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Abstract

In this article, we first generalize the Conditional Auto-Regressive Expected
Shortfall (CARES) model by introducing the loss exceedances of all (other)
listed companies in the Expected Shortfall related to each firm, thus propos-
ing the CARES-X model (where the ‘X’, as usual, stands for eXtended in
the case of large-dimensional problems). Second, we construct a regular-
ized network of US financial companies by introducing the Least Absolute
Shrinkage and Selection Operator in the estimation step. Third, we also
propose a calibration approach for uncovering the relevant edges between
the network nodes, finding that the estimated network structure dynam-
ically evolves through different market risk regimes. We ultimately show
that knowledge of the extreme risk network links provides useful informa-
tion, since the intensity of these links has strong implications on portfolio
risk. Indeed, it allows us to design effective risk management mitigation
allocation strategies.
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1. Introduction

In the aftermath of the recent subprime crisis, a significant increase of
research interest in systemic risk measures and financial networks has been
observed in the financial economics and econometrics literature. Both the-
oretical and empirical points of view were adopted and led to original op-
erational research methodologies (e.g. Calabrese and Osmetti, 2019; Gupta
et al., 2021). Indeed, the overall knowledge of the level of systemic risk
associated with each single company or financial instrument reveals several
advantages. In fact, it might help regulators identify the Systemically Im-
portant Financial Institutions (SIFI), and thus help to follow the evolution
of their fragilities, as well as assess and gauge the stability of the entire finan-
cial system. These aspects also have implications for the diffusion of crises
within the financial system, with a link to the financial contagion literature.

From a different standpoint, systemic risk aspects might also be inte-
grated as a complement to other market risk management tools, for moni-
toring both single assets and the entire financial market. In particular, these
characteristics of emerging systemic risk can be seen as useful for develop-
ing early warning systems designed for detecting the surge of system-wide
events. Consequently, this might have implications both in terms of risk
mitigation strategies for individual components of the financial market, as
well as in reducing the impact of systemic events, beside contributing to the
literature on risk minimization (e.g. Kremer et al., 2018).

In this context, our article aims at shedding further light on the link
between asset co-movements and portfolio risk, when focusing both on ex-
treme risk and financial connections in a large network. Our work is, indeed,
at the juncture of three strands of literature.

The first focuses on extreme risk measures and, more specifically, on
Expected Shortfall (ES). Indeed, ES, also called Conditional Value-at-Risk
(CVaR), has garnered increasing interest in the portfolio management lit-
erature (see, among others, Barnard et al., 2018; Pac and Pınar, 2018;
Ramponi and Campi, 2018). In this context, we first need to explicitly ref-
erence the Conditional Auto-Regressive Expectile (CARE) model by Taylor
(2008), as this seminal article is the basis of several others, our current ar-
ticle included. Among the family of such articles, Engle and Manganelli
(2004) first proposed to apply GARCH-type modelling to quantiles, in a so-
called Conditional Auto-Regressive Value-at-Risk (CAViaR) by regression
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quantile. Gerlach and Chen (2014) and Meng and Taylor (2020) generalized
the approach of dynamic quantile models with the incorporation of intra-
day information in conditional expectile models, estimated using a Bayesian
method. Hamidi et al. (2015) also built on this approach through the use
of a combination of Dynamic Auto-Regressive Expectiles (DARE) models,
which is analogous to the Dynamic Auto-Regressive Quantile (DAQ) mod-
elling approach of Gouriéroux and Jasiak (2008).

Kim and Lee (2016) investigated some of the theoretical and empirical
properties of VaR and ES estimations based on Taylor’s (2008) proposal and
a broad class of non-linear conditional expectile models, whilst Patton et al.
(2019) and Taylor (2019) proposed various dynamic semi-parametric mod-
els for VaR and ES. Another road is taken in trying to diversify the model
risk, using a combination of models as in Taylor (2020). We will here-
after characterize the extreme risks of companies using their ESs. Our first
contribution will thus be in the estimation of Conditional Auto-Regressive
Expected Shortfall (CARES) for various companies.

The second strand of literature is related to large financial networks.
Among the various approaches currently available to build such networks,
we mention the use of Granger causality (Billio et al., 2012), the spillover
summarized by forecast error variance decomposition (Diebold and Yilmaz,
2009, 2012, 2014, 2015), the use of VaR (conditional or unconditional) within
a static model (Hautsch et al., 2014; Adrian and Brunnermeier, 2016), the
construction of composite networks monitoring different dimensions of asset
interconnections (Bonaccolto et al., 2019a). Our second contribution will be
the focus on the estimation of extreme risk asset interconnections. It will be
based on a vector Conditional Auto-Regressive Expected Shortfall approach
(called CARES-X hereafter, where the ‘X’ stands for eXtended in the case of
large-dimensional problems), whilst previous works were not fully dynamic
and were mainly relying on Value-at-Risk (VaR) links.

The third stream of literature relies on the impact of systemic risk on
asset allocation and financial characteristics of various portfolios, gauging
the importance of measuring the severity of tail events when optimizing
a portfolio in an operational research approach (e.g. Maillet et al., 2015).
More specifically, a particular strand of the literature related to systemic risk
focuses on the implications of portfolio allocation and portfolio strategies,
taking into account two different aspects: i) evaluating financial network-
related and asset interdependence-related risk factors, which impact on risk
factor exposures or are priced in the cross-section of assets (Billio et al.,
2017); and ii) assessing whether the knowledge of systemic risk or asset
interdependence (i.e. through network links) might be useful in portfolio
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allocation and risk management (Clemente et al., 2019).
In other words, in the same spirit as Borri (2019) and Nguyen et al.

(2020), who focused on cryptocurrencies and tail-relationships, we present
herein a generalization of the approach by Hautsch et al. (2014), with es-
timations of financial networks focusing on dynamic ES. Indeed, Hautsch
et al. (2014), when estimating the impact of other companies on the VaR
of targeted companies, made use of a penalized quantile regression, thus
not fully dealing with potential dynamic evolutions in the conditional quan-
tiles. We thus rely on the approach of Hautsch et al. (2014), but using
estimations of conditional ES, following Taylor (2008). Finally, we intro-
duce penalization to uncover the relevant interconnections and exclude the
irrelevant ones, making our approach feasible even in a large cross-section
of assets (conditional on the availability of a sufficiently long time-series).
The estimation of a financial network builds on the identification of relevant
edges between its nodes, starting from the model estimates. While Hautsch
et al. (2014) made a selection across companies using a unique threshold on
model parameters, we make a step forward and introduce a criterion for the
calibration of the threshold. We use a company-specific threshold, which is
also time dependent. Such a choice, more expensive from a computational
viewpoint, has the advantage of allowing us to recover a proper identifica-
tion of the links between the extreme risks of the analyzed companies under
different market regimes.

Starting from our methodological advancements, we move to empirical
analyses, first estimating the network of companies belonging to the financial
sector of the US equity market. Our analyses clearly show that the network
derived from the CARES-X model, as summarized by vertex degrees and
density, is coherent with market swings, both during the subprime financial
crisis, as well as the following recovery. Then, we secondly exploit the in-
formative content of the network in terms of portfolio risk and performance
analysis. Resorting to näıve portfolio allocation strategies, thus mitigating
weight estimation risk and uncertainty (Michaud, 1989), we highlight the
impact of tail risk interconnections on the measurement of portfolio expo-
sure to extreme events. By separating companies in terms of their network
exposure, we show that it is possible to implement allocation strategies ca-
pable of mitigating the overall portfolio risk.

The tools we introduce and the empirical evidence we provide might be
of relevant interest for portfolio risk managers, at the portfolio construction
and allocation level, as well as for portfolio risk monitoring. In this last
respect, by adapting our methodology to higher frequency returns, it will be
possible to detect the surge of systemic risk events, for instance monitoring
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the changes in the network density or in the vertex degree. This might have
relevant implications on the derivation of early warning indicators. Finally,
by combining our extreme-risk networks with approaches focusing on differ-
ent dimensions of companies’ systemic risk, we might improve the evaluation
of composite and multilayer networks, whose stability and structure may be
of interest to regulators when analyzing various market configurations across
different risk regimes.

The article proceeds as follows: in Section 2, we describe our proposal
for financial network estimation, also discussing the relation of our approach
with competing methodologies. Section 3 describes the data and the imple-
mentation choices for our methodology, while Section 4 shows the estimated
networks and analyzes their features and dynamic behavior. Section 5 dis-
cusses the use of the resulting networks within a portfolio setting and, finally,
Section 6 concludes.

2. Penalized CARES-X model and network estimation

Let Rj be the return of the jth financial company, whose realization at
time t is denoted as rj,t, for j = 1, . . . , N and t = 1, . . . , T .1 We study
the links among N companies within a network that we estimate from a
pessimistic perspective; namely, a network recovered from companies when
they are jointly in distress. We measure the state of distress of each company
through ES (i.e. the tail expectation of Rj), which is equal to:

ES (Rj ; θ) = E [Rj |Rj ≤ Q (Rj ; θ)] , (1)

where Q (Rj ; θ) is the quantile of Rj at the level θ, with θ taking low values,
typically in the interval (0, 0.05], because we focus on the left tail of the
distribution of Rj .

In our analysis, we hereafter estimate ES using the expectile regression
method, following the approach introduced by Taylor (2008).2 We first
define the population expectile of Rj at level τ as the quantity µ (Rj ; τ)

1More precisely, our dataset includes B > T daily returns for each company. We use a
rolling window scheme in the empirical analysis and, then, divide the overall dataset into
sub-samples of equal size, including T returns for each stock (see Section 3 for additional
details). The methods described in this methodological section refer to a generic sample
which spans the time interval [1, T ]; that is, the first sub-sample resulting from the rolling
window procedure. However, they apply in the same way for the other sub-samples.

2See, among others, Artzner et al. (1999), Rockafellar and Uryasev (2000) and Acerbi
and Tasche (2002) for a detailed review on the properties of ES.
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which minimizes the following expected loss (see, among others, Taylor,
2008; Bellini and Bernardino, 2017):

E
[∣∣∣τ − I{Rj<µ(Rj ;τ)}

∣∣∣ (Rj − µ (Rj ; τ))2
]
, (2)

where τ ∈ (0, 1), whereas I{·} is an indicator function which takes the value
of one, if the condition into braces is true, and zero otherwise.

Taylor (2008) shows that the ES of Rj at level θ (i.e. ES (Rj ; θ)) corre-
sponds to the following function of µ (Rj ; τ):

ES (Rj ; θ) =

(
1 +

τ

(1− 2τ)θ

)
µ (Rj ; τ)− τ

(1− 2τ)θ
E[Rj ], (3)

where E[Rj ] is the expected value of Rj .
The relationship between ES (Rj ; θ) and µ (Rj ; τ) in Equation (3) is de-

fined for a scalar µ (Rj ; τ). Notably, the relation holds even if expectiles are
conditional on a set of explanatory variables (Taylor, 2008). This property
allows us to empirically estimate the τ th expectile of rj,t (i.e. µ (rj,t; τ)) from
a model which also accounts for the impact of a set of covariates. Among
the possible specifications for µ (rj,t; τ), we may use the Conditional Auto-
Regressive Expectile (CARE) model introduced by Taylor (2008), which
takes the following form:

µ (rj,t; τ) = α(j)
τ + γ

(j)
1,τµ (rj,t−1; τ) + γ

(j)
2,τ |rj,t−1|. (4)

The CARE model thus captures the persistence and dynamics of expec-
tiles over time, sharing the properties of the Conditional Auto-Regressive
VaR (denoted CAViaR) model introduced by Engle and Manganelli (2004)
for regression quantiles. Including the latent and lagged expectile µ (rj,t−1; τ)

smoothes the changes of µ (rj,t; τ) over time, whereas the parameter γ
(j)
2,τ di-

rectly links µ (rj,t; τ) to the past return rj,t−1. Following Taylor (2008), we
employ, for the estimation of the unknown parameters in Equation (4), the
algorithm developed by Engle and Manganelli (2004) for the CAViaR model,
but adapted to minimize the following objective function:

L
(
α(j)
τ , γ

(j)
1,τ , γ

(j)
2,τ

)
=

1

T − 1

T∑
t=2

∣∣∣τ − I{rj,t<µ(rj,t;τ)}
∣∣∣ [rj,t − µ (rj,t; τ)]2 , (5)

where µ (rj,t; τ) is defined in Equation (4).
Taylor (2008) proposed a simple rule to empirically derive ES (rj,t; θ)

from Equation (4), advocating that ES (rj,t; θ) = µ
(
rj,t; τ

?
j

)
. Therefore,

6



this rule builds on the estimation of τ?j ; that is, the value of τ which makes
the percentage of in-sample violations in Equation (5) equal to θ, as such:

(T − 1)−1
T∑
t=2

I{rj,t<µ(rj,t;τ?j )} = θ, (6)

where θ is fixed a priori.
This rule leads to the Conditional Auto-Regressive Expected Shortfall

(CARES) model of Taylor (2008), which is defined as follows:

ES (rj,t; θ) = µ
(
rj,t; τ

?
j

)
= α

(j)
τ?j

+ γ
(j)
1,τ?j

µ
(
rj,t−1; τ

?
j

)
+ γ

(j)
2,τ?j
|rj,t−1|. (7)

A simple CARES model allows us to estimate the ES of rj,t conditional
on the past history of rj,t, but, unfortunately, does not include the effects
of other financial companies. However, we are interested in measuring the
co-movements between the jth company and other institutions in a state of
joint distress, capturing the persistence and dynamics of ES (rj,t; θ) at the
same time. We then extend the model in Equation (7) by including the
loss exceedances, as defined by Hautsch et al. (2014), of the other N − 1
conditioning companies. By doing so, we link the extreme quantiles of the
returns yielded by the N companies we focus on, emphasizing their co-
movements during tail events.3 More precisely, let rj and σ̂rj be the sample
mean and standard deviation of rj,t, respectively, so that zj,t = (rj,t−rj)/σ̂rj
is the standardized value of rj,t. Following Hautsch et al. (2014), we compute
the loss exceedances, defined as:

hj,t = zj,tI{zj,t<q(zj,t;0.1)}, (8)

where q (zj,t; 0.1) is the unconditional sample quantile of zj,t at the proba-
bility level 0.1, for t = 1, . . . , T and j = 1, . . . , N .

The resulting CARES-X model (where the ‘X’ stands for eXtended in the
case of large-dimensional problems) then takes the following specification:

ES (rj,t; θ) = µ
(
rj,t; τ

?
j

)
= α

(j)
τ?j

+ γ
(j)
1,τ?j

µ
(
rj,t−1; τ

?
j

)
+ γ

(j)
2,τ?j
|rj,t−1|

+ ψψψ
(j)
τ?j

h′−j,t + δδδ
(j)
τ?j

w′t, (9)

3By employing a different methodological approach, Bonaccolto et al. (2019a,b) also
analyzed the relationships among financial institutions focusing on the extreme quantiles of
their returns. They highlighted the relevance of the so-called quantile-located or quantile-
on-quantile effects when studying the systemic impact of financial institutions during tail
events.

7



where h−j,t is an 1 × (N − 1) vector, obtained by removing the element
hj,t from ht = [h1,t · · ·hN,t ], with 1 ≤ j ≤ N , wt is an 1 × K vector of
standardized control variables observed at time t, whereas τ?j is the value of
τ which satisfies the condition in Equation (6), given the new specification

of µ
(
rj,t; τ

?
j

)
in (9).4

Note that our CARES-X model does not include the lagged expected
shortfalls of the N − 1 conditioning companies µ (ri,t−1; τ

?
i ), with 1 ≤ i ≤ N

and i 6= j. Indeed, we aim at estimating the contemporaneous relation-
ships between the loss exceedances of the conditioning companies and the
ES of Rj , rather than forecasting ES (rj,t; θ). For practical reasons, our
proposed method should be flexible for dealing with a large number of com-
panies. Nevertheless, the number of parameters to estimate in Equation
(9) increases with N and the resulting accumulation of estimation errors
becomes a critical issue. Of course, we do not know a priori which of the
variables in h−j,t have a relevant impact on ES (rj,t; θ) and, thus, we face
the following dilemma. On the one hand, including too many regressors
could imply over-fitting problems. On the other hand, we could suffer from
an omitted variable bias when using a restricted subset of covariates. We
deal with the curse of dimensionality using a well-known variable selection
tool, namely, the Least Absolute Shrinkage and Selection Operator (LASSO)
introduced by Tibshirani (1996) and widely employed in economic and fi-
nancial applications (e.g. Torri et al., 2018; Pun and Wong, 2019; Cui et al.,
2020).

Hence, we estimate the parameters in Equation (9) by minimizing the
following loss function:

L
(
βββ
(j)
τ?j

)
=

1

T − 1

T∑
t=2

∣∣∣τ?j − I{rj,t<µ(rj,t;τ?j )}
∣∣∣ [rj,t − µ (rj,t; τ?j )]2

+ λ
(j)
τ?j

∣∣∣∣∣∣ψψψ(j)
τ?

∣∣∣∣∣∣
1
, (10)

where µ
(
rj,t; τ

?
j

)
and βββ

(j)
τ?j

=
[
α
(j)
τ?j
, γ

(j)
1,τ?j

, γ
(j)
2,τ?j

, δδδ
(j)
τ?j
,ψψψ

(j)
τ?j

]
are, respectively,

the conditional ES and the parameters of our CARES-X model defined in

Equation (9), λ
(j)
τ?j
> 0 is a tuning parameter which governs the intensity of

the penalization, whereas ||·||1 is the `1-norm.

4The procedure we use to compute τ?j in our empirical analysis is described in detail
in Section 3.
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The greater λ
(j)
τ?j

is, the greater the number of coefficients in ψψψ
(j)
τ? that

approach zero, resulting in a sparser solution. We select the optimal value
of this tuning parameter by employing a cross-validation technique which
is suitable for time series (see Section 3). This method is commonly used
in applied machine learning, being flexible and easy to understand and im-
plement, providing at the same time accurate results. We highlight that,

among the parameters in (10), only ψψψ
(j)
τ? is penalized. By doing so, we

emphasize the relationships between the jth company and the remaining
N − 1 conditioning institutions and select, among the latter, the ones which
strongly impact ES (rj,t; θ). At the same time, we capture the dynamics of
the response variable over time as well as potential effects arising from the
equity and bond markets. Note that the penalty function in (10) can be
expressed as the adaptive LASSO employed by Liao et al. (2019), by setting

the weights multiplying the parameters in ψψψ
(j)
τ? equal to one, and the weights

of the remaining parameters equal to zero.
We LASSO-select the ith conditioning institution (for i = 1, . . . , N and

i 6= j) if the impact of its loss exceedance in Equation (9), which is quantified

by the specific coefficient in ψψψ
(j)
τ? that multiplies hi,t, is, in absolute value,

greater than a given threshold η; for the latter, we provide an empirical
identification strategy in Section 3. We then build an adjacency matrix
A = [aj,i] ∈ RN×N , in which aj,i = 1 if the loss exceedance of the ith

company has a strong impact (i.e. is LASSO-selected) on the ES of the jth

institution, and aj,i = 0 otherwise, for i, j = 1, . . . , N and i 6= j. We exclude
self-loops, so that aj,i = 0 if j = i.

The closest contribution to this study is the work of Hautsch et al. (2014).
However, we differ from Hautsch et al. (2014) on several relevant points.
First, the method introduced by Hautsch et al. (2014) builds on a quan-
tile regression model. Different contributions in the literature (see, among
others, Newey and Powell, 1987; Efron, 1991; Koenker, 1992, 1993; Jones,
1994; Yao and Tong, 1996; Koenker, 2005; Taylor, 2008; Yang and Zou, 2015;
Bellini and Bernardino, 2017; Furno and Vistocco, 2018) highlighted more
appealing statistical and computational properties of expectile regression
compared to quantile regression (see Appendix A). Second, an extreme
quantile is interpreted as VaR, whereas expectiles lead to ES. ES is a coher-
ent measure of risk (Artzner et al., 1999), whereas this is not the case for
VaR. The superior mathematical and financial properties of ES motivated
the changes that the Basel Committee on Banking Supervision (BCBS) has
adopted in the Basel III accords. In particular, the BCBS has substituted
VaR with ES to define the market risk capital requirements. Our network
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is then consistent with the latest regulatory standards. Other differences,
explained in detail in Appendix A, concern the specification of the regres-
sion model and the method used to LASSO-select the relevant connections
among the N financial institutions.

3. Data and empirical setup

Our dataset includes the daily returns of the companies which belong
to the basket of index STOXX 600 Financials from January 2, 2004 to
November 16, 2017 (i.e. B = 3620 trading days).5 The number of these
companies is equal to N = 104, classified into four sectors: banking (38),
insurance (26), financial services (18) and real estate (22). We report in
Appendix B the list of the N = 104 financial institutions included in our
dataset. We observe a clear volatility clustering in our data. Figure C.9
in Appendix C reflects the turmoil experienced during particular events in
both the US and the European markets from January 2, 2004 to November
16, 2017. Among them, the US subprime crisis (period 2007—2009) has the
strongest impact.

The estimation of the CARES-X model in Equation (9) requires a set
of covariates to include in wt. Similar to Hautsch et al. (2014), we use
nine control variables related to bond and equity markets, which are listed
as follows: i) the return of the STOXX Europe 600 Index; ii) the return
of the VSTOXX volatility index; iii) the change in the three-month EBF
Euribor rate; iv) the change in the ECB short-term repo rate; v) the change
in the EMU benchmark 10-year government bond index; vi) the change in
the ICE BofAML Pan-Europe large cap corporate index; vii) the change in
the ICE BofAML 10+ year Euro corporate index; viii) the change in the
ICE BofAML 10+ year AAA Euro government index; and ix) the return of
the five-year Europe banks sector CDS index.6 From a principal component
analysis of the nine control variables described above, we found that the first
three components explain 83.14% of the variability in the data. We then use
the standardized values of these three components, in place of the original
variables, as elements of wt. By doing so, we exploit the near totality of the
information contained in the nine original series, while achieving relevant
benefits in terms of computational burden and stability of the resulting
estimates.

5The data are recovered from Thomson Reuters Datastream.
6The control variables are taken from Thomson Reuters Datastream.
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We estimate the parameters of the CARES-X model defined in Equation
(9) by setting θ = 0.05 and minimizing the loss function in Equation (10).
However, we do not know a priori τ?j ; that is, the value of τ which makes
the percentage of in-sample violations equal to θ = 0.05. In contrast, we
need to select τ?j from a set of expectile levels τ . We also consider the
possibility that the optimal value of the tuning parameter in Equation (10)
varies with τ . Therefore, we define a set of 20 equally-spaced expectile levels
in Sτ = {τ1, . . . , τ20}, where τ1 = 0.001 and τ20 = 0.05, and minimize, for

each τi ∈ Sτ and for a sufficiently large grid of λ
(j)
τi values, the following loss

function:

1

B − 1

B∑
t=2

∣∣∣τi − I{rj,t<µ(rj,t;τi)}
∣∣∣ · [rj,t − µ (rj,t; τi)]

2 + λ(j)τi

∣∣∣∣∣∣ψψψ(j)
τi

∣∣∣∣∣∣
1
,

where µ (rj,t; τi) = α
(j)
τi +γ

(j)
1,τi
µ (rj,t−1; τi) + γ

(j)
2,τi
|rj,t−1|+ψψψ

(j)
τi h′−j,t +δδδ

(j)
τi w′t.

7

For each τi ∈ Sτ we select an optimal value of λ
(j)
τi , denoted as λ̂

(j)
τi , using

a cross-validation method which is suitable to deal with time series. This
method is similar to a standard 3-fold cross-validation (Hastie et al., 2009),
differing only in the definition of the training and validation sets. In partic-
ular, we define three training sets, which cover the time intervals [1, 1500],
[1, 2500] and [1, 3400], respectively. The corresponding validation sets span
the intervals [1501, 1700], [2501, 2700] and [3401, 3600], respectively, so that
they have a constant size of 200 observations.

We point out that this cross-validation exercise builds on training sets
whose extent differs from that of the samples from which we estimate the
CARES-X parameters. This is a consequence of employing expanding train-
ing sets (which have different widths, by definition) that are coherent with
the time evolution of our variables of interest. Alternatively, we could use
a standard k-fold cross-validation (Hastie et al., 2009) to build training sets
of equal size, which coincides with the width of the estimation window.
However, such a choice would induce a distortion in our analyses. In fact,
by choosing purely random samples and inserting them into either valida-
tion or training sets, we would destroy the temporal dependencies which
are present in our time series, altering the properties of our Conditional
Auto-Regressive model. In contrast, the cross-validation method we em-
ploy preserves the chronological order in our time series and, hence, we do

7We focus on τi ∈ [0.001, 0.05], without using greater values, because we found that τ?j
does not exceed the value of 0.05 in our empirical analysis, for j = 1, . . . , N .
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not negatively affect the Auto-Regressive dynamics of the CARES-X model.
Moreover, we adopt relatively larger training sets to increase the stability
of the Auto-Regressive components in the CARES-X model. This evidence
becomes clearer when focusing on the lowest and extreme expectile levels of
the Sτ set.

For each τi ∈ Sτ , we choose the optimal tuning parameter, from a se-

quence of 100 λ
(j)
τi values. We determine the maximum value of this sequence

as the smallest value of λ
(j)
τi for which all entries of ψ̂ψψ

(j)

τi (i.e. the estimate

of ψψψ
(j)
τi ) are equal to zero. By multiplying this maximum value by a factor

of 0.0001, we obtain the minimum of the same sequence, at which the im-
pact of LASSO is weaker, approaching the solution of a standard expectile
regression without penalties. We then determine a decreasing sequence of

λ
(j)
τi on the log scale from the maximum to the minimum. This procedure

has been suggested by Friedman et al. (2010) and is the default choice of the

‘gcdnet’ R package. We compute the maximum of the λ
(j)
τi sequence without

including the Auto-Regressive CARES components to make the algorithm
computationally more efficient, without loss of accuracy. Indeed, we found
that the resulting sequence fits our complete CARES-X model well: the

estimates in ψ̂ψψ
(j)

τi follow a regular path, starting from a point at which all

loss exceedances are selected (i.e. LASSO has a null impact when λ
(j)
τi takes

relatively low values), until the `1-norm penalty saturates its effects, so that

all coefficients in ψ̂ψψ
(j)

τi are equal to zero.
We study the behaviour of our network over time by implementing a

rolling window scheme, that we describe below. We divide our dataset
into rolling sub-samples which have a constant dimension T × N , where
T = 750 < B = 3620, with a step of ten days. As a result, the first sub-
sample includes the returns yielded by the N companies from the first to the
750th day, whereas the subsequent estimation windows span, respectively,
the time intervals [11, 760], . . . , [2871, 3620]. We then obtain 288 rolling sub-
samples and estimate a different network from each of them. Focusing on
the first estimation window, for instance, we minimize for each τi ∈ Sτ the

12



following loss function:8

L
(
βββ(j)τi

)
=

1

T − 1

T∑
t=2

∣∣∣τi − I{rj,t<µ(rj,t;τi)}
∣∣∣ · [rj,t − µ (rj,t; τi)]

2

+ λ̂(j)τi

∣∣∣∣∣∣ψψψ(j)
τi

∣∣∣∣∣∣
1
, (11)

where µ (rj,t; τi) = α
(j)
τi + γ

(j)
1,τi
µ (rj,t−1; τi) + γ

(j)
2,τi
|rj,t−1|+ψψψ

(j)
τi h′−j,t + δδδ

(j)
τi w′t

and βββ
(j)
τi =

[
α
(j)
τi , γ

(j)
1,τi
, γ

(j)
2,τi
, δδδ

(j)
τi ,ψψψ

(j)
τi

]
.9

We minimize the loss function defined in Equation (11) using the ‘BFGS’
method and with a maximum of 100000 iterations. Starting from τ1 = 0.001,
we use the coefficients derived from the CARE model in Equation (4), es-
timated at the expectile level τ = 0.001, as initial conditions for the pa-

rameters γ
(j)
1,τ1

and γ
(j)
2,τ1

. In contrast, the initial conditions of the remaining
parameters in Equation (11) are obtained from a standard expectile regres-
sion model, employing the generalized coordinate descent algorithm. When
i in τi is greater than one (so that τi > 0.001), we use the coefficients ob-
tained for τi−1 as initial conditions. This setup induces a faster convergence
of the estimation algorithm.

We compute the in-sample violations for each pair
(
τi, λ̂

(j)
τi

)
in Equation

(11), for i = 1, . . . , 20, and select two expectile levels:

τ
(j)
i,m = max

(
τi ∈ Sτ : (T − 1)−1

T∑
t=2

I{rj,t<µ(rj,t;τi)} < θ

)

and

τ
(j)
i,M = min

(
τi ∈ Sτ : (T − 1)−1

T∑
t=2

I{rj,t<µ(rj,t;τi)} > θ

)
,

which are related to the optimal tuning parameters λ̂
(j)
τi,m and λ̂

(j)
τi,M , respec-

tively. We then define a new grid of ten values of equally spaced τ in the

interval
[
τ
(j)
i,m, τ

(j)
i,M

]
. For each of them, we re-estimate the parameters in

8To each τi ∈ Sτ corresponds a specific optimal tuning parameter λ̂
(j)
τi , that we compute

in a previous step from the full-sample data, using the cross-validation technique previously
described.

9Computing an optimal tuning parameter for each of the 288 rolling estimation windows
would be computationally expensive. We then prefer to select λ̂

(j)
τi for each expectile level

τi from the full-sample data.
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Equation (11), while the tuning parameter is computed from a linear in-

terpolation between λ̂
(j)
τi,m and λ̂

(j)
τi,M . We now use as initial conditions the

coefficients obtained for τ
(j)
i,M . With this two-step estimation approach, we

select with a greater accuracy the optimal expectile level, minimizing the
distance between the in-sample violations and θ.

After estimating the parameters in Equation (11), we focus on ψ̂ψψ
(j)

τ?j
, that

is, the estimate of the (N − 1) vector ψψψ
(j)
τ?j

. ψ̂ψψ
(j)

τ?j
includes the estimated

impact of N − 1 institutions being in a stressed state (expressed by their
corresponding loss exceedances) on the ES of company j. Some of the ele-

ments in ψ̂ψψ
(j)

τ?j
are exactly equal to zero, and this stems from the use of the

LASSO penalty. Other coefficients in ψ̂ψψ
(j)

τ?j
approach zero (but are not ex-

actly equal to zero), pointing out weak or negligible effects; this is also due
to the `1-norm penalty in Equation (11), which leads to sparse solutions.
We remind the reader that there exists a link from company i to company

j (i.e. an edge in our network) if the coefficient in ψ̂ψψ
(j)

τ?j
multiplying the loss

exceedance of the former is, in absolute value, greater than a threshold η.
We need to determine a value of η that allows us to identify the rel-

evant edges between the nodes of our network. We refer to those effects

which stand out from the mass of null or negligible coefficients in ψ̂ψψ
(j)

τ?j
.

For this purpose, we set η(j) = q

(∣∣∣∣ψ̂ψψ(j)

τ?j

∣∣∣∣ ; 0.75

)
+ 2 · IQR

(∣∣∣∣ψ̂ψψ(j)

τ?j

∣∣∣∣), where

q

(∣∣∣∣ψ̂ψψ(j)

τ?j

∣∣∣∣ ; 0.75

)
and IQR

(∣∣∣∣ψ̂ψψ(j)

τ?j

∣∣∣∣) are, respectively, the third quartile and

the interquartile range of the absolute values of the elements in ψ̂ψψ
(j)

τ?j
. Note

that greater values of λ̂
(j)
τi in (11) would lead to sparser solutions, charac-

terized by a smaller number of nonzero coefficients, which would be more
isolated from a larger mass of zeros. Therefore, the resulting η(j) threshold
would still pick the same relevant variables which are LASSO-selected with

smaller values of λ̂
(j)
τi .10

10Analyzing further the results, we found that the estimates of the η(j), for j = 1, . . . , N ,
exhibit a similar distribution across economic sectors of companies included in our dataset,
which highlights the fact that the chosen threshold specification does not induce a specific
bias in the network construction. We are here indebted to an anonymous referee for
his/her demand of robustness checks and related suggestions.
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We stress that η(j) is specific for the jth response company and for a
given rolling sub-sample; therefore, it takes different values for j = 1, . . . , N .
Moreover, the η(j) values are also time dependent.11 In contrast to Hautsch
et al. (2014), we then do not fix a priori the value of η(j) to a constant value
of 0.0001. By doing so, we calibrate η(j) to the specific features of the data
we use to estimate each expectile regression model for each sub-sample of our
rolling window scheme. Indeed, the magnitude of the estimated coefficients
changes from periods of market stability to periods of financial turmoil.
Therefore, a constant threshold η(j) = 0.0001 might be misleading to identify
the true, relevant links, which trigger contagion effects within our network
during a specific market regime. We report an example in Figure 1, where

we display the absolute values of the coefficients in ψ̂ψψ
(j)

τ?j
that we obtain when

estimating the ES of Crédit Agricole conditional on the loss exceedances of
the other companies in our dataset, by adopting the daily returns observed
during the time interval [1, 750]; that is, the first rolling sample. We also

draw two thresholds: 0.00034 (in red), computed as η(j) = q

(∣∣∣∣ψ̂ψψ(j)

τ?j

∣∣∣∣ ; 0.75

)
+

2 · IQR
(∣∣∣∣ψ̂ψψ(j)

τ?j

∣∣∣∣), and 0.0001 (in blue). We see that only the former is able

to identify links clearly different from zero.

We use ψ̂ψψ
(j)

τ?j
and η(j) to define the jth row of the adjacency matrix A =

[aj,i] ∈ RN×N , which determines the structure of the network, for j =
1, . . . , N . We focus on unweighted networks. Therefore, the element aj,i
takes the value of one, if the loss exceedance of the ith company is LASSO-

selected as relevant regressor—i.e. its corresponding coefficient in ψ̂ψψ
(j)

τ?j
is, in

absolute value, greater than η(j)—to explain the ES of the jth institution.
We exclude self-loops; that is, aj,i = 0 if j = i. Moreover, our network is
directed and then aj,i 6= ai,j , for i, j = 1, . . . , N and i 6= j.

The discussions and methods presented above apply to the network es-
timated from the first sub-sample of our rolling window procedure, which
spans the time interval [1, 750]. We iteratively use the same methods to
obtain the subsequent networks estimated, respectively, from the time in-
tervals [11, 760], . . . , [2871, 3620], so that we use all of the available data. As
a result, we obtain 288 dynamic networks overall.

We conclude this section providing some details about the computational
times required by our algorithm, using an Intel®Core i7-4710HQ@2.50GHz

11The time index has been suppressed to simplify the notation.
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Figure (1) Absolute values of the coefficients in ψ̂ψψ
(j)

τ?j
that we obtain when estimating the

ES of Crédit Agricole conditional on the loss exceedances of the other companies in our
dataset, by adopting the daily returns observed during the time interval [1, 750]. The red
and the blue lines represent the thresholds 0.00034 and 0.00010, respectively.

(64-bit operating system) computer with six cores. The cross-validation
exercise implemented on the 20 expectile levels τi ∈ Sτ requires four hours
and 15 minutes, on average, for six of the N = 104 companies included
in our dataset. In contrast, the estimation of the CARES-X model in our
rolling window scheme requires, on average, 51 seconds for six companies
and a single (rolling) subset. Therefore, the cross-validation exercise is more
expensive in terms of computational costs. However, we can adopt different
solutions to make the cross-validation development more efficient. First, we
can record significant improvements by employing a sufficiently large number
of cores for parallel computations. Second, we found that the optimal value

of λ
(j)
τi that we compute by means of cross-validation does not sensibly change

across the 20 entries of Sτ , as this set spans the relatively narrow interval
[0.001, 0.05]. As a result, we could significantly reduce the computational
costs by employing a lower cardinality of Sτ , keeping the extreme values
of the interval [0.001, 0.05], while incurring a minor accuracy loss. Finally,
we stress that this exercise is implemented only once using the full-sample
data. Therefore, it does not lead to strong concerns for real applications
based on our empirical setup. In fact, we only need to update the CARES-
X coefficients every 10 days, following our rolling window scheme, and this
procedure is less expensive in terms of computational burden, as mentioned
above.
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4. Dynamic analysis of the large financial network: some evidence

The rolling window procedure described in Section 3 allows us to recover
and analyze the dynamic behavior of our network time series. Indeed, our
dataset spans the time interval January 2, 2004—November 11, 2017, which
is characterized by different market regimes. By exploiting the informative
content of our rolling analysis, we check whether and to what extent our
dynamic network changes when moving from either a normal or bull market
condition to a stressed state. The latter acquires a central importance in
this study, because our method focuses on the relationships between different
companies when they are all in distress.

Figure 2 displays estimated networks corresponding to various illustra-
tive sub-samples: i) before crisis (January 2, 2004—November 16, 2006); ii)
during crisis (January 11, 2008—November 25, 2010); iii) post-crises (March
29, 2013—February 11, 2016) and iv) the most recent bullish period in the
studied sample (January 2, 2015—November 16, 2017). Figure 3 exhibits
trends of the network density and reciprocity in the whole sample (January
2, 2004—November 11, 2017).12 Figure 4 displays the corresponding vertex
degree evolution, split by economic sectors (banking, insurance, financial
services and real estate), over the entire sample (January 2, 2004—Novem-
ber 11, 2017). Figures 5 and 6 distinguish in- from out-degrees.13

Figure 2(a) displays the network estimated using the data from January
2, 2004 to November 16, 2006 (midpoint: June 10, 2005); this is the first
network derived from the rolling window scheme. It thus reflects the re-
lationships among the N = 104 companies before the outbreak of the US
sub-prime crisis, whose reference event was the default of Lehman Brothers
in September, 2008. By clustering the N = 104 into four sectors, we observe
a greater concentration of links among real estate and insurance companies,
whereas banks are rather isolated.

Figure 2(b) displays the results we obtain from the 106th rolling estima-
tion window, which spans the period January 11, 2008—November 25, 2010
(midpoint: June 19, 2009). Therefore, the resulting network captures the
impact of two relevant events: the US subprime crisis (period 2007—2009)
and the Greek government-debt crisis, which started in the fall of 2009. The
latter triggered the subsequent distress of other Eurozone countries, such as
Ireland, Italy, Portugal and Spain (period 2010—2011). The relevant risks
and losses suffered during this time interval are well depicted in Figure 2(b):

12We define the network density and reciprocity in Equations D.3 and D.4.
13We define the in- and out-degrees in Equations D.1 and D.2.
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(b) January 11, 2008—November 25, 2010
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(d) January 2, 2015—November 16, 2017

Figure (2) Networks estimated from different periods. Nodes are clustered according
to the economic sector of the corresponding companies: orange (banking), light blue
(insurance), yellow (financial services) and green (real estate).

the network becomes denser, highlighting a larger number of links among
N = 104 companies in distress. This phenomenon is also evident in Figure
3, which displays the trend of network density over time. The density sig-
nificantly increases from the second half of 2007, remaining at high values
throughout the European debt crisis. We observe the peak of the network
density in the 125th sub-sample of our rolling window procedure, which spans
the interval October 3, 2008—August 18, 2011 (midpoint: March 12, 2010).
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Figure (3) Trend of the network density (black solid line) and reciprocity (red dashed
line) from January 2, 2004 to November 16, 2017.
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Figure (4) Trend of the average vertex degree of each sector from January 2, 2004 to
November 16, 2017.

It is also interesting to observe from Figure 3 that the proportion of
mutual connections (i.e. the reciprocity) significantly decreases in April,
2007, to reach its minimum in August, 2007, taking low values throughout
the entire crisis period. This evidence emphasizes the systemic relevance
during a crisis period of a cluster of institutions, which impact the ES of
other companies and are net contributors of risk (i.e. the incoming edges of
these companies are smaller than their outgoing edges). This applies even
more specifically to banks.

By comparing Figures 2(a) and 2(b), we observe how banks acquire a
greater relevance, in terms of a larger concentration of links, during the cri-
sis period. We also note from Figure 4 a significant growth of the average
vertex degree of the banking sector at the beginning of the US subprime
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Figure (5) Trend of the average vertex in-degree of each sector from January 2, 2004 to
November 16, 2017.
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Figure (6) Trend of the average vertex out-degree of each sector from January 2, 2004
to November 16, 2017.

crisis. However, we do not observe significant differences between the bank-
ing sector and the other sectors in terms of vertex in-degree (Figure 5). In
contrast, the banking sector emerges when analyzing the vertex out-degree
(Figure 6). This result emphasizes the significant impact of banks on the
stability of other institutions and, then, on the entire financial system dur-
ing tail events. This highlighted evidence is consistent with the findings of
Billio et al. (2012), namely: banks appear to be more systemically relevant
than other financial industry groups.

At the end of the crisis period analyzed above, our network again be-
comes sparser, as we see from Figures 2(c) and 3. This evidence points out
the beginning of a new market phase, characterized by weaker relationships
in terms of extreme risk, resulting in a greater stability of the system. Inter-
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estingly, we observe relevant changes in terms of reciprocity as well, which
records a significant growth from the 134th rolling sub-sample, the midpoint
of which is July, 2010 (see Figure 3). The banking sector still records high
values of vertex degree, on average (see Figure 4). The active impact of
banks, quantified by the vertex out-degree is lower than before, on aver-
age, but still high compared to the other sectors, with a stable trend until
November, 2017 (see Figure 6). The distance between the banking sector
and the other companies in our network is more evident than before when
looking at the vertex in-degree, which has a stable trend from the outbreak
of the US subprime crisis to November, 2017 (see Figure 5). Therefore,
banks appear now to be more exposed to the risk of suffering a negative
impact from other nodes.

The network again becomes denser in the final part of our dynamic anal-
ysis (see Figure 2(d)), although not at the levels recorded during the years
2007—2011, whereas its reciprocity decreases (see Figure 3). We link these
to the turmoil experienced during two important events: i) the complicated
negotiations between the Greek government and its international creditors
in the summer of 2015, which threatened a Greek default along with a po-
tential exit from the monetary union; and ii) the Brexit referendum in June
2016, when the UK voted to leave the European Union. The banking and
real estate sectors record the greatest portion of stressed connections (see
Figures 2(d) and 4). This phenomenon is more evident in terms of in-going
links (see Figure 5), emphasizing a larger risk of being affected by other
institutions. By analyzing the out-going links, we also highlight the impact
of the insurance sector, in addition to banks and real estate companies (see
Figure 6). Summing up the results, we see that the local and global statis-
tics analyzed above provide evidence that our method is able to capture the
relationships among financial institutions in pronounced distress during tail
events. As a consequence, our methodology may be a useful tool in identify-
ing companies which have a relevant impact on the financial system during
crisis periods (as detected, for instance, in Figure 8).

5. Implications for portfolio risk and performance

We now study the relevance of our method within a portfolio frame-
work. For this purpose, we focus on portfolios including the assets of the N
companies we consider (i.e. the nodes of our network). The CARES model
allows us to quantify the systemic relevance of N financial institutions in the
occurrence of tail events, but does not optimize a specific objective function
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leading to optimal portfolio weights. However, our network provides infor-
mation which potentially affects the portfolio performance and risk during
a turmoil or during/after systemic events. In fact, our approach leads to
the identification of two clusters of companies. The first one, denoted as
RT (which stands for Right Tail), includes the systemically important in-
stitutions, which have a significant impact on a large number of nodes in
our network. The second one, denoted as LT (which stands for Left Tail),
includes the institutions which have the lowest impact in our network. In
our study, the impact of the ith company on the entire network is equal to
the out-degree ODi defined in Equation (D.2), for i = 1, . . . , N .

For each of the 288 sub-samples derived from our rolling window pro-
cedure, we identify the two groups LT and RT of companies by computing
the 25th and 75th percentiles of the values in OD = [OD1 OD2 · · · ODN ].
The LT set includes companies which have an impact lower than or equal
to the 25th percentile of OD. In contrast, the RT set regroups institutions
which have an impact greater than or equal to the 75th percentile of OD.
We assess how the composition of the LT and RT clusters evolves over time
in Figure 7. The companies listed on the left side of Figure 7 are sorted
by country. The companies belonging to LT are depicted in green, whereas
the ones belonging to RT are depicted in red. As explained in Section 3, we
estimate 288 networks by implementing a rolling window procedure with a
sample size of 750 days and a step of 10 days ahead. For improving readabil-
ity, we display, in Figure 7, the configuration of LT and RT derived from 144
of these 288 networks, equally spaced between January, 2004 and November,
2017. Each date represented on the top of the graph is the midpoint of the
sub-sample from which we obtain the corresponding network.

We note that the composition of LT and RT groups is quite stable over
time. Furthermore, we also remark that companies belonging to the same
country often have a similar role. For instance, we can refer to some of
the Italian and Spanish institutions, which have belonged to the RT set
almost continuously since 2010. The same is true for some of the British and
French companies, which have belonged to the LT group almost continuously
during the same time interval. On the one hand, investing in systemically
important institutions exposes our portfolio to the risk they face in a stressed
state, for instance during tail events, impacting the stability of many other
companies. In fact, the existence of interconnections in our network exposes
single companies to the distress of other companies, potentially increasing
the magnitude of contagion at a portfolio level, with an overall greater risk.
On the other hand, investing in systemically important institutions may have
some advantages during bull market periods, when their good performance
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has a positive impact on the stability of the system. In contrast, the compa-
nies belonging to the LT set would have a weak impact on the extreme risk of
the overall portfolio during tail events, but also a lower positive contribution
during bull market phases.

Building on the different behaviors of LT and RT labelled companies
during bull and bear markets, we now try to understand how the identifica-
tion of these two clusters has an impact in terms of portfolio risk. For this
purpose, we compare five different näıve portfolio strategies. The first one is
the equally-weighted portfolio (denoted EW), which is commonly used as a
benchmark in the financial literature because of its remarkable performance
and diversification properties; see DeMiguel et al. (2009), Duchin and Levy
(2009) and Tu and Zhou (2011). In our context, we would say that EW
represents the optimal solution when we believe that all the N companies
in distress have the same impact on the ES of the other nodes in our net-
work. Therefore, the N assets would take the same weight, as they provide
the same contribution to the overall portfolio risk. The second strategy,
denoted LL (which stands for Long on LT), selects the assets of the compa-
nies belonging to LT only, weighing them equally into a global portfolio. In
contrast, the weights of the stocks not included in LT are set equal to zero
to satisfy the budget constraint. This corresponds to a strategy aimed at
largely reducing the possible impact of systemic events on portfolio risk. LL
should be defensive during phases of market turmoil, but might be penalized
in terms of performance during a bullish period.

The third investment rule (LR, i.e. Long on RT) is implemented by
equally weighing the stocks of the companies included in RT, whereas the
other assets take a null weight. Opposite to LL, investing in highly in-
terconnected companies is penalized during stressed phases and aggressive
in bullish periods. The fourth reference strategy (denoted LL-SR, which
stands for Long Left-Short Right) opposes two different portfolios, both de-
fined above. In particular, LL-SR takes a long position on the portfolio we
obtain by implementing LL and a short position on the portfolio derived
from LR. Regarding the fifth strategy (SL-LR, i.e. Short Left-Long Right),
it has an opposite behavior to LL-SR. Indeed, SL-LR takes a short position
in the portfolio we obtain by implementing LL and a long position in the
portfolio derived from LR. As a result, LL-SR and SL-LR might be seen as
a kind of (imperfect) market neutral rules, playing with the differences in
risk and return between two opposite clusters of companies’ stocks.

Above all, we should note here that the resulting competing portfolios
for the five strategies do not directly rely on the optimization of any spe-
cific explicit objective function (for instance, a risk measure, such as the
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portfolio variance, VaR or ES) and, thus, do not provide optimal weights re-
lated to any program linked to financial characteristics of the final portfolio.
Consequently, on one side, the differences in their performance exclusively
depend on the information retrieved from our network. On the other side,
our results are not exposed to any direct source of model risk related to port-
folio weights (Michaud, 1989). Moreover, näıve allocation strategies might
anyway be comparable to optimized allocations; see, for instance, DeMiguel
et al. (2009). Also, on an a priori ground, we should note that, when clus-
tering the companies into either LT or RT, we are exposed to the risk that
assets with similar features (belonging to the same group) respond in the
same way to tail events, with some under-diversification potential effects.
In contrast, LL-SR (and also SL-LR) includes a larger set of assets having
an opposite role in our network. Moreover, the possibility of setting both
long and short positions (with either LL-SR or SL-LR) allows us to offset
the different reactions of LT and RT companies to tail events.

We now describe the procedure we use to build each of the competing
portfolios introduced above. For each of them, and for each of the 288 sub-
samples derived from the rolling window procedure described in Section 3,
we compute a 1 × N vector of portfolio weights ωωωt = [ω1,t ω2,t · · · ωN,t],
where ωi,t is the weight of the ith asset that we determine at time t for a
given investment strategy, for i = 1, . . . , N and t = 750, 760, . . . , 3610, 3620.
For instance, except for the EW strategy (where the weights are constant
at the level 1/N), the first vector of portfolio weights (i.e. ωωω750) is retrieved
from the first network, that we estimate at time t = 750, using the daily
returns spanning the time interval [1, 750]. We then compute 750 portfolio
returns as rp,t = ωωω750r

′
t, where rt = [r1,t r2,t · · · rN,t], for t = 1, 2, . . . , 750.

Therefore, these 750 portfolio returns correspond to the output of our first
network. By doing so, we do not forecast optimal portfolios for a time
horizon that goes beyond the 750th day. This is then an in-sample evaluation,
as the primary focus of this study is to understand whether, and to what
extent, the identification of the clusters of LT and RT companies (that we
exclusively determine from the first rolling network) has an impact in terms
of portfolio risk and performance. We do not forecast the composition of LT
and RT after the 750th day. In contrast, we observe the future compositions
of LT and RT sets of companies from the subsequent rolling sub-samples
and, from time to time, we try to understand if they have an impact upon
the performance of the resulting portfolios.

We compute from the in-sample portfolio returns rp,1, . . . , rp,750, a set
of risk and performance measures, which are described as follows: first,
we compute the Expected Shortfall (ES) because it has a central role in
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our study. The tail expectation of Rj defined in Equation (1) typically
takes negative values when setting θ = 0.05. We use in this section the
tail expectation with a negative sign to assess the competing portfolios,
so that a greater and positive ES points out a greater risk. Secondly, we
compute the Standard Deviation (SD) of the 750 portfolio returns to have
a more complete picture about the portfolio risk. Third, we also compute
the Sharpe Ratio (SR) and the ratio between the mean and the ES of the
750 portfolio returns (ESR) to provide information about the risk-adjusted
performance. We collect these statistics in D1 = [ES1 SD1 SR1 ESR1],
where the subscript ‘1’ points out the fact that they are computed from the
first network.

We then implement the rolling window procedure with a horizon of ten
days ahead. As a result, we estimate the second network and, consequently,
rebalance the portfolio weights at time t = 760, computing additional 750
portfolio returns: rp,t = ωωω760r

′
t for t = 11, 12, . . . , 760. Again, we summarize

these new portfolio returns using the descriptive statistics described above
and obtain D2 = [ES2 SD2 SR2 ESR2]. We repeat this procedure for
the subsequent 286 sub-samples using a step of a 10-days-ahead grid, until
we use all of the available data, obtaining the corresponding vectors D3 =
[ES3 SD3 SR3 ESR3] to D288 = [ES288 SD288 SR288 ESR288]. Note that
the vectors D1, . . . ,D288 are dynamically computed over time from different
networks, which, in turn, reflect different market regimes. However, our
method aims at estimating the impact of the loss exceedances of company
i on the ES of company j, ∀ i 6= j. Therefore, an analysis which focuses on
a crisis period (in place of the full-sample analysis) would acquire a greater
relevance in our study, because it captures the relationships among different
institutions when they are in a state of joint distress.

We saw in Section 4 that the networks estimated from the rolling sub-
samples numbered 60 to 133 reflect the strongest degree of distress in our
analysis, due to the effects of two relevant events: the US subprime crisis
and the European sovereign debt crisis. The impact of these events is evi-
dent by estimating the univariate ESs of the N = 104 companies included
in our dataset, for each of the 288 rolling sub-samples. Figure 8 displays
the average ES for each sub-sample.14 We can see from Figure 8 that the
period including the sub-samples numbered 60 to 133 is characterized by
the strongest risk.

14For each company and for each sub-sample, we estimate the ES at the 5% level by
employing the historical simulation approach (see, among others, Hull, 2011).
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Figure (8) Average Expected Shortfall (%) at the 5% level of the N = 104 companies
included in our dataset, computed for each of the 288 sub-samples resulting from the rolling
window procedure described in Section 3. The crisis period includes the sub-samples from
60 (midpoint: September 2007) to 133 (midpoint: July 2010). The horizontal dashed lines
represent the average Expected Shortfall before, during and after the crisis period.

The 60th sub-sample spans the interval April, 2006—February, 2009
(midpoint: September, 2007). The 133th sub-sample includes the inter-
val January, 2009—December, 2011 (midpoint: July, 2010). We then select
as a crisis period the interval which begins with the 60th sub-sample and
ends with the 133th sub-sample. As a result, we use the statistics included
in the 74×4 matrix such as: DCrisis = [D60; D61; . . . ; D133], to evaluate the
performance of the competing investment strategies during the crisis period.
We check whether and to what extent the results change when focusing on
the entire period January, 2004—November, 2017, which is characterized
by an alternation of different market regimes. In addition, we also study
the performance of the strategies focusing on a stable period. We see from
Figure 8 that the period before the US subprime crisis is characterized, on
average, by a lower risk.

To confirm the crisis and stable period sample choices, we run a simple
three-regime switching regression on the indicators displayed in Figures 3
and 8, checking if we find evidence of switches in the mean of these variables.
We find that for all the three indicators a regime is associated with the crisis
period, with a start ranging from mid-May to mid-July, 2007, and the end
between mid-June and mid-October, 2010, thus coherent with our choice for
the crisis period. For the stability period, we observe more stable behavior
in the regimes before the crisis than after the crisis, in line with our choice of
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using the pre-crisis period as a stable period.15 This evidence also emerges
from the network analysis reported in Section 4. In this regard, we found
that the average ES displayed in Figure 8 is highly correlated with the
density and reciprocity of our dynamic networks (depicted in Figure 3), as
well as with the Country-Level Index of Financial Stress (CLIFS) and the
Composite Indicator of Systemic Stress (CISS) provided by the European
Central Bank (see Figure C.10 in Appendix C).

Therefore, we select as a stable period the interval which begins with the
first sub-sample and ends with the 59th sub-sample, taking into account the
statistics included in the 59×4 matrix such as: DStable = [D1; D2; . . . ; D59].
Finally, to contrast with stable and crisis periods, we also define a 288 ×
4 matrix such as: DFull Sample = [D1; D2; . . . ; D288], which reports thus
the full-sample results. We hereafter analyze each series (by column) of
DCrisis, DFull Sample and DStable using the following descriptive statistics:
first quartile (Q1), median (MED), mean (MEAN) and third quartile (Q3).
We report the results obtained from the crisis period in the left panel of
Table 1.

The LL strategy outperforms EW in terms of ES, whereas LR turns
out to be the riskiest strategy. Therefore, investing in the companies with
the largest (weakest) impact on our network implies a greater (lower) risk.
It is interesting to observe that this result holds for all the statistics re-
ported in the left panel of Table 1(a). We motivate this result as follows:
the companies belonging to RT have a relevant impact on the ES of other
institutions. However, when implementing LR, we invest in the compa-
nies with the largest impact only, triggering the propagation of contagions
within the portfolio. ES significantly decreases when using the strategies
LL-SR and SL-LR. Therefore, the possibility of combining long and short
positions within the same portfolio to offset the effects of opposite clusters
leads to relevant improvements. The LL-SR outperforms the SL-LR, con-
firming the evidence that a lower risk is associated with long positions in
companies with a weaker impact on our network. We obtain similar findings
when analyzing the standard deviation (Table 1(b)). Again, LR provides the
greatest risk, whereas LL outperforms both EW and LR strategies. Once
again, the risk sensibly decreases when implementing LL-SR and SL-LR,
which have the same performance. This is due to the fact that the variance
of −aX, where a is a scalar and X is a given random variable, is equal to
var(−aX) = a2var(X) = var(aX). In other words, we lose the information

15The Markov Switching regressions are available upon request.
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Table (1) Portfolio performance and risk during different periods

RULE Q1 MED MEAN Q3 Q1 MED MEAN Q3 Q1 MED MEAN Q3

CRISIS PERIOD FULL-SAMPLE STABLE PERIOD

(a) ES (%)

EW 5.62 5.65 5.54 5.68 2.72 3.42 3.65 4.77 1.85 2.43 2.69 2.93
LL 4.89 5.12 5.08 5.28 2.67 3.37 3.52 4.30 1.83 2.45 2.62 3.03
LR 6.17 6.42 6.36 6.68 2.85 3.61 4.03 5.49 1.99 2.53 2.89 3.05

LL-SR 1.69 1.88 1.90 2.12 0.99 1.23 1.34 1.62 0.91 1.00 1.04 1.15
SL-LR 2.01 2.31 2.29 2.56 1.01 1.27 1.47 1.89 0.89 0.98 1.09 1.07

(b) SD (%)

EW 2.17 2.23 2.20 2.26 1.13 1.43 1.50 1.92 0.74 0.94 1.07 1.22
LL 1.95 2.06 2.04 2.12 1.15 1.40 1.46 1.75 0.77 0.97 1.07 1.26
LR 2.44 2.54 2.52 2.62 1.20 1.57 1.67 2.18 0.80 0.97 1.14 1.28

LL-SR 0.82 0.92 0.91 1.01 0.46 0.58 0.63 0.76 0.42 0.46 0.48 0.51
SL-LR 0.82 0.92 0.91 1.01 0.46 0.58 0.63 0.76 0.42 0.46 0.48 0.51

(c) SR (%)

EW -4.30 -3.59 -3.11 -1.79 -1.55 0.74 1.36 3.73 -0.99 4.22 4.38 11.44
LL -3.64 -3.05 -2.52 -1.67 -1.51 1.84 2.04 3.66 -1.59 3.61 3.63 10.07
LR -4.82 -4.17 -3.79 -2.25 -2.71 -0.86 0.20 3.03 -0.88 3.52 4.19 11.35

LL-SR 3.26 4.45 4.79 6.10 2.95 5.44 4.90 7.63 -3.65 -2.51 -0.77 -0.91
SL-LR -6.10 -4.45 -4.79 -3.26 -7.63 -5.44 -4.90 -2.95 0.91 2.51 0.77 3.65

(d) ESR (%)

EW -1.69 -1.44 -1.23 -0.71 -0.63 0.30 0.61 1.59 -0.41 1.64 1.76 4.58
LL -1.47 -1.24 -1.00 -0.68 -0.63 0.78 0.91 1.52 -0.68 1.43 1.51 4.20
LR -1.92 -1.66 -1.48 -0.88 -1.18 -0.37 0.12 1.23 -0.37 1.36 1.70 4.57

LL-SR 1.55 2.18 2.32 3.06 1.44 2.58 2.34 3.62 -1.64 -1.10 -0.21 -0.38
SL-LR -2.36 -1.85 -1.88 -1.32 -3.42 -2.29 -2.12 -1.25 0.43 1.20 0.54 1.72

Notes: From left to right, the table reports the following statistics: first quartile (Q1),
median (MED), mean (MEAN) and third quartile (Q3), for each column of the matrices
DCrisis (left panel), DFull Sample (central panel) and DStable (right panel), respectively.
The columns of each matrix DCrisis, DFull Sample and DStable report the series of dif-
ferent risk and performance indicators, that we dynamically compute for each investment
strategy listed in the first column. Panel (a) reports the statistics computed on the first
columns of DCrisis, DFull Sample and DStable, which include the series of the portfolio
ESs at the 5% level. Panels (b) and (c) report the statistics computed, respectively, on
the second (portfolio standard deviations) and third (portfolio Sharpe ratios) columns
of DCrisis, DFull Sample and DStable. Panel (d) reports the statistics computed on the
fourth columns of DCrisis, DFull Sample and DStable, which include the ratios between the
average portfolio returns and ESs. EW is the equally weighted portfolio of the entire set
of (N) companies. LL is the equally weighted portfolio of the companies belonging to the
cluster LT. LR is the equally weighted portfolio of the companies belonging to the cluster
RT. LL-SR is the strategy which takes a long position on LL and a short position on LR.
SL-LR is the strategy which takes a short position on LL and a long position on LR.
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about the sign of a position when computing the variance. From the left
panel of Table 1(c)-(d), we can see the strategy LL-SR dominates the other
investment strategies in terms of risk-adjusted performance, quantified by
two different indicators: the Sharpe ratio and the ratio between the mean
portfolio return and ES. This result is due to two different factors. First, the
best performance of LL-SR in terms of risk (decreasing the denominators of
the SR and ESR ratios). Second, LL-SR only yields, on average, a positive
portfolio return.

We now check whether, and to what extent, the results change when
extending the focus to the entire period January, 2004—November, 2017.
Results are reported in Table 1 (central panel): LL outperforms EW and
LR in terms of ES (Table 1(a)) and Standard Deviation (Table 1(b)) as
before. However, the differences between LL and EW (or LR) strategies are
now less evident with respect to the crisis period, as we check by comparing
the left and central panels of Table 1. Likewise, the differences between
LL-SR and SL-LR are less evident in the central panel of Table 1(a). By
comparing the left and central panels of Table 1(a)-(b), we highlight the fact
that the risk sensibly decreases when moving to the full-sample analysis for
all the portfolio strategies. This result points out the fact that a longer time
interval, which includes bull and bear market phases, partially mitigates the
effects of the crisis period. Again, LL-SR outperforms the other investment
strategies in terms of risk and risk-adjusted performance (central panel of
Table 1(c)-(d)).

Finally, we analyze the results obtained from the stable period in the
right panel of Table 1. The statistics reported in the right panel of Table
1(a)-(b) point out a lower risk with respect to the crisis and the full-sample
results, reflecting a general stability of the market. The differences among
the competing strategies in the right panel of Table 1(a)-(b) are even lower
than the ones derived from the full sample analysis. These results support
the evidence that the information derived from our networks has a little
impact in terms of portfolio risk during stable phases of the market. Inter-
estingly, all the investment strategies (except, however, the LL-SR strategy),
provide, on average, a positive risk-adjusted performance (see the right panel
of Table 1(c)-(d)). Therefore, we obtain opposite results when contrasting
stable and crisis periods.

In addition to the in-sample analysis, we also set up an out-of-sample
exercise for completeness, using the portfolio weights derived from each esti-
mation window (in-sample estimates) and evaluating their fit with the out-
of-sample returns of the N companies. In particular, for each estimation
window ending at time t, we compute ten out-of-sample portfolio returns
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as rp,t+h = ωωωtr
′
t+h, for h = 1, . . . , 10. Following our rolling window scheme,

we update the portfolio weights every ten days, when a new network is esti-
mated, until we use all of the available data. As a result, for each strategy,
we obtain a vector of 2870 out-of-sample returns:

rFull Samplep =

rp,751 · · · rp,760︸ ︷︷ ︸
using ωωω750

rp,761 · · · rp,770︸ ︷︷ ︸
using ωωω760

· · · rp,3611 · · · rp,3620︸ ︷︷ ︸
using ωωω3610

 ,
that we summarize by computing the statistics ES, SD, SR and ESR.

Similar to the in-sample analysis, and in addition to the full-sample
results, we evaluate the performance of the competing strategies during the
crisis and the stable periods that we defined above. For this purpose, we also
calculate ES, SD, SR and ESR on the vectors rCrisisp = [rp,971 · · · rp,1710] and

rStablep = [rp,751 · · · rp,970], which correspond to the time intervals September,
2007—July, 2010 and November, 2006—September, 2007, respectively. We
report the out-of-sample results in Table 2. Some of the results obtained
from the in-sample analysis also hold out of sample. First, LL outperforms
EW and LR in terms of ES during the crisis period. Second, ES and SD
significantly decrease when using LL-SR and SL-LR. Third, the values of
ES and SD increase when moving from the stable to the crisis period for all
the strategies, indicating a greater risk. However, other results change out
of sample. For instance, SL-LR outperforms the other strategies in terms
of risk and risk-adjusted performance, being the only rule which provides
positive values of SR and ESR. All the investment strategies, except SL-LR,
record, on average, negative portfolio returns during the stable period, in
contrast to the tendency we observed in sample. This result may be due to
the fact that the series of out-of-sample portfolio returns in rStablep begins in
November 2006, whereas the first 750 in-sample observations, which lead to a
greater stability, are now excluded, being used only in sample. Therefore, the
stable period identified above in the in-sample analysis becomes shorter from
an out-of-sample perspective, suffering more from the initial fears related to
the US subprime crisis.

As a conclusion, the results presented in this section highlight that it
is possible to derive important information from our network, allowing us
to build financial portfolios which provide not only a lower risk, but also a
better risk-adjusted performance. In particular, these improvements become
more pronounced during tail events. Of course, the relevance of our analyses
might be further highlighted by moving from näıve portfolio allocations to
optimized or regularized portfolio strategies. In this respect, our proposal
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Table (2) Out-of-sample results

RULE ES SD SR ESR ES SD SR ESR ES SD SR ESR

CRISIS PERIOD FULL-SAMPLE STABLE PERIOD

EW 5.77 2.33 -3.56 -1.44 3.99 1.61 -0.65 -0.26 2.84 1.10 -1.96 -0.76
LL 5.64 2.35 -4.24 -1.76 4.02 1.61 -0.77 -0.31 2.81 1.10 -3.65 -1.42
LR 6.23 2.53 -2.31 -0.94 4.25 1.74 -0.66 -0.27 2.97 1.13 -1.57 -0.60

LL-SR 2.29 1.01 -4.07 -1.79 1.57 0.68 -0.13 -0.05 1.10 0.47 -4.70 -2.02
SL-LR 2.28 1.01 4.07 1.80 1.48 0.68 0.13 0.06 0.96 0.47 4.70 2.31

Notes: From left to right, the table reports the following statistics: ES (%) at the 5%
level, standard deviation (%), Sharpe ratio (%) and ratio between the average portfolio
return and ES (%). These statistics are computed on the out-of-sample portfolio returns
obtained, respectively, from the crisis period (September, 2007—July, 2010; left panel),
the full-sample (November, 2006—November, 2017; central panel) and the stable period
(November, 2006—September, 2007; right panel). EW is the equally weighted portfolio
on the entire set of (N) companies. LL is the equally weighted portfolio on the compa-
nies belonging to the cluster LT. LR is the equally weighted portfolio of the companies
belonging to the cluster RT. LL-SR is the strategy which takes a long position on LL and
a short position on LR. SL-LR is the strategy which takes a short position on LL and a
long position on LR.

might be combined with the recent findings of Giuzio and Paterlini (2019)
and Bonaccolto and Paterlini (2020) to verify the benefits of diversification
during distress periods.

6. Conclusion, discussion and future researches

By combining the CARE model of Taylor (2008) with the intuition put
forward by Hautsch et al. (2014) for the construction of financial networks,
we present a methodology for estimating the extreme risk network of fi-
nancial companies quoted in the US market. As a further methodological
contribution, we introduce a calibration criterion for detecting the relevant
edges between the network nodes. Our empirical evidence shows the appro-
priateness of the proposed approach, with network evolution characterized
by an increase in density and vertex degrees during periods of market dis-
tress. When exploiting the informative content of the networks within a
portfolio allocation framework, we show it is possible to design risk mit-
igation strategies which do not impact upon portfolio profitability. Our
empirical results and methodological contributions might thus be of interest
for both investors and market regulators.

Our study builds on a penalized expectile regression, in which the `1-
norm penalty applied to the parameters multiplying the loss exceedances
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allows us to identify the most relevant links in the resulting network. How-
ever, alternative penalty functions can be adapted to our methodological
proposal. For instance, it would be interesting to examine how the net-
work structure changes when moving from convex to non-convex penalty
functions, such as the Smoothly Clipped Absolute Deviation (SCAD) as
introduced by Fan and Li (2001). The properties of SCAD applied to ex-
pectile regression problems have been studied by Liao et al. (2019). It would
be interesting to compare LASSO with different penalty functions not only
when estimating unweighted but also weighted networks, in which we assess
the intensity of the links within a large set of companies in distress. More-
over, in this study, we generalize the method introduced by Taylor (2008),
by focusing on large networks in which the relevant links, which reflect a
state of joint distress of the analyzed companies, are identified through the
LASSO method. It would be interesting to estimate our CARES-X model
by employing a different methodological approach, building, for instance,
on the recent contributions of Taylor (2019) and Wang and Gerlach (2019).
By following the cited approaches, we could jointly estimate VaR and ES
without the requirement of the grid search of the expectile level parame-
ter τ , with relevant advantages in terms of computational efficiency. We
could think about using the LASSO method in Taylor’s (2019) Asymmet-
ric Laplace joint loss, which belongs to the Fissler and Ziegel’s (2001) loss
class. Finally, we estimate our CARES-X model by setting θ = 0.05, as it is
a standard choice in the portfolio management literature. But our CARES-
X model is also flexible enough to be applied to other operational research
approaches, dedicated to risk management for instance. In this later case,
it would be interesting to assess the estimates resulting from θ < 0.05, such
as 0.025, that is recommended by the Basel III Accord. We include these
complementary analyses and extensions in our future research agenda.
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Online Appendix

Appendix A. Differences with related models

The closest contribution to this study is the work of Hautsch et al. (2014).
The authors also estimated financial networks from a pessimistic viewpoint,
using the LASSO to deal with the curse of dimensionality. In addition, they
also use loss exceedances to stress the impact of the N − 1 conditioning
institutions. Nevertheless, we differ from Hautsch et al. (2014) on several
relevant points.

Hautsch et al. (2014) defined the links among N nodes using a different
risk measure; that is, VaR. In particular, Hautsch et al. (2014) estimated
the τ th conditional quantile of rj,t using the following quantile regression
model (Koenker and Bassett, 1978):

Q (rj,t; τ) = κκκ(j)τ x′j,t, (A.1)

where τ takes low values in the interval (0, 1), typically τ ∈ {0.01, 0.05},
so that Q (rj,t; τ) represents the VaR of rj,t at level τ conditional on the
row vector xj,t =

[
1,yj,t−1,wt−1,h−j,t

]
, for j = 1, . . . , N . The elements of

xj,t are the following: i) yj,t−1, which includes lagged specific characteristics

of the jth company (such as leverage, maturity mismatch, market-to-book
value, market capitalization, equity return volatility) along with its lagged
return rj,t−1; ii) wt−1, which includes lagged macroeconomic state variables;
and iii) h−j,t, which coincides with the vector of loss exceedances we use in
our CARES-X model. The parameters in Equation (A.1) are estimated
by adding an `1-norm penalty to the loss function which characterizes the
standard quantile regression, as introduced by Koenker and Bassett (1978).
Therefore, there is an influence from the ith company to the jth institution
in the resulting network, if hi,t is LASSO-selected as a relevant driver of
Q (rj,t; τ); that is, if the loss exceedance of the former has a significant
impact on the VaR of the latter. According to Hautsch et al. (2014), hi,t
is LASSO-selected if the absolute value of its corresponding coefficient is
greater than 0.0001.

In contrast to the method introduced by Hautsch et al. (2014), our
CARES-X model builds on an expectile regression model. Although quantile
regression is more robust to outliers, different contributions in the literature
highlighted several advantages of expectile regression; see, among many oth-
ers, Newey and Powell (1987), Efron (1991), Koenker (1992, 1993), Jones
(1994), Yao and Tong (1996), Koenker (2005), Taylor (2008), Yang and Zou
(2015), Bellini and Bernardino (2017) and Furno and Vistocco (2018). Some
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of them are summarized as follows: i) expectile regression is computationally
simple, building on an asymmetric least squares loss, which is differentiable
everywhere. In contrast, the check loss function characterizing the quan-
tile regression model is not everywhere differentiable, so that the underlying
optimization routine might require a set of restrictions affecting the com-
putational efficiency; ii) it is possible to define conditional quantiles as a
function of expectiles. Indeed, there exists a one-to-one mapping between
quantiles and expectiles. As a result, we compute quantiles from expectiles,
exploiting the computational advantages behind the latter; iii) expectiles
have a more global dependence on the form of the distribution compared
to quantiles (Koenker, 2005). Altering the shape of the upper tail of the
rj,t’s distribution does not change the quantiles of the lower tail, but it does
have an impact on all the expectiles (Taylor, 2008). As a result, expectiles
are more sensitive to tail events, signalling more promptly the systemic im-
pact of a given financial company; and iv) the estimated expectile curve is
typically smoother than the one derived from quantiles.

Moreover, an extreme quantile is interpreted as VaR, whereas expectiles
lead to ES, which has better properties from both a mathematical and a
financial viewpoint. For instance, we refer to the subadditivity property,
which is consistent to the concept of financial diversification. ES is subaddi-
tive, whereas this is not the case for VaR. As a result, VaR is not a coherent
measure of risk (Artzner et al., 1999). As highlighted by Acerbi and Tasche
(2002), broken axioms always lead to paradoxical, wrong results, and VaR
makes no exception. Besides, VaR is an estimate of the maximum loss a
company can potentially incur with a given probability level over a given
time period, but it does not provide any information about the magnitude of
the actual loss when it is greater than VaR. In contrast, ES overcomes this
limitation (Hull, 2011). The better properties of ES motivate the changes
that the Basel Committee on Banking Supervision (BCBS) has adopted in
the Basel III accords. In particular, the BCBS has substituted VaR with ES
for the definition of market risk capital requirements. Our network is then
consistent with the latest regulatory standards.

Other differences concern the specification of the regression model. In
contrast to Hautsch et al. (2014), we do not use the lagged firm-specific
characteristics in yj,t−1 to link µ (rj,t; τ) to the past of rj,t. Some of these
covariates (such as leverage and market-to-book value) are retrieved from
balance sheet indicators, which are observed with a low frequency. Hautsch
et al. (2014) made them available for each t = 1, . . . , T using an interpo-
lation, which is affected by inevitable estimation errors. In contrast, our
method is more efficient, as the past of rj,t along with the dynamics and

40



persistence of expectiles over time are directly captured by a single latent

variable; that is, µ
(
rj,t−1; τ

?
j

)
. For similar reasons, we do not need lagged

macroeconomic variables in wt−1 to capture the dynamics from t−1 to t, but
directly estimate contemporaneous relationships between wt and ES (rj,t; θ).
Indeed, we found that wt has a more significant impact on ES (rj,t; θ) when
compared to wt−1.

Finally, we differ from Hautsch et al. (2014) for the way in which we
LASSO-select the relevant connections among the N financial institutions.
Among the covariates in Equation (9), we penalize the loss exceedances
only to stress further their impact. By doing so, we filter stronger and more
significant links. We also stress the fact that Hautsch et al. (2014) used a
threshold of 0.0001 to LASSO-select the relevant loss exceedances. However,
this threshold is arbitrarily defined and minimal differences in the absolute
values of the coefficients could lead to different structures of the resulting
network. In contrast, the threshold η that we use to LASSO-select the
relevant loss exceedances in (9) has a statistical interpretation (see Section
3).

Appendix B. List and information of the network nodes

Table (B.3) Information on the network nodes

NUMBER COMPANY SECTOR COUNTRY

1 ALLIED IRISH BANKS BANKING IRE
2 BANCO BPM BANKING ITA
3 BANK OF IRELAND GROUP BANKING IRE
4 BANKINTER ’R’ BANKING SPA
5 BARCLAYS BANKING GBR
6 BBV.ARGENTARIA BANKING SPA
7 BANCO DE SABADELL BANKING SPA
8 BANCO SANTANDER BANKING SPA
9 BNP PARIBAS BANKING FRA
10 BPER BANCA BANKING ITA
11 CLOSE BROTHERS GROUP BANKING GBR
12 COMMERZBANK (XET) BANKING GER

13 CRÉDIT AGRICOLE BANKING FRA
14 CREDIT SUISSE GROUP N BANKING SWI
15 DANSKE BANK BANKING DEN
16 DEUTSCHE BANK (XET) BANKING GER
17 DNB BANKING NOR
18 ERSTE GROUP BANK BANKING AUS
19 SOCIETE GENERALE BANKING FRA

Continued on next page
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NUMBER COMPANY SECTOR COUNTRY

20 HSBC HDG. BANKING GBR
21 ING GROEP BANKING NET
22 INTESA SANPAOLO BANKING ITA
23 JYSKE BANK BANKING DEN
24 KBC GROUP BANKING BEL
25 KOMERCNI BANKA BANKING CZR
26 LLOYDS BANKING GROUP BANKING GBR
27 MEDIOBANCA BC.FIN BANKING ITA
28 NATIXIS BANKING FRA
29 NORDEA BANK BANKING SWE
30 ROYAL BANK OF SCTL.GP. BANKING GBR
31 SEB ’A’ BANKING SWE
32 STANDARD CHARTERED BANKING GBR
33 SVENSKA HANDBKN.’A’ BANKING SWE
34 SWEDBANK ’A’ BANKING SWE
35 SYDBANK BANKING DEN
36 UNIONE DI BANCHE ITALIAN BANKING ITA
37 UBS GROUP BANKING SWI
38 UNICREDIT BANKING ITA
39 AEGON INSURANCE NET
40 AGEAS (EX-FORTIS) INSURANCE BEL
41 ALLIANZ (XET) INSURANCE GER
42 ASSICURAZIONI GENERALI INSURANCE ITA
43 AVIVA INSURANCE GBR
44 AXA INSURANCE FRA
45 BALOISE-HOLDING AG INSURANCE SWI
46 BEAZLEY INSURANCE GBR
47 CNP ASSURANCES INSURANCE FRA
48 HANNOVER RUCK. (XET) INSURANCE GER
49 HELVETIA HOLDING N INSURANCE SWI
50 HISCOX (DI) INSURANCE GBR
51 LEGAL & GENERAL INSURANCE GBR
52 MAPFRE INSURANCE SPA
53 MUENCHENER RUCK. (XET) INSURANCE GER
54 OLD MUTUAL INSURANCE GBR
55 PRUDENTIAL INSURANCE GBR
56 RSA INSURANCE GROUP INSURANCE GBR
57 SAMPO ’A’ INSURANCE FIN
58 SCOR SE INSURANCE FRA
59 ST.JAMES’S PLACE INSURANCE GBR
60 STOREBRAND INSURANCE NOR
61 SWISS LIFE HOLDING INSURANCE SWI
62 SWISS RE INSURANCE SWI
63 UNIPOLSAI INSURANCE ITA
64 ZURICH INSURANCE GROUP INSURANCE SWI
65 3I GROUP FINANCIAL SERVICES GBR

Continued on next page
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NUMBER COMPANY SECTOR COUNTRY

66 AAREAL BANK (XET) FINANCIAL SERVICES GER
67 ACKERMANS & VAN HAAREN FINANCIAL SERVICES BEL
68 DEUTSCHE BOERSE (XET) FINANCIAL SERVICES GER
69 GBL NEW FINANCIAL SERVICES BEL
70 INDUSTRIVARDEN ’A’ FINANCIAL SERVICES SWE
71 INTERMEDIATE CAPITAL GP. FINANCIAL SERVICES GBR
72 INTRUM JUSTITIA FINANCIAL SERVICES SWE
73 INVESTEC FINANCIAL SERVICES GBR
74 INVESTOR ’B’ FINANCIAL SERVICES SWE
75 KINNEVIK ’B’ FINANCIAL SERVICES SWE
76 LONDON STOCK EX.GROUP FINANCIAL SERVICES GBR
77 MAN GROUP FINANCIAL SERVICES GBR
78 NEX GROUP FINANCIAL SERVICES GBR
79 PARGESA ’B’ FINANCIAL SERVICES SWI
80 PROVIDENT FINANCIAL FINANCIAL SERVICES GBR
81 SCHRODERS FINANCIAL SERVICES GBR
82 WENDEL FINANCIAL SERVICES FRA
83 BRITISH LAND REAL ESTATE GBR
84 CASTELLUM REAL ESTATE SWE
85 COFINIMMO REAL ESTATE BEL
86 DERWENT LONDON REAL ESTATE GBR
87 DEUTSCHE EUROSHOP (XET) REAL ESTATE GER
88 FABEGE REAL ESTATE SWE
89 FASTIGHETS BALDER ’B’ REAL ESTATE SWE
90 FONCIERE DES REGIONS REAL ESTATE FRA
91 GECINA REIT REAL ESTATE FRA
92 GREAT PORTLAND ESTATES REAL ESTATE GBR
93 HAMMERSON REAL ESTATE GBR
94 ICADE REIT REAL ESTATE FRA
95 INTU PROPERTIES REAL ESTATE GBR
96 JM REAL ESTATE SWE
97 KLEPIERRE REAL ESTATE FRA
98 LAND SECURITIES GROUP REAL ESTATE GBR
99 LUNDBERGFORETAGEN ’B’ REAL ESTATE SWE
100 PSP SWISS PROPERTY AG REAL ESTATE SWI
101 SEGRO REAL ESTATE GBR
102 SHAFTESBURY REAL ESTATE GBR
103 SWISS PRIME SITE REAL ESTATE SWI
104 UNIBAIL-RODAMCO SE REIT REAL ESTATE NET
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Appendix C. Additional figures
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Figure (C.9) Trend of the average percentage returns of the N = 104 companies included
in our dataset from January 2, 2004 to November 16, 2007.
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Figure (C.10) Trend of the average Country-Level Index of Financial Stress (CLIFS) of
the Countries listed in the fourth column of Table B.3 (except Norway and Switzerland,
because CLIFS is not available for these Countries), provided by the European Central
Bank with a monthly frequency, superimposing the density, reciprocity (taken with the
negative sign) and ES series displayed in Figures 3 and 8, respectively. These time series
are standardized so that they are expressed in the same scale. For simplicity, we do not
display here the trend of the Composite Indicator of Systemic Stress (CISS) provided
by the European Central Bank, as it behaves similarly to the average CLIFS (linear
correlation coefficient of 0.91).
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Appendix D. Definition of degrees, density and reciprocity

We evaluate our network using both local and global measures, according
to the fact that we focus on either a single node (or vertex) or the overall
graph, respectively. Starting from the former, we compute the in- and the
out-degree of each node; that is, the number of edges (or links) pointing
in towards and out from a vertex, respectively. We estimate directed and
unweighted networks with no self-loops, each of which is determined by an
adjacency matrix A = [aj,i] ∈ RN×N (see Section 3 for additional details on
the computation of A). As a result, we calculate the in-degree of node j
and the out-degree of vertex i, respectively, as follows:

IDj =
N∑
i=1

aj,i, (D.1)

ODi =
N∑
j=1

aj,i, (D.2)

for (i, j) = 1, . . . , N .
Likewise, we also define the degree of node j; that is, the sum of edges,

without considering their direction, incident on it, for j = 1, . . . , N . Moving
to the global statistics, we compute the density and the reciprocity of each
rolling network. The density of a graph is the frequency of realized edges
relative to potential edges:

den =
|E|

N(N − 1)
, (D.3)

where |E| is the number of realized links within a given network.
The reciprocity is defined as the proportion of mutual, or reciprocated,

links:

rec =

∑
j,i (A�A′)j,i∑

j,i aj,i
, (D.4)

where � denotes the Hadamard product.
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