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Abstract—Accurately modelling the susceptibility, infection,
and recovery of populations with regards to the COVID-19
pandemic is highly relevant for the implementation of counter-
measures by governing bodies. In the past year, several thousands
of articles on COVID-19 modelling were published. The spread of
the pandemic has frequently been modelled using the Susceptible-
Infected-Recovered (SIR) epidemic model owing to the low level
of complexity. In recognition of its simplicity, we developed
an SIR model to represent the spread of disease on a global
scale, irrespective of mutation and countermeasures. The SIR
parameters were reverse-engineered from aggregated global data.
This model is the first to retrospectively deduce the initial
incidence. The average transmission and recovery parameters
were computed to be 0.33 week−1 and 0.23 week−1, respectively.
These values lie well within the range of reported values on
COVID-19 determined from geographically different regions. The
model was simulated in the Ventana® simulation environment
Vensim® for a 65-weeks duration and an adjusted initial infection
incidence, which was presumed three times the reported initial
infection incidence. The simulated data visually aligns with the
real incidence data. We attribute the discrepancy between the
presumed initial value and the reported value to lack of testing
facilities on the starting date of 1 March 2020. Our parameter
extraction suggests a novel methodology to quantify undertesting
retrospectively in epidemics.

Index Terms—system dynamics; coronavirus model; SIR
model; parameter extraction.

I. INTRODUCTION

The coronavirus disease (COVID-19) pandemic threw the
world into a state of turmoil from late 2019, with 160 074 267
confirmed cases reported on 13 May 2021 [1]. Due to the
highly contagious nature and rapid spread of COVID-19 [2],
a need for tools to forecast the spread of the virus has emerged.
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Being able to evaluate the number of infections could aid
governments to determine necessary precautions to slow down
the spread of the disease and assess the required capacity of
healthcare facilities to treat the disease.

Epidemic characteristics have been described by logistic
growth models [3], [4], natural growth models [5], auto
regressive integrated moving average models [6], Susceptible-
Infected-Recovered (SIR) compartment models [4], [6], [7],
and derivations thereof [8]–[11]. The simplest modelling
method is the SIR model as it described by two parameters.
Such a simplistic model is not to be used to give explanations
about the virus itself. Key modelling characteristics include
the rate of transmission, the rate of recovery and the basic
reproduction number. For COVID-19, the basic reproduction
number lies on the range 1.00–3.15 [12], [13].

Whilst any number of parameters can be added, the chal-
lenge in designing a mathematical model is estimating the ac-
tual parameter values to achieve accurate results. This requires
the fitting of the model to actual data to extract parameter
values. As model parameters are fitted for a geographic region
of interest and compared to a geographic data subset there is
great variation of parameters in a model. These region-specific
parameters may not describe the spread of a disease on a global
scale.

In this study an SIR model was implemented to represent
the spread of COVID-19 on a global scale, with a simple set of
parameters considered. The set of transmission and recovery
parameters was reverse-engineered from aggregated global
data. Special attention was paid to the deduction of the initial
incidence. This is highly relevant, as undertesting in epidemics
leads to false parameter estimations and consequently to false
predictions. Any effects of mutations and countermeasures
were not included in the model.



II. THEORY

The SIR epidemic model is based on earlier epidemics
research that propose the division of the population into
compartments [14]–[19]. This model simplifies the dynamics
of the disease to three compartments — those at risk for
infection; those infectious and infected with the disease; and
those no longer infected due to recovery. These compartments
are named Susceptible; Infected; and Recovered, respectively.

Each compartment, called a stock, represents an accumula-
tion of people at time t. There are two flow rates associated
with the stocks in the basic SIR model, namely the infection
rate and the recovery rate. The infection rate is the rate of
susceptible people becoming infected, and the recovery rate is
the rate of infected people recovering from the disease.

The model is governed by a set of three ordinary differential
equations which describe how the three stocks change over
time [20]. The rate of change of the susceptible stock is

dS

dt
= −β I

N
S, (1)

where I is the infected population size, N is the total popu-
lation size, S is the susceptible population size and β is the
transmission parameter of disease.

Moreover, the rate of change of the infected stock is

dI

dt
= β

I

N
S − γI, (2)

where γ is the recovery parameter.

The rate of change of the recovered stock is

dR

dt
= γI, (3)

Fig. 1. A graphical representation of the basic SIR model (A) and as-
sociated graphs of the solutions of the ordinary differential equations (B),
demonstrating the behaviour of a viral epidemic with starting conditions
S(0) = 999 people, I(0) = 1 person, R(0) = 0 people, and model
parameters β = 0.5 week−1, γ = 0.3 week−1.

where R is the recovered population.

Figure 1 shows the graphical representation of the basic
SIR model described by equations (1)–(3). The graph shows
the number of people in each compartment on a given day.

This basic model can be extended by including other
compartments such as death, quarantine, and hospitalisation.
Adding parameters to a model inherently increases the com-
plexity of the solution. The influence of lockdowns, closing of
borders, and rolling out a vaccination programme on the sus-
ceptibility might be included in a model [21], whilst a mutation
of the virus might change the transmission parameter [22].

For convenience, the potential severity of an infectious dis-
ease is expressed by the basic reproduction number, R0 [23].
If the susceptible population is equal to the total population,
the basic reproduction number is approximated by

R0 ≈
β

γ
. (4)

If R0 > 1, the epidemic is sustained.

III. METHODS

The basic SIR model used in this study is shown in
Figure 1A. The model was implemented in the Ventana® simu-
lation environment Vensim® (Ventana Systems, Inc., Harvard,
MA, USA). Solutions were computed for a 65-week duration.
The starting conditions of the simulations were those of the
well-documented situation on 1 March 2020 [24].

The transmission and recovery parameters were reverse-
engineered from aggregated global data of infection and re-
covery numbers [24], assuming a constant world population
size N = 7.8×109 people, and taking S = N − I−R. These
were substituted into equations (1)–(3). The input set of SIR
parameters, normalised by N , is shown in Figure 2.

The reverse-engineered vectors β(t) and γ(t) were sub-
jected to five-degree polynomial fitting using the fit.m routine
of MATLAB® (The MathWorks, Inc., Natick, MA, USA),
yielding β(t) =

∑5
i=0 βit

i and γ(t) =
∑5

i=0 γit
i. Both poly-

nomial representations were subsequently used in an adaptive
global system dynamics model for long-term prediction of the
COVID-19 pandemic spread.

Fig. 2. Input SIR values used to compute β and γ.



TABLE I
POLYNOMIAL COEFFICIENTS FOR β AND γ CURVE FITTING.

Polynomial
degree i βi γi

0 0.7993 0.2507
1 −0.0899 −0.03592
2 0.005827 0.00471
3 −0.0001697 −0.0002116
4 2.306× 10−6 3.983× 10−6

5 −1.246× 10−8 −2.705× 10−8

For comparison, parameters were extracted from literature.
To find relevant articles for the first dataset, we used the
PubMed® database (National Library of Medicine, Bethesda,
MD, USA) using the query (COVID-19) ∩ (SIR model). Only
articles published between 1 January 2020 and 28 February
2021 were included. Of the initial selection of 60 SIR-like
models, only 21 stated values for the transmission and recov-
ery parameters. A full analysis of the query outcome has been
presented by Heikkilä [25]. The values for the transmission
parameter in these 21 articles were averaged, and so were the
values for the recovery parameter.

IV. RESULTS AND DISCUSSION

Figure 3 demonstrates graphical representations of the trans-
mission parameter β(t), the recovery parameter γ(t), and the
basic reproduction number R0(t). While their average values
are β̄ = 0.33 week−1 and γ̄ = 0.23 week−1, it is evident
that there is a high degree of variability over the course of
the epidemic. This suggests the value of incorporating time-
varying transmission and recovery parameters into the SIR
model.

The values extracted from articles containing regional data
extend over the ranges 0.13 ≤ β ≤ 0.70 week−1 and 0.04 ≤
γ ≤ 0.29 week−1. Thus, the average global values lie within
these ranges.

The polynomial coefficients of the transmission and recov-
ery parameters are shown in Table I. Clearly, the coefficients
become negligible beyond third degree.

Fig. 3. Transmission parameter β (—), recovery parameter γ (- -), and basic
reproduction number R0 (—), all as a function of time.

The forward modelling using the transmission and recovery
coefficients from Table I is shown in Figure 4, for an interval
of 65 weeks, and an adjusted initial infection incidence I(0),
which was presumed three times the reported initial infection
incidence. The simulated data visually aligns with the real
incidence data. We noted that the simulated output became
computationally unstable beyond 15 weeks after the reported
data. Although a lower initial incidence yields a graph of
similar shape (not shown), the peak value is only a third. We
attribute this discrepancy with the reported value to lack of
testing facilities on the starting date of 1 March 2020. Our
parameter extraction suggests a novel methodology to quantify
undertesting retrospectively in epidemics.

V. CONCLUSION

The average transmission and recovery parameters were
computed to be 0.33 week−1 and 0.23 week−1, respectively.
These values lie well within the range of reported values on
COVID-19 determined from geographically different regions.

We demonstrate that the extraction of transmission and
recovery parameters from real SIR data is feasible for an
adaptive global system dynamics model of the COVID-19 pan-
demic. This study suggests a novel methodology for forward
prediction and for the quantification of undertesting early in
the epidemic.

This model presented in this paper is the first to retrospec-
tively deduce the initial incidence.
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