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ABSTRACT
In this paper we present the Clover architectural model, a
new conceptual architectural model for groupware. Our
model results from the combination of the layer approach
of Dewan's generic architecture with the functional
decomposition of the Clover design model. The Clover
design model defines three classes of services that a
groupware application may support, namely, production,
communication and coordination services. The three
classes of services can be found in each functional layer of
our model. Our model is illustrated with a working system,
the CoVitesse system, its software being organized
according to our Clover architectural model.

Keywords
Conceptual Software Architecture, Clover Design Model.

INTRODUCTION
People's interest in collaborating with others is growing
daily and in particular on the internet. This is not only in
order to read web pages or download files but also to
communicate, to play multi-user games or to exchange data
such as music files. In a nutshell, to interact with others.
This leads to an outbreak of a multitude of multi-user
systems (or groupware) designed to chat, such as ICQ, to
play, such as Quake or to share mp3 files, such as the well-
known Napster (peer-to-peer). Despite the multiplicity of
existing groupware, their development still remains
complex and unsystematic. It is widely recognized that,
although the adhoc development of software is acceptable
for throw-away prototypes, architectural design of complex
systems can no longer simply emerge from craft skills. In
this paper we address the architectural design of groupware
by defining a conceptual software architectural model for
groupware. 

A conceptual software architecture is an organization of
computational elements and the description of their
interactions. A conceptual software architecture model
defines a vocabulary of design elements, imposes
configuration constraints on these elements, determines a
semantic interpretation that gives meaning to the system
description, and enables analysis of the system properties
[22]. 

For example, Dewan's generic architectural model [8]
structures a groupware application as a stack of shared and
replicated layers which communicate with each other by
exchanging events. A conceptual software architecture is
then mapped into an implementat ion architecture
dependent on the software tools available. Software tools
for the construction of groupware such as the Groupkit
interaction toolkit [21] or the COCA [16] and DragonFly
[1] platforms will not eliminate conceptual architectural
issues as long as the construction of these systems requires
programming. Clearly, a conceptual model for identifying
and organizing the components of groupware is still a
necessity. As explained in [5], without an adequate
architectural framework, the construction of groupware and
in general interactive systems is hard to achieve, the
resulting software is difficult to maintain and iterative
refinement is impossible. 

Several conceptual software architectural models for
groupware exist, such as Dewan's generic architecture [8],
Clock [11] and PAC* [5]. Our Clover architectural model is
complementary to the existing models by defining at a finer
grain how functionalities should be structured at each  level
of abstraction in the architecture. To do so, we base our
architectural model on the Clover design model [9][23].
The Clover design model defines three classes of services:
production, communication and coordination services.
During the system design phase, the three types of services
must be identified and their access harmoniously combined
in the user interface. Our Clover architectural model makes
such system design concepts explicit within the software.
Indeed, because software architecture modeling is a design
activity at the interface between the system design field and
the programming field, software architecture must take into
account attributes of both fields: these attributes include
properties of the designed system and of the future software
to be implemented [17]. 

The structure of the paper is as follows: first, we introduce
the Clover design model and stress its impact on the design
of the system as well as on the design of the user interface.
We then present the main characteristics of three
architectural models, Arch, Dewan's architecture and
PAC*, all three of which our Clover metamodel relies on.
Our Clover architectural model is a metamodel i.e. several
Clover architectural models can be derived from it. We first
present one Clover architectural model and then the
generalization, the metamodel.  We close with the
presentation of the clover architecture of a running system,
CoVitesse, which enables collaborative navigation on the
World Wide Web. The discussion will be illustrated with
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two systems, CoVitesse system, whose main features are
presented in the next section. 

AN ILLUSTRATIVE EXAMPLE: COVITESSE SYSTEM
We applied our Clover architectural model to the software
design of the CoVitesse system.

CoVitesse [7][14] is a groupware application that enables
collaborative navigation on the WWW. Users sharing the
same information space can cooperate to seek information.
This system is built on the Vitesse system [19], a single-
user application that visualizes the results of a query
submitted to a search engine on the WWW. As shown in
Figure 1, CoVitesse displays the overall set of results: each
retrieved page (node) is displayed by a polygon. Users are
represented by colored shapes (a red Y for Yann and a blue
L for Laurence). When a user wants to visit a page, she/he
double-clicks on the corresponding polygon and the web
page is downloaded in a separate browser. Darker polygons
indicate visited web pages. At any time, a user can see all
other users moving in the space, use the chat box (which is
below the information space) to communicate with other
users, or organize her/his own caddy which contains the
marked pages. 

CoVitesse allows users to create groups. A group is
identified by a name and a color. For example, in Figure 1,
Yann, represented by the shape Y, is a member of a group
identified with a red color. In the current version of the
system, four kinds of groups, i.e. collaborative navigational
tasks, are available: guided tour, opportunistic navigation,
shared navigation and cooperative navigation. According to
the group type, different functionalities are available. For
example, within a group defined as an opportunistic

navigation group, a member can take control of the
navigation of the other members; such a functionality is not
possible with a Shared navigation group. Moreover, access
rights to data are different according to group types; rights
are imposed on the group caddy (i.e. the pages selected by
the group) as well as on the group preferences. Group
preferences include the information related to the group, the
choice or not to publish the gathered results and the
publication filter applied on the results. For example, any
member of an opportunistic navigation can modify the
group preferences. More details about these navigation
types can be found in [14].

CoVitesse provides persistent access to all the data,
modified or produced during a session. These data include
information about users and groups such as the avatar
shape, the gathered results and the preferences. These data
are protected with a simple mechanism of username/
password. Then, when a user starts a new session, she/he
recovers her/his own private data.

CLOVER DESIGN MODEL
Description
The Clover design model [9][23] provides a high level
partitioning for reasoning about the collaborative services a
groupware application may support. As shown in Figure 2,
a groupware application covers three kinds of services:
production, communication and coordination.

• The production space refers to the objects produced by a
group activity or to the objects shared by multiple users.
In the CoVitesse system, the production is the set of
results gathered by users and groups during a session.

• The communication space refers to person-to-person
communication such as e-mail, relay chat, mediaspace.
The CoVitesse system provides a chat room for users
navigating in the same information space.

• The coordination space covers activities dependencies
including temporal relationships between the multi-user
activities. It also refers to the relationships between actors
and activities. In the CoVitesse system, coordination tasks
include creating, joining, leaving a group or accepting a
new member. Looking at the avatars moving within the
information space is also a coordination task.

However, not all the existing groupware support the three
facets of the Clover design model. This point is further
discussed in the following section.

CSCW Design Issues
The Clover design model is useful for the design of
groupware during the functional specification phase
because it defines three classes of functionalities that a
groupware application may support. For example, the

Figure 1: Snapshot from the CoVitesse system.
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Figure 2: Groupware as “functional clover”.



CoVitesse system supports the following three types of
functionalities:

• Production: the system manages a caddy of collected
results for each user and group. It is possible to modify the
group caddy according to the defined access  rights.

• Communication: the system provides a simple chat box.
Currently, the communication group is composed of all
the users.

• Coordination: the system provides services to join/leave a
session, to create/join/leave a working group. In addition,
coordination is done when a user moves her/his avatar in
the information space or when s/he modifies the
preferences.

As we mentioned in the previous section, not all the
e x i s t in g  g ro u p wa re  su p p o r t  t h e  th r e e  ty p e s  o f
functionalities. For example, a mediaspace, a system
dedicated to informal communication to enhance team
awareness, is built upon communication functionalities and
few coordination functionalities such as joining or leaving a
session. In this example, there is no support for production.
In addition some approaches treat the coordination
functionalities as special in contrast to the production and
communication functionalities: coordination functionalities
are separated from the system itself. For example in [8] the
session manager dedicated to coordination is modeled as an
external software component. Another example is the
COCA platform [16]. The platform is dedicated to
coordination and is able to manage tools including
conference tools or whiteboards based on a set of rules
defined in a prolog-like language. These rules dedicated to
coordination are interpreted at the runtime by the COCA
virtual machine. The key idea of this platform is to extract
the coordination functionalities from the system. The
platform therefore enables the reuse of non-collaborative
systems, but it provides no support for production and
communication. Moreover an exist ing groupware
application may include its own coordination model which
may not match with the COCA one.

W h e n  th e  C lo ve r  mo d e l  d e f i nes  th r e e  t yp e s  o f
functionalities, it also defines three classes of data
structures manipulated by these functionalities. For
example let us consider the implementation of the notion of
group in a chat box used to manage a lecture. We consider
two types of actors: the lecturer and the audience. The
system implements coordination functions, to join a session
and to assign roles (i.e., lecturer or audience) and enables
communication between the lecturer and the audience. In
order to avoid interference generated by the audience
chatting, we should consider two communication channels:
one channel for communication between the lecturer and
the audience and another channel between the members of
the audience excluding the lecturer. The system therefore
maintains two data structures related to the notion of group:

• one structure containing the representation of a lecturer
and an audience, for coordination and communication,

• one structure containing the representation of an audience
with its members and excluding the lecturer, dedicated to
communication only. 

The example illustrates the fact that data structures can be
classified according to the three Clover facets. In addition
the example shows that the same data structure can be
shared and manipulated by different Clover functionalities.
The data structure therefore belongs to one of the
intersections of the three facets in Figure 2. To further
illustrate this last point we consider CoVitesse: when a user
moves her/his avatar in the information space:

• the shape is drawn at the new coordinates in each user’s
view: a coordination functionality;

• the URL is added to the group history: a production
functionality.

One data structure is used for modeling the position of an
avatar in the information space and several Clover
functionalities manipulate this unique structure.

In conclusion, the Clover design model can be used as a
guideline in the design of groupware for specifying the
functionalities as well as the data structures. The usefulness
of the model for the design of the user interface is more
problematic.

HCI Design Issues
While the Clover model is useful for identifying the
services provided by groupware, it should not be used as a
guideline for designing the user interface. For example,
having separate windows or panels dedicated to each
Clover space will lead to a complex interaction. The first
design of the CoVitesse user interface was based on the
Clover design model. The following three windows are part
of the first CoVitesse user interface:

• a window dedicated to the production containing the
information space and the marked web pages,

• a window dedicated to communication that includes
textual chat, and,

• a third window dedicated to coordination that allows the
user to create and edit a group.

Informal tests with groups of four users having to perform a
scenario (i.e., collect a list of the ten most relevant web
sites about human-computer interaction), lead us to
conclude that the information space and the chat box should
be combined at the user interface (combination of
production and communication). Indeed, at the end of the
test sessions, users complained about a lack of awareness:
they were not able to perform a navigational task and to
look at chat exchanges at the same time.

In addition to our own experience with CoVitesse, several
groupware systems combine the services provided by each
of the three Clover spaces, making them accessible and
observable through appropriate user interface composite
objec ts .  For  example ,  as  shown in  Figure 3,  the
collaborative scrollbar introduced in [5] and based on the
multi-user scrollbar of the SASSE editor [2] covers
functionalities of the three spaces. The right scrollbar,



dedicated to production, is an ordinary scrollbar for
scrol ling the text.  The left scrollbar,  dedicated to
communication and coordination, contains multiple
elevators, one per remote user who can be seen in a video
thumbnail inside the elevator. On the one hand, from a
functionality viewpoint, it is easy to observe that the
coordination is covered by the current position of remote
users in the text and communication by a video service. On
the other hand, from a user interface viewpoint, a single
interaction object (a scrollbar) is used for coordination as
well as communication.

In conclusion, our own experience as well as existing
groupware widgets underline the fact that the Clover design
model is useful in identifying the funtionalities that the user
interface should provide but should not be applied as a
guideline for designing the user interface itself. Such
conc lus ions  have a  di rec t  impact  on our  Clover
architectural model. Before presenting our model, we show
the main characteristics of three architectural models on
which our model relies. 

SOFTWARE ARCHITECTURES
This section contains the description of three architectural
models, Arch, Dewan's generic architecture and PAC*. The
three models serve as foundations for our Clover
architectural metamodel.

Arch model

Software architectures for groupware are often based on
architectural models for single-user interactive systems. In
this field, the Arch model [3], an extension of the Seeheim
model [10], is a reference model that defines a canonical
functional decomposition of an interactive system. Arch
advocates domain dependent components as well as user
interface components. As shown in Figure 4, the Arch
model breaks up an interactive system into five layers or
components:

• The Functional Core component implements domain-
specific concepts and functions, in a presentation
independent way. The data structures managed by this
component are domain objects. 

• The Functional Core Adapter component serves as a
mediator between the Dialog Control ler and the
Functional Core. Data exchanged with the Functional
Core are the domain objects that the Functional Core
exports to the user. Data exchanged with the Dialog
Control ler  are conceptual  objects.  These define
perspectives on domain objects intended to match the
user’s mental representation of domain concepts.

• The Physical  Interaction component denotes the
underlying platform, both software and hardware
(interaction devices). It supports the physical interaction
with the user and corresponds to the services of a User
Interface toolkit.

• The Logical Interaction component implements the
perceivable behavior of the application for outputs as well
as inputs. It relies on the Physical Interaction component.
The Logical Interaction component is usually compared to
an abstract User Interface toolkit. It serves as an adapter
between the Physical Interaction component and the
Dialog Controller. 

• The Dialog Controller component is the keystone of the
arch. It has the responsibility for task-level sequencing.  It
manages both conceptual objects and presentation objects. 

Dewan’s Generic Architecture for Groupware

Dewan's generic collaborative architecture [8] can be seen
as a generalization of the "zipper model" [20] and the Arch
model. Dewan's architecture structures a groupware
application into a variable number of layers from the
domain-dependent level to the hardware level. A layer is a
software component corresponding to a specific level of
abstraction. As shown in Figure 5, the top-most layer
corresponds to the semantic layer while the bottom-most
layer corresponds to the hardware layer. To make a parallel
with the Arch model, the top-most layer coincides with the
Arch Functional Core component and the bottom-most
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Figure 3: Collaborative scrollbar.
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layer coincides with the Arch Physical Interaction
component.

The overall structure is composed of a stem and several
branches. The stem, as shown in Figure 5, is composed of
shared layers (layers L+1 to N). A branch is composed of
replicated layers (layers 0 to L). The layer L of Figure 5
defines the branch point of replicated or versioned layers
[8]. A branch contains private layers for each user of the
application. Moreover the objects managed by layers of a
branch are all private objects of a user. Conversely, shared
layers and shared objects are  public .  The layers
communicate with each other using two types of events:
interaction and collaboration events. Interaction events
denote events sent up (input events) and down (output
events) between layers. Events sent between layers of
different branches are collaboration events.

In the rest of the discussion, we shall often use the terms
layer and component interchangeably. Although a software
component can encompass several layers, for simplicity we
assume that there is one layer per component.

PAC* model

PAC* [5] is the collaborative extension of the PAC-
Amodeus hybrid architectural model [18]. PAC-Amodeus
reuses the main components of the Arch model and
populates the Dialog Controller with PAC agents. A PAC
agent is composed of three facets: 

• a Presentation facet which defines the user interface of the
agent, 

• an Abstraction facet which manages the domain concepts,
and,

• a Control facet which manages the links and constraints
between its two surrounding facets (i.e., the Presentation
and the Abstraction facets) as well as its relationships with
other agents.

A PAC* agent, as shown in Figure 6 (a), is a PAC agent in
which each facet is structured along with the three
functional classes of the groupware clover. Alternatively, a
PAC* agent can be seen as a cluster of three PAC agents,

each agent dedicated to one functional class of the
groupware clover. The cluster of PAC agents represented in
Figure 6 (b) is a hybrid form of a PAC* agent: the three
clover agents can communicate with each others via their
Control facets and a single handle is in charge of
communication with the external world (i.e., other agents).

CLOVER ARCHITECTURE
The Clover architectural metamodel relies on the three
above models. From our metamodel, several Clover
architectural models can be derived. In this section we
present one Clover architectural model derived from the
metamodel, the latter being presented in the next section.

Description

The Clover architectural model of Figure 7 is derived from
Dewan's model using the functional layers of the Arch
model [3]. Nevertheless instead of the five layers of the
Arch model, our model advocates six layers: the Arch
Functional Core (FC) component is split  into two
components: the shared and replicated FCs. In Figure 7, to
avoid a visual overload, we have not drawn the Arch
Logical and Physical Interaction components, which are
located below the Dialog Controller in the stack. In
addition, some arrows, between layers of the two branches
are not drawn. 

Having defined the canonical component decomposition,
let us now consider the global architecture made of shared
and replicated components. All the Arch components are
replicated components except the shared FC. In this model,
we focus on the functional components and we have made
no assumptions about the Dialog Controller and the
Presentation Components. Compared to the PAC* model,
in which the FC is a completely shared layer, the FC is split
here in two layers: one is replicated and private; the other is
shared and public. The latter provides shared domain-
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dependent objects and functions that are manipulated by all
the users during the interaction. Conversely, the replicated
FC maintains the state of a single user and manages private
domain-dependent objects. As in Dewan’s model, the
collection of shared and user’s private objects defines the
interaction state for a particular user. This point is
illustrated with the example of the software design of
CoVitesse in the last section.

The originality of this architecture comes from the Clover
decomposition of the Shared and Replicated FCs. The FCs
are made of a wrapper which embeds three sub-FCs, each
sub-FC being dedicated to one of three functional classes of
the groupware clover. Each Clover FCs manipulates
semant ic  objects  dedicated to  one  of  the  Clover
functionalities and performs specific processing functions
on their objects. The wrapper approach is similar to the
software component oriented programming in CORBA.
The design rationale for the wrapper is threefold:

• The wrapper encapsulates the three Clover FCs and acts
as a functional glue. The wrapper is also responsible for
communication with other layers. Because the wrapper is
a software interface that hides the Clover partitioning, it
enables communication with non-clover aware layers. For
example the shared FC wrapper serves as a mediator
between the three Clover shared FCs and the Functional
Core Adapter. The wrapper allows us to stack a Clover
partitioned component with a component that is not
collaboration aware or Clover aware.

• The wrapper maintains a common state, i.e. the common
semantic objects, among the production, communication
and coordination FCs. Such objects common to the three
Clover spaces have been identified and illustrated in the
section entitled "Clover design model". 

• The wrapper provides functionalities including the system
services and single-user functionalities, which are not
intrinsically collaboration aware or Clover aware.

The communication between layers in the stack and
between peer layers follows the same rules as described in
Dewan’s model. Moreover interaction and collaboration
events are categorized into three classes of events:
production, communication and coordination events. This
enables direct communication between Clover FCs.
Nevertheless the model maintains a general event for
communication between layers that are not Clover aware. 

Finally, we have explained in a previous section that the
Clover model should not be used as a guideline for
designing the user interface. As a consequence, we only
partitioned the FC component according to the three Clover
functional classes and not the presentation components
(Logica l  and Physica l  Inte rac t ion  components) .
Furthermore it is important to note that the model is one
example of a model derived from our metamodel: in this
model we have unzipped the architecture at the FC layer,
the branching point being the Replicated FC. Different
branching points are possible. Fixing the branching point is
a design issue and defines the versioning/replication
architectural degree, as defined in [8]. In our Clover
architecture, the Replicated FC being the branching point,

the corresponding replication degree is high. The Clover
model therefore allows relaxed WISIWYS (What I See Is
What  You See).  Indeed a  low repl icat ion ( i .e .  an
architecture unzipped at the Physical or Logical Interaction
layers) implies strict WISIWYS.

An Extension of PAC*
Our Clover architectural model is complementary to the
PAC* model. Indeed in the PAC* model, a PAC* agent of
the Dialog Controller exchanges events with the Functional
Core via the Functional Core adapter. In our Clover model,
if the Dialog Controller is populated by PAC* agents
(Figure 6), each Clover Abstraction facet of a PAC* agent
will  communicate  with the corresponding Clover
Replicated FCs. But for a high modifiability of the code,
the communication will not be direct but will be via the
Functional Core Adapter that is not necessarily Clover
aware, and then via the Replicated FC wrapper. 

Moreover in Figure 6(b), a PAC* agent contains a handle.
This latter is responsible for managing the communication
with the external world, i.e. the other agents. The role of the
handle is one of the roles fulfilled by a wrapper in our
Clover model. The wrapper manages communication
between the three Clover FCs and their surrounding layers. 

CLOVER METAMODEL
Having presented one Clover architectural model, we now
describe the generalization: the Clover metamodel.

Description
The Clover architectural metamodel of Figure 8 structures a
groupware application into a variable number of layers, as
opposed to the previously presented Clover model which is
based on the five layers of the Arch model. Compared with
the previous Clover  model  of  Figure 7,  Layer  L
corresponds to the replicated FC and Layer L+1 to the
Shared FC.

The originality of this metamodel comes from the Clover
decomposition of the software units that compose the
branches and the stem. As shown in Figure 8, each unit of
the model contains a wrapper that encapsulates three
Clover sub-components: production, communication and
coordination sub-components. Interaction and collaboration
events exchanged between layers are subsequently
categorized into three classes of events: production,
communication and coordination events. The metamodel
nevertheless authorizes a general event for communication
between layers that are not Clover aware. In Figure 8, in
order to avoid a visual overload, we have not drawn every
arrow corresponding to an exchange of events between
layers.

As explained in the previous section, one role of a layer
wrapper, which encompasses a Clover’s structure, is to hide
t h e  C l o v e r  b r e ak d o w n  f ro m  th e  o t h e r  l ay e r s .
Communication between a Clover aware layer and a non-
Clover aware layer is thus possible. Indeed, a layer does not
necessarily implement a collaboration semantic and is
therefore not necessarily decomposed according to the
three Clover functionalities. This is usually the case for the
lowest layers, which are dedicated to the physical and
logical interaction with a user. For example, as shown in
Figure 8,  Layer 0  (the leaf of the branch)  which



corresponds to the hardware layer, is typically a non-Clover
aware layer.

Moreover the full decomposition of a layer according to the
three Clover functionalities is not mandatory. A layer may
include Production and Coordination functionalities and no
Communication functionality: this is for example the case
for Layer 1 in Figure 8.

BENEFITS AND PROPERTIES
The Clover functional partitioning establishes a direct
mapping between the design concepts and the software
architecture modeling. This partitioning provides a clear
guide in the organization of the functionalities identified
during the design phase. In addition it is complementary to
the traditional parti tioning of functionali ties into
components, where each of them corresponds to one level
of abstraction as for instance in Dewan’s architecture or
Arch model. Indeed, for a component corresponding to one
level of abstraction, the Clover metamodel advocates three
sub-components dedicated to production, communication
and coordination. Such a highly modular implementation
satisfies the modifiability, reusability and extensibility
properties. These properties are crucial for supporting a
user-centered design. For example, in the CoVitesse
system, it would be possible to add a video service as a new
communication channel by modifying the Shared and
Replicated Functional Core dedicated to communication
without endangering the other components. Moreover
modularity is a well-known software engineering

mechanism for reducing the cost of development. Based on
our own experience, applying the Clover architectural
model to the CoVitesse software design made it easy to
develop parts of the system without having a global view of
the overall code. For example, the three Shared Functional
Cores and the three Replicated Functional Cores, described
in the following paragraph, have been developed and tested
independently.

The metamodel does not fix the number of layers: layers
can be used to increase the separation of functionalities i.e.
to increase the modularity of the code. This approach is
orthogonal to the Clover breakdown of a layer.

The Clover breakdown of a layer can be partial. The
metamodel therefore allows a pile of several layers with
different Clover breakdowns.  For example, instant
messaging (communication functionality) is usually used
for managing coordination among users [24]. To implement
such a coordination which is based on communication, a
shared layer dedicated to coordination is stacked on top of a
shared layer that contains communication functionalities
only.

In our metamodel the coordination, production and
communication functionalities are all treated the same way.
This is in contrast to previous studies [8][16] where the
coordination functionalities are treated as special whereas
the production and communication functionalities are not.
For example, in Dewan's architecture [8], the session
manager is a special component that should be located
outside the architecture. This external component manages
the users and the groups during a session. This component
is therefore responsible for creating the tree and for
connecting the branches with the stem. In the Clover
metamodel,  the session manager is a coordination
component located in a stem layer. Indeed we argue that
there is always a shared layer in the conceptual software
architecture. The conceptual architecture is then mapped
into an implementation architecture by assigning processes
to components; the processes in turn must then be assigned
to hosts. Different approaches to distribution can be applied
to a conceptual architecture. Distribution and layer
decomposition (or software component decomposition) are
two orthogonal mechanisms. In particular, a shared layer at
the conceptual level does not imply a central site at the
implementation level.

Finally the Clover metamodel extends Dewan's generic
architectural model [8]. An architecture based on Dewan's
generic model is described by an awareness degree. The
awareness degree is equal to the level of the highest layer
that is collaboration-aware. Extending the awareness
degree ,  we  def ine  a  product ion-aware  degree,  a
communication-aware and a coordination-aware degree.
Such extensions will allow a more precise classification of
existing systems from an architectural point of view, than
the one presented in Table 9.1 in [8].

CLOVER MODEL IN PRACTICE: COVITESSE 
SOFTWARE DESIGN
In this section, we show how the Clover model can be used
in practice by presenting the Clover software design
solution of CoVitesse.
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Figure 8: Generalized Clover architecture.
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Figure 9 illustrates the application of the Clover model to
the software design of CoVitesse. At the conceptual level,
we applied the Clover model of Figure 7 that includes a
replicated Functional Core and a shared Functional Core.
At the implementation level, CoVitesse is a client/server
application written in Java. The shared components are on
the server side and the replicated components on both sides
(client and server). The communication between clients and
the server is based on network streams.

We describe the CoVitesse architecture from the highest
layer (top of Figure 9) to the lowest. The highest layer, the
Shared Functional Core (FC), is made of a FCprod, a
FCcomm, a FCcoord, and a meta-server. The meta-server
is a wrapper: it encompasses the three Clover FCs and
manages the access  to the underlying network.

• Shared Production Functional Core (FCprod):
This component manages concepts related to production,
represented as a document icon in FCprod of Figure 9.
These concepts are document, reference, album and
catalogue. A document is an elementary unit that is
manipulated by a group. A reference is a pointer on a
document. An album is a container, created and managed
by authors: an album contains documents and references.
A catalogue is a set of references. These four concepts are
implemented as Java interfaces. There are several
functions available including: the creation or obtaining of
a catalogue, creation of an album, addition or removal of
an author from an album, addition of a document in an
album, modification of the content of an album. In
CoVitesse, a reference is an URL, a document is the

content of a web page, i.e. an HTML document, a
catalogue is a set of URLs resulting from a query
submitted to a search engine and an album is a set of
URLs created by authors.

• Shared Communication Functional Core (FCcomm):
This component manages communication channels that
are represented by a tube in FCcomm of Figure 9 The
communication channel is the only concept manipulated
by FCcomm. A client can subscribe or unsubscribe to a
communication channel and can post a message on the
channel. A channel is implemented in Java. In CoVitesse,
the unique communication channel is a chat channel,
which can be compared to a mailing list: when a user
posts a message on this channel, the message is broadcast
to all the subscribers.

• Shared Coordination Functional Core (FCcoord):
This component has the responsibility for coordinating
users and groups. It first hosts a database of users and
groups. Therefore this component allows persistent access
to the description of the users and the groups. Moreover,
this component provides mechanisms for concurrency
control and for consistency control. For instance, it
synchronizes a concurrent access for two members to
modify group preferences. This component also notifies
all the clients, for consistency purposes, when a user
modifies her/his own private preferences. Consequently
the concepts manipulated by FCcoord are related to users
and groups; these concepts are implemented as Java
interfaces.

- User: Two functions are implemented to read and
modify information about a user as well as two functions
to read and modify the access rights to those pieces of
information. This implementation allows the developer to
define the user's description according to the nature of tha
groupware application. In CoVitesse, a user is described
by a name, a password, a geometrical shape, filtering
preferences, an E-mail address, etc. The user is identified
by her/his username and password.

- Group: A Group is defined by, a set of members, rights
for joining a group and a minimal set of functions. These
functions include setting or obtaining information about a
group, creating a group, joining a group (a user sends a
request to all the members who accept or do not accept the
newcomer), leaving a group. In CoVitesse, a group is
described by: a group name, a color, filtering preferences,
a navigation type and navigation preferences.

As shown in Figure 9, the layer under the Shared
Functional Core is the Replicated Functional Core. At the
implementation level, the Replicated Functional Core is
split into two parts: one part on the server side and one part
on the client side. The part on the client side maintains a
duplicated version of the current session, which is
originally saved on the server side. This mechanism of
caching data is used to increase performance at runtime.
The Shared Functional Core (on the server side as well as
on the client side) is made of two Clover FCs, namely
FCprod and FCcoord. These two Clover components
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Figure 9: CoVitesse implementation architecture.
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maintain private data owned by the client. This design
solution enables the server part to provide persistent access
to those private data.

• Replicated FCcoord maintains the user 's private
preferences and communicates with other clients through
the Shared Functional Core. Both replicated and shared
components dedicated to coordination manipulate the
same data about a user. Nevertheless only the replicated
component is allowed to modify private data such as the
username and password, while the shared component can
read the private data about a user when it is published. 

• Replicated FCprod hosts the user's private album
containing the collected URLs. Moreover FCprod has
access to the group album managed and protected by the
Shared Functional Core dedicated to production.

In the current implementation of CoVitesse, there is no
Replicated Functional Core dedicated to communication.
Consequently the wrapper transfers communication events
directly, in a bidirectional way, between the shared
FCcomm and the Functional Core Adapter (FCA in
Figure 9). However, future developments are planned for
implementing this missing facet. For example, private
aliases of recipients such as mailing-lists can be managed
by the shared FCcomm. Moreover, we have planned to
extend the shared FCcomm in order to allow private
channels for chatting within a defined group of users.

In the rest of the architecture, the components do not
implement a Clover structure. These components are the
Functional Core Adapter (FCA), the Dialog Controller
(DC) and the Logical and Physical Interaction components.
In Figure 9, the Logical  and Physical Interact ion
components are not drawn. They should be drawn under the
CoVitesse DC.

VALIDATION OF THE CLOVER METAMODEL
Software tools for the construction of groupware will not
eliminate architectural issues as long as the construction of
groupware requires programming. Developers and
maintainers of groupware need to rely on architectural
models: 

• for identifying software components, 
• for organizing their interconnections, 
• for reasoning about components and interconnections, 
• for modifying and maintaining them in a productive way,
• for verifying ergonomic and software properties.

Nevertheless an architectural design is neither inherently
good nor bad, but is conformant (or not) to a set of specific
properties [4]. The SAAM method shows how to assess an
architectural design along these lines [13]. Shaw et al.
demonstrate that different software architecture models
have different strengths and weaknesses and therefore lead
to different architectural design solutions with significantly
different software properties [22]. Therefore, software
architecture models should be chosen in accordance with
the system requirements and a software architecture model
is suitable for a sub-set of properties. By “suitable” we
mean that the model helps to either verify or assess a
property. In this paper, we presented a set of properties that

the Clover architectural metamodel verifies. In particular,
the Clover metamodel accommodates style heterogeneity
by allowing a pile of several layers with different Clover
breakdowns,  modif iabil ity,  reusabil ity as well  as
extensibility.

Another avenue to validate an architectural model is to
show that it corresponds to an implicit software practice:
the model therefore makes explicit programmers savoir-
faire. To do so, in [15], we studied the code of three
groupware applications: a mediaspace developed in our
team [6],  a shared text edi tor NetEdit [25] and a
collaborative ping-pong game [12]. By reverse engineering
based on the code of the three applications, we showed that
the modules of the existing code are organized according to
our Clover metamodel.

Finally the generality of the metamodel (and in particular
the variable number of layers and the possible partial
Clover breakdown of a layer) is a required property for
embracing the diversity and the novelty of the technical
problems raised by groupware. Indeed the generality of an
architectural model stems from its capacity to adapt to a
variety of constraints according to a sound design rationale.
So far the Clover metamodel has proven useful in
triggering the right software design questions and in
providing operational answers for several cases, both for
forward design and engineering as well as for reverse
design and engineering. On the one hand, the Clover
metamodel guides the development of a future system such
as CoVitesse; on the other hand it helps in understanding
the organization of existing code. We do feel however that
Clover metamodel patterns and heuristic rules need to be
devised to respond to recurrent problems in multi-user
systems. Indeed the unavoidable generality of the
metamodel makes its application difficult.  As done for our
PAC-Amodeus software architectural model [17],
providing patterns and rules will serve as guidelines for
applying the Clover architectural metamodel.

CONCLUSION
We have presented a new conceptual architectural
metamodel, the Clover architectural metamodel. The
Clover metamodel results from the combination of the layer
approach of Dewan's generic architecture with the
functional decomposition of the Clover design model. The
Clover architectural model has the following properties:

• By applying a Clover functional breaking up of each layer
of our metamodel, we make system design issues explicit
within the software architecture. Indeed the software
architecture modeling is a design activity at the turning
point between two worlds: the system design field and the
programming field. Because of its interlinking location,
software architecture must take into account design issues
and properties of the two worlds. 

• The Clover metamodel results  from a motivated
combination of existing architectural models selected for
the complementarity of their properties. In particular our
metamodel inherits the generic property from the layer
approach of Dewan's generic architecture. The metamodel
also refines each layer and event according to the three



Clover facets. This Clover breakdown of the layer
increases the modularity of the code.

One architectural  model  derived from the Clover
metamodel has been applied to the software design of the
CoVitesse system. This derived model (Clover model), that
has been presented in the paper and illustrated using
CoVitesse, refines the Functional Core in terms of
repl icated and shared components.  Moreover the
Functional Core components are partitioned into three
Clover  sub-components dedicated to production,
communicat ion and coordinat ion,  the  three  sub-
components being encapsulated by a wrapper.

Future developments consist of completing a Clover
platform for developing groupware. The platform illustrates
our Clover architectural metamodel by providing software
components dedicated to the three Clover facets. The
platform implements reusable encapsulated mechanisms
that facilitate the implementation of any groupware. The
CoVitesse system has both implemented using our
platform. We are currently testing the robustness of the
platform.
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