when p ≤ 4(1 + ε). �

Proposition 78. There exists C > 0 such that for every p ≥ 1, P(‖WN‖ > C) = o(N−p). In particular,
the sequence of random variables (‖WN‖)N≥1 is bounded in every Lp, p ≥ 1.

Proof. By assumption, entries of WN satisfy

E[
√
NWij ] = 0, E[|

√
NWij |2] ≤ Σ2, E[|

√
NWij |`] ≤ b(δN

√
N)`−3, (` ≥ 3).
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For example, Σ = max(supN∈N
√
NσN , supN∈N

√
Nσ̃N ) and b = max(C1/2(1+ε)

6 , C
3/4(1+ε)
4 ). It then

follows from Remark 5.7 in the book of Bai and Silverstein that P(‖WN‖ > C) = o(N−p) for any C > 2Σ
and any p ≥ 1. Then, for such C, p and N ∈ N,

E[‖WN‖p] = E[‖WN‖p1‖WN‖≤C ] + E[‖WN‖p1‖WN‖>C ]
≤ Cp + (NδN )pP(‖WN‖ > C)

is bounded uniformly in N . �

Appendix C. Truncation and centering

Fluctuations of the trace of the resolvent of XN were studied under the hypothesis that entries of WN

are bounded by δN , for a sequence (δN )N∈N slowly converging to 0.
For any bounded continuous function ϕ : R→ C, let

NN (ϕ) := Tr(ϕ(XN )) =
∑

λ∈sp(XN )

ϕ(λ).

In this section, we truncate and center the entries of WN , in order to show that it is sufficient to study
the fluctuations of NN (ϕ) for matrices WN with entries bounded by δN , where (δN )N≥1 is a sequence of
positive numbers such that δN −→

N→+∞
0 at rate less than N−ε for any ε > 0.

Define X̂N = P (ŴN , DN ) by

Ŵij := Wij1|Wij |≤δN/2, 1 ≤ i, j ≤ N,
and accordingly

N̂N (ϕ) := Tr(ϕ(X̂N )).
By union bound,

P(N̂N (ϕ) 6= NN (ϕ)) ≤ P(ŴN 6= WN )

≤
∑

1≤i≤j≤N
P(|Wij | > δN/2)

≤
∑

1≤i<j≤N
(δN/2)−6(1+ε)E[|Wij |6(1+ε)] +

∑
1≤i≤N

(δN/2)−4(1+ε)E[W 4(1+ε)
ii ]

≤
∑

1≤i<j≤N
(δN/2)−6(1+ε) C6

N3(1+ε) +
∑

1≤i≤N
(δN/2)−4(1+ε) C4

N2(1+ε)

≤ C6(δN/2)−6(1+ε)N−1−3ε + C4(δN/2)−4(1+ε)N−1−2ε = o(N−1).

Using the naive bound |N̂N (ϕ)−NN (ϕ)| ≤ 2‖ϕ‖∞N yields:

E[|N̂N (ϕ)−NN (ϕ)|] = E[|N̂N (ϕ)−NN (ϕ)|1N̂N (ϕ) 6=NN (ϕ)]

≤ 2‖ϕ‖∞NP(N̂N (ϕ) 6= NN (ϕ))
≤ o(1).

Define then X̊N = P (W̊N , DN ) by W̊N = ŴN − E[ŴN ] and accordingly

N̊N (ϕ) := Tr(ϕ(X̊N )).

Note that the entries of W̊ are independent, centred and bounded by δN . Furthermore, the off-diagonal
entries are independent and identically distributed, as well as entries on the diagonal. Observe that, for
i 6= j,

|E[Ŵij ]| = |E[Wij1|Wij |≤
δN

2
]| = |E[Wij1|Wij |>

δN
2

]| = O(δ−5−6ε
N N−3(1+ε)).

Furthermore,
E[|W̊ij |2] = E[|Ŵij − E[Ŵij ]|2] = E[|Ŵij |2] +R2,

with |R2| ≤ 3|E[Ŵij ]|2 = O(δ−10−12ε
N N−6(1+ε)). Moreover E[|Ŵij |2] = σ2

N − E[|Wij |21|Wij |>
δN

2
], and

E[|Wij |21|Wij |>
δN

2
] = O(δ−4−6ε

N N−3(1+ε)). Therefore,

E[|W̊ij |2] = σ̊2
N
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with σ̊2
N = σ2

N +O(δ−3−4ε
N N−3(1+ε)). As a consequence, Nσ̊2

N −→
N→+∞

σ2.

We turn now to E[W̊ 2
ij ].

E[W̊ 2
ij ] = E[W 2

ij1|Wij |≤
δN

2
]− E[Ŵij ]2 = θN + R̃2,

with R̃2 = E[W 2
ij1|Wij |>

δN
2

]−E[Ŵij ]2 = O(δ−4−6ε
N N−3(1+ε)). Therefore E[W̊ 2

ij ] = θ̊N , with lim
N→+∞

Nθ̊N =

lim
N→+∞

NθN = θ ∈ R. Note that, even if θN is supposed to be real for all N , E[W̊ 2
ij ] is not real anymore,

but its imaginary part is negligible.
Similar bounds may be proved for E[|W̊ij |4], E[|W̊ij |6(1+ε)], E[W̊ 2

ii] and E[|W̊ii|4(1+ε)] from which it
may be shown that the entries of W̊ satisfy the same properties as the ones of WN . In particular, one
has for all i ∈ {1, . . . , N}, NE[W̊ 2

ii] −→
N→+∞

σ̃2, and, for 1 ≤ i 6= j ≤ N , N2(E[|W̊ij |4] − 2σ̊4
N − θ̊2

N ) =

N2κ̊N −→
N→+∞

κ ∈ R.
Assume now that ϕ is a Lipschitz function. Note that this will be true in particular for functions

in C1
c (R). Using first Cauchy-Schwarz inequality then Hoffman-Wielandt inequality (see for example

[AGZ10] Section 2.1.5), we get

|N̊N (ϕ)− N̂N (ϕ)| =
∣∣Tr

(
ϕ(X̂N )− ϕ(X̊N )

)∣∣
≤
√
N
( N∑
i=1
|ϕ(λi(X̂N ))− ϕ(λi(X̊N ))|2

)1/2

≤
√
N‖ϕ‖Lip

( N∑
i=1
|λi(X̂N )− λi(X̊N )|2

)1/2

≤
√
N‖ϕ‖Lip‖X̂N − X̊N‖HS

≤ N‖ϕ‖Lip‖X̂N − X̊N‖,

where we have used in the last line the classical inequality ‖MN‖HS ≤
√
N‖MN‖ for N ×N matrix MN .

Now, in X̂N = P (ŴN , DN ), decompose each ŴN = W̊N + E[ŴN ], so that X̂N − X̊N is a sum
of a bounded number of monomials in W̊N , E[ŴN ] and DN . All these monomials are of positive
degree in E[ŴN ]. Recall that (‖W̊N‖)N≥1 is bounded in all Lp, p ≥ 1 (see Proposition 78) and
(‖DN‖)N≥1 is bounded (from Assumption 5). Furthermore, (‖E[ŴN ]‖)N≥1 is o(N−1), by the classical
bound ‖E[ŴN ]‖2 ≤

∑
i,j |E[Ŵij ]|2. Consequently, we deduce that E[‖X̂N − X̊N‖] = o(N−1). Therefore

E[|N̊N (ϕ)− N̂N (ϕ)|] = o(1).
From these controls of E[|N̊N (ϕ)− N̂N (ϕ)|] and E[|NN (ϕ)− N̂N (ϕ)|], we conclude that

E[|NN (ϕ)− N̊N (ϕ)|] −→
N→+∞

0.

Hence (
NN (ϕ)− E[NN (ϕ)]

)
−
(
N̊N (ϕ)− E[N̊N (ϕ)]

) P−→
N→+∞

0.

Therefore, by Slutsky’s Lemma, assuming that N̊N (ϕ)−E[N̊N (ϕ)] converges to a Gaussian variable yields
that NN (ϕ)− E[NN (ϕ)] converges to the same Gaussian variable.

As a consequence, for our purposes, we may suppose that the entries ofWN are bounded almost surely
by δN , as long as ϕ is a Lipschitz function.
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