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Influence of large strain preloads on the viscoelastic response 

of rubber-like materials under small oscillations

A.-S. Lectez 
n, E. Verron

Institut de Recherche en Génie Civil et Mécanique (GeM), UMR CNRS 6183, Ecole Centrale de Nantes, BP 92101, 44321 Nantes cedex 3, 

France

The viscoelastic response predicted by linearized internal variables models in the case of small oscilla-

tions superimposed on a large static preload is investigated, comparing simple forms of the Zener and

the Poynting–Thomson models. It is shown that both of them predict a preload dependency of the

equilibrium linearized stress, but only the latter take into account such a dependency on the out-of-

equilibrium part. Yet, the Zener model is much more frequently linearized as the Poynting–Thomson

model. The formulation of each model for finite deformations is quickly reminded, before linearizing

them around a large static preload. Finally, a comparison of the influence of preload on each model is

proposed for uniaxial extension, before discussing which kind of model has to be chosen regarding

theoretical and practical aspects.

1. Introduction

Elastomers are often used in industrial applications for which

vibrations must be filtered, as in automotive engine mounts. These

parts are subjected to a large strain preload due to engine weight,

on which some oscillations caused by engine vibrations and/or

road conditions are superimposed. Simulating accurately the

mechanical response of engine mounts is an industrial ongoing

challenge which necessitates to predict the change in dynamic

properties of elastomers due to the preload. Authors interested in

this problem mostly choose to linearize viscoelastic models.

This linearization is justified by several arguments. Firstly, the

amplitude of oscillations is small for a large part of industrial

applications. In this case, a complex nonlinear viscoelastic model

including several superimposed large strain steps is unnecessary.

Secondly, linearized models are sufficient to study the influence of

a preload on dynamic properties, as it is shown in this paper.

Finally, characterizing a material subjected to small oscillations

enables the calculation of well-known intrinsic mechanical

quantities, like storage and loss moduli. These quantities are only

rigorously defined for small strain, as highlighted by Govindjee

and Simo [1]. Moreover, linearization leads to a relatively simple

closed-form solution, which ensure a faster identification

procedure.

Viscoelastic models are classically derived following two

approaches, referred to as integral and internal variables approa-

ches. Integral models are based on the assumption that the stress

is an explicit function of strain history. This approach generalizes

the Boltzmann principle (see Ward [2] for example). Green and

Rivlin [3] and Coleman and Noll [4] derived such early models,

while Christensen [5] and K-BKZ models [6,7] were developed

later. Internal variables models consider that the stress depends on

state variables, including internal ones. These internal variables

depend on strain history through evolution laws. Rheological

models are parts of this approach. The simplest constitutive

equations of this type are Maxwell and Kelvin–Voigt models

which simply associate a spring and a dashpot, respectively in

series and in parallel. To correctly predict the behavior of a vis-

coelastic solid, a supplementary branch is needed, which leads to

Zener (parallel branches) and Poynting–Thomson (series bran-

ches) models (see for example Wineman and Rajagopal [8]). One

of the first large strain models issued from this approach is due to

Green and Tobolsky [9]. Further developments have been pro-

posed by Lubliner [10] and Sidoroff [11], from which comes the

multiplicative decomposition of the deformation gradient [12] as

applied to viscoelasticity.

Several authors studied the linearization of viscoelastic models,

most of them choosing the integral approach, and particularly

models based on Coleman and Noll [4] proposal [13–18] and on

Pipkin and Rogers [19] proposal [20]. These models, expressed in

their most general form, contain a preload dependency of both

equilibrium and out-of-equilibrium stresses. However, application
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of these models requires to consider restrictions of material

functions as order of expansion or decoupling between time and

strain influences on relaxation functions. Sometimes, these

hypotheses lead to a loss of dependency of out-of-equilibrium

stress on preload (see Lion et al. [17] for example). This can be

corrected by adding a dependency through correction factors [21]

or preload dependent moduli [18]. Thus, thanks to their general

and flexible forms, it has been proven by several authors that

linearized integral models provide an efficient way to explicitly

introduce dependency of equilibrium and out-of-equilibrium

stress on preload: a multitude of functions of various order and

coupling is available to be compared with experimental data.

However, this strategy has to be employed carefully, since too

flexible models with an abusive large number of material para-

meters would directly lead to non-robust models and irrelevant

mechanical predictions out of the range of deformations con-

sidered during the identification of material functions. Moreover,

integral models are generally not based on the second principle of

thermodynamics (see Petiteau et al. [22]). In contrary to that,

internal variables models are derived from the second principle.

Several authors have exploited this advantage in the context of

linearization around a large preload. For example, Reese and

Govindjee [23], Haupt and Sedlan [24], Amin et al. [25], Lejeunes

et al. [26] studied linearized Zener-like models. In the present

paper, it is chosen to focus on linearization of internal variable

models. Particularly, it will be shown that linearized Zener-like

models, in their simpler form, do not take into account a preload

dependency on the out-of-equilibrium stress. As well as integral

models, it is possible to modify the model introducing such a

dependency, but to the authors opinion, this solution is more

artificial than using a model which already include the preload

dependency, even in its simplest form. The Poynting–Thomson

model presents this property and yet is very few considered in

linearization processes. Thus, both Zener and Poynting–Thomson

models are considered: while their small strain formulation are

equivalent, it has been shown by Huber and Tsakmakis [27] that

they differ for large strain. In this paper, the comparison between

both models is carried further, studying the difference due to large

strain after linearization. First, large strain formulations are

reminded, before introducing the linearized ones. Then, an ana-

lysis of how both models account for modifications of dynamic

properties due to a preload is performed. Finally their differences,

advantages and drawbacks are discussed in the last section.

2. Linearization of large strain formulations

Based on Huber and Tsakmakis [27], large strain formulations

of Zener and Poynting–Thomson models are briefly recalled,

before being linearized.

2.1. Large strain

In addition to the framework of incompressible hyperelasticity,

both models are based on three major hypotheses:

� The multiplicative decomposition of the deformation gradient.

This assumption is related to the choice of internal variables

which describe the problem and define the intermediate

configuration.
� The additive decomposition of the strain energy density into

two strain energy densities. On the rheological schemes, one

strain energy density is associated with each spring: it defines

the nonlinear stress–strain relationship.
� The choice of an evolution law which respects the second

principle of thermodynamics. Here, a simple case is considered

with constant viscosity for both models.

From these three hypotheses follow both large strain formulations,

whose major components are introduced in Fig. 1.

2.1.1. Constitutive equations: Zener model

The stress–strain relationship of the large strain formulation of

the Zener model based on the multiplicative split of the defor-

mation gradient is described by the following four equations:

σ ¼ σ1þσOE

σ1 ¼ �p1Iþ2B
∂Wa

∂B

σOE ¼ �ðp�p1ÞIþ2Be
∂Wb

∂Be

_Be ¼ �
2

η
Be σOEð ÞDþBeL

T þLBe

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð1Þ

where:

� σ, σ1 and σOE are respectively the total Cauchy stress tensor, the

equilibrium stress tensor and the out-of-equilibrium stress

tensor,
� B and L are respectively the total left Cauchy–Green strain

tensor and spatial velocity gradient, and Be is the left Cauchy–

Green strain tensor associated with spring b,
� Wa and Wb are the strain energy densities which define the

nonlinear stiffness of respectively spring a and spring b (hyper-

elasticity), η is the viscosity constant,
� p and p1 are hydrostatic pressures related to the incompressi-

bility constraint.

2.1.2. Constitutive equations: Poynting–Thomson model

The stress–strain relationship of the large strain formulation of

the Poynting–Thomson model based on the multiplicative split of

the deformation gradient is described by the following three

Zener model Poynting-Thomson model

Fig. 1. Notations used in the Zener model and the Poynting–Thomson model for large strain formulation.
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equations:

σ ¼ �pIþ2B⋆

e

∂W1

∂B
⋆

e

ŜS ¼ �psIþ2B⋆

i

∂W2

∂B
⋆

i

_B
⋆

e ¼ �
2

η⋆
B
⋆

e σ
D�F

⋆

e Ŝ
D

S F
⋆T
e

� �

þB
⋆

e L
T þLB

⋆

e

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð2Þ

where:

� ŜS is the static stress tensor defined in the intermediate con-

figuration, which is the stress in the top branch,
� B

⋆

e and B
⋆

i are the left Cauchy–Green strain tensor associated

respectively with spring 1 and spring 2 (also with the dashpot),
� W1 and W2 are the strain energy densities which define the

nonlinear stiffness of respectively spring 1 and spring 2

(hyperelasticity), η⋆ is the viscosity constant,
� p and pS are hydrostatic pressures related to the incompressi-

bility constraint.

2.2. Linearization

The large strain formulations of both models are then linear-

ized. The linearization of the Zener model is classic. For example,

Lion [28], Haupt et al. [29], Lejeunes et al. [26] proposed linear-

ization of this model, more or less enriched. The linearization of

the Poynting–Thomson model is more original.

2.2.1. Method

A static deformation is considered, characterized by its defor-

mation gradient F0. A displacement increment Δu is super-

imposed to this initial deformation, and the total deformation

gradient is noted F . The directional derivative of F is written [30, p.

375]:

ΔF ¼DΔuF ¼ Grad Δu
� �

; ð3Þ

where Grad is the gradient operator defined with respect to the

undeformed configuration. With the differential composition, it

leads to:

Grad Δu
� �

¼ gradðΔuÞF0; ð4Þ

where grad is the gradient operator defined with respect to the

preloaded configuration. In what follows, gradðΔuÞ will be noted

h. Finally, the total deformation gradient is:

F ¼ F1F0; ð5Þ

F � Iþhð ÞF0; ð6Þ

F � F0þΔF; ð7Þ

where F1 is the deformation gradient due to small displacements

Δu. This decomposition leads to the linearization of all strain

quantities involved in Eqs. (1) and (2). Details on linearization

about large strain can be found in Lianis [14], Casey [31] and

Holzapfel [30]. For the sake of brevity, only linearization of the

Cauchy stress tensor is considered here. The total Cauchy stress

tensor is written as:

σ ¼ �pIþF
∂W

∂E
F
T ; ð8Þ

with E¼ F
T
F� I

2 being the Green–Lagrange strain tensor. Linearizing

this expression gives:

Δσ ¼ �ΔpIþ2 2hB0
∂W

∂B

�

�

�

�

B0

!S

þF0Δ
∂W

∂E

� ��

�

�

�

E0

F
T
0; ð9Þ

where �S ¼ �þ�T

2 stands for the symmetric operator. Linearization of

the strain energy derivative gives:

Δ
∂W

∂E

� ��

�

�

�

E0

¼
∂
2W

∂E
2

�

�

�

�

E0

: ΔE¼ C
4

: F
T
0ϵF0; ð10Þ

C
4

being the material tangent tensor and ϵ¼ 1
2 hþh

T
� �

the infini-

tesimal strain tensor. A push-forward operation of the previous

equation gives:

F0Δ
∂W

∂E

� ��

�

�

�

E0

F
T
0 ¼ c

4
: ϵ; ð11Þ

where c
4
is the spatial tangent tensor. It is defined as the push-

forward operation of C
4

, and using the relationship Δσ ¼ ∂σ

∂B

�

�

B0
: ΔB,

it can be shown that c
4
also satisfies the following equation (see for

example Holzapfel [30, p. 264]):

c
4
¼ 4B0

∂
2W

∂B
2

�

�

�

�

B0

B0 ¼ c
4
B0ð Þ: ð12Þ

Finally, the expression of the total Cauchy stress tensor becomes:

σ ¼ σ0þΔσ ¼ σ0�ΔpIþ2 2hB0
∂W

∂B

� �

�

�

�

B0

!S

þc
4
B0ð Þ : ϵ: ð13Þ

In the following, this result is applied to both Zener and Poynting–

Thomson models; the subscript �0 always denotes the

preloading state.

2.2.2. Zener model

The response of the material during a static preload with the

Zener model is obtained by applying the condition of zero strain

rate in Eqs. (1):

σ0 ¼ σ10þσOE0

σ10 ¼ �p0Iþ2B0
∂Wa

∂B

�

�

�

�

B0

σOE0 ¼ 0

Be0 ¼ I

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð14Þ

Then, from Eqs. (7) and (13) follows the total response of the

material to a static preload and a small increment of displacement:

σ ¼ σ0þΔσ1þΔσOE

Δσ1 ¼ �Δp1Iþc
4

a B0ð Þ : ϵþ2 2hB0
∂Wa

∂B

�

�

�

�

B0

!S

ΔσOE ¼ �ðΔp�Δp1ÞIþc
4

b Ið Þ : ϵe

_ϵe ¼ �
1

η
ΔσD

OEþ _ϵ

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð15Þ

where:

� ϵe ¼
1
2 heþh

T
e

� �

, he being the small displacement gradient

introduced by the linearization of the multiplicative decom-

position of the deformation gradient,
� c

4

a and c
4

b are the spatial tangent tensors associated respectively

with strain energy densities Wa and Wb: they represent the

nonlinear stiffness of each spring of the model around a given

position, respectively B0 (deformed position) and I (unde-

formed position).

2.2.3. Poynting–Thomson model

The response of the material during a static preload with the

Poynting–Thomson model is obtained by applying the condition of

3



zero strain rate in Eq. (2):

σ0 ¼ �p⋆0 Iþ2B⋆

e0

∂W1

∂B
⋆

e

�

�

�

�

B
⋆

e0

ŜS0 ¼ �ps0Iþ2B⋆

i0

∂W2

∂B
⋆

i

�

�

�

�

B
⋆

i0

B
⋆

e0σ
D
0 ¼ F

⋆

e0Ŝ
D

S0F
⋆T
e0

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð16Þ

In contrary to the Zener model, none of the internal variables are

zero in the case of a static preload. The static condition is

expressed differently, through the second equation of the system:

in the static case, the stresses in both springs are equal. As it will

be seen in the following, having non-null internal variables

describing the preload is a good start for obtaining a natural

influence of the preload on all stress components. However, less

simplification occurs, since the only terms which disappear are

those which contain L or _B
⋆

e .

Then, from Eqs. (7) and (13) follows the total response of the

material to a static preload and a small increment of displacement:

σ ¼ σ0þΔσ

Δσ ¼ �ΔpIþc
4

1 B
⋆

e0

� �

: ϵ
⋆

e þ2 2h⋆

e B
⋆

e0

∂W1

∂B
⋆

e

�

�

�

�

B
⋆

e0

!S

ΔŜ S ¼ �ΔpsIþc
4

2 B
⋆

i0

� �

: ϵ
⋆

i þ2 2h⋆

i B
⋆

i0

∂W2

∂B
⋆

i

�

�

�

�

B
⋆

i0

!S

_h
⋆

e B
⋆

e0

� �S
¼ �

2

η⋆
h
⋆

e B
⋆

e0

� �S
σ
D
0 þ

1

2
B
⋆

e0Δσ
D� h

⋆

e F
⋆

e0Ŝ
D

S0F
⋆T
e0

� �S

�F
⋆

e0ΔŜ
D

S F
⋆T
e0

	 


þ _hB
⋆

e0

� �S

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð17Þ

In this system:

� ϵ
⋆

e ¼ 1
2 h

⋆

e þh
⋆T
e

� �

, ϵ⋆i ¼ 1
2 h

⋆

i þh
⋆T
i

� �

, h⋆

e and h
⋆

i being the small

displacement gradients introduced by the linearization of

the multiplicative decomposition of the deformation

gradient,
� c

4

1 and c
4

2 are the spatial tangent tensors associated respectively

with strain energy densities W1 and W2: they represent the

nonlinear stiffness of each spring of the model around a given

position, respectively B
⋆

e0 (deformed position) and B
⋆

i0, which

both represent a deformed position.

The linearization of the Zener model around a static preload has

been recalled, and one of the Poynting–Thomson models has been

derived. Both systems are now compared in detail, focusing on the

influence of the preload.

3. Analysis of the influence of a large static preload

3.1. Comparison of linearized formulations

Observing the system of Eqs. (15) for the Zener model, the line-

arized equilibrium stress tensor depends on the preload. Obviously,

c
4

a and
∂Wa

∂B

�

�

B0
are expressed in the preloaded state. In contrary to that,

none of the terms of the linearized out-of-equilibrium stress tensor

depend on the preload: c
4

b is expressed in the undeformed state (the

left Cauchy–Green strain tensor is identity).

One spring is not activated during a static preload for the Zener

model, because one part of the multiplicative decomposition of

the deformation gradient is equal to the identity tensor. It is due to

the definition of the intermediate configuration of this model, and

leads to the independency of the linearized overstress on the

preload. In the case of Poynting–Thomson model, prescribing an

infinitely slow preload does not lead to one of the part of the

multiplicative decomposition being equal to the identity tensor:

both springs are deformed. The static condition imposes another

type of constraint, which is the equality of stresses in both springs

after the preload (see Eq. (16)). As it can be seen in Eqs. (17), all

terms of the linearized total and static stresses are expressed with

respect to a deformed state. This difference of behavior is sum-

marized in Fig. 2. For the Zener model, the only spring which

response depends on strain rate is associated in series with a

dashpot and is thus undeformed in the static case. Thus, the

overstress during oscillations around a static preload is linearized

around an undeformed state for the Zener model. Concerning the

Poynting–Thomson model, the response of both springs depends

on strain rate and both springs are deformed, even in the static

case. Thus, each linearized stress of this model depends on the

strain rate as well as on the preload.

3.2. Equivalence for a simple case

At this point, it has been clearly shown that:

� the equilibrium linearized stress depends on preload for the

Zener model,
� the out-of-equilibrium linearized stress does not depend on

preload for the Zener model (in a natural way),
� each stress component of the Poynting–Thomson model

depends on preload.

Thus, we cannot establish any rigorous comparison on the effect of

the preload on both models as long as the equilibrium and out-of-

Fig. 2. Comparison of the state of each elements in rheological schemes of Zener and Poynting–Thomson models after a static deformation.
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equilibrium parts of the linearized stress have not been expressed

for the Poynting–Thomson model, and the influence of the preload

on these precise parts not studied. As the equilibrium/out-of-

equilibrium decomposition is inherent to Zener model, it means

that a strict equivalence has to be done between both models. For

small strains without any preload, the equivalence is straightfor-

ward (see for example Huber and Tsakmakis [27]). In the case of

small strains superimposed on a preload, the equivalence becomes

more complex to establish.

We choose here to study a simple theoretical case of a large

static preload followed by small oscillations, both in uniaxial

tension–compression loading conditions. The large preload is

characterized by its extension λ0. The values considered here for

the preload vary between a compressive strain of 50% (i.e.

λ0 ¼ 0:5) to a tensile strain of 300% (i.e. λ0 ¼ 4). In the case of the

Poynting–Thomson model, the extension is decomposed following

the multiplicative decomposition of the deformation gradient:

λ0 ¼ λ
⋆

e0λ
⋆

i0: ð18Þ

A uniaxial small strain ϵ is prescribed during oscillations, and is

also decomposed:

ϵ¼ ϵ⋆e þϵ⋆i : ð19Þ

Moreover, the simplest strain energies are chosen. For the Poynt-

ing–Thomson model, neo-Hookean strain energies are selected,

characterized by parameters C1, associated with spring 1, and C2,

associated with spring 2. For the Zener model, a neo-Hookean

strain energy is also selected for spring a, characterized by para-

meter Ca. Choosing this type of law for spring b would lead to zero

out-of-equilibrium response, that is why a Mooney–Rivlin type is

preferred:

Wb ¼ Cb1ðI1�3ÞþCb2ðI2�3Þ; ð20Þ

I1 and I2 being the two first invariants of Cauchy–Green strain

tensors, Cb1 and Cb2 are parameters. First, the equilibrium stresses

due to the static preload and to superimposed cyclic oscillations of

the Poynting–Thomson model are compared with responses of the

Zener model. Then, the out-of-equilibrium linearized stress is

calculated, and it is shown that it depends on the preload, while

Zener one does not.

3.2.1. Equilibrium stress

(a) Preload: For an infinitely slow motion, Eqs. (16) hold for the

Poynting–Thomson model. Projecting in the tension direction and

replacing the hydrostatic pressure with a free lateral surface

condition, the system becomes:

σ0 ¼ 2C1 λ
⋆2
e0 �

1

λ
⋆

e0

!

4

3
C1λ

⋆2
e0 λ

⋆2
e0 �

1

λ
⋆

e0

!

¼
4

3
C2λ

⋆2
e0 λ

⋆2
i0 �

1

λ
⋆

i0

!

;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð21Þ

where σ0 is the only non-null component of the Cauchy stress

tensor of the large static preload. Taking into account that

λ
⋆

i0 ¼ λ0=λ
⋆

e0, the evolution law becomes:

C1

C2
λ
⋆2
e0 �

1

λ
⋆

e0

!

¼
λ
2
0

λ
⋆2
e0

�
λ
⋆

e0

λ0

 !

ð22Þ

To solve Eqs. (21), λ
⋆

e0 has to be expressed as a function of λ0. This
is equivalent to finding a real positive root to the polynom:

P λ
⋆

e0

� �

¼ Gλ
⋆4
e0 þ

λ
⋆3
e0

λ0
�Gλ

⋆

e0�λ
2
0 ð23Þ

where G¼ C1

C2
. This problem can be solved using Ferrari and Cardan

methods: λ
⋆

e0 can be found for each value of G and λ0.
(b) Oscillations: In order to obtain the equilibrium stress from

the Poynting–Thomson model, static oscillations superimposed on

a static preload are considered. The equilibrium linearized stress is

found by linearizing system of Eqs. (21):

Δσ1 ¼ 2C1ϵ
⋆

e 2λ
⋆2
e0 þ

1

λ
⋆

e0

!

ϵ⋆e ¼

C2 2λ
⋆2
i0 þ

1

λ
⋆

i0

!

C1 2λ
⋆2
e0 þ

1

λ
⋆

e0

!

þC2 2λ
⋆2
i0 þ

1

λ
⋆

i0

 ! ϵ

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð24Þ

First, ϵ⋆e is calculated through the linearized evolution law. It

depends on λ
⋆

e0 and λ
⋆

i0, and thus on λ0, which are known from the

previous paragraph. Knowing ϵ⋆e and λ
⋆

e0, Δσ1 is determined. The

response predicted by the Zener model for uniaxial static oscilla-

tions follows from Eq. (15)2 and is given by:

Δσ1 ¼ 2Caϵ 2λ
2
0þ

1

λ0

� �

ð25Þ

Fig. 3 shows the evolution of equilibrium stiffness (taken as the

ratio of Δσ1 on ϵ) predicted by both models with respect to the

preloading extension. As expected, both Zener and Poynting–

Thomson models include an influence of the preload on the

equilibrium part of the linearized stress. Next step consists in

studying the out-of-equilibrium part.

3.2.2. Out-of-equilibrium stress

The out-of-equilibrium stress is simply the difference between

the total and equilibrium stresses. Preload being considered as

static, the linearized out-of-equilibrium stress predicted by the

Poynting–Thomson model is thus:

Δσoe ¼Δσ�Δσ1 ¼ 2C1 2λ
⋆2
e0 þ

1

λ
⋆

e0

!

ϵ⋆e �ϵ⋆e1
� �

; ð26Þ

where ϵ⋆e1 is calculated with Eq. (24)2. It is chosen to consider the

simple case of infinitely fast oscillations around a static preload.

Then, ϵ⋆e ¼ ϵ for the Poynting–Thomson model. Replacing ϵ⋆e by ϵ
and ϵ⋆e1 by Eqs. (24)2, Eq. (26) becomes:

Δσoe ¼M0ϵ; ð27Þ
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Fig. 3. Evolution of equilibrium stiffness with respect to extension of a static

preload, predicted by Zener and Poynting–Thomson models with C1¼0.3 MPa,

C2¼0.75 MPa and Ca¼0.7 MPa.
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where:

M0 ¼

2C2
1 2λ

⋆2
e0 þ

1

λ
⋆

e0

!2

C1 2λ
⋆2
e0 þ

1

λ
⋆

e0

!

þC2 2λ
⋆2
i0 þ

1

λ
⋆

i0

 ! ð28Þ

depends on the static preload extension.

For the Zener model, Eq. (15)3 applied to the case of infinitely

fast oscillations (ϵ¼ϵe) becomes:

Δσoe ¼
Cb2

2
ϵ: ð29Þ

Fig. 4 shows the evolution of the out-of-equilibrium stiffness with

respect to the preload extension for both models, i.e. M0 for the

Poynting–Thomson model and Cb2

2 for the Zener model. Clearly, the

Zener model is unable to predict any dependency of the out-of-

equilibrium stiffness on the static preload, while the Poynting–

Thomson model does, even with less parameters.

4. Discussion

The objective here is to answer the question: Which is the

better viscoelastic approach in the context of a linearization

around a static preload? For this, several elements have to be

considered. The first one is of course the influence of the preload.

4.1. Influence of the preload

In the previous section, it has been shown that both models

induce an influence of the preload on the linearized equilibrium

stress. However, only the Poynting–Thomson model induces an

influence of the preload on the linearized overstress. For Zener-

like models, some authors choose to modify the evolution law and

introduce a strain-dependent viscosity. For example, Holzapfel

[32], Reese and Govindjee [23], Miehe and Keck [33], Haupt and

Sedlan [24], Amin et al. [25] adopted this strategy. This approach

can be considered as artificial, since it supposes to modify the

model. The question then stands to know which dependency of

the viscosity on the preload has to be chosen, which can be

determined with experimental tests. With Poynting–Thomson-

like models, this question does not arise since the influence of the

preload on the linearized overstress already exists with the sim-

plest version of the model. Of course, it will also be needed to

check if this influence is in agreement with experimental data, but

it is clearly an advantage to naturally include this influence of

preload.

4.2. Identification procedure

To be easier, the identification procedure has to be based on

experimental loading conditions identical to those under which is

studied the material behavior, that is to say small oscillations

around a static preload. Thus, the prediction of both models has

first to be accurate in the case of static loading conditions.

However, the best way to identify parameters of models is to

decompose the identification with several loading conditions, each

of them corresponding to a particular set of parameters. For

example, for the Zener model, in order to isolate the parameters of

the top spring a, static loading tests have to be performed. So, the

parameters of the top spring can be identified with the preload

data, and the parameters of bottom branch (spring b and dashpot

viscosity) are identified with data collected during oscillating

loading conditions. The procedure is more complicated with the

Poynting–Thomson model. Indeed, in order to isolate one of the

springs and be able to identify only its parameters with particular

loading conditions, it would be necessary to consider infinitely fast

loading conditions. Performing high speed tests is possible but not

easy to perform, as it can be seen in Aloui et al. [34] and Petiteau

et al. [35]. Moreover, it supposes to add some tests to the already

existing experimental campaign. Thus, one solution is to identify

all parameters simultaneously on all tests data, i.e. both preload

and oscillations. This procedure is simple since other tests are not

needed, but less robust than identifying parameters from

adapted tests.

4.3. Finite element simulation

Industrial applications which involve elastomers subjected to

large static preloads followed by small oscillations often concern

geometrically complex parts. Thus, the prediction of the behavior

often requires finite element simulations, possibly with commer-

cial codes. It can be quite easy to use Zener model in finite element

simulations, since it can be either yet implemented, or it is easy to

find an equivalent, for example with Prony series models. In

contrary to that, a user-defined implementation would be required

to use Poynting–Thomson-like models.

4.4. Advantages and drawbacks

Finally, choosing between both models is not obvious. The

Poynting–Thomson model has indeed the large advantage to

include naturally an influence of the preload on both linearized

equilibrium and out-of-equilibrium parts of the stress. This is due

to its intermediate configuration which is not an equilibrium one.

However, what makes a big advantage induces also a major

drawback, since the identification procedure based on preload and

oscillation tests is not well adapted. Finally, in an industrial

application, it will be more difficult to use, since its use in finite

element commercial codes requires to implement it.

In contrary, the Zener model already exists or has direct

equivalents in finite element commercial codes, and the identifi-

cation procedure is well established, since the preload data cor-

respond only to the parameters of one spring. Another advantage

of the Zener model is the easiness to be generalized: it is well

known that adding branches to rheological models, which means

increasing the number of internal variables, allows to improve

their accuracy on a wider relaxation spectrum (see for example

Kaliske and Rothert [36] or Haupt et al. [29]). For the Zener model,

the generalization results in N Maxwell elements are in parallel.

Then, N independent evolutions laws have to be solved to deter-

mine the N multiplicative decompositions of the deformation

gradient. The Poynting–Thomson model is more complex to gen-

eralize, since it results in N Kelvin elements in series, and thus N
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Fig. 4. Evolution of out-of-equilibrium stiffness during infinitely fast oscillations

with respect to extension of a static preload, predicted by Zener and Poynting–
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coupled evolution laws. However, the Zener model does not have

an influence of the preload on the out-of-equilibrium part of the

linearized stress, unless an artificial influence is introduced

through a particular form of a strain-dependent viscosity that has

to be postulated.

5. Conclusion

Some challenging industrial applications require to master

modeling the behavior of elastomers under large static preloads on

which are superimposed small oscillations. In this paper, attention

is focused on linearization of internal variables models. Particu-

larly, both well-known Zener and Poynting–Thomson are con-

sidered. While the linearization of Zener model is classic, the lin-

earization of the Poynting–Thompson model has, to the authors

knowledge, never been presented. It has been shown that the

Poynting–Thomson model naturally produces an influence of

preload on both parts of the linearized stress, while until now this

influence has been forced through a modified viscosity in Zener-

like models. However, this characteristic is not the only one to take

into account in the comparison of both models. Thus, it has been

highlighted that the identification procedure as well as the

implementation are easier with the Zener model. Finally, the

choice depends on context, time and resources: the Poynting–

Thomson model is more interesting but requires time for its

implementation and probably more parameters than the Zener

model to accurately predict the behavior during preload, while the

Zener model is simpler to use in finite element simulations;

nevertheless if the influence of the preload on the overstress has

to be taken into account, the introduction of a strain dependent

viscosity remains an open question. Of course, it is essential to

compare the influence of the preload predicted by both models

with experimental data to pronounce in favor of one or the other

model. This subject is currently still investigated, but to the

authors opinion, the theoretical reasoning and possibilities

exposed in this paper justify not to limit studies on linearized

viscoelasticity around large preload to Zener-like models.
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