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A stress analysis of adhesively bonded double lap joints having half-infinite lengths was performed using

a half-closed-form approach. The approach is based on an improved shear-lag model. Thus normal

deformations and shear deformations were considered inside the adherends. Differential equations

governing adherends-interfaces displacements were extracted from the dynamic equilibrium equations.

Laplace transform was used to solve the differential equations. The stress variation with respect to time

at the edge of the adhesive layer was investigated. Transfer function between applied load and adhesive

edge shear stress was extracted. Impulse response was deduced using the inverse Laplace's transform of

the transfer function. Impulse response appeared to be a zero-order Bessel function. The indicial

response of the joint can be calculated by the integration of the impulse response over time. The model

was validated for different substrates' materials.

1. Introduction

Adhesively bonded joints are increasingly used in various

industrial sectors. They are mainly used in transport vehicles and

electronic devices. They are used to assemble substrates of similar

and dissimilar materials. The adhesive joints may undergo various

loads: in-plane or transverse; static, harmonic or impact. The

impact behaviour of adhesively-bonded joints can be approached

by either experimental [1–4], numerical [5–7] or analytical [8,9]

techniques.

Over the decades, several theoretical approaches have been

performed to analyse the response of adhesively bonded joints

[10]. The pioneer was Volkersen [11] who proposed the shear-lag

model for single-lap joints. The shear-lag assumes that the substrates

undergo only normal stresses and the adhesive is subjected to pure

shear stresses. This shear stress is proportional to the relative

displacement of substrates. The model was expanded to double lap

joints by De Bruyne [12]. Goland and Reissner [13] considered the

substrates as beams bonded together and subjected to both normal

and shear stresses. Oplinger [14] extended this approach to allow for

adhesive deflection. Hart Smith [15] worked with the original shear-

lag model taking into consideration the elasto-plastic behaviour of

the adhesive. Tsai et al. [16] improved the shear-lag model to include

shear deformation in substrates, which allows a better description of

joints made with adherends having low shear stiffness.

Since the pioneer work of Volkersen [11], significant interests

have been expressed in the analytical solution approximating the

quasi-static response of adhesively bonded joints [10]. Very few

works dealt with the dynamic response. In terms of the harmonic

response, Vaziri et al. [17,18] studied the response to peeling loads.

Vaziri and Nayeb-Hashemi studied the response due to harmonic

torsional [19] and axial [20] loads. In Ref. [20], the original shear-

lag model [11] was applied to predict harmonic stresses in tubular

joints. Challita and Othman [21] extended the improved shear-lag

model developed in Ref. [16] to approximate the harmonic

response of double-lap bonded joints. To the best of the author's

knowledge, only two works have dealt with the analytical model-

ling of the impact response of bonded joints. Namely, Pang

et al. [8] were interested in single lap composite joint. In order

to catch the impact response they considered the adhesive as a

spring-mass model. Recently, Sato [9] investigated the shear-lag

model subjected to impact loadings for half-strap infinite length

joint, and found that the system impulse response can be

described by a zero-order Bessel function.

This paper aims at developing an analytical solution of the impact

response of double-lap bonded. For this purpose, the harmonic

model developed by Challita and Othman [21], which takes into

consideration the substrates' shear stiffness, will be extended to

consider impact loadings. Laplace transforms as suggested by

Sato [10] will be used to move from the harmonic to the impact

response.
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2. Theoretical approach

2.1. Problem definition and assumptions

In this work, we aimed at predicting the stress response in an

infinite double-lap joint due to an impulsive and indicial stress

wave transmitted to the joint from an infinite middle substrate

(Fig. 1). The thickness for the upper and lower substrates, for

the middle substrate and adhesive layer are “e”, “2e” and “e0”,

respectively. The three substrates were considered from the same

material. Both, the adhesive and substrates were assumed elastic

wherein G, E and ρ are the substrates' shear modulus, Young's

modulus and density, respectively, and G0 is the adhesive shear

modulus.

The improved shear-lag model [16,21] was applied here to

represent the stress state in the double-lap joint (Fig. 2). Namely,

the substrates were subjected to axial and shear stresses whereas

only shear stress in the adhesive layer was allowed. The shear

stress in the substrates was assumed linear in terms of the

transverse (through-thickness or y-direction) coordinate and pro-

portional to the shear deformation. The improved shear-lag model

takes into account the inertia of the substrates. On the opposite,

the adhesive layer inertia was neglected.

The model is semi-infinite in the axial direction or x-direction.

As a boundary condition, a stress wave was assumed at the virtual

interface of the middle substrate at x¼ 0 as it will be shown in

Section 2.4. No wave reflections were assumed at the infinity

ðx¼1Þ. Due to symmetry, only the upper adherend and half of

middle substrate were considered. The shear stress at the long-

itudinal axis of symmetry y¼ 0ð Þ vanishes. This is also the case for

the upper surface of the upper adherend ðy¼ 2eþe0Þ.
Henceforth, the subscripts “c”, “a” and “0” were used for the

middle substrate, upper substrate and adhesive layer, respectively.

Hence, uc and ua denote middle and upper adherends displace-

ments. Moreover, τ0 holds for the adhesive shear stress, which is

assumed constant through the thickness of the adhesive. τa and τc
hold for the shear stresses inside the upper and middle substrates,

respectively. The axial or normal forces applied on upper and

middle substrates' cross-section are denoted Ta and Tc .

The purpose of this work is to calculate the stress wave in the

adhesive joint induced by an impulsive and indicial stress wave

applied to the middle substrate at the cross-section of x¼ 0.

2.2. Differential equations

According to shear-lag model, the adhesive shear stress is a

linear function of the substrates axial displacements. In the

improved shear-lag model, this holds except the shear stress is

expressed in terms of the displacements at the adherend-adhesive

interfaces [16]. Therefore, the adhesive shear stress reads:

τ0 x; tð Þ ¼ G0

e0
uci x; tð Þ�uai x; tð Þð Þ ð1Þ

where uci x; tð Þ ¼ uc x; y¼ e; tð Þ and uai x; tð Þ ¼ ua x; y¼ eþe0; tð Þ are

the displacements at substrate–adhesive interfaces.

The improved shear-lag model assumes that substrates

are subjected to both normal and shear stresses. Considering

that shear stress vanishes at y¼ 0 and y¼ 2eþe0 and assuming

continuity of the shear stress at the adherend–adhesive inter-

faces, the displacements in upper and middle substrates are

written [21]:

ua ¼ uaiþ
τ0
Ge

y�2e�e0ð Þ2�e2

2

!

¼ uaiþp yð Þτ0
Ge

ð2Þ

and

uc ¼ uciþ
τ0
Ge

e2�y2

2

� �

¼ uciþq yð Þτ0
Ge

; ð3Þ

where p yð Þ ¼ ð y�2e�e0ð Þ2�e2Þ=2 and q yð Þ ¼ ðe2�y2Þ=2.
As per Challita and Othman [21], using the second Newton's

law to include the dynamic effects, and the Hooke's law on each of

the adherends, yields

Ee
∂
2uai

∂x2
� e

3G

∂
2τ0
∂x2

� �

¼ �τ0�
ρe2

3G

∂
2τ0
∂t2

þρe
∂
2uai

∂t2
ð4Þ

and

Ee
∂
2uci

∂x2
þ e

3G

∂
2τ0
∂x2

� �

¼ τ0þ
ρe2

3G

∂
2τ0
∂t2

þρe
∂
2uci

∂t2
ð5Þ

Eqs. (4) and (5) are equivalently rewritten as

∂
2ðuaiþuciÞ

∂x2
¼ ρ

E

∂
2ðuaiþuciÞ

∂t2
ð6Þ

and

1þ2eG0

3Ge0

� �

∂
2ðuci�uaiÞ

∂x2
¼ 2G0

e e0E
uci�uaið Þþρ

E
1þ2eG0

3Ge0

� �

∂
2ðuci�uaiÞ

∂t2

ð7Þ

Actually, Eq. (6) is obtained by adding Eqs. (4) and (5), whereas

Eq. (7) is obtained by subtracting Eq. (4) from Eq. (5). τ0 is

eliminated by using Eq. (1).

Eqs. (6) and (7) are two partial differential equations in terms

of uci�uaið Þ and uciþuaið Þ. The two equations are decoupled from

each other and can be solved separately. Subsequently, it is

possible to find separately uci and uai. It is worth noticing that

the shear stress in the adhesive is proportional to uci�uaið Þ.
Therefore, Eq. (7) is also a partial differential equation in terms

of τ0, the adhesive shear stress. Indeed, substituting Eq. (1) in

Eq. (7) yields

1þ2eG0

3Ge0

� �

∂
2τ0
∂x2

¼ 2G0

e e0 E
τ0þ

ρ

E
1þ2eG0

3Ge0

� �

∂
2τ0
∂t2

; ð8Þ

Fig. 1. Model geometry with loading condition.

Fig. 2. Assumptions of the improved shear-lag model [16].

2



2.3. Solution in terms of Laplace transforms

Challita and Othman [21] used complex exponential represen-

tation to solve Eqs. (6) to (8). This was suitable for calculating the

harmonic response. As we are interested here in impulsive and

indicial response, the Laplace transforms are more appropriate [9].

Let c¼
ffiffiffiffiffiffiffiffi

E=ρ
p

and η¼ s=c where s is the Laplace parameter.

Applying the Laplace transform on Eq. (6) leads to

∂
2ðUaiþUciÞ

∂x2
�η2 UaiþUcið Þ ¼ 0 ð9Þ

where Uaiðx; sÞ and Uciðx; sÞ are the Laplace transforms of uaiðx; tÞ
and uciðx; tÞ, respectively. Actually, the establishment of Eq. (9)

assumes that the adhesive joint is at rest at t ¼ 0ð Þ; hence

∂uai=∂t x;0ð Þ ¼ ∂uci=∂t x;0ð Þ ¼ 0 and uai x;0ð Þ ¼ uci x;0ð Þ ¼ 0.

Now, let m¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G0=e e0E
p

, θ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð2eG0=3e0GÞ
p

and

λ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2þ2ðμ2=θ
2Þ

q

.

Using the Laplace transform for Eq. (7) yields

∂
2ðUci�UaiÞ

∂x2
�λ

2
Uci�Uaið Þ ¼ 0 ð10Þ

η and λ are two constants of unit [m�1]. λ appears later in

Eq. (35), where it describes the coefficient of exponential decrease

of the adhesive shear stress along overlap length. Similarly, η is

the exponential coefficient that describes damping of the normal

stress in the substrates.

The solutions of Eqs. (9) and (10) are expressed in terms of

hyperbolic trigonometric functions as follows:

UaiþUci ¼ A cosh ηx
� �

þB sinh ηx
� �

ð11Þ

and

Uci�Uai ¼ C cosh λx
� �

þD sinh λx
� �

; ð12Þ

respectively. A, B, C and D are constants that can depend on s and

will be determined considering boundary conditions at x¼ 0 and

x¼1. Subtracting Eq. (12) from Eq. (11) leads to

Uai ¼
1

2
A cosh ηx

� �

þB sinh ηx
� �

�C cosh λx
� �

�D sinh λx
� �� �

ð13Þ

On the other hand, adding Eqs. (11) to (12) yields

Uci ¼
1

2
A cosh ηx

� �

þB sinh ηx
� �

þC cosh λx
� �

þD sinh λx
� �� �

ð14Þ

The Laplace transform of the adhesive shear stress, T0 x; sð Þ, is
deduced by applying Laplace transform to Eq. (1) and replacing the

displacements at adherend–adhesive interfaces by their solutions

in Eqs. (13) and (14). Namely,

T0 x; sð Þ ¼ G0

e0
C cosh λx

� �

þD sinh λx
� �� �

ð15Þ

The Laplace transform of the substrates axial displacement is

deduced by substituting Eqs. (13) and (14) in the Laplace trans-

forms of Eqs. (2) and (3), respectively. Namely,

Uaðx; y; sÞ ¼
A

2
coshðηxÞþB

2
sinhðηxÞ

þC
G0p yð Þ
Gee0

�1

2

� �

coshðλxÞþD
G0p yð Þ
Gee0

�1

2

� �

sinhðλxÞ; ð16Þ

and

Ucðx; y; sÞ ¼
A

2
coshðηxÞþB

2
sinhðηxÞþC

G0q yð Þ
Gee0

þ1

2

� �

coshðλxÞ

þD
G0q yð Þ
Gee0

þ1

2

� �

sinhðλxÞ ð17Þ

We would like to attract the attention of the reader that

Eqs. (13) and (14) are similar to Eq. (17) of Ref. [9], except that

the coefficient λ is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2þ2μ2
p

in [9] and not

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2þ2ðμ2=θ
2Þ

q

as in this work. Actually the two expressions of λ

converge if the shear stiffness of the adhesive G0=e0 is insignificant

compared to shear stiffness of the substrates G=e. Indeed, θ� 1 if

G0=e0{G=e.

In other words, the model developed in this work converges to

Sato's model if the substrates are highly shear-stiff compared to

the adhesive. Moreover, the two models take into account inertia

effects in the same way. On one hand, adhesive inertia is

neglected. On the other hand, only longitudinal inertia of sub-

strates is considered by the two models. Thus, any difference in

results predicted by the two models should be attributed to the

shear stiffness ratio and not to inertia.

2.4. Boundary conditions

As a boundary condition, a stress wave was assumed in the

virtual interface of the middle substrate at the edge of the joint or

at x¼ 0. Evidently, no reflections occur at the infinities.

The solutions obtained in Section 2.3 are expressed in terms of

four s-dependent functions A, B, C and D. Therefore, four boundary

conditions are needed to obtain the final solution. Actually, it is

possible to write two boundary equations, at x¼ 0 and x¼1, for

each of the two substrates.

The two boundary conditions at x¼ 0ð Þ are more complex to

establish for this improved shear-lag model than for the simple

shear-lag model because the shear stress is not neglected in the

substrates.

Let us start with the boundary condition at x¼ 0 for the central

substrate (Fig. 3). Actually, the incident rightwards wave,

σi xo0; tð Þ, propagating in the left part of the middle substrate, is

a pressure wave. Hence, the axial stress is constant through

the thickness and the shear stress is absent for ðxo0Þ. On the

opposite, shear and normal stresses coexist in the right part ðx40Þ
of the middle substrate. Regarding these observations, the

improved shear-lag model cannot take into account the continuity

of stress state at ðx¼ 0Þ. However, we can write second Newton's

law on a small slice of the middle substrate around x¼ 0ð Þ, more

precisely for –ξrxrξ
� �

. This leads to:

�Tc �ξ; t
� �

þTc ξ; t
� �

� l

Z þξ

0
τdx¼ l

Z e

0

Z þ ξ

� ξ
ρ
∂
2ua

∂t2
dx dy ð18Þ

where ξ is a real constant, l is the width the adhesive joint. We also

recall that Ta is the axial normal force. When ξ approaches 0, Eq.

(18) converges to:

�Tc 0� ; tð ÞþTc 0þ ; t
� �

¼ 0 ð19Þ

Even though, the improved shear-lag model cannot assure the

continuity of stress state at x¼ 0, it can guarantee axial force

continuity.

At x¼ 0, the axial normal force from the left side is simply:

Tc 0� ; tð Þ ¼ e l σ i 0
� ; tð Þ ð20Þ

because the axial stress of the incident wave is assumed constant

through the cross-section of the central substrate. On the other

Fig. 3. Loading condition.
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hand, the axial stress from the right side is given by

Tc 0þ ; t
� �

¼ l

Z e

0
E
∂uc

∂x
0þ ; y; t
� �

dy: ð21Þ

Substituting Eqs. (20) and (21) in Eq. (18) and using Laplace

transform leads to:
Z e

0
E
∂Uc

∂x
0þ ; y; s
� �

dy¼ e Σi 0
� ; sð Þ ð22Þ

wherein Σ i holds for the Laplace transform of the incident wave

σi.

The left edge of the upper substrate is assumed free. However,

the improved shear-lag model cannot consider the stress is zero at

x¼ 0ð Þ. The approach used to establish Eqs. (18–22) can be applied

to the upper substrate. Thus we can write that the axial force

vanishes at x¼ 0ð Þ:

Ta 0þ ; t
� �

¼ 0: ð23Þ

or in terms of Laplace transform:
Z e

0

∂Ua

∂x
0þ ; y; s
� �

dy¼ 0: ð24Þ

Eqs. (23) and (24) give the first and second boundary condi-

tions. Substituting Eq. (17) in Eq. (22) and calculating the integral

yields:

η

2
Bþλθ

2

2
D¼ Σi 0

� ; sð Þ
E

ð25Þ

Likewise, Substituting Eq. (16) in Eq. (24) and calculating the

integral:

η

2
B�λθ

2

2
D¼ 0 ð26Þ

These two last equations gave the weighted sum and difference

of B and D. Their solution is straightforward and reads:

B¼ Σi 0
� ; sð Þ

ηE
ð27Þ

and

D¼ Σi 0
� ; sð Þ

Eλθ
2

: ð28Þ

In order to get now A and C, we need two more boundary

equations, namely at x¼1. The adhesive joint is assumed semi-

infinite. Within a finite time duration, it is impossible to the stress

wave to reach infinity. Thus, the substrates' displacement should

vanish at x¼1. In other words,

uc x¼1; y; tð Þ ¼ ua x¼1; y; tð Þ ¼ 0 ð29Þ

In terms of Laplace transform, these boundary conditions are

written:

Uc x¼1; y; sð Þ ¼Ua x¼1; y; sð Þ ¼ 0 ð30Þ

Considering sinh 1ð Þ � cosh 1ð Þ and substituting Eqs. (16) and

(17) in Eqs. (29) and (30) leads to

A

2
þB

2
þC

G0p yð Þ
Gee0

�1

2

� �

þD
G0p yð Þ
Gee0

�1

2

� �

¼ 0 ð31Þ

and

A

2
þB

2
þC

G0q yð Þ
Gee0

þ1

2

� �

þD
G0q yð Þ
Gee0

þ1

2

� �

¼ 0 ð32Þ

This is only possible if:

A¼ �B ð33Þ

and

C ¼ �D ð34Þ

Finally, substituting Eqs. (28) and (34) in Eq. (15) yields

T0 x; sð Þ ¼ �G0

e0

Σi 0
� ; sð Þ

Eλθ
2

exp �λx
� �

¼ T0 0; sð Þ exp �λx
� �

ð35Þ

We recall that T0ðx; sÞ is the Laplace transform of, τ0 x; tð Þ, the
shear stress in the adhesive layer. It is worth noticing here that

Eq. (35) gives that the adhesive shear stress vanishes at infinity.

2.5. Transfer function between incident stress and edge adhesive

shear stress

The main goal of this paper is to calculate the stress response of

the double-lap joint to impulse and indicial stress wave. To achieve

this aim, the double-lap joint can be regarded as a system for

which the transfer function is the ratio of the edge shear stress in

the adhesive joint divided by the incident stress wave. The edge

shear stress is the shear stress at x¼ 0þ . The transfer function,

H, is defined as

H sð Þ ¼ T0ð0þ ; sÞ
Σið0� ; sÞ ð36Þ

Considering x¼0þ in Eq. (35) and replacing in Eq. (36) leads to:

H sð Þ ¼ � G0

e0Eλθ
2
¼ � c G0

e0E θ
2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þ2μ2c2

θ
2

q ð37Þ

Here also we notice if θ approaches to 1, which is possible if the

shear stiffness of the adhesive is insignificant compared to the

shear stiffness of the substrates, Eq. (37) converges to Eq. (21) of

Ref. [9].

2.6. Impulse and indicial responses

The impulse response is defined as the response of a system

subjected to an impulse loading, represented by the Dirac's Delta;

it can be brought by the inverse-Laplace of the transfer function

given in Eq. (37). Knowing that the inverse Laplace transform of

G sð Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þω2
p

is the function g tð Þ ¼ u tð Þ � J0 ωtð Þ, wherein uðÞ
and J0ðÞ denote the Heaviside unit step function and the zero-order

Bessel function respectively; the inverse-Laplace transform of the

transfer function is:

τimp
0 0; tð Þ ¼ L�1 HðsÞð Þ ¼ �cG0

e0E θ
2
J0

ffiffiffi

2
p

μc

θ
t

!

u tð Þ ð38Þ

where τimp
0 0; tð Þ is the shear stress at the edge of the adhesive layer

due to an impulse load.

The indicial response is the response of a system subjected to

the Heaviside step function; it can be considered as the response

to an infinite sum of delayed impulse responses. This is mathe-

matically written as a convolution product. More precisely, the

indicial response τind0 0; tð Þ is the convolution product between the

impulse response τimp
0 0; tð Þ and the Heaviside unit step function

u tð Þ:

τind0 0; tð Þ ¼ τimp
0 0; tð Þ nu tð Þ ð39Þ

Hence, the indicial response is obtained by calculating the

integral of the impulse response on the interval 0; t½ �, i.e.,

τind0 0; tð Þ ¼ �cG0

e0E θ
2

Z t

0
J0

ffiffiffi

2
p

μc

θ
t'

 !

dt0 ð40Þ

It is worth noting that the indicial response converges to a

finite value for infinite time. Indeed,

lim
t-þ1

τind0 0; tð Þ ¼ lim
s-0

H sð Þ ¼ �1

θ

ffiffiffiffiffiffiffiffiffiffiffi

G0e

2e0E

s

ð41Þ
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Assuming that θ tends to 1, which means that the substrates'

shear stiffness is much higher than that of the adhesive layer,

Eq. (41) converges to �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eG0=2Ee0
p

which recalls Eq. (29) from

Ref. [9]. On the other hand, the value in Eq. (41) is exactly equal to

the value found if the infinite length joint is subjected to static

unitary loading as modelled by the quasi-static improved shear-lag

model developed by Tsai et al. [16]. In other words, the dynamic

shear stress in the adhesive layer converges, after long period of

time, to the static shear stress.

3. Validation and discussion

In this section, we aim at validating the improved shear-lag

model as extended in this work to predict impulsive and indicial

response for a double lap bounded joint. First, we define the

following constants: φSato ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eG0=2Ee0
p

and φ¼φSato=θ, which

stand for the absolute value of the indicial response after infinite

time as obtained by simple shear-lag [9] and the improved shear-

lag (current work), respectively. We also define the constant

Ψ ¼ G0c=Ee0θ
2
. These three constants are used in order to depict

dimensionless results. In what follows, the improved shear-lag

model is compared to the simple shear-lag model and finite

element method. The finite element model is undertaken with

Abaqus software. It assumes an adhesive shear modulus of

0.71 GPa, thickness of 0.2 mm and adherends thickness (e) of

2 mm. Physically, the infinite length of the joint was presented

in the finite element model in a way to prevent the reflected wave

from arriving back to x¼ 0 during the time of simulation which is

taken equal to 500 ms.

3.1. Effect of substrates' material

3.1.1. Steel substrates

First, we investigated the impulse and indicial response of a

double-lap joint made of steel substrates. Indeed, steel alloys have

a Young's modulus about 200 GPa and a shear modulus around

77 GPa. Thus, the ratio of the adhesive layer's shear stiffness to the

substrates' shear stiffness is very small. Therefore, the improved

shear-lag model should converge to the Sato's model. Actually, the

constant θ� 1:03. Figs. 4 and 5 show the dimensionless impulse

and indicial responses, respectively. The two models show a good

agreement. The relative difference between the successive max-

ima of oscillations does not exceed 6% � θ
2�1

� �

. It is unneces-

sary to compare to finite element simulation as Sato's model was

validated numerically for metallic thin adherends. Consequently

our model is valid as well for the same substrates.

3.1.2. Magnesium substrates

The previous study, related steel substrates, showed a good

agreement between the two models. One cannot conclude which

one of the models gives better results. It is of much importance to

choose a configuration where the two models are expected to

give different results. To this aim, we have studied a double-lap

adhesive joint made of magnesium substrates. Actually magne-

sium has a lower Young's modulus (shear modulus) compared to

the steel. The magnesium's Young's modulus is of 45 GPa and the

shear modulus of 17 GPa. In this case the constant θ� 1:13.

Fig. 6 shows the dimensionless indicial response for the three

models. Whereas, the new improved shear-lag response agrees

well with the finite element response, while the simple shear lag-

model, of Ref. [9], has some difficulties to catch the numerically-

predicted response. More precisely, Sato's model [9] overestimates

the maxima of oscillations while underestimating the period of

oscillations. This is mainly due to θ41. Moreover, the stress

damping in terms of time is more important for Sato's model than

the current, this is caused by the fact that the period of oscillations

is lower for the former model. However, the simple shear-lag

model converges, after infinite time, to a shear stress value higher

than the predicted by the finite element and the current improved

shear-lag models.

Fig. 7 plots the dimensionless impulse response predicted by

the two analytical methods. Here also Sato's model [9] over-

estimates the maxima of oscillations and underestimates the

period of oscillations. The relative difference of maxima predicted

is around 25% which is approximately equal to θ
2�1

� �

.

3.1.3. Polymer substrates

In the previous sections, we have shown that our improved

shear-lag model predicts approximately the same response as the

finite element model, when metallic substrates were involved.

In this section, we were interested in validating our model for
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polymer-like materials. In this case, the shear modulus of the

substrates is of the same order as the shear modulus of the

adhesive. For this purpose, a finite element simulation was carried

out using isotropic polymer material properties for both adher-

ends and adhesive. The adherends' Young's modulus was consid-

ered equal to 4 GPa and shear modulus of 1.42 GPa. In this case,

θ� 2:08. The dimensionless indicial response predicted by the

three models (simple shear-lag, improved shear-lag and finite

element) are depicted in Fig. 8. The new model agrees well with

the finite element analysis. It catches with good accuracy the

maxima and period of oscillations. The maximum error is less than

12%. It is worth noting that the two responses are in-phase, with

almost no time shift. On the opposite, Sato's model highly over-

estimates the shear stress in the adhesive and underestimates the

period of oscillation. This could be explained by the significant

value of the shear adhesive-to-adherend stiffness ratio, which is of

order of 5.

3.1.4. Composite substrates

In the above three examples, metallic and polymer-like materi-

als were considered. The material behaviour was isotropic. In this

section, we are interested in validating the improved shear-lag

model against an orthotropic material. For this purpose, we

assumed substrates made of an orthotropic composite unidirec-

tional laminates. For instance, we choose adherands made of

APC2/AS4 PEEK reinforced with 60% carbon fibre laminates.

Thus substrates have a longitudinal Young's modulus of 138 GPa,

transverse Young's modulus of 10.2 GPa, in-plane shear modulus

of 5.7 GPa and a density of 1.5 g/cc. [22].

Fig. 9 shows the indicial response calculated by the three

approaches, i.e., the improved shear-lag model, Sato's model and

the finite element method. It is shown that the new model,

developed in this paper, overcomes Sato's model. It is worth

noting here that what controls the accuracy of Sato's model is

the shear adherends-to-adhesive stiffness ratio. Indeed, the long-

itudinal Young's modulus of substrates is 138 GPa, which is much

higher that the shear stiffness of the adhesive. However, the Sato's

model fails to estimate the shear stress in the adhesive because the

in-plane shear modulus of the adhesive (�5.7 GPa) is comparable

to the shear modulus of the adhesive (3 GPa).

3.1.4.1. Effect of substrates' thickness ðeÞ. In the previous sections,

we compared our model to Sato's model for different substrates'

materials or for different values of substrates' shear modulus. In

this section, we aimed to show that the most important parameter

in the double-lap response is shear stiffness ratio and not the

shear modulus ratio. More precisely, we compared here different

double-lap joints having different substrates' materials while

maintaining the shear substrate-to-adhesive stiffness ratio

constant.

As a first example, we compared our results to Sato's results for

Steel adherends of 2 mm thickness and aluminium adherends of

0.662 mm thickness with a shear modulus of 25.5 GPa (Fig. 10).

In this case, the steel and aluminium double-lap joints have the

same shear stiffness ratios of approximately 0.01. Fig. 10 shows

that both models are in agreement.

As a second example, we considered the magnesium double-

lap joint where substrates are 2 mm-thick together with an

aluminium double-lap joint where substrates are 3 mm-thick.

The indicial responses of the two double-lap joints are shown in

Fig. 11. Clearly, the response predicted by Sato's model is distant

from that given by the improved shear-lag model.

The curves of Figs. 4–11 appear like if there is some damping or

energy dissipation in the model, yet, the model is perfectly elastic

and no material damping was considered. Actually, the impulsive

and indicial input loads have a large spectrums. Therefore, the

initial energy is distributed on an infinite number of harmonic

components which are synchronized in the beginning in a way to
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give the impulsive or the indicial shape. However, single harmonic

components differently transfer, from the adherend to the adhe-

sive joint. The transfer function should depend on the frequency

indeed. A shift is then created between single harmonic waves

which results in the new Bessel shape. In other words, the

decrease in amplitude is due to the a-synchronization of the

harmonic components of the load while they transfer from the

middle adherend to the adhesive.

It is also worth noting that in Figs. 6, 8, 9 and 11, Sato's model

predicts higher shear stresses in the adhesive and lower period of

oscillation in terms of the indicial response. Actually, Sato's model

only accounts for normal stresses in the adherends, whereas the

improved shear-lag model, proposed here, accounts for both

normal and shear stresses. Therefore, Sato's model results depict

the effects of substrates normal deformation on the adhesive shear

stress. The difference between Sato's model and the new proposed

model depicts the effects of the substrates shear deformation on

the adhesive shear stress.

3.2. Validity of Sato's model

From the discussion made in Sections 3.1 and 3.2, we can

conclude that the accuracy of Sato's model highly depends on the

shear stiffness ratio. Considering the new improved shear lag

model, developed in this paper, as reference, we can estimate the

relative error of Sato's model. More precisely, we are interested in

the indicial response after infinite time and the period of oscilla-

tion. Hence, we recall φSato ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eG0=2Ee0
p

and φ¼φSato=θ, which

stand for the absolute value of the indicial response after infinite

time as obtained by simple and improved shear-lag. We also

define the period of oscillation for the improved model per

p¼ θ=
ffiffiffi

2
p

μc and for Sato's model per psato ¼ 1=
ffiffiffi

2
p

μc.

Fig. 12 shows Sato's model relative error to the improved model

for estimating the convergence value when time tends to infinity

in terms of the shear modulus ratio for four values of thickness

ratio. Likewise, Fig. 13 shows the relative error for the period of

oscillation in terms of the shear modulus ratio for four values of

thickness ratio. As expected, the two errors increase with increas-

ing G0=G and e=e0.

4. Conclusion

An analytical model was developed for the dynamic response

of half-infinite length double lap polymer joint subjected to

impact loadings assuming no reflections at the adhesive edge.

The work, based on the improved shear-lag model, consisted in

taking into consideration the shear deformation inside adherends

while neglecting adhesive inertia. Adhesive shear stress was

deduced from adherends-adhesive interfaces relative displace-

ments. These displacements were extracted from ordinary differ-

ential equations obtained from the equilibrium equations of the

joint. Adherends displacements were used along with normal

forces to apply boundary conditions. Laplace transform was used

to solve the differential equations. Considering the joint as a

system, the transfer function between applied load and adhesive

edge shear stress was extracted. The joint adhesive edge shear

stress impulse response was extracted using the inverse Laplace's

transform of the transfer function. Impulse response appeared to

be a zero-order Bessel function. Indicial response can be brought

by integrating the impulse response. Theoretically, the system

showed convergence to the static value when time tends to

infinity. A term appeared in the response indicating adhesive to

adherend shear stiffness ratio. This term can be neglected for thin

shear-stiff adherends, therefore, the system response has shown

very good agreement with Sato's model which is based on the

pioneer work of Volkersen. The new model was validated regard-

ing finite element results for different substrates materials and

different values of the shear substrate-to-adhesive stiffness ratios.
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