RNAi suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar

To cite this version:

HAL Id: hal-03292338
https://hal.archives-ouvertes.fr/hal-03292338
Submitted on 9 Aug 2021
RNAI suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar

Mamadou D. Sow 1*, Anne-Laure Le Gac 1*, Régis Fichot 1, Sophie Lanciano 2,3, Alain Delaunay 1,5 Isabelle Le Jan 1, Marie-Claude Lesage-Descauses 4, Sylvie Citerne 5, Jose Caius 6, Véronique Brunaud 6, Ludivine Soubigou-Taconnat 6, Hervé Cochard 7, Vincent Segura 4,8, Cristian Chaparro 9, Christoph Grunau 9, Christian Daviaud 10, Jörg Tost 10, Franck Brignolas 1, Steven H. Strauss 11, Marie Mirouze 2,3,8 and Stéphane Maury 1,9,10

1- LBLGC, INRAE, Université d’Orléans, EA 1207 USC 1328, 45067 Orléans, France; 2- IRD, UMR 11 232 DIADE, Université de Montpellier, 34090 Montpellier, France; 3- Université de Perpignan, 12 Laboratory of Plant Genome and Development, 66860 Perpignan, France; 4- BioForA, INRAE, ONF, 13 UMR 0588, 45075 Orléans, France; 5- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université 14 Paris-Saclay, 78000, Versailles, France; 6- Université Paris-Saclay, CNRS, INRAE, Université Evry, 15 Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; 7- Université Clermont 16 Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; 8- UMR AGAP Institut, Université 17 Montpellier, CIRAD, INRAE, Institut Montpellier SupAgro, UMR 1334, F-34398 Montpellier, 18 France; 9- IHPE, Université de Perpignan, UMR 5244, 66100, Perpignan, France; 10- Laboratory for 19 Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut 20 de Biologie Francois Jacob, Université Paris-Saclay, 91057 Evry, France; 11- Department of Forest 21 Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752, USA

ABSTRACT

Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula x Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit.

We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem.

The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements.

Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.

KEYWORDS
ddm1, DNA methylation, drought, epigenetics, hormone, mobilome, poplar, shoot apical meristem
INTRODUCTION

As long-living organisms, trees are subjected to repeated environmental challenges over their lifetimes. During recent decades, forest decline has been reported around the world due to heat and drought episodes (Allen et al., 2010; Anderegg et al., 2016). Survival and adaptation of populations will depend on the ability of trees to cope with rapidly changing conditions. Among the potential sources of flexibility in perennials like trees, epigenetics has received growing attention (Yakovlev et al., 2012, 2016; Bréautigam et al., 2013; Plomion et al., 2016; Carneros et al., 2017; Sow et al., 2018a; Amaral et al., 2020). Epigenetics is defined as the study of heritable changes that affect gene expression without changing the DNA sequence (Russo et al., 1996). Considerable efforts have been made to unravel the role of epigenetics in plant developmental processes, stress responses and adaptation, but primarily in annuals (Slotkin & Martienssen, 2007; Colome-Tatche et al., 2012; Cortijo et al., 2014; Kooke et al., 2015; Raju et al., 2018; Schmid et al., 2018), while its role in perennials like trees still needs clarification (Amaral et al., 2020).

DNA methylation is one of the most studied epigenetic marks (Zhang et al., 2018a). It is important in both plants and mammals for many biological processes, such as imprinting, and its disruption can lead to developmental abnormalities (Vongs et al., 1993; Zemach et al., 2013; Zhang et al., 2018b). In addition to controlling gene expression, DNA methylation is also involved in the maintenance of genome integrity by silencing transposable elements (TEs), preventing them from spreading within the host genome (Fultz et al., 2015; Ikeda & Nishimura, 2015). DNA methylation is required to silence TEs located in the heterochromatin, and a decrease in DNA methylation level can result in their reactivation (Lippman et al., 2004; Mirouze et al., 2009; Mirouze & Paszkowski, 2011). One of the best-known examples of the control of TEs by DNA methylation comes from the study of mutants of chromatin remodeling complexes which are involved in maintenance of DNA methylation, such as Decreased DNA Methylation I (DDM1, a SWI/SNF family member). Its depletion affects the distribution of methylation in all sequence contexts (Vongs et al., 1993; Zemach et al., 2013; Zhu et al., 2013). DDM1 was first identified in Arabidopsis through a forward genetic mutant screen causing a ‘decrease in DNA methylation’ (Vongs et al., 1993). Several studies further characterized ddm1 mutants in Arabidopsis (Saze & Kakutani, 2007; Yao et al., 2012; Zemach et al., 2013; Cortijo et al., 2014; Ito et al., 2015; Kawanabe et al., 2016), turnip (Fujimoto et al., 2008; Sasaki et al., 2012), maize (Li et al., 2014), and rice (Higo et al., 2012; Tan et al., 2016). Recently DDM1 has been shown to mediate the deposition of H2AW, a histone variant important for heterochromatin (Osakabe et al., 2021).

In poplar trees, RNAi-ddm1 lines have been previously obtained by targeting the transcripts of the two orthologous DDM1 paralogs in Populus tremula x Populus alba cv INRA 717-1B4 (Zhu et al., 2013). Under standard glasshouse conditions, the regenerated lines did not show developmental defects, although newly formed leaves displayed necrotic spots after a cycle of dormancy (Zhu et al., 2013). These lines, which have been stabilized in vitro for several years now, represent valuable tools with which to clarify the functional role of DNA methylation in perennials such as forest trees. As a model tree with important genomic resources (Tuskan et al., 2006; Jansson & Douglas, 2007), poplar (Populus spp.) has been a prime system for the study of the ecophysiological and molecular bases of the drought response (Monclus et al., 2006; Street et al., 2006; Bogeat-Triboulot et al., 2007; Cohen et al., 2010; Hamanishi et al., 2012; Fichot et al., 2015). Differences in global DNA methylation levels among poplar hybrid genotypes have been shown to correlate with biomass production under water deficit (Gourcilleau et al., 2010; Raj et al., 2011; Le Gac et al., 2019). Epigenomic analyses have further shown that water deficit induces targeted changes in DNA methylation patterns at phytohormone-related genes, thereby favoring phenotypic plasticity (Lafoz-Placette et al., 2018). This has raised the question of a possible link between epigenetics and phytohormone signaling/ synthesis in the regulation of plant plasticity, particularly in primary meristems where development is initiated (Maury et al., 2019). In addition, it has been shown that winter-dormant shoot apical meristems (SAMSs) of poplars grown under field conditions can keep an epigenetic memory of a summer drought experienced during the growing season through modifications in DNA methylation (Le Gac et al., 2018; Sow et al., 2018b). The role of epigenetic memory in trees, besides poplar, in response to biotic and abiotic stresses or priming is becoming increasingly documented (Yakovlev et al., 2014; Carneros et al., 2017; Gömöry et al., 2017; Yakovlev & Fossdal, 2017; Amaral et al., 2020).

So far, most of the studies conducted in trees focusing on DNA methylation and gene expression have used a correlative approach. For example, extensive gene-body methylation is found in open...
chromatin, is linked to structural gene characteristics, and correlates with tissue-specific gene expression or stress (Vining et al., 2012; Bräutigam et al., 2013; Lafon-Placette et al., 2013, 2018; Liang et al., 2014). Here, we employed a reverse genetic approach using RNAi-<i>ddm1</i> poplar lines to investigate the functional impact of variations in DNA methylation under water deficit conditions. We combined a fine-scale ecophysiological characterization of water deficit responses and growth dynamics with hormone profiling and integrative (epi)genomics in the shoot apical meristem of the hypomethylated RNAi-<i>ddm1</i> lines.

MATERIAL AND METHODS

Plant material, experimental design and control of water deficit

Experiments were conducted on two <i>PtDDM1</i> RNAi lines (<i>ddm1</i>-15 and <i>ddm1</i>-23) and a wild type (WT) line of <i>Populus tremula x Populus alba</i> (clone INRA 717-1B4). These two RNAi-<i>ddm1</i> lines were chosen among those previously described by Zhu et al. (2013) as they consistently displayed lower levels of <i>PtDDM1</i> residual expression (38.0% and 37.5% for <i>ddm1</i>-15 and <i>ddm1</i>-23, respectively) and a decrease of cytosine methylation levels (decrease of 17.0 and 16.7%, respectively) compared to WT. These characteristics were confirmed in the present study. The experiment was conducted in a controlled glasshouse on 4-l potted saplings (see Supporting Information Methods S1 for detailed growth conditions). In total, 81 plants were randomly distributed into nine blocks and assigned to either a well-watered control treatment (WW, one individual of each line per block) or a water deficit treatment followed by rewatering (WD-RW, two individuals of each line per block) (Fig. 1).

Water deficit was initiated at <i>t</i>° on 3-month-old plants and lasted for 3 wk until <i>t</i>1. Plants from the WW condition were kept watered at close to field capacity, while plants from the WD-RW condition were watered to a target value of 40% of relative extractable water (REW, see Methods S1 for detailed information on the control of water deficit). At <i>t</i>1, three blocks were destructively harvested while the six blocks remaining were rewatered and maintained at field capacity before being sampled 1 wk later (<i>t</i>2). As the focus of this study was on post-stress epigenomic events, the blocks sampled at <i>t</i>1 were not considered in this study and the measurements reported hereafter were systematically performed on the six remaining blocks (<i>n</i> = 6 for WW, <i>n</i> = 12 for WD-RW) except where another subset is specified.

The intensity of water deficit was evaluated at <i>t</i>1 by measuring predawn leaf water potential (Ψ_{pd}, MPa) before rewatering. Measurements were performed on a subset of five randomly selected blocks using a pressure chamber (PMS instruments, Albany, OR, USA; <i>n</i> = 5 for WW, <i>n</i> = 5 for WD-RW). Minimum leaf water potential (Ψ_{min}) was estimated for the same plants at midday on the day preceding rewatering.

Physiological and phenotypic characterization

Assessment of growth and leaf phenotypes

Stem height was measured every 2 d using a telescopic ruler, while stem diameter was measured every 4 d using a digital caliper. We also repeatedly measured the number of leaves showing necrotic spots (mottled leaves, see Zhu et al., 2013) during the whole duration of the experiment and counted the number of leaves showing a ‘folded’ morphology. These measurements were performed on all plants (<i>n</i> = 6 for WW, <i>n</i> = 12 for WD-RW).

Leaf traits

Leaf gas exchange was assessed every day during the experiment (<i>n</i> = 5 per line for WW and WD-RW). Bulk leaf carbon isotope composition (δ13C) was measured at <i>t</i>° from a mature leaf on all plants (<i>n</i> = 6 for WW, <i>n</i> = 12 for WD-RW) while stomatal density was assessed on a subset of three blocks (<i>n</i> = 3 for WW and WD-RW). See Methods S1 for detailed procedures for stomatal conductance, carbon isotope composition and stomatal counts.

Xylem vulnerability to drought-induced cavitation
Xylem vulnerability to drought-induced cavitation was assessed at t2 on stems of all plants under the well-watered condition only (n = 6) (INRAE Phenobois Platform, Clermont-Ferrand, France). We used the Cavitron technique, which is well suited to poplars (Cochard et al., 2005; Fichot et al., 2015). The xylem tension causing a 50% loss of hydraulic conductance (P50, MPa) was used to compare vulnerability. See Methods S1.

Phytohormone quantification

Phytohormone assays for abscisic acid (ABA), free auxin, salicylic acid (SA), jasmonic acid (JA) and cytokinins were performed on the individual SAMs collected at t1 (n = 3 for each line and condition) using liquid chromatography–mass spectrometry (LC-MS) according to a previously published procedure (OVCM platform, IJPB, INRAE Versailles, France; Li-Marchetti et al., 2015; Trapet et al., 2016). For more details, see Methods S1.

DNA extraction and determination of global DNA methylation levels by high-performance liquid chromatography (HPLC)

Genomic DNA was extracted from individual SAMs (n = 3 for each line for each water condition at t2) using a cetyl trimethylammonium bromide (CTAB) protocol (Doyle & Doyle, 1987), and was stored at -80°C. Quantity and quality were approximated using a NanoDrop spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). For the HPLC determination of global DNA methylation, we followed the method described by Zhu et al. (2013).

Methylome analyses using whole genome bisulfite sequencing (WGBS)

An equimolar pool of 2 µg DNA at c. 100 ng µl−1 was made for each line in each treatment from four individual SAMs (n = 4; at t2). Whole-genome bisulfite sequencing was performed at the Centre National de Genotypage (CNRGH; Evry, France) in accordance with the procedure described by Daviaud et al. (2018), adapted from the library preparation kit manufacturer’s online instructions (http://www.nugen.com/products/ovationultralow-methyl-seq-library-systems) (see Methods S1). The sequencing was performed in paired-end mode (2 x 150bp) on an Illumina HiSeq4000 platform. Raw data were stored as FASTQ files with a minimal theoretical coverage of 30x.

The bioinformatic pipeline for methylome analysis was adapted from the ENCODE pipeline (https://www.encodeproject.org/data-standards/wgbs) and installed on the Galaxy instance of the Interactions H^otes Pathogenes Environnements (IHPE) platform (http://galaxy.univ-perp.fr/, Perpignan, France) using the reference genome Populus tremula x Populus alba (http://aspendb.uga.edu/index.php/databases/spta-717-genome). For more details, see Methods S1.

Transcriptomic analyses

We performed RNAseq on samples obtained in WD-RW conditions to compare one RNAi-ddm1 line (ddm1-23) to the WT. The line ddm1-23 was chosen as the most representative of the two lines as it showed a smaller decrease in methylation compared to ddm1-15, and most of its DMRs were common to ddm1-15 (see the Results section). Total RNA was extracted from SAMs from three biological replicates per line (n = 3; at t2) using a modified version of the protocol described by Chang et al. (1993). For more details, see Methods S1.

Mobilome-seq and copy number variation of transposable elements

We sequenced extrachromosomal circular DNAs (eccDNAs) in order to identify active TEs, as described by Lanciano et al. (2017). We used c. 6 µg of genomic DNA (the same pools used for WGBS) obtained for each line in each condition from individual SAMs (n = 4; at t2) to prepare mobilome-seq libraries. eccDNAs were isolated and amplified and libraries were prepared and sequenced following Lanciano et al. (2017). Bioinformatic analyses were carried out on the Populus tremula x Populus alba genome (SPta717 v1.1) using the pipelines described by Lanciano et al. (2017). DNA copy number
variation of TEs was assessed for all studied lines in both conditions by quantitative polymerase chain reaction (qPCR) in triplicate. For more details, see Methods S1.

Statistical analyses

Statistical analyses were performed using the R statistical software under the R STUDIO integrated development environment (R Development Core Team, 2015; http://www.rstudio.com/). Means are represented with their standard errors (SE). When measurements were available for more than one individual replicate per block under the WD-RW condition, pseudoreplicates were averaged to yield a single value per block. Differences between lines and conditions for phenotypic traits were evaluated by analysis of variance (ANOVA) on individual values adjusted for block effects. Tukey’s post-hoc test was used to identify differences between groups when ANOVAs indicated significant effects. Statistical tests were performed and *P*-values were calculated according to the methods described by Wasserstein & Lazar (2016).

RESULTS

Phenotypic and physiological differences among lines under well-watered conditions

We performed a drought experiment on WT and RNAi-**ddm1** poplar lines (Fig. 1). Plants in the control condition remained watered close to field capacity during the whole experiment. Relative extractable water (REW) never dropped below 70% (Fig. 2a) and predawn leaf water potential (Ψpd) values remained above -0.5 MPa (Fig. 2b). There was no significant difference in either REW or Ψpd among lines (Fig. 2a,b). The WT and RNAi-**ddm1** lines all showed linear growth during the experiment (Fig. S1a) and there was no significant difference for height growth rates (1.27 ± 0.03 cm d\(^{-1}\), \(P = 0.797\)) or diameter growth rates (0.09 ± 0.02 mm d\(^{-1}\), \(P = 0.091\)) (Fig. 3a,b). Differences among lines were, however, visible for total leaf area, with RNAi-**ddm1** lines exhibiting, on average, 28% lower values compared to the WT (\(P = 0.021\), Fig. S2a), which was mainly explained by the smaller leaves in the middle canopy (Fig. S2b).

Significant differences were observed for xylem vulnerability to cavitation (\(P < 0.001\), Fig. 3c). The WT was c. 10% more vulnerable (\(P_{50} = 2.16 \pm 0.05\) MPa) compared to the RNAi-**ddm1** mean; **ddm1-23** was the most resistant (\(P_{50} = 2.45 \pm 0.04\) MPa), and **ddm1-15** was intermediate (\(P_{50} = 2.28 \pm 0.04\) MPa). By contrast, there were no significant differences between lines for leaf traits (Fig. S3) and xylem structural or biochemical traits (Table S1).

The proportion of leaves showing necrotic spots reached 40% at the end of the experiment for **ddm1-23** and > 60% for **ddm-15**, while it remained close to zero for the WT (Fig. 4). Symptom occurrence was not linear but tended to increase at a specific physiological stage (Fig. 4), mainly on mature leaves and not in the uppermost third of the plant. The RNAi-**ddm1** lines (mostly **ddm1-23**) also exhibited leaves that tended to fold around the midvein (Fig. 4).

In summary, under well-watered conditions, RNAi-**ddm1** lines showed growth and leaf physiology similar to WT. However, RNAi-**ddm1** lines displayed necrotic spots on mature leaves and higher xylem resistance to cavitation (Table 1).

Differences in drought response

Soil water content of drought stressed plants started to exhibit significantly lower values than the control 4 d after the initiation of the water deficit. Values of REW then fluctuated between 20 and 40% until t\(_1\) (Fig. 2a); rewatering at t\(_1\) increased REW back to control values (Fig. 2a). Predawn leaf water potential at t\(_1\) was significantly lower than in well-watered plants (\(P < 0.001\) for each line) and reached c. -0.8 MPa with no significant difference among lines (Fig. 2b). Height and diameter growth rates during
the 3-wk water deficit were significantly reduced, by 25% and 39%, in the WT trees (Fig. 3, P = 0.037 and P = 0.026). By contrast, height and diameter growth rates of RNAi-ddm1 lines were not significantly affected by water deficit (8% and 13% reduction in height growth rates with P = 0.204 and P = 0.244 for RNAiddm1-15 and RNAi-ddm1-23, respectively; 4% and 8% reduction in diameter growth rates with P = 0.828 and P = 0.516 for ddm1-15 and ddm1-23, respectively). Rewatering brought growth back to the levels of the controls (Fig. S1).

In response to water deficit, stomatal conductance started to decrease c. 10 d after drought initiation, that is, once REW had dropped below 40% (Figs 2a, S3). The WT and RNAi-ddm1 lines showed relatively comparable dynamics and reached almost an 80% decrease relative to controls (Fig. S3). Net CO2 assimilation rates were less impacted, in agreement with the moderate intensity of the water deficit (Fig. S3). The WT and RNAi-ddm1 lines all showed leaf traits that were comparable to those of the plants under the well-watered condition, although the WT did show a significant effect of water deficit for leaf δ13C and stomatal density (Fig. S3). Xylem traits were seldom affected by water deficit and were not statistically different among the WT and RNAi-ddm1 lines (Table S1). Water deficit also had no significant effect on the occurrence of leaf symptoms (Fig. 4).

In summary, RNAi-ddm1 lines exhibited a drought response that was mostly similar to the WT in terms of leaf physiology and xylem structure/biochemical composition. However, height and diameter growth were not significantly decreased by the moderate water deficit, in contrast to the WT, suggesting enhanced stress tolerance (Table 1).

Phytohormone concentrations in shoot apices

There were no significant differences among lines in phytohormone concentrations under well-watered conditions. Salicylic acid content, however, was on average almost 2.5 times higher in RNAi-ddm1 lines (Fig. 5). Under water deficit-rewatering conditions, significant differences among lines were observed for SA (Fig. 5); SA was still almost two times higher in RNAi-ddm1 lines, while zeatin riboside and zeatin-O-glucoside riboside levels were on average one third lower in RNAi-ddm1 lines (Fig. 5). Although the ABA concentrations were on average 20% lower for the RNAi-ddm1 lines compared to WT, the results did not reach statistical significance (P = 0.267). Free auxin concentrations were similar among all lines (Fig. 5). The WT exhibited the lowest values among all lines for SA, and the SA concentration did not change significantly as a function of the stress conditions (Fig. 5). Concentrations of zeatin riboside and zeatin-O-glucoside riboside were higher in the WT because of a treatment-induced increase (Fig. 5). Concentrations of isopentenyladenosine showed a more complex pattern, with RNAiddm1-15 and RNAi-ddm1-23 exhibiting the lowest and the highest values, respectively (Fig. 5).

In summary, RNAi-ddm1 lines differed from the WT, mostly under water deficit for SA (higher) and cytokinin (lower) concentrations (Table 1; Fig. 5) suggesting a physiological change in the hormonal balance;

Methylome analysis and identification of constitutive and stress-specific RNAi-ddm1 differentially methylated regions (DMRs) and differentially methylated genes (DMGs) in the shoot apical meristem

Global DNA methylation values in the SAM, obtained via HPLC, ranged from 17.5% to 21.3% depending on the line and condition (Fig. S4a), confirming a reduction of whole genome methylation of up to 17.8%, in agreement with Zhu et al. (2013). There was no significant line x condition interaction. Values were significantly lower in RNAi-ddm1 lines compared to the WT under water deficit/rewatering (WD-RW) only, although there was no significant general effect of water deficit (Fig. S4a). Whole genome bisulfite sequencing (WGBS) analysis was performed on SAMs (Fig. S5), and cytosine methylation percentages for the three contexts ranged from 18.6% to 19.6% in the CpG context, 4.4% to 6.0% in the CHG context and 1.6% to 2.0% in the CHH context, with RNAi-ddm1-15 systematically displaying the lowest values, with a 25.0% decrease for the CHG context (Table S2; Fig. S5d);

We considered different types of differentially methylated regions (DMRs) between lines and conditions (Figs 6, S4b, S6a; Tables 1, S3). In order to focus on DMRs specifically related to PtDDM1 down-regulation, DMRs common to both ddm1-15 and ddm1-23 lines vs WT were identified and used for further analysis (Table 1, Fig. 6). In total, 5374 common DMRs were identified under well-watered
conditions (hereafter named ‘constitutive RNAi-ddm1’ DMRs; Table 1; Figs 6a, S6a). Under the water deficit/rewatering condition, 5172 DMRs were similarly identified, among which 1736 were common to RNAi-ddm1 constitutive DMRs, while 3436 were specific to the WD-RW condition (hereafter named ‘stress-specific RNAi-ddm1’ DMRs) (Table 1, Figs 6a, S6a). Altogether, most of the DMRs were hypomethylated and context-dependent, with higher values found in the CHG context, followed by the CpG and CHH contexts (Fig. 6a). However, in the CpG context, these DMRs presented both significant hypo- and hypermethylated patterns (Fig. 6a). In addition, 2592 DMRs that were common to the WT and RNAi-ddm1 lines were identified in response to water deficit/rewatering (Table 1, Fig. 6b). However, as this type of DMR has already been reported for the WT (Lafon-Placette et al., 2018), we further focused our attention on constitutive and stress-specific RNAi-ddm1 DMRs (Tables 1, S3; Figs 6, S7).

Regardless of the treatment, constitutive and stress-specific RNAi-ddm1 DMRs were found in intergenic regions (73% and 71%, for WW and WD-RW conditions, respectively), genes (19% and 21%), promoters (± 2 kb from the TSS; 7% and 8%), and TEs (1%, 47 TEs in WW and 48 TEs in WD-RW) (Fig. S7a). Under control conditions, 879 genes were strictly included within the RNAi-ddm1 constitutive DMRs (hereafter called DMGs for ‘differentially methylated genes’), while 910 DMGs were found in stress-specific RNAi-ddm1 DMRs (Tables 1, S3). Approximately one-third of DMGs (390 genes) were common between conditions and represented constitutive and stable RNAi-ddm1-DMGs, while 520 new DMGs were observed (stress-specific RNAi-ddm1 DMGs) (Tables 1, S3). These numbers increased considerably (up to > 13 000 out of 41 335 genes) when enlarging the windows for DMR identification from 2 kb to 25 kb (Fig. S7b). Under both conditions, a similar number of hypo- and hypermethylated DMGs was found in the CpG context, while in the CHG and CHH contexts, DMGs were mostly hypomethylated (Fig. 6c). In the CHH context, DMGs were slightly methylated (25% to 50% difference) compared to the CpG and CHG contexts (Fig. 6c). Gene ontology (GO) annotation of DMGs (879 in WW or 910 in WD-RW) revealed significant enrichment in similar biological functions such as development (including shoot system morphogenesis), regulation of gene expression (epigenetics, ATP-dependent chromatin remodeling, histone modifications), response to hormones, immune response and abiotic stress (Fig. 6d,e). Under the WD-RW condition, GO terms for the lost DMGs (489, Fig. S7c) were related to development (meristem development), hormones (regulation of hormone levels, response to auxin) and gene silencing. Gene ontology terms for stable DMGs (390, Fig. S7d) were related to development, jasmonic acid, epigenetics, immune response and metabolic processes, while the new DMGs (520, Fig. S7e) were associated with development, and defense/immune/abiotic responses, suggesting that stable and new DMRs preferentially target stress related genes.

In summary, the analysis of the SAM methylome highlighted that DDM1 knock-down mostly led to hypomethylated CHG DMRs in RNAi-ddm1 lines, irrespective of the treatment. However, the constitutive ddm1-DMRs were largely (approximately two-thirds, Table 1) affected in water deficit conditions (WDRW), suggesting that alteration of DDM1 machinery in the SAM has the potential to affect development and stress responsive genes, including those related to hormone pathways under stress conditions (Table 1; Fig. S6b).

Transcriptome analysis in the shoot apical meristem

To analyze the impact of a water deficit and rewatering cycle on the SAM, we performed an RNAseq experiment to investigate the differences between RNAi-ddm1 (ddm1-23) and WT SAMs under the WD-RW condition. The identification of differentially expressed genes (DEGs) revealed limited but clear differences (Fig. 7). Out of 32 048 analyzed genes, only 136 genes (Fig. 7; Table S3) were significantly differentially expressed (76 upregulated and 60 down-regulated genes in RNAi-ddm1 as compared to the WT, P < 0.05). Gene ontology annotation revealed significant enrichment in functions such as defense response, immune and wounding responses, response to hormones and signaling, leaf senescence and programmed cell death (Fig. 7a).

The 136 DEGs (RNAi-ddm1 vs WT in WD-RW condition) were grouped into main classes (Fig. 7b). Genes related to the immune response were systematically up-regulated in RNAi/ddm1 (RBOHD, CYP94B1, RLP1, RLP56, RPM1, PLDGAMMA1, PDF1; Fig. 7b). Most genes related to transcription factors (15/17) were also up-regulated (WRKY, MYB106, ERF, SZF2, PDF2, SVP/AGL22), with only two genes downregulated (MYB48 and DTA2). Defense and cell wall related genes were both up-regulated (18, including CHITIV, KTI11, and PR4, involved in plant pathogen-interaction) and downregulated (13). Phytohormone pathways were also overrepresented in distinct classes, with 13
DEGs (8 up-regulated and 5 down-regulated) directly involved in defense responsive hormone biosynthetic pathways such as salicylic acid (SAMTs), jasmonic acid (OPR2, CYP94B1), ethylene (ERF1, ERF12), auxin responsive genes (SAUR29, GH3.1, IBR3, BG1, ABCG36), gibberellic acid synthesis (GA3OX1) and cytokinins (AHP1) (Fig. 7b).

Although only seven DEGs overlapped strictly with the DMR genomic locations (previously identified DMGs) (Fig. 7b), 53 were located within the close vicinity of a DMR (± 10 kb) and 98 within ±25 kb (Fig. S8a). Methylation in the three contexts correlated negatively with expression values when considering at least a ± 10 kb window for DMRs (Spearman’s rho = -0.32 at P = 0.0004) (Fig. S8b).

In summary, the analysis of the SAM stress-transcriptome suggests that, under the stress conditions tested, DDM1 plays a role in repressing genes involved in stress and defense response, including hormonal pathways (Table 1; Fig. S6b).

Mobilome analysis and transposable element genomic integration in the shoot apical meristem

The mobilome-seq approach, which consists of the sequencing of intermediate extrachromosomal circular forms (eccDNA) of TEs (Lanciano et al., 2017), allowed the identification of both active DNA transposons and retrotransposons belonging to 44 to 169 TE families, depending on lines and conditions (RNAi-ddm1-23 in Fig. 8a, RNAi-ddm1-15 in Fig. S9a). This number of identified active TE families was always higher under water deficit conditions, regardless of the line. Most of the eccDNAs identified belonged to the annotated Gypsy, Copia, ENSPM, L1, Ogre, POPGY and SAT families of TEs and repeats. We used depth of coverage (DOC), ranging from 4 x to 51 000 x, to classify TEs into four categories. Transposable elements identified in RNAi-ddm1 and WT lines belonged to the four groups under either condition (Figs 8a, S9a; Table S3), with split-read (SR) coverage ranging from 3 x to 4600 x suggesting the presence of reads spanning the junction of eccDNAs.

Constitutive (WW) and stress-induced (WD-RW) specific TEs were identified (414 TE families in all lines and conditions; Fig. 8a; Table S3). The two most active TEs (Gypsy23 and Gypsy27) were detected in both WT and RNAi-ddm1 lines, but Gypsy23 was specifically activated under stress conditions (i.e. the WD-RW condition) (Figs 8a, S9a). Active TEs only detected in RNAi-ddm1 lines were found under WW (28 TEs) and WDRW (89 TEs) conditions. Approximately 21% of the active TEs detected by mobilome-seq strictly co-localized with RNAi-ddm1 DMRs. This percentage reached > 50% when considering the presence of a DMR at ± 25 kb (Fig. S9b). These active TE families were mainly hypomethylated (c. 92% of the TE families) in RNAi-ddm1 lines (Fig. 8b), and the most active TEs (TE++++) co-localized with DMRs in the CHG context (data not shown). Under stress conditions, active TEs were also hypomethylated in both CpG and CHG contexts but hypermethylated in the CHH context.

The number of genes identified in the vicinity of TEs varied from 45 (TEs inside genes) to 1788 (when considering TEs within ±25 kb of genes) (Fig. S9b; Table S3). Gene ontology annotation of the genes co-localizing with TEs (±10 kb of genes) revealed an enrichment for function in hormone response, immune/defense/abiotic responses and development (Fig. S9c). However, only seven of these genes were previously detected as DEGs (Fig. 7b) when considering the region of ±25 kb.

In order to test for new genomic integrations of the detected active TEs, we assessed copy number variation for three highly active TEs (DNA-3-3_1, Gypsy23 and SAT-1) localized in or near DMRs by qPCR analysis (Figs 8c, S9d). For DNA-3-3_1, there was no significant variation in the copy number, regardless of the line and condition. For the other TEs, an increase in copy number was observed in RNAi-ddm1 lines under water deficit only – 15 copies of Gypsy23 in RNAi-ddm1-23 (Fig. 8c) and 18 copies of SAT-1 in RNAi-ddm1-15 (Fig. S9d). In the RNAi-ddm1 background, Gypsy23 is located inside a CHG hypomethylated DMR, while SAT-1 is found near (2 kb) a CpG and CHG hypomethylated DMR.

In summary, hundreds of active TEs were detected in the SAM, and several of them were stress-induced. DDM1 knockdown had only a limited impact on the active TE population. However, a genomic copy number increase for two TE families could only be detected in RNAi-ddm1 lines, showing a role for DDM1 in protecting meristem genome integrity under stress conditions (Figs 8c, S6b).
DISCUSSION

Relevance of RNAi-ddm1 poplar lines to the investigation of the stress response in trees

Decreased DNA Methylation I (DDM1) is a plant gene encoding a nucleosome remodeler which facilitates DNA methylation (Zemach et al., 2013; Zhang et al., 2016; Osakabe et al., 2021). While studies on ddm1 mutants have revealed a major role in silencing TEs and a minor role for DDM1 on silencing few heterochromatic genes depending on annuals plants (Arabidopsis, tomato, maize, rice), its role in trees and the effect of the environment remain largely unknown (Zemach et al., 2013; Tan et al., 2016; Zhang et al., 2016; Corem et al., 2018; Long et al., 2019). Here, we investigated the role of DDM1 in a perennial tree (i.e. poplar) under drought conditions in the shoot apical meristem, the center of morphogenesis and differentiatiation of reproductive cells. We previously characterized stress-induced DMRs in the SAM of various poplars, including the WT P. tremula x P. alba 717-1B4, revealing that epigenome and transcriptome remodeling following post-drought recovery preferentially affects genes in hormonal pathways (Lafon-Placette et al., 2018). DNA methylation and other epigenetic marks are thought to interact with hormone signaling to control developmental plasticity (Ojolo et al., 2018), especially in meristems (Maury et al., 2019; Amaral et al., 2020) but, so far, functional evidence in meristems has been lacking. Thus, we used a reverse genetic approach and investigated the drought response of RNAi-ddm1 poplar lines that have already been stabilized in vitro for several years (Zhu et al., 2013).

The global hypomethylation observed in the two poplar RNAi-ddm1 lines indicated that PtDDM1 knock-down (Zhu et al., 2013) was effective in the shoot apical meristem. Wholegenome bisulfite sequencing further confirmed this hypomethylation at the genomic level in the three contexts (CpG, CHG and CHH). However, methylation levels in CHG were drastically reduced, suggesting that poplar DDM1 preferentially targeted methylation in this context. This agrees with reports in rice and maize (Li et al., 2014; Tan et al., 2016; Long et al., 2019) but differs from those in Arabidopsis and tomato (Vongs et al., 1993; Kakutani et al., 1995; Kakutani, 1997; Lippman et al., 2004; Zemach et al., 2013; Corem et al., 2018). In addition, DDM1- dependent methylation in the SAM of poplar was shown to affect active TEs but also many genes, and to be remodeled by the stress conditions. This confirms that the effects of DDM1 on euchromatic and heterochromatic DNA methylation patterns are different depending on species (Zemach et al., 2013; Tan et al., 2016; Long et al., 2019) and environmental conditions.

The necrotic spots on RNAi-ddm1 leaves reported by Zhu et al. (2013) were consistently observed in our experiment, mainly on mature leaves, and this has previously been associated with ddm1 mutation in Arabidopsis (Kakutani et al., 1995; Questa et al., 2013; Kooke et al., 2015) and hypomethylated drm1 drm2 cmt3 mutants (Forgione et al., 2019). It has been suggested that this phenotype is associated with either the demethylation-induced hyperactivation of disease resistance genes or the demethylation-induced reactivation of retrotransposon and virus-like elements under stress conditions (Zhu et al., 2013). In our case, the higher endogenous concentrations of SA observed in the SAM of RNAi-ddm1 lines would support the first hypothesis, since the accumulation of SA is known to be associated with DDM1 mutations and is related to the activation of hypersensitive response cell death or systemic acquired resistance (Dong, 2004; Song et al., 2004; Liu et al., 2010; Zhang et al., 2016; Badmi et al., 2019). However, further research in leaves will be needed to confirm this hypothetical SA accumulation in mature leaves in relation to the appearance of necrotic spots during the time-course of the experiment.

Apart from the leaf phenotypic alterations, we did not observe any striking phenotypes for RNAi-ddm1 lines – growth and water relations under control conditions were mostly comparable to those of the WT. As gas exchanges were measured on young developing leaves without necrotic spots, we do not take into account their potential effect. However, the moderate water deficit revealed subtle differences in growth capability, which, combined with the intrinsic higher cavitation resistance, suggests that alterations to the DDM1-dependent DNA methylation in the two RNAi-ddm1 lines translated into increased tolerance to water-stress.

Hypomethylated RNAi-ddm1 poplar lines are more tolerant to water deficit

Tolerance to water deficit is a complex trait encompassing multiple physiological determinants that relate to diverse processes such as growth maintenance, survival, or recovery, depending on the
context of drought intensity and duration (McDowell et al., 2008; Volaire et al., 2018). The moderate water deficit we imposed avoided a rapid growth cessation and promoted steadystate acclimation. The time course of soil REW was similar between the RNAi-ddm1 and the WT lines during the whole experiment, indicating that all lines actually faced the same level of water deficit. However, while growth progressively slowed in the WT as REW dropped below 40%, as commonly observed in poplars (Bogeat-Triboulot et al., 2007), RNAi-ddm1 lines remained unaffected. This, combined with the fact that RNAi-ddm1 lines exhibited growth similar to that of the WT under control conditions, suggested increased tolerance to moderate water deficit in the RNAi-ddm1 lines. Furthermore, the RNAi-ddm1 lines also exhibited higher xylem resistance to droughtinduced cavitation, suggesting improved stress resilience under severe water deficit (Brodribb & Cochard, 2009; Barigah et al., 2013). How modifications to the DDM1 machinery can affect xylem resistance to cavitation remains unknown at this stage. Interestingly, xylem morphometric features, xylem density and xylem biochemical composition were not significantly different from the WT. However, given the mechanistic understanding of drought-induced cavitation in angiosperms, it is likely that the increased resistance observed in the RNAi-ddm1 lines was primarily linked to modifications in the ultrastructure of vesselvessel bordered pits (Plavcova & Hacke, 2011; Fichot et al., 2015). Whether the slight gain in intrinsic cavitation resistance (i.e. a few tenths of a MPa) does promote increased survival under severe water deficit, and whether epigenetics might be exploited as such for increasing drought tolerance, remains to be purposely tested.

DDM1-dependent DNA methylation and hormone signaling interact in the shoot apical meristem to orchestrate stress tolerance

The improved stress tolerance in the two RNAi-ddm1 lines was not associated with sharp differences in water relations or more general phenotypes. Another possibility could be physiological differences related to the phytohormone balance under water deficit. Epigenetics has been linked to phytohormone pathways (Latzel et al., 2012; Yamamuro et al., 2016; Ojolo et al., 2018; Raju et al., 2018; Kooke et al., 2019), which could play a major role in meristems for developmental plasticity (Maury et al., 2019; Amaral et al., 2020). Interestingly, although poplar RNAi-ddm1 lines displayed hormone profiles in the shoot apex comparable to those of the WT under control conditions, differences were visible under the water deficit conditions, especially for cytokinins (CKs) and salicylic acid (SA). RNAi-ddm1 lines also displayed decreased expression of histidine-containing phosphotransfer protein 1 (AHP1) which plays a role in propagating cytokinin signal transduction. Cytokinins are known to be negative regulators of stress signaling, and CK-deficient plants with reduced levels of various CKs are generally more tolerant to drought and salt stress (Havlova et al., 2008; Nishiyama et al., 2011; Ha et al., 2012). Higher endogenous levels of SA, as observed for the RNAi-ddm1 lines compared to WT, have also been shown to promote tolerance to stresses including drought (Munne-Bosch & Penuelas, 2003; Bandurska & Stroi - nski, 2005; Azooz & Youssef, 2010; Pandey & Chakraborty, 2015; Sedaghat et al., 2017). Accordingly, SAMT1, a salicylic acid methyltransferase gene, was up-regulated in stressed RNAi-ddm1 lines compared to the WT (Mofatto et al., 2016).

Although PtDDM1 knock-down affected the methylation of c. 900 genes common to both RNAi-ddm1 lines, only a limited number of DEGs was found under water deficit, with seven DEGs strictly overlapping with DMRs (53 for genes at ±10 kb of DMRs). While no clear correlation between DNA methylation and expression changes may exist at the genomic level, the transcriptional activity of a subset of genes still might be regulated, both directly and indirectly, by DNA methylation in response to abiotic stress (Karan et al., 2012; Garg et al., 2015; Chwialkowska et al., 2016; Lafon-Placette et al., 2018). Indeed, we found genes such as transcription factors and hormonerelated pathways that are likely to explain, at least in part, the improved performance of poplar RNAi-ddm1 lines under water deficit. Several transcription factors, such as SVP, MYB48, ERF1, acting in phytohormone pathways and involved in biotic and abiotic stresses were also upregulated in RNAi-ddm1 lines in comparison to WT under water deficit (Sun & Yu, 2015; Bechtold et al., 2016; He et al., 2016; Wang et al., 2017; Heyman et al., 2018; Wang et al., 2018; Guo et al., 2019). Other DEGs, including genes involved in the leaf cuticle and waxes (MYB106, CER8, FLA12), could also partly explain the improved tolerance to moderate water deficit in RNAi-ddm1 lines by preventing uncontrolled water loss (Chen et al., 2011; Oshima & Mitsuda, 2013, 2016; Wettstein-Knowles, 2016).
Altogether, these findings confirm that common changes in DDM1-dependent DNA methylation found in both RNAi-ddm1 lines, especially in the shoot apical meristem, can alter hormonal balance and pathways under stress conditions, possibly leading to improved physiological performance (Fig. S6b). This shows the complex connections between chromatin, hormones in meristems and plasticity (Lafon-Placette et al., 2018; Maury et al., 2019).

DDM1-dependent DNA methylation regulates transposable element reactivation and insertion in the shoot apical meristem under stress conditions

The repressive role of DNA methylation and DDM1 on TE proliferation is well-established in plants (Miura et al., 2001; Johannes et al., 2009; Mirozue et al., 2009; Reinders et al., 2009; Tsukahara et al., 2009; Corem et al., 2018; Quadrana et al., 2019). We identified a large set of active TE families in the SAM, with up to 50% of them located within ± 25 kb of one RNAiddm1 common DMR and being mostly hypomethylated in the CpG and CHG contexts and hypermethylated in the CHH context under stress conditions. However, the activation of TEs was more affected by the stress conditions than the DDM1 knockdown. We could nonetheless detect increased copy numbers of some of the most active TEs (Gypsy-23 and SAT-1) only in RNAi-ddm1 lines under water deficit, suggesting that DDM1 plays a role in limiting TE reactivation and integration under stressful conditions in the SAM.

Our findings provide evidence that a repression of DDM1-dependent DNA methylation can reactivate TEs, especially under stressful conditions, potentially producing genetic variations. Quadrana et al. (2019) proposed that TEs are potent and episodic (epi)mutagens that increase the potential for rapid adaptation. Epigenetic regulation may act as a hub through which nongenetically inherited environmentally induced variation in traits can become genetically encoded over generations (Danchin et al., 2019). Recently, Baduel & Colot (2021) proposed that the adaptive contribution of TE-associated epivariations is mainly related to their ability to modulate TE mobilization in response to the environment. This definitely deserves further attention, as genes found close to our active TEs were involved in hormone and stress responses or development. Elucidating the evolutionary significance of both naturally occurring and environmentally induced variations in DNA methylation in the context of tree population dynamics will be of particular interest for long-living organisms such as trees in the age of rapid climate change.

AKNOWLEDGMENTS

MDS and ALLG received PhD grants from the Ministère de la Recherche et Enseignement Supérieur. This work was supported by INRAE (grant PI EPP 2014 to SM), the RTP3E CNRS grants for mobility (http://rtp3e.wixsite.com/rt3e; ALLG, SM, CG and MM) and access to the IHPE platform (http://galaxy.univ-perp.fr/, Perpignan, France). The LBLGC also benefits from the support of the ANR EPITREE (ANR-17-CE32-0009-01) to SM. English editing was done by Infinity English (no. SIRET 82950710200012). The IJPB benefits from the support of Saclay Plant Sciences-SPS (ANR-17-EUR0007). This work has benefited from the support of IJPB’s Plant Observatory technological platforms. SL and MM were supported by the French National Agency for Research (ANR-13-JSV6-0002 ‘ExtraChrom’) and the Laboratoire d’Excellence LABEX TULIP (ANR-10-LABX-41).

AUTHOR CONTRIBUTIONS

SM designed and coordinated the research. The plant experimental design was established by SM, SHS, RF, and FB. Ecophysiological measurements were performed by A-LLG, RF, AD, ILJ and HC; analysis was conducted by A-LLG and RF. Near infrared spectroscopy (NIRS) measurements and analysis were performed by A-LLG and VS. Phytohormone analysis was performed by SC. DNA and RNA extractions were done by AD, A-LLG and MDS. High-performance liquid chromatography analysis was performed by AD and SM. RNA-seq was conducted and analyzed by JC, VB, and LS-T with MDS. JT and CD performed the WGBS analysis. The WGBS data analysis was performed by SM, ALLG and MDS. Bioinformatics for WGBS was done with the help of CC and CG. Mobilome analysis was performed under the supervision of MM with SL and A-LLG. Quantitative polymerase chain reaction analyses were performed by MCLD with AD and MDS. Data analysis was performed by SM, A-LLG and MDS. Statistical analyses were performed by RF, A-
LLG and MDS. SM, RF, A-LLG and MDS conceived and wrote the first draft of the manuscript, MM helped revise the manuscript, and SHS edited and helped to direct final analyses and organization of the manuscript. All authors approved the final version of the manuscript. MDS and A-LLG contributed equally to this work.

DATA AVAILABILITY
The data that support the findings of this study are openly available: The WGBS data have been deposited in the Sequence Read Archive (SRA) at https://www.ncbi.nlm.nih.gov/sra/ PRJNA611484, reference no. PRJNA611484; the RNA-Seq data in the GEO (Gene Expression Omnibus) at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135313, reference no. GSE135313 and also in the CATdb database at http://tools.ips2.u-psud.fr/CATdb/, reference no. NGS2017-01-DDM1; and the Mobilome-Seq data in the GEO at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147934, reference no. GSE147934, as well as in the Supporting Information Table S3.

SUPPORTING INFORMATIONS
Additional Supporting Information may be found online in the Supporting Information section at the end of the article.
Fig. S1 Comparison of growth kinetics over the experiment between both conditions.
Fig. S2 Leaf phenotypes among lines under both conditions.
Fig. S3 Physiological differences among lines under both conditions.
Fig. S4 Variations in DNA methylation among RNAi-ddm1 and wild-type (WT) lines in the shoot apical meristem 1 wk after rewatering (t2).
Fig. S5 Strategies for bioinformatic analysis of the methylome.
Fig. S6 Concepts and summary of differential methylation analyses: from ddm1 differentially methylated regions (DMRs) to phenotype.
Fig. S7 Identification of differentially methylated genes (DMGs).
Fig. S8 Relationship between variation in DNA methylation and gene expression.
Fig. S9 Transposable element activity among RNAi-ddm1 and WT lines in the shoot apical meristem collected 1 wk after rewatering (t2).
Methods S1 Additional detailed procedures for ecophysiological, genomic and bioinformatic analyses.
Table S1 Xylem structural, functional and biochemical traits measured for the WT and the two RNAi-ddm1 poplar lines.
Table S2 Mean methylation levels in RNAi-ddm1 and WT lines in both conditions.
Table S3 Lists of DMRs, DMGs, differentially expressed genes (DEGS), transposable elements (TEs) and genes near TEs. Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.

resulting from the combined loss of sequence variation and DNA methylation. Proceedings of the National Academy of Sciences, USA 109: 16240–16245.

Oshima Y, Mitsuda N. 2013. The MIXTA-like Transcription factor MYB16 is a major regulator of cuticle formation in vegetative organs. Plant Signaling & Behavior 8: e26826.

Questa JI, Fina JP, Casati P. 2013. DDM1 and ROS1 have a role in UV-B induced- and oxidative DNA damage in A. thaliana. Frontiers in Plant Science 4: 420.

Fig. 1

General overview of the drought experiment on poplars (*Populus tremula* x *Populus alba*). (a) Timeline of the experiment. Propagated *in vitro* plantlets from the wild-type (WT) and the two RNAi-*ddm1* transgenic lines were acclimated in a heated glasshouse, transferred into 4 l pots and kept under control conditions until they were 3-months-old. At that time (t₀), a water deficit was initiated for the plants assigned to the water deficit/rewatering treatment (WDRW), while control plants were kept wellwatered (WW). After 3 wk of water deficit (t₁), plants of the WD-RW condition were rewatered to field capacity for 1 wk, after which the experiment ended (t₂). The ecophysiological characterization of plant material was performed between t₀ and t₂. Sampling of shoot apical meristems (SAMs) for molecular analysis was performed at t₂. (b) Overview of the plants in the glasshouse. (c) Examples of plant phenotypes at t₂ under WW and WD-RW conditions for WT and RNAi-*ddm1* lines.
Fig. 2

Measurements of soil water content and leaf water potential during the experiment. (a) Time course of soil relative extractable water (REW) during the experiment for the wild-type (WT) and the two RNAi-ddm1 (ddm1-15, ddm1-23) transgenic poplar lines (*Populus tremula* x *Populus alba*) under control (well-watered, WW) and stress (moderate water deficit followed by rewatering, WD-RW) conditions. Water deficit in the WD-RW condition started on day 0 (t0) and lasted for 3 wk, after which plants were rewatered (t1) for an additional 1 wk period (t2). Values are genotypic means ± SE (n = 6 for WW, n = 12 for WD-RW). (b) Predawn leaf water potential measured at the drought peak (i.e. before rewatering on day 21) for the WT and the two RNAi-ddm1 (ddm1-15, ddm1-23) poplar lines. The white bars represent the control condition and the black bars represent the stress condition (moderate water deficit followed by rewatering). Values are genotypic means ± SE (n = 5). Asterisks indicate significant differences between conditions for each line (***, *P* < 0.001)
Physiological traits measured during the drought experiment. (a) Height and (b) diameter growth rates during the 3 wk of water deficit from t0 to t1 for the wild-type (WT) and the two RNAi-ddm1 (ddm1-15, ddm1-23) poplar lines (Populus tremula x Populus alba). The white bars represent the well-watered condition (WW) and the black bars represent the stress condition (moderate water deficit followed by rewatering, WD-RW). Values are means ± SE (n = 6 per line for WW, n = 12 per line for WD-RW). The effects of water deficit were evaluated for each line using a t test and differences are only indicated if significant (*, P < 0.05). Statistical tests did not reveal significant differences between lines when considering conditions separately, but the WT was the only line to be significantly affected by water deficit. (c) Average xylem vulnerability curves for the WT and the two RNAi-ddm1 (ddm1-15, ddm1-23) poplar lines. PLC, percent loss of hydraulic conductance. Measurements were performed at t2 on well-watered plants only. Values are means ± SE (n = 6 per line).
Fig. 4

Leaf phenotypes during the drought experiment. Plants were phenotyped for the occurrence of (a) necrotic spots (mottled phenotype) and (b) folded phenotype. For each panel the upper part shows a picture of a typical phenotype, and the lower graph shows a time course of leaf phenotypic alterations for the wild-type (WT) and the two RNAi-ddm1 (ddm1-15, ddm1-23) poplar lines (Populus tremula × Populus alba) under control (well-watered, WW) and stress (moderate water deficit followed by rewatering, WD-RW) conditions. Values are line means ±SE (n = 6 for WW, n = 12 for WD-RW). At the end of the experiment (t2), all lines differed significantly from each other for the proportion of necrotic spots (mottled phenotype), but water deficit had no significant effect; only ddm1-23 showed a significantly higher proportion of folded leaves, but water deficit still had no significant effect.
Fig. 5

Phytohormone content in the shoot apical meristems. Measurements were performed at rewatering (t1) for the wildtype (WT) and the two RNAi-\textit{ddm1} (\textit{ddm1-15, ddm1-23}) poplar lines (\textit{Populus tremula x Populus alba}) for the six indicated phytohormones. White bars represent the control condition (WW) and white bars represent the stress condition (moderate water deficit followed by rewatering, WDRW). Values are genotypic means ±SE (\(n = 3\)). The effects of water deficit were evaluated within each line using a t-test and differences are only indicated when significant (*, \(P < 0.05\); **, \(P < 0.01\); ***, \(P < 0.001\)). Different letters indicate significant differences between lines within each condition (uppercase for WW, lowercase for WD-RW) following a Tukey’s post-hoc test. The dashed lines indicate the detection threshold for each phytohormone.
Fig. 6

Variations in DNA methylation among RNAi-ddm1 and wild-type (WT) lines in shoot apical meristems 1 wk after rewatering (t2). (a) Common differentially methylated regions (DMRs) between the two RNAi-ddm1 lines (ddm1-15 and ddm1-23) (Populus tremula x Populus alba) vs the WT in all sequence contexts (CpG, CHG and CHH) under well-watered (WW) and stress (moderate water deficit followed by rewatering, WD-RW) conditions. Black bars represent hypomethylated DMRs and grey bars represent hypermethylated DMRs. (b) Identification of DMRs in WD-RW conditions compared to WW conditions for WT and RNAi-ddm1 lines. Black bars represent hypomethylated DMRs and grey bars represent hypermethylated DMRs. (c) Genic DNA methylation variation of the common DMRs in the RNAi-ddm1 lines vs the WT line under WW and WD-RW conditions for each methylation context. Only DMRs with at least a 25% difference were kept, except for CHH where a threshold of 10% was applied due to the low proportion of DMRs in that context. (d) Heatmap view of enriched clusters on constitutive (i.e. not stress induced) RNAi-ddm1 differentially methylated genes (DMGs) (in WW) (n = 879 annotations of homologous Arabidopsis genes). Each bar is a single cluster representative of TAIR10 corresponding to sPta717 v1.1 annotations. (e) Heatmap view of enriched clusters on stress-specific RNAi-ddm1 DMGs (in WD-RW) (n = 910 annotations of homologous Arabidopsis genes). Enriched GO clusters were generated using METASCAPE (Zhou et al., 2019; see Supporting Information Methods S1).
Fig. 7

Gene expression variations in RNAi-ddm1-23 vs the wild-type (WT) line (*Populus tremula* x *Populus alba*) under the water deficit/rewatering condition (WD-RW) in shoot apical meristems collected 1 wk after rewatering (t2). (a) Geno ontology (GO) annotation of the differentially expressed genes (DEGs; genes with a false discovery rate (FDR)-adjusted P-value < 0.05; 136 DEGs identified) between RNAi-ddm1-23 and the WT. Gene ontology labels were retrieved from PopGenIE and a heatmap was produced with METASCAPE. (b) Annotation of DEGs with expression variation values (log2FoldChange) using GO labels retrieved from PopGenIE. Blue dots denote downregulated genes and red triangles upregulated genes. Asterisks (*) indicate hormone related genes found among DEGs; dollar symbols ($) represent DEGs overlapping with DMRs; the hash symbol (#) represents DEGs that overlap with TEs; and the numbers (1), (31), (8), (25), (19), (17), and (35) represent the numbers of DEGs found corresponding to cell death, defense & cell wall, immune response, metabolism, signalization, transcription factors and unknown processes, respectively. Log2FoldChange = log-ratio of normalized mean read counts in RNAi-ddm1-23 vs WT lines ($n = 3$ biological replicates for each line).
(a)
GO:0009617: response to bacterium
GO:0002376: immune system process
GO:0009611: response to wounding
GO:0009723: response to ethylene
GO:0012501: programmed cell death
GO:0051093: negative regulation of developmental process
GO:0009636: response to toxic substance
ath04016: MAPK signaling pathway - plant
GO:0010150: leaf senescence
ath00564: Glycerophospholipid metabolism
GO:0071456: cellular response to hypoxia

(b)
Unknown: 15
Transcription factor: 17
Signaling: 19
Metabolism: 25
Immune response: 8
Defense response & Cell wall: 31
Cell death: 1

Down (60) | Up (76)

log2FoldChange
Fig. 8

Transposable element activity in RNAi-ddm1 and wild-type (WT) lines (Populus tremula x Populus alba) in shoot apical meristems (SAMs) collected 1 wk after rewatering (t2). (a) Mobilome-seq depth of coverage (read per million, rpm) of different transposable element (TE) families in wild-type (WT) and RNAi-ddm1-23 lines and in both well-watered (WW, open diamonds, 115 and 44 families for WT and RNAi-ddm1-23, respectively) and water deficit followed by rewatering (WD-RW, closed triangles, 149 and 109 for WT and RNAi-ddm1-23, respectively) conditions. The coverage was calculated for each TE family and families are represented according to their superfamily. The four most active TE families are annotated: Gypsy23 (G23), Gypsy27 (G27), DNA-3-3 (D3), SAT-1 (S1). Transposable element activity was classified based on the sequencing coverage of eccDNA forms, as follows: TE (0 to 200 x); TE+ (200 x to 2000 x); TE++ (2000x to 10 000 x); TE+++ (10 000 x to 55 000 x). (b) DNA methylation variations at active TEs in RNAi-ddm1 vs WT, represented for each context of methylation under WW (open plots) and WD-RW (closed plots) conditions. Note that no active TE could be detected inside a CHH differentially methylated region (DMR) under WW conditions. (c) DNA copy number variations analyzed by quantitative polymerase chain reaction (qPCR) on SAM genomic DNA for three different TE families (DNA-3-3, Gypsy23 and SAT-1) in the WT and RNAi-ddm1-23 lines in both WW (open circles) and WD-RW (closed circles) conditions.
Table 1

Main characteristics of RNAi-rrn1 vs wild type (WT) lines (*Populus tremula x Populus alba*).

<table>
<thead>
<tr>
<th>Study scale and traits</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth and drought tolerance</td>
<td>RNAi-rrn1 lines' height and diameter growth are not significantly affected by moderate water deficit. RNAi-rrn1 lines are intrinsically more resistant to drought-induced cavitation.</td>
</tr>
<tr>
<td>Leaf phenotypes</td>
<td>RNAi-rrn1 lines show necrotic spots independent of water availability.</td>
</tr>
<tr>
<td>Phytohormones in the SAM</td>
<td>RNAi-rrn1 lines have higher SA concentrations in all tested conditions. RNAi-rrn1 lines have lower zeatin riboside and lower zeatin-O-glucoside riboside (CKs) concentrations, but only under WD-RW.</td>
</tr>
<tr>
<td>Methylome in the SAM</td>
<td>RNAi-rrn1 lines have hypomethylated SAMs. RNAi-rrn1 lines show increased DMGs in all tested conditions. RNAi-rrn1 lines show 7.374 WW / 5.172 (WD-RW) common DMRs compared to the WT; 1,736 were common to both conditions. RNAi-rrn1 DMRs are context-dependent: CHG > CpG > CHH. RNAi-rrn1 DMRs colocalize with 879 (WW) / 510 (WD-RW) genes (DMGs) and 23 (WW) / 89 TEs (WD-RW). DMGs show GO enrichment in development, regulation of biological process and response to abiotic stress, including hormones.</td>
</tr>
<tr>
<td>Transcriptome in the SAM</td>
<td>136 genes are differentially expressed in RNAi-rrn1 vs WT in WD-RW conditions with GO enrichment in defense response, response to hormones and regulation of RNA metabolism. 53 differentially expressed genes correlate with the presence of RNAi-rrn1 DMRs (at ± 10 kb) with a correlation between methylation and expression (Spearman’s rho = −0.32 at P = 0.0004).</td>
</tr>
<tr>
<td>Mobilome in the SAM and qPCR</td>
<td>414 active TEs were detected in total (all lines and conditions), with 21% that colocalize with RNAi-rrn1 DMRs. 92% of active TEs in DMRs are hypomethylated (CpG and CHG) in RNAi-rrn1 lines but show CHH hypermethylation under WD-RW conditions. Two highly active TEs (Gypsy retrotransposons) show DNA copy number variation specifically in stressed (WD-RW) RNAi-rrn1 lines.</td>
</tr>
</tbody>
</table>

CK, cytokinin; DEG, differentially expressed gene; DMG, differentially methylated gene; DMR, differentially methylated region; GO, gene ontology; SA, salicylic acid; SAM, shoot apical meristem; TE, transposable element; WD-RW, water deficit-rewatering; WW, well-watered.