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Abstract
In this article, we develop a new general inference method for selecting learn-
ing models. The method relies upon a specific hold-out cross-validation, which
takes into account the dependency within the data. This allows us to retrieve the
model that best fits the learning strategy of a single individual. The novelty of
our approach lies on the choice of the testing set, both in the experimental design
and in the data analysis. This individual approach is then applied to two category
learning models (ALCOVE and Component-cue) on data-sets manipulating pre-
sentation order, after verification of the reliability of our method. We found that
both models performed equally well during transfer, but Component-cue best fits
the majority of participants during learning. To further analyze these models, we
also investigated a potential relation between the underlying mechanisms of the
models and the actual types of presentation order assigned to participants.

Keywords: model selection, learning models, statistical inference, hold-out cross-
validation, category learning, Component-cue, ALCOVE, rule-based order versus
similarity-based order

Introduction

Computational models are now common in many domains of cognitive science, for in-
stance to study memory (Lemaire & Portrat, 2018; Oberauer & Kliegl, 2006), decision making (Ari-
fovic & Ledyard, 2011; Novikov et al., 2018; Roth & Erev, 1995), attention (Borji & Itti, 2013; Malem-
Shinitski et al., 2020), and categorization (Carvalho & Goldstone, 2022; Kruschke, 1992; Love et al.,
2004). Because formal models abound in cognition, methods have been developed to offer rigor-
ous common grounds to evaluate their performance (Myung, 2000; Myung & Pitt, 1998; Pitt et al.,
2002). The purpose of our study is to promote the use of a general method to fit formal learning
models to experimental data, with a particular focus on models of category learning.

∗ Corresponding author.
E-mail address: gm3026@columbia.edu (G. Mezzadri https://orcid.org/0000-0001-6453-9070).

mailto:gm3026@columbia.edu
https://orcid.org/0000-0001-6453-9070


2

In categorization, a large variety of practices exist to fit models to data. Some studies have
used the same set of observations to both estimate the parameters of the models and compute their
predictions (Nosofsky et al., 2017, 2018; Sanders & Nosofsky, 2020), running the risk of over-fitting
the data (Cawley & Talbot, 2010). Other studies have relied on the use of computer simulations
with the aim of either estimating the parameters of the models or determining their predictions
(Carvalho & Goldstone, 2022; Nosofsky et al., 1994, 2017). In these studies, the estimated parame-
ters and the overall predictions of the models were obtained by averaging the best-fitting param-
eters and the classification predictions found in the simulations. Finally, a wide array of criteria
have been used to estimate fit to the data (Carvalho & Goldstone, 2022; Nosofsky et al., 1992, 1994,
2018). Some examples are the Sum of Squared Deviations (SSD), the Weighted Sum of Squared De-
viations (WSSD), the likelihood (either trial-by-trial, or block-by-block, or epoch-by-epoch), the
Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC).

In addition to this heterogeneity of practices, in contexts when observations are not in-
dependent (such as learning) classical statistical criteria are not reliable. While these criteria have
statistical guarantees when applied to independent and identically distributed (i.i.d.) data, such
guarantees are no longer available with dependent data. For instance, Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) offer theoretical guarantees when the number
of observations tends to infinity and when observations are i.i.d. (Akaike, 1998; Claeskens & Hjort,
2007; Konishi & Kitagawa, 2008; Schwarz, 1978). Since participants learn during categorization
tasks and since their learning process ends in finite time, participants’ observations are dependent
on one another and their number is limited.

In this article, we propose a new statistical inference method for model selection that can
be applied in contexts involving learning. Our method falls under the category of cross-validation
methods, that are generally more flexible than classical statistical criteria (Allen, 1974; Stone, 1974).
Here, we propose the simplest kind of cross-validation: the hold-out which consists in separating
observations in two sets, one for parameter estimation and one for model testing. However, train-
ing and testing sets are not randomly selected as in usual cross-validation methods. Indeed, data
of a single individual acquired from learning tasks cannot be thought independent and this de-
pendency structure within the data need to be precisely taken into account. Therefore, models are
tested either on the transfer phase (when the object of interest is performance during transfer) or
on unsupervised blocks of the learning phase (when the object of interest is learning progression).
Learning refers to the stage in which categories are formed, while transfer refers to the stage in
which individuals’ knowledge is tested upon presentation of new stimuli. However, the learning
phase is generally exclusively composed of supervised blocks (Carvalho & Goldstone, 2014; Mathy
& Feldman, 2009). Therefore, with the aim of applying our inference method to the learning phase
alone, we specifically designed and conducted an experiment including unsupervised blocks. This
specific experimental design is completely original in learning experiments. Up to our knowl-
edge, this is the first design which, combined with the adequate statistical analysis, allows us to
determine which model best fits a learning phase.

Although our method is flexible enough to be applied to all kinds of learning models, here
it is applied to compare two models of category learning. The two models on which our investi-
gation is focused are Gluck and Bower’s Component-cue (Gluck & Bower, 1988) and Kruschke’s
ALCOVE (Kruschke, 1992). Both models have the ability to evolve over time, accounting for both
category learning and transfer. The selection of these two models was motivated by the fact that,
although their mathematical structure is similar, they implement different learning strategies. In-
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deed, both models are based on artificial neural networks (Dreyfus, 1990; Rosenblatt, 1958); how-
ever, they implement either a complex rule-based strategy (Component-cue) or a similarity-based
strategy (ALCOVE) (Högden et al., 2019). A complex rule-based strategy refers to the process with
which participants classify new items on the basis of complex previously acquired rules, whereas
a similarity-based strategy refers to the process with which participants classify new items on
the basis of their similarity to stored exemplars or prototypes. Analyzing models with a similar
mathematical architecture allowed us to focus on the psychological mechanisms implemented into
these respective models. Our goal was to determine whether a complex rule-based or a similarity-
based strategy bests fit our data-sets, after showing statistical guarantees of our inference method
through numerical simulations. Also, these numerical simulations supported the use of an indi-
vidual approach, in which each participant is solely fit.

To further analyze these models, we made use of two types of presentation order involv-
ing a variation of stimulus ordering within a category (Bower et al., 1969; Medin & Bettger, 1994).
The rule-based order is designed to facilitate a rule-abstraction process ordering stimuli follow-
ing a “principal rule plus exceptions” structure, whereas the similarity-based order is designed to
maximize the similarity between consecutive stimuli (Elio & Anderson, 1981, 1984; Mathy & Feld-
man, 2009, 2016). The rationale is that a model should perform better when stimuli are presented
following a presentation order inspired by the mechanisms at play in the model. For instance, a
model integrating a rule-based or a complex rule-based strategy should benefit from a presenta-
tion in which stimuli obeying the principal rule are presented before the exceptions. Inversely, a
model integrating a similarity-based strategy should benefit from a presentation that maximizes
the similarity between contiguous examples. In both cases, the external context that best suits
the internal mechanism of a model should facilitate the extraction of the categories. Therefore,
our hypothesis is that Component-cue should best fit participants in the rule-based order, while
ALCOVE should best fit participants in the similarity-based order.

To summarize, the objective of this article is three-fold: i) to present a general method
to guide the evaluation and selection of learning models (Section Statistical Inference Method),
ii) to apply this method on designed data-sets for comparing two category learning models
(Component-cue and ALCOVE) that implement different learning strategies (SectionModel-fitting
results), and iii) to investigate whether the learning strategies at play in the models are related to
the order in which stimuli are presented, when the chosen order is inspired by these strategies
(Section Relation between models and within-category orders). Numerical simulations validating
our inference method are given in Section Numerical simulations, following the description of the
models and data-sets (Section Overview of two models of category learning and Overview of the
data-sets).

Statistical Inference Method

Here, we first describe how the parameters of the models are estimated. Then, we present
the statistical inferencemethod used to determinewhichmodel best accounts for category learning
and transfer. Numerical simulations assessing the accuracy of the estimates of the chosen models,
as well as the reliability of the method are given in the section Results.



4

Parameter Estimation

The parameters of the models were estimated using the Maximum Likelihood Estimation
(MLE) (Aldrich, 1997):

θ̂ ∈ arg min
θ∈Θ

{− log LM (D ; θ)} ,

where M denotes the model, LM its likelihood, and D the data-set used for the estimation. The
MLE was performed using the gradient descent algorithm. To avoid local minima, the gradient
descent algorithm was run 10 times, taking each time different initial conditions.

Model selection

Models were fit to our data-sets using the hold-out cross-validation method, which con-
sists in training the models on a subset of the data and testing them on the remaining subset. As
discussed in the introduction, the use of a cross-validation technique was preferred to classical
statistical criteria because of its flexibility and ability to be applied in contexts involving learning.
Because it would have been too intricate to apply convoluted cross-validation techniques on non-
i.i.d. data, the simplest kind of cross-validation (hold-out) was adopted. When cross-validation
techniques are applied to i.i.d. data, training and testing sets are completely exchangeable. How-
ever, as mentioned above our observations during learning are dependent on one another because
of feedback. This dependency within the data makes it extremely difficult to train models on ob-
servations that occur after the observations on which models are tested (this would require a very
complex “expectation-maximisation” phase that is out of the scope of the present paper). Potential
solutions are to either train models on observations that occur before the observations on which
models are tested, or to test models on observations with no feedback and on which a “frozen”
model that does not evolve is used. The latter is used here, whereas the former has been used
in spatial learning tasks for non-human animals (Moongathottathil-James et al., 2021). In both
cases, the method is a particular case of hold-out where the testing set has to be intentionally
well-chosen.

The predictions of the models were evaluated with either the Sum of Squared Deviations
(SSD) or the likelihood. The SSD is given by the sum of the squared difference between the pre-
diction of the model and the participants’ response across the testing set:

ESSD(M) =
∑

x(t)∈DT

(
Pθ̂

M

(
A | x(t), Ht−1

)
− z(t)

)2
,

where M denotes the model; Pθ̂
M

(
A | x(t), Ht−1

)
is the prediction of the model for the stimulus

x(t), given the sequences of stimuli and feedbackHi−1 until time t−1; z(t) is the response given by
the participant for the classification of the stimulus x(t); and DT is the testing set. The parameter
θ̂ was estimated on the training set.

The evaluation of the model using the likelihood is given by:

EL(M) = − log LM (DT ; θ̂),

where M denotes the model; LM its likelihood; θ̂ the estimated parameter on the training set; and
DT the testing set. The model that best fit our data-sets M̂ is the model with the lowest evaluation
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Figure 1

Artificial neural network structure of ALCOVE.

with either the SSD or likelihood criteria (∗ = SSD or L):

M̂ ∈ arg min
M

{E∗(M)}.

Althoughwe advise the use of the likelihood criterionwhen the parameter estimation is performed
using MLE, we additionally considered SSD in order to allow a continuity with previous studies in
categorization. Indeed, the use of SSD in psychology is still popular (Carvalho & Goldstone, 2022;
Nosofsky et al., 1992, 1994, 2018; Palmeri, 1999).

Overview of two models of category learning

Here, we present the category learning models that we compared using the statistical
inference method described above. As mentioned in the introduction, ALCOVE and Component-
cue have a similar mathematical structure, but implement different learning strategies. ALCOVE
learns the category membership of the training stimuli and classifies new items on the basis of
their similarity to these acquired stimuli. Conversely, Component-cue learns the combination of
features that are a good predictor of the category membership of the training stimuli and classifies
new items on the basis of these diagnostic combination of features.

ALCOVE

Attention Learning COVEring map model (ALCOVE) (Kruschke, 1992) is an artificial neu-
ral network composed of three layers of nodes: i) a single input node receiving the stimuli, ii) a
layer of intermediate nodes coding for the learning stimuli, and iii) a layer of output nodes cod-
ing for the categories in which stimuli can be classified (see Figure 1). The intermediate nodes
are linked to the output nodes through association weights, whose evolution allows the model to
learn. When a stimulus x(t) reaches the input node, the intermediate nodes ξj (for j = 1, . . . , NL)
are activated by the quantity:

a
(t)
j = S(x(t), ξj),

where NL is the number of learning stimuli. The term S(x(t), ξj) denotes the similarity between
stimuli x(t) and ξj , and it is computed as an exponentially decaying function of the distance be-
tween the two stimuli:

S(x(t), ξj) = e−c·d(x(t),ξj)p
,
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where d(x(t), ξj) is the distance between stimuli x(t) and ξj , p a positive constant, and c a freely
estimated sensitive parameter (c ≥ 0). The distance between stimuli x(t) and ξj is computed as
follows:

d(x(t), ξj) =
[

N∑
i=1

ωi · |x(t)
i − ξj

i |
r
] 1

r

,

whereN is the dimension of the psychological space in which stimuli are embedded, ωi the atten-
tion allocated to dimension i (ωi ≥ 0 and

∑N
i=1 ωi = 1), r a positive constant; and x

(t)
i and ξj

i the
feature values of stimuli x(t) and ξj on dimension i. The values of p and r are determined on the
basis of the nature of the stimuli. In our case, p and r are set equal to 1 (see Section Overview of
the data-sets).

All these quantities a
(t)
j (for j = 1, . . . , NL) are weighted and summed to form outputs.

The output node associated with category K is activated by the quantity:

O
(t)
K =

NL∑
j=1

a
(t)
j · w

(t)
j,K ,

where w
(t)
j,K is the association weight linking intermediate node ξj to output node K , at the arrival

of the t-th stimulus. The outputs were constrained to vary between -1 and 1. The probability
of classifying a stimulus into a given category is computed as a function of the outputs. Two
formulas have been used in the literature: an exponential formula (Kruschke, 1992) and a linear
formula (Nosofsky et al., 1992, 1994; Palmeri, 1999). According to the exponential formula, the
probability of classifying the t-th stimulus x(t) as belonging to a given category A (knowing the
sequence of stimuli and feedback Ht−1 until time t − 1) is given by:

P(A | x(t), Ht−1) = eϕO
(t)
A∑

K∈K
eϕO

(t)
K

, (1)

where ϕ is a freely estimated positive parameter and K the set of all categories. According to the
linear version, the probability of classifying the t-th stimulus x(t) as belonging to a given category
A (knowing the sequence of stimuli and feedback Ht−1 until time t − 1) is given by:

P(A | x(t), Ht−1) = O
(t)
A + b∑

K∈K

(
O

(t)
K + b

) (2)

where b is a category bias parameter (b ≥ 1) and K the set of all categories. The exponential
version is denoted by the letter E (i.e., ALCOVEE), while the linear version by the letter L (i.e.,
ALCOVEL). In our study, both formulas were considered.

Once the classification probability are computed, the association weights w
(t)
j,K and atten-

tion weights ω
(t+1)
i are updated in order to minimize the difference between feedback and outputs

of the model. More specifically, the error of the model for the t-th stimulus is computed as follows:

E(t) =
∑

K∈K

(
T (t)

K − O
(t)
K

)2
,
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Figure 2

Artificial neural network structure of Component-cue.

where

T (t)
K =

{
1 if x(t) ∈ K

−1 otherwise

The association weights are updated to decrease the error of the model as follows:

w
(t+1)
j,K = w

(t)
j,K − λw · ∂E(t)

∂w
(t)
j,K

= w
(t)
j,K + λw · a

(t)
j ·

(
T (t)

K − O
(t)
K

)
, (3)

where λw is a freely estimated learning rate parameter (λw ≥ 0). The attentionweights are equally
updated to decrease the error of the model. Their updating is given by the following rule:

ω
(t+1)
i = ω

(t)
i − λω · ∂E(t)

∂ω
(t)
i

= ω
(t)
i − λω ·

∑
K∈K

NL∑
j=1

(
a

(t)
j · w

(t)
j,K · c|x(t)

i − ξj
i |·

·
(
T (t)

K − O
(t)
K

))
,

where λω is a freely estimated learning rate parameter (λω ≥ 0). The association and attention
weights are initiated at 0. ALCOVE can also be applied to reproduce performance during transfer.
In this scenario, since feedback is not provided during transfer, the weights are no longer updated
and a “frozen” model is considered. This is also true on unsupervised blocks of the learning phase
where participants’ classification is monitored without feedback.

Component-cue

Component-cue (Gluck & Bower, 1988) is an artificial neural network, composed of three
layers of nodes: i) a single input node receiving the stimuli, ii) a layer of intermediate nodes coding
for the features of the stimuli, and iii) a layer of output nodes coding for the categories in which
stimuli can be classified (see Figure 2). As in ALCOVE, the intermediate nodes are linked to the
output nodes through association weights, whose evolution allows the model to learn. When a
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stimulus x(t) reaches the input node, the intermediate nodes Fj (j = 1, . . . , N ) are activated as
follows:

a
(t)
j =

{
1 if x(t) has Fj

0 otherwise.

All of these quantities a
(t)
j (for j = 1, . . . , N ) are weighted and summed to form outputs. The

output node associated with category K is activated by the quantity:

O
(t)
K =

N∑
j=1

a
(t)
j · w

(t)
j,K ,

where w
(t)
j,K is the association weight linking intermediate node Fj to output node K . Again,

the outputs were constrained to vary between -1 and 1. Similarly to ALCOVE, the classification
probabilities are computed as in Equation (1) (if the exponential formula is considered) or as in
Equation (2) (if the linear formula is considered). The same notations as before are used to denote
the two versions. Again, once the classification probability are computed, the association weights
are updated in order to minimize the error of the model. The association weights of Component-
cue are updated as in Equation (3) and their initialization is set at 0.

Overview of the data-sets

Models were compared based on two separate data-sets. The first data-set corresponds
to the results of an experiment conducted by (Mathy & Feldman, 2016), which was designed to
assess the effects of within-category orders on category transfer. The second data-set corresponds
to the results of an experiment conducted by (Mezzadri et al., 2022). Although this second data-
set has already been used to test a model of category transfer, it was specifically designed for the
application of our method to both the learning phase alone and the totality of the experiment. As
mentioned in the introduction, the learning phase of a categorization task is generally supervised.
Supervision implies dependency of the observations, which heightens the complexity of the appli-
cation of cross-validation techniques. The introduction of unsupervised blocks within the learning
phase allowed us to apply our method, without increasing its complexity. Although they are not
novel experiments, the procedure of both experiments is briefly recalled.

Data-set 1

Participants (N = 44) were instructed to learn a 4-feature category structure (see Figure
3) based on either a rule-based presentation order or a similarity-based presentation order. This
structure, called 5-4 category set (Medin & Schaffer, 1978), allowed to study how participants
categorize 7 novel stimuli during a transfer phase, after learning 5+4 = 9 stimuli (5 items belonged
to categoryA and 4 items to categoryB). Participants were instructed to press one of two response
keys corresponding to the categories. A feedback indicating the correctness of their responses was
provided, except in the transfer phase.

Stimuli. Stimuli varied along four Boolean dimensions (shape, color, size, and filling
pattern). The options for each dimension were: square or circle for shape; blue or gray for color;
small or big for size; and plain or striped for filling pattern. The combination of these features
formed 24 = 16 items (Figure 3, on the bottom). Each dimension was instantiated by the same
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Figure 3

Categories and stimulus items of Data-set 1. The items varied along four Boolean dimensions (shape,
color, size and filling pattern) represented here in a Hasse Diagram forming a hypercube. At the top,
the structure of the 5-4 category set. The examples of category A are indicated by black dots, those
of category B by white dots, and transfer item are represented by empty vertices. At the bottom,
illustration of the items of Data-set 1.

physical feature for all participants. As can be seen in Figure 3 (on the bottom), color differentiated
the objects at the top of the hypercube from those at the bottom, shape differentiated the objects
at the front of the hypercube from those at the back, size distinguished the objects in the left cube
from those in the right cube, and filling pattern differentiated the right and left objects within the
cubes.

Phases. The experiment was composed of a supervised learning phase (in which feed-
back was provided at each trial), followed by an unsupervised transfer phase (in which no feedback
was provided). Participants had to correctly classify stimuli in four consecutive blocks of 9 stimuli
to complete the learning phase. Once participants met this learning criterion, a transfer phase was
initiated. The transfer phase was composed of 5 blocks of 16 stimuli (the 9 learning items plus 7
transfer items).

Ordering of stimuli. During learning, training blocks were alternated with random
blocks. Training blocks were used to manipulate order, while random blocks were used to monitor
learning. In training blocks, categories were blocked (i.e., AAAABBBB or BBBBAAAA) and
the order of the stimuli within a category was manipulated following either a rule-based or a
similarity-based order. Half of the participants were randomly assigned to the similarity-based
condition. In the rule-based order, stimuli obeying the main rule were presented strictly before the
exceptions to the rule. The principal rule was determined by the color (all gray items are members
of category A and all blue items are members of category B), while the exceptions were the small
gray hatched circle and the big blue plain circle. In the similarity-based order, members within
a category were presented in a way that maximized the similarity between consecutive stimuli.
The first stimulus was randomly selected and subsequent stimuli were (randomly) selected among
those that were the most similar to the immediately previous item. Similarity between two items
was computed by counting the number of common features that they shared and ties were solved
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randomly. For further details we refer the reader to (Mathy & Feldman, 2016).

Data-set 2

As in the previous data-set, participants (N = 130) were instructed to learn a single 5-4
category set based on different types of order. Although the categories and stimuli were similar
to that of Data-set 1, Data-set 2 extended the manipulation of presentation orders. In addition
to the within-category manipulations, both between-category and across-blocks conditions were
manipulated. These variations were introduced to avoid picking a condition which could favor one
of the two condition of our main factor (rule-based or similarity-based). To summarize, Data-set
2 extends Data-set 1 on three levels: i) the introduction of unsupervised blocks during learning,
allowing the application of our method to the learning phase alone, ii) the larger variety of order
manipulations, and iii) the higher number of participants.

Stimuli. Stimuli were the same as in Data-set 1. However, dimensions were instantiated
by different features. Indeed, color distinguished the objects at the front of the hypercube from
those at the back, shape distinguished the objects in the left cube from those in the right cube,
size distinguished the right and left objects within the cubes, and filling pattern distinguished the
objects at the top of the hypercube from those at the bottom.

Phases. As in Data-set 1, a learning phase was followed by a transfer phase. However,
Data-set 2 made use of two blocks of supervised learning (in which the order of the stimuli wasma-
nipulated and feedback was provided), followed by one block of unsupervised learning (in which
stimuli were randomly presented with no feedback). This pattern was repeated until the end of
the learning phase. Participants had to correctly classify stimuli in three unsupervised blocks of
9 stimuli (not necessarily consecutive) to complete the learning phase. Once participants met this
learning criterion, a transfer phase was initiated. As in Data-set 1, the transfer phase was com-
posed of 5 blocks of 16 stimuli.

Ordering of stimuli. The experimentwas characterized by a full factorial design. Three
factors were used, each one having two levels: a within-category order manipulation (rule-based
vs. similarity-based), a between-category order manipulation (interleaved vs. blocked), and a ma-
nipulation of order across blocks (variable vs. constant). The combination of these types of order
formed eight conditions (e.g., “rule-based + interleaved + constant”, etc.). The number of par-
ticipants assigned to each condition is given in Table 1. In the interleaved order, categories were
strictly alternated (i.e.,ABABABAB), while in the blocked order, categories were strictly blocked
(i.e., AAAABBBB or BBBBAAAA). As described above, in the rule-based order stimuli be-
longing to a same category were presented following a “principal rule plus exceptions” structure,
whereas the similarity-based order maximized the similarity between immediately contiguous ex-
amples. In the variable manipulation across blocks, the sequence of stimuli varied from one block
to another, while in the constant manipulation across blocks, the unique sequence was presented
across blocks. For further details we refer the reader to (Mezzadri et al., 2022).

Results

We first present the numerical simulations of accuracy of the parameter estimation and
reliability of the method. Then, we present the results of the inference method applied to ALCOVE
and Component-cue on both data-sets. Finally, we investigate whether performance of the models
is related to the order to which participants were assigned.
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Table 1

Number of participants assigned to each of the 8 conditions of Data-set 2.

Rule-based Similarity-based

Constant Variable Constant Variable

Interleaved 16 14 13 15
Blocked 17 15 21 19

Numerical simulations

Parameter estimation

Numerical simulations were conducted to assess the quality of the parameter estimation,
as a function of the size of the data-set. The accuracy of the estimates was highly dependent on
whether the exponential or linear version of the models was considered. Parameters of the ex-
ponential version were accurately estimated when the size of the data-set was equal to or greater
than 80 blocks. On the contrary, parameters of the linear version were overall accurately estimated
when the size of the data-set was greater than 160 blocks, with the exception of parameter b (for
further details, see Chapter 5 of (Mezzadri, 2020)). Although an accurate estimation of the parame-
ters required data-sets of large size, the predicted probabilities of the models were accurate enough
with smaller data-sets (30-40 blocks). Since we were not interested in accurately estimating the pa-
rameters of the models but only their classification probabilities, data-sets with 30-40 blocks were
judged adequate. Both our data-sets met this condition, thus guarantying an accurate estimation
of the predictions of the models. Moreover, since the learning phase of single participants lasted
30 blocks on average, this allowed us to fit participants individually.

Hold-out reliability

Numerical simulations were conducted to assess the reliability of our method. In these
simulations, the learning models were used to generate a set of artificial data. These artificial
data-sets were then used to determine whether the inference method was able to detect the model
with which the data-sets were generated. These steps were iterated 100 times to give a statistical
significance to the analysis. The results of the numerical simulations are shown in Figure 4. The
graph shows the percentage of times that the simulated data-sets were actually generated by the
model that was selected by the method (i.e., the model reaching the lowest evaluation with either
the SSD or likelihood criteria). Both criteria gave similar results.

Both the exponential and linear versions of ALCOVE were identified as ALCOVE 81-86%
of the time; however, only 56-60% of the time they were identified with the correct version. The
exponential version of Component-cuewas identified as Component-cue 75-78% of the time, and as
Component-CueE 64-65% of the time. Finally, the linear version of Component-cue was the most
recognizable model with a correct identification of almost 90%. To summarize, our simulations
ensure that the model characterized by the lowest evaluation is the model underlying the data
(regardless of the version) with a probability of 75-78% at least. Moreover, only the linear version
of Component-cue is recognizable with a high probability (almost 90%). The identification of the
other versions is not guaranteed with a high probability.
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Figure 4

Results of the numerical simulations assessing the reliability of the method. The graph shows the
percentage of times that the simulated data-sets were actually generated by the model with the lowest
error (using the SSD or likelihood criteria). A total of 20 iterations × 43 participants = 860 hold-out
methods were performed. The hold-out method was applied to each participant, separately. Models
were fit on the same sequence of stimuli used in Data-set 1: training was performed on the learning
phase, while testing was performed on the transfer phase. The gradient descent algorithm in the MLE
was performed 10 times.
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Table 2

Number of participants that were removed from the analysis, for each condition of Data-set 2. The
number of participants who did not reach the learning criterion is shown on the left of “|”, while the
number of participants who incorrectly classified more than 25% of the training items during
transfer is shown on the right of “|”. For clarifications about the mentioned presentation orders, see
Section Overview of the data-sets.

Rule-based Similarity-based

Constant Variable Constant Variable

Interleaved 2 | 3 0 | 4 0 | 1 1 | 6
Blocked 0 | 4 1 | 5 0 | 9 2 | 4

Model-fitting results

Here, we present the results of the application of the hold-out cross-validation method
to Data-set 1 and Data-set 2. Since we were interested in studying how participants learned and
remembered the categories, those who did not meet this criterion were removed from the analysis.
In Data-set 1, one participant (in the similarity-based order) did not meet the learning criterion,
whereas in Data-set 2, 6 participants did not meet the learning criterion. Also, 36 participants
incorrectly classified more than 25% of the training items during transfer and were then removed
from the analysis (for details on which condition they were assigned to see Table 2). Regarding
trials in which participants did not classify stimuli on time (amounting to 1.4% in Data-set 2; par-
ticipants in Data-set 1 always classified stimuli on time), one of the two categories was randomly
selected to facilitate modeling.

Data-set 1

Figure 5 (on the top) shows the results of the application of the hold-outmethod to Data-set
1, with the transfer phase as the testing set. Each participant was fit separately. The graph shows
the number and percentage of participants who were best fit by the various learning models, de-
pending on the evaluation criteria. Component-cue best performed on 63-66% of the participants,
with a dominance of the linear version with the SSD criterion and a dominance of the exponential
version with the likelihood criterion. Simulations ensured us that the model underlying the re-
sponses of the participants whowere best fit by Component-cuewas actually Component-cuewith
a probability of 75-78%. Moreover, when the best-fitting model was ALCOVE or Component-cueL

the probability increased to 81-86% or 89-93%, respectively.

Data-set 2

Figure 5 (in the middle and on the bottom) shows the results of the application of the hold-
out method to Data-set 2, with either the transfer phase or the unsupervised blocks of the learning
phase as the testing set. Each participant was fit separately. The graph shows the number and
percentage of participants who were best fit by the learning models, depending on the evaluation
criteria. In the graph in the middle, models were trained on the supervised blocks of the learning
phase and tested on the transfer phase. Approximately half of the participants were best fit by
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ALCOVE (44-48%) and half of the participants were best fit by Component-cue (52-56%). In the
graph on the bottom, models were trained on the supervised blocks of the learning phase and
tested on the unsupervised blocks of the same phase. This time, the majority of the participants
(75-81%) was best fit by Component-cue, with a dominance of the exponential version. Again,
simulations ensured us that these results are liable with a probability of 75-78%.

Relation between models and within-category orders

Here, we investigate a potential connection between the two strategies at play in the mod-
els (a complex rule-based strategy in Component-cue and a similarity-based strategy in ALCOVE)
and the within-category orders used to present stimuli (rule-based and similarity-based orders).
Again, one plausible hypothesis is that a model integrating a mechanism X should be favored by
an order inspired by X . Another way to put it is that it would be paradoxical for a model to show a
preference for a type of presentation which a priori would not favor its implemented mechanisms.
To investigate this hypothesis, we analyzed i) whether the number of participants that were best
fit by a specific model was related to the within-category order assigned to these participants (in
“Distribution of participants analysis”), and ii) whether the generalization patterns of the model
that best fit our data were related to the within-category order in which stimuli were presented
(in “Generalization patterns analysis”). The description of the analysis on generalization patterns
will be preceded by a test of the difference of performance between participants in the rule-based
and similarity-based orders. This additional test will serve as a baseline for our analysis on gen-
eralization patterns.

Distribution of participants analysis

Data-set 1. Table 3 (on the top) shows the number of participants in Data-set 1 whose
responses were best predicted by either Component-cue or ALCOVE, as a function of the within-
category order and evaluation criterion. With both criteria, Component-cue best fitted a higher
number of participants in the rule-based order as compared to the similarity-based order. Con-
versely, ALCOVE best fitted a higher number of participants in the similarity-based order as com-
pared to the rule-based order. Moreover, participants assigned to the rule-based order were overall
best fit by Component-cue. A Fisher’s exact test of independence was separately performed on the
SSD and likelihood tables to assess whether the relation that emerged between models and orders
was significant. None of the two tests were found significant (p-value = 0.06 with the SSD and
p-value = 0.53 with the likelihood). The striking difference between the two p-values might be
due to the small sample of the data-set.

Data-set 2. Table 3 (on the bottom) shows the number of participants in Data-set 2
whose responses were best predicted by either Component-cue or ALCOVE, as a function of the
within-category order and evaluation criterion. We considered the results of the analysis in which
models were trained on the supervised blocks of the learning phase and tested on the transfer
phase. Again, Component-cue best fitted more participants in the rule-based order than in the
similarity-based order, while ALCOVE best fitted more participants in the similarity-based order
than in the rule-based order. Moreover, participants assigned to the rule-based order were overall
best fit by Component-cue, whereas participants assigned to the similarity-based order were over-
all best fit by ALCOVE. Although the relation between models and orders was more visible than
before, the Fisher’s exact test of independence was not significant (p-value = 0.09 with the SSD
and p-value = 0.14 with the likelihood).
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Figure 5

Application of the hold-out method on Data-set 1 (on the top) and Data-set 2 (in the middle and on the
bottom). The graphs show the number and percentage of participants that were best fit by the learning
models, as a function of the models and evaluation criteria. On the top, models were trained on the
learning phase and tested on the transfer phase (Data-set 1). In the middle, models were trained on the
supervised blocks of the learning phase and tested on the transfer phase (Data-set 2). On the bottom,
models were trained on the supervised blocks of the learning phase and tested on the unsupervised
blocks of the learning phase (Data-set 2).
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Table 3

Number of participants in Data-set 1 (on the top) and Data-set 2 (on the bottom) whose responses
were best predicted by either Component-cue or ALCOVE, as a function of the within-category order
(rule-based vs. similarity-based) and evaluation criterion (SSD vs. Likelihood).

SSD Likelihood

Type of order ALCOVE Component-cue ALCOVE Component-cue

Data-set 1
Rule-based 5 17 6 16
Sim.-based 11 10 8 13

Data-set 2
Rule-based 15 28 17 26
Sim.-based 24 21 25 20

Additional test on generalization patterns

We previously mentioned that Data-set 1 was used in (Mathy & Feldman, 2016) to show
the influence of within-category presentation order on generalization patterns. Here, we present
an additional test confirming this result. This test represents a baseline for our next analysis. We
considered participants’ generalization patterns by computing the proportion of time (across trans-
fer) that each participant classified the transfer items into category A. By definition, participants
adopting a rule-based strategy would classify new stimuli on the basis of the main rule (which for
Data-set 1 is all gray items belong to category A and all blue items belong to category B, and for
Data-set 2 is all striped items belong to category A and all plain items belong to category B). The
use of this strategy would produce the following putative generalization pattern (see Figure 3):

(P(A | T1), . . . ,P(A | T7)) = (1, 1, 0, 0, 0, 0, 1) ,

where P(A | Ti) is the probability to classify transfer item Ti into category A (for i = 1, . . . , 7; we
had 7 transfer items). Inversely, participants adopting a similarity-based strategy would classify
new stimuli on the basis of their similarity to stored items. The use of this strategy would produce
the following putative generalization pattern (see Figure 3; only the category assignment of the
closest items was used):

(P(A | T1), . . . ,P(A | T7)) =
(1

4 ,
1
2 , 0,

1
2 ,

1
4 ,

1
2 , 1

)
.

Comparing these two stereotypical generalization patterns, participants adopting a rule-based
strategy would classify items T1 and T2, items T3 and T7, and items T4, T5 and T6 into cate-
gory A with, respectively, a higher, an equal, and a lower probability as compared to participants
adopting a similarity-based strategy. This means that, if participants’ generalization patterns are
projected on the vector v = (1, 1, 0, −1, −1, −1, 0), participants following a rule-based strategy
have higher projection values than participants following a similarity-based strategy.

Therefore, the influence of presentation order on generalization patterns can be studied
in a straightforward manner by analyzing the projections of participants’ generalization patterns
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on vector v, as a function of the presentation order. A difference in location between participants
in the rule-based and similarity-based orders would mean a difference in generalization patterns.
This difference in location was assessed running a one-sided Wilcoxon-Mann-Whitney test (we
tested whether participants following a rule-based order had higher projection values than those
following a similarity-based order). The use of the Wilcoxon-Mann-Whitney test allowed us to
avoid making hypotheses about the distribution underlying the data. The test turned out sig-
nificant for both data-sets (p-value = 0.021 for Data-set 1 and p-value = 0.022 for Data-set 2),
showing that the generalization patterns of participants in the rule-based order were closer to a
rule-based classification pattern as compared to participants in the similarity-based order.

Generalization patterns analysis

This analysis aims at investigating whether the order assigned to participants (rule-
based vs. similarity-based) was related to the model that best fit their responses (ALCOVE
vs. Component-cue). Similarly to the previous analysis, the generalization patterns provided by
the best-fitting model were projected on the vector v = (1, 1, 0, −1, −1, −1, 0). Two tests were
conducted: a first test assessing the difference in location between the projections of ALCOVE and
those of Component-cue, and a second test assessing the difference in location between the projec-
tions of participants in the rule-based order and those of participants in the similarity-based order.
Both made use of a one-sided Wilcoxon-Mann-Whitney test. Because we expected to find that the
closest projections to a rule-based generalization pattern would have been those of Component-
cue and those of the participants in the rule-based order, a one-sided test was preferred to a two-
sided test.

Data-set 1. The first test was significant (p-value = 0.0002), showing that the projec-
tions of the generalization patterns of Component-cue were higher than the projections of the
generalization patterns of ALCOVE. This means that, when considering the best-fitting model,
the generalization patterns of Component-cue were more consistent with a rule-based retrieval
than those of ALCOVE. The second test fell short of significance (p-value = 0.059), showing that
the projections of the generalization patterns of participants in the rule-based order were slightly
higher than the projections of the generalization patterns of participants in the similarity-based
order. This means that the best-fitting models were not clearly able to reproduce the difference
in generalization patterns found in the data between participants in the rule-based and similarity-
based orders.

Data-set 2. As Data-set 1, only the first test was significant (p-value = 0.0005 for the
first and p-value = 0.373 for the second). Again, the generalization patterns of Component-cue
were more consistent with a rule-based retrieval than those of ALCOVE, when considering the
best-fitting model. However, the best-fitting models were not able to reproduce the fact that dif-
ferent types of presentation order created a distortion in the representation of the categories.

Discussion

In the last three decades, research in categorization has seen a rapid evolution of models of
category learning and representation (Carvalho & Goldstone, 2022; Lee & Webb, 2005; Love et al.,
2004; Mezzadri et al., 2022; Nosofsky & Palmeri, 1998). However, little effort has been directed
toward the promotion of a rigorous method for comparing learning models (Pitt et al., 2002), and a
common testing ground is still lacking. Our study attempts to address this question by presenting
a general inference method for the selection of learning models.
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Our main contribution includes the promotion of a general method for fitting learning
models to data. Here, we propose the use of a cross-validation method (hold-out) as a better tech-
nique than classical statistical criteria to account for dependent data and small samples. Train-
ing and testing sets in the hold-out method were appropriately selected to suit our objective. To
study performance during transfer, models were trained during learning and tested during trans-
fer, whereas to study learning progressions, models were trained on supervised learning blocks
and tested on unsupervised learning blocks. Because the learning phase is generally composed
of supervised blocks exclusively, an experiment that alternates blocks of supervised learning with
blocks of unsupervised learning was specifically designed to fit our purposes. Also, numerical
simulations assessing the accuracy of the parameter estimation allowed us to apply the method to
individual data.

Here, we summarize and generalize a series of good practices, that we hope will serve as
guidelines for future studies. A first good practice is to make use of cross-validation techniques
to test learning models. Training and testing models on different subsets allows the respect of the
structure of dependency within the data, while avoiding the risk of over-fitting them. Our results
suggest the use of the hold-out method as an adequate trade-off between reliability, complexity of
its application, and computational cost. A second good practice is to evaluate howwell parameters
(or alternatively, classification probabilities) are estimated, as a function of the size of the data-
set. This analysis allows researchers to determine whether models can be fit to individual or
collective data. A third good practice is to select the same criterion for estimating the parameters
and evaluating the models concurrently. Finally, a forth good practice is to study whether the
selected cross-validation method is able to identify the model underlying the artificial data that
were generated with it.

Another contribution is the application of our inference method to compare two common
category learning models: ALCOVE and Component-cue. These models were not chosen because
we consider them as being the most representative of the domain, but because of their similar
underlying structure. These models implement alternative strategies, while sharing a similar neu-
ron network structure. ALCOVE implements a similarity-based strategy, whereas Component-cue
rather implements a (possibly complex) rule-based strategy. By fitting these models to two data-
sets, we found that during transfer (in bothData-set 1 andData-set 2) almost half of the participants
were best fit by ALCOVE, while during learning (in Data-set 2; this analysis on Data-set 1 was not
possible) the majority of participants were best fit by Component-cue. Our numerical simulations
ensured the reliability of these results with a high confidence (75-78% at least). A complex rule-
based strategy was preferred by participants during learning, while both a complex rule-based
and a similarity-based strategies were approximately equally used during transfer. However, the
nature of the task might have favored the use of a complex rule-based strategy during learning.

An additional explanation for the difference in the fitting performance of the studied mod-
els can be found in neurocomputational theories. It is widely accepted that learning is mediated
by at least two memory systems: an explicit system that depends largely on the prefrontal cortex
and uses rule-governed mechanisms, and an implicit procedural system that depends on the basal
ganglia (Poldrack & Packard, 2003; Ashby & Valentin, 2017). Paul & Ashby (2013) have hypothe-
sized a one-way interaction between these two systems, in which the response generated by the
explicit system is communicated back to the procedural system. More recently, the procedural
system has been shown to be equivalent to a neural integration of similarity-based exemplar the-
ory (Ashby & Rosedahl, 2017), which is what ALCOVE was designed to be. Therefore, the fact
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that Component-Cue performed well during learning, whereas ALCOVE performed best during
transfer may be related to these ideas.

A last contribution includes the investigation of a putative relation between best-fitting
models (ALCOVE and Component-cue) and within-category orders (rule-based and similarity-
based). This investigation was driven by the hypothesis that an environment fitting the internal
mechanism of a model should facilitate the extraction of the categories. Therefore, a rule-based
order should be beneficial for models implementing a rule-based or a complex rule-based strat-
egy (such as Component-cue), whereas a similarity-based order should be beneficial for models
implementing a similarity-based strategy (such as ALCOVE). A first factor we investigated was
the number of participants in the rule-based and similarity-based orders that were best fit by the
chosen category learning models. Although participants in the rule-based order were best fit by
Component-cue (in both data-sets) and participants in the similarity-based order were best fit by
ALCOVE (in Data-set 2), the difference was not significant (in both data-sets). A second factor
we investigated is the generalization patterns provided by the best-fitting model, as a function of
presentation orders. The results showed that the generalization patterns of Component-cue were
closer to a rule-based classification than the generalization patterns of ALCOVE. An additional
analysis showed that the models that best fit participants’ performance were not able to repro-
duce the difference in generalization patterns assessed during transfer between participants in the
rule-based and similarity-based orders. To summarize, we found some evidence pointing toward
a relation between models and presentation order; however, further investigations are necessary
to evaluate the consistency of this result.

Limitations and Perspectives

Our study only compared two category learning models, without including other relevant
models that implement other learning strategies (Ashby et al., 1998; Erickson & Kruschke, 1998;
Gluck & Bower, 1988; Kruschke, 1992; Kruschke & Johansen, 1999; Love et al., 2004; Nosofsky &
Palmeri, 1998). Also, the categories we studied (the 5-4 category set) are characterized by a clear
rule-plus-exceptions structure. The use of such a structure might have promoted the adoption of a
rule-based strategy over a similarity-based one. To overcome these limitations, the present study
should be extended to a larger variety of models and categories.

In machine learning, the hold-out method is used to identify discrepancies between feed-
back and predictions of models (Kopper et al., 2020; Yadav & Shukla, 2016). In our article, the
method was used in a different spirit, with the idea that models are trained using feedback whereas
they can be tested using participants’ responses when no feedback is provided. Therefore in ma-
chine learning, feedback serves both as a training tool and a testing tool, while in our context
two different tools were used with the purpose of training and testing the models (feedback as
training tool and participants’ responses when no feedback is provided as testing tool). Although
this adopted strategy seems to give good results on simulated data (see Figure 4 page 12), a more
rigorous mathematical formalization of this new inference method is needed. Also, there are ex-
periments where participants are never deprived of feedback. This is especially true in cognitive
tasks for non-human animals in which reward for a correct behavior is always given. In a current
work under redaction (Moongathottathil-James et al., 2021), we are thus using a different approach
for applying the hold-out method to learning models on data with constant feedback. In this case,
we used the last part of the learning phase as the testing set and we allowed parameters to be
updated during testing as well.
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Finally, a word of caution has to be said about the combination of both feedback and no-
feedback trials. Previous studies have found that immediate vs. delayed feedback affects the accu-
racy of responding and the distribution of best fitting models in information-integration category-
learning tasks (Maddox et al., 2003; Maddox & David, 2005). Moreover, it has been shown that
disrupting feedback processing time (short vs. long) interferes with rule-based category learning
(Maddox et al., 2004). Although evidence comparing our design with a design characterized by
uninterrupted feedback is needed, it is worth mentioning that the inclusion of no-feedback trials
in the learning phase of our task might have influenced the strategy used by participants.
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