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Abstract—FO transductions, aperiodic deterministic two-way
transducers, as well as aperiodic streaming string transducers
are all equivalent models for first order definable functions.
In this paper, we solve the problem of expressions capturing
first order definable functions, thereby generalizing the seminal
SF=AP (star-free expressions = aperiodic languages) result of
Schützenberger. Our result also generalizes a lesser known
characterization by Schützenberger of aperiodic languages by
SD-regular expressions (SD=AP). We show that every first order
definable function over finite words captured by an aperiodic
deterministic two-way transducer can be described with an SD-
regular transducer expression (SDRTE). An SDRTE is a regular
expression where Kleene stars are used in a restricted way:
they can appear only on aperiodic languages which are prefix
codes of bounded synchronization delay. SDRTEs are constructed
from simple functions using the combinators unambiguous sum
(deterministic choice), Hadamard product, and unambiguous
versions of the Cauchy product and the k-chained Kleene-star,
where the star is restricted as mentioned. In order to construct
an SDRTE associated with an aperiodic deterministic two-way
transducer, (i) we concretize Schützenberger’s SD=AP result, by
proving that aperiodic languages are captured by SD-regular
expressions which are unambiguous and stabilising; (ii) by
structural induction on the unambiguous, stabilising SD-regular
expressions describing the domain of the transducer, we construct
SDRTEs. Finally, we also look at various formalisms equivalent
to SDRTEs which use the function composition, allowing to trade
the k-chained star for a 1-star.

I. INTRODUCTION

The seminal result of Kleene, which proves the equivalence
of regular expressions and regular languages, is among the
cornerstones of formal language theory. The Büchi, Elgot,
Trakhtenbrot theorem which proved the equivalence of regular
languages with MSO definable languages, and the equivalence
of regular languages with the class of languages having a finite
syntactic monoid, established the synergy between machines,
logic and algebra. The fundamental correspondence between
machines and logic at the language level has been generalized
to transformations by Engelfreit and Hoogeboom [1], where
regular transformations are defined by two-way transducers
(2DFTs) as well as by the MSO transductions of Courcelle [2].
A generalization of Kleene’s theorem to transformations can
be found in [3], [4] and [5].
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In [3], regular transformations were described using additive
cost register automata (ACRA) over finite words. ACRAs are
a generalization of streaming string transducers (SSTs) [6]
which make a single left to right pass over the input and use
a finite set of variables over strings from the output alphabet.
ACRAs compute partial functions from finite words over a
finite input alphabet to a monoid (D,+, 0). The main contri-
bution of [3] was to provide a set of combinators, analogous
to the operators used in regular expressions, which help in
forming combinator expressions computing the output of the
ACRA over finite words. The result of [3] was generalized to
infinite words in [5]. The proof technique in [5] is completely
different from [3], and, being algebraic, allows a uniform
treatment of the result for transductions over finite and infinite
words. Subsequently, an alternative proof for the result of [3]
appeared in [4].

The class of star-free languages form a strict subset of
regular languages. In 1965, Schützenberger [7] proved his
famous result that star-free languages (SF) and languages
having an aperiodic syntactic monoid (or aperiodic languages
AP) coincide over finite words (SF=AP). This equivalence
gives an effective characterization of star-free languages, since
one can decide if a syntactic monoid is aperiodic. This was
followed by a result [8] of McNaughton and Papert proving the
equivalence of star-free languages with counter-free automata
as well as first order logic, thereby completing the machine-
logic-algebra connection once again. The generalization of
this result to transformations has been investigated in [9],
[10], proving the equivalence of aperiodic two-way transducers
and FO transductions a la Courcelle for finite and infinite
words. The counter part of regular expressions for aperiodic
languages are star-free expressions, which are obtained by
using the complementation operation instead of Kleene-star.
The generalization of this result to transformations has been
an open problem, as mentioned in [3], [4] and [5]. One of the
main challenges in generalizing this result to transformations
is the difficulty in finding an analogue for the complementation
operation on sets in the setting of transformations.

Our Contributions. The following central problem is our
focus: Given an aperiodic 2DFT A, does there exist a class of
expressions over basic functions and regular combinators such
that, one can effectively compute from A, an expression E in978-1-6654-4895-6/21/$31.00 ©2021 IEEE



this class, and conversely, such that [[A]](w) = [[E]](w) for
each w ∈ dom(A)? We solve this open problem, by providing
a characterization by means of expressions for aperiodic two-
way transducers. In the following, we describe the main steps
leading to the solution of the problem.

Concretizing Schützenberger’s characterization. In 1973,
Schützenberger [11] presented a characterization of aperiodic
languages in terms of SD-expressions which are rational ex-
pressions where the star operation is restricted to prefix codes
with bounded synchronization delay and no complementation
is used. This class of languages is denoted by SD, and this re-
sult is known as SD=AP. To circumvent the difficulty of using
complementation in star-free expressions, we use this SD=AP
characterization of aperiodic languages by SD-expressions.
Our first contribution is to concretize Schützenberger’s result
to more specific SD-expressions. We show that aperiodic
languages can be captured by unambiguous, stabilising, SD-
expressions. The unambiguity of an expression refers to the
unique way in which it can be parsed, while stabilising
expressions is a new notion introduced in this paper. Our
concretization, (Theorem III.2) shows that, given a morphism
ϕ from the free monoid Σ∗ to a finite aperiodic monoid M ,
for each s ∈M , ϕ−1(s) can be expressed by an unambiguous,
stabilising SD-expression. The two notions of unambiguity
and stabilising help us to capture the runs of an aperiodic
deterministic two-way transducer. These two notions will be
described in detail in Section III.

The Combinators. Our second contribution is the definition
of SD-regular transducer expressions (SDRTE). These are
built from basic constant functions using combinators such as
unambiguous sum, unambiguous Cauchy product, Hadamard
product. In addition, we use k-chained Kleene star [L,C]k?

(and its reverse) when the parsing language L is restricted to
be aperiodic and a prefix code with bounded synchronisation
delay, and C is an SDRTE. It should be noticed that, contrary
to the case of regular transducer expressions (RTE) which
define all regular functions, the 2-chained Kleene star [L,C]2?

does not seem sufficient to define all aperiodic functions (see
Section IV as well as Figure 2), and k-chained Kleene stars
for arbitrary large k seem necessary to capture all aperiodic
functions.

The semantics of an SDRTE C is a partial function
[[C]] : Σ∗ → Γ∗ with domain denoted dom(C). An SDRTE
of the form L.v where L ⊆ Σ∗ is an aperiodic language and
v ∈ Γ∗ is such that [[L.v]] is a constant function with value v
and domain L. The Hadamard product C1�C2 when applied
to w ∈ dom(C1) ∩ dom(C2) produces [[C1]](w) · [[C2]](w).
The unambiguous Cauchy product C1 · C2 when applied on
w ∈ Σ∗ produces [[C1]](u)·[[C2]](v) if w can be unambiguously
decomposed as u · v, with u ∈ dom(C1) and v ∈ dom(C2).
The Kleene star C∗ is defined when L = dom(C) is an
aperiodic language which is a prefix code with bounded
synchronisation delay. Then dom(C∗) = L∗, and, for the
unique decomposition w = u1u2 · · ·un with ui ∈ L, we have
[[C∗]](w) = [[C]](u1)[[C]](u2) · · · [[C]](un).

q0 q1 q2 q3

q4q5q6

$/ε,+1

a/ε,+1`/ε,+1

#/ε,+1

a/b,+1

$/ε,−1

a/ε,−1

#/ε,−1
a/ε,−1

$/ε,+1

a/a,+1

#/ε,+1
a/ε,+1

$/ε,+1

Fig. 1. An aperiodic 2DFT A with input alphabet
Σ = {a,#, $} and output alphabet Γ = {a, b} computing
the partial function [[A]]($am1#am2$am3#am4$ · · · am2k$) =
bm2am1bm4am3 · · · bm2kam2k−1 , for k ≥ 0.

As an example, consider the SDRTEs C = C1 · C2,
C ′ = C ′1 · C ′2 and D = C � C ′ with C1 = (a∗#) . ε, C2 =
(a.b)∗ ·($.ε), and C ′1 = (a.a)∗ ·(#.ε), C ′2 = (a∗$).ε. Then
dom(C1) = a∗# = dom(C ′1), dom(C2) = a∗$ = dom(C ′2),
and dom(C) = a∗#a∗$ = dom(C ′) = dom(D). Further,
[[C1]](am#) = ε, [[C2]](an$) = bn, [[C ′1]](am#) = am, and
[[C ′2]](am$) = ε. Also, [[D]](am#an$) = bnam. Notice that
dom(D)∗ is an aperiodic language (in fact dom(D) is a
prefix code with bounded synchronization delay 1, see Defini-
tion 2). Hence, we can define the SDRTE D∗ which has do-
main dom(D∗) = (a∗#a∗$)∗, and [[D∗]](a2#a3$a4#a5$) =
b3a2b5a4. The SDRTE D′ = ($ . ε) ·D∗ corresponds to the
aperiodic 2DFT A in Figure 1: [[A]] = [[D′]].

SDRTE ↔ Aperiodic 2DFT. Our third and main contribu-
tion is the effective equivalence between aperiodic two-way
transducers and SDRTEs over finite words:

Theorem I.1. (1) Given an SDRTE, we can effectively con-
struct an equivalent aperiodic 2DFT. (2) Given an aperiodic
2DFT, we can effectively construct an equivalent SDRTE.

The proof of (1) is by structural induction on the SDRTE.
All cases except the k-chained Kleene star are reasonably
simple, and it is easy to see how to construct the equivalent
2DFT. The case of the k-chained Kleene star is more involved.
We write [L,C]k? as the composition of 3 aperiodic functions
f1, f2, f3, where, (i) f1 takes as input u1u2 · · ·un ∈ L∗

with ui ∈ L and produces as output #u1#u2# · · ·#un#,
(ii) f2 takes #v1#v2# · · ·#vm# with vi ∈ Σ∗ as input,
and produces #v1 · · · vk#v2 · · · vk+1# · · ·#vm−k+1 · · · vm#
as output, (iii) finally, f3 takes #w1#w2# · · ·#w`#
as input with wi ∈ Σ∗ and produces as output
[[C]](w1)[[C]](w2) · · · [[C]](w`). We produce aperiodic 2DFTs
for f1, f2, f3, and compose them, obtaining the required ape-
riodic 2DFT.

The construction of SDRTE from an aperiodic 2DFT A
over Σ is much more involved, and is based on the transition
monoid TrM of the 2DFT A. The translation of A to SDRTE
is guided by unambiguous, stabilising, SD-regular expressions
for each element of TrM. These expressions are obtained
thanks to Theorem III.2 applied to the canonical morphism
ϕ : Σ∗ → TrM where the transition monoid TrM of A is



aperiodic.

Related Work. We provide an aperiodic version of [3]. The
combinators we use are essentially the same, with k-chained
Kleene star generalising the chained sums of [3]. A natural
operation on functions is that of composition. The composition
operation can be used in place of the chained-sum operator of
[3], and also in place of the unambiguous 2-chained iteration
of [5], preserving expressiveness. In yet another recent paper,
[12] proposes simple functions like copy, duplicate and reverse
along with function composition to capture regular word
transductions.

A closely related paper to our work is [13], where first-order
and regular list functions were introduced. Using the basic
functions reverse, append, co-append, map, block on lists,
and combining them with the function combinators of disjoint
union, map, pairing and composition, these were shown to be
equivalent (after a suitable encoding) to FO transductions a la
Courcelle (extendible to MSO transductions by adding to the
basic functions, the prefix multiplication operation on groups).

Contrary to [13] where expressions crucially rely on func-
tion composition, we focus on concatenation and iteration as
first class combinators, in the spirit of Kleene’s theorem and
of Schützenberger’s characterisation AP=SD. We are able to
characterise 2DFTs with such SD-regular expressions without
using composition. Hence, our result is fully independent
and complementary to the work in [13]: both formalisms,
SDRTEs and list functions are natural choices for describing
first order transductions. Our basic functions and combinators
are inspired from the back and forth traversal of a two-way
automaton, and the restrictions on the usage of the Kleene
star comes from the unambiguous, stabilising nature of the
expressions capturing the aperiodic domain of the 2DFT. We
also study in Section VI how composition may be used to
simplify our SDRTEs (Theorem VI.1). With composition, k-
chained Kleene star (k > 1) is no more necessary, resulting
in an equivalent formalism, namely, SDRTE where we only
use 1-star. Yet another equivalent formalism is obtained by
restricting SDRTE to simple functions, unambiguous sum,
Cauchy product and 1-star, but adding the functions duplicate
and reverse along with composition.

Structure of the paper. In Section II, we introduce prelim-
inary notions used throughout the paper. In Section III we
give a procedure to construct complement-free expressions for
aperiodic languages that suits our approach. This is a generic
result on languages, independent of two-way transducers. Sec-
tion IV presents the combinators and the chain-star operators
for our characterization. The main theorem and technical
proofs, which is constructing SD-regular transducer expres-
sions from a two-way aperiodic transducer, are in Section V.
Finally, the reader can find a running example illustrating the
main steps of our approach in [14].

II. PRELIMINARIES

A. Rational languages and monoids

We call a finite set Σ an alphabet and its elements letters.
A finite sequence of letters of Σ is called a word, and a set of
words is a language. The empty word is denoted ε, and we
denote by Σ∗ the set of all words over the alphabet Σ. More
generally, given any language L ⊆ Σ∗, we write L∗ for the
Kleene star of L, i.e., the set of words which can be written
as a (possibly empty) sequence of words of L. Given a word
u, we write |u| for the length of u, i.e., its number of letters,
and we denote by ui its ith letter.

A monoid M is a set equipped with a binary associative
law, usually denoted · or omitted when clear from context,
and a neutral element 1M for this law, meaning that for any
s ∈M , 1M ·s = s ·1M = s. The set of words Σ∗ can be seen
as the free monoid generated by Σ using the concatenation
of words as binary law. Given a morphism ϕ : Σ∗ → M ,
i.e., a function between monoids that satisfies ϕ(ε) = 1M
and ϕ(xy) = ϕ(x)ϕ(y) for any x, y ∈ Σ∗, we say that ϕ
recognizes a language L ⊆ Σ∗ if M is finite and L = ϕ−1(P )
for some P ⊆M . A monoid is called aperiodic if there exists
an integer n such that for any element s of M , sn = sn+1.

Example II.1. We define the monoids Ũn, for n ≥ 0, as the set
of elements {1, s1, . . . , sn}, with 1 being the neutral element,
and for any 1 ≤ i, j ≤ n, si ·sj = si. Clearly, Ũn is aperiodic,
actually idempotent, as si · si = si for any 1 ≤ i ≤ n.
For instance, the monoid Ũ2 is the transition monoid (defined
below) of the automaton below with ϕ(a) = s1, ϕ(b) = s2

and ϕ(c) = 1.

1 2a, c b, c
a

b

Rational languages are languages that can be described by
rational expressions, i.e., sets of words constructed from finite
sets using the operations of concatenation, union and Kleene
star. It is well-known that rational languages are equivalent to
regular languages, i.e., languages accepted by finite automata,
and to languages recognized by finite monoids (and Monadic
Second-order logic [15]). Star-free rational expressions are
built from finite sets using the operations of concatenation,
union and complement (instead of Kleene star). They have
the same expressive power as finite aperiodic monoids [7] (as
well as counter-free automata and first-order logic [8]).

B. Two-way transducers

Definition 1 (Two-way transducer). A (deterministic) two-way
transducer (2DFT) is a tuple A = (Q,Σ,Γ, δ, γ, q0, F ) where
Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is
the set of final states, Σ and Γ are the finite input and output
alphabets, and
• δ : Q × (Σ ] {`,a}) → Q × {−1,+1} is the partial

transition function. Contrary to one-way machines, the
transition function also outputs an integer, indicating the
move of the reading head. The alphabet is enriched with



two new symbols ` and a, which are endmarkers that
are added respectively at the beginning and at the end
of the input word, such that for all q ∈ Q, we have
δ(q,`) ∈ Q× {+1} (if defined), δ(q,a) ∈ Q× {−1} (if
defined) and δ(q,a) is undefined for q ∈ F .

• γ : Q × (Σ ] {`,a}) → Γ∗ is the partial production
function with same domain as δ.

A configuration c of A over an input word w = w1 · · ·w|w|
is simply a pair (p, i) where p ∈ Q is the current state and
0 ≤ i ≤ |w|+ 1 is the position of the head on a letter of the
input tape containing `wa. Two configurations c = (p, i) and
c′ = (q, j) are successive if we have δ(p, wi) = (q, d) and
i + d = j, with w0 = ` and w|w|+1 = a. In this case, they
produce an output v = γ(p, wi). Abusing notations we will
sometime write γ(c) when the input word w is clear. A run ρ
is a sequence of successive configurations c0 · · · cn. The run
ρ is initial if c0 = (q0, 0) and is final if cn = (q, |w|+ 1) for
some q ∈ F . It is accepting if it is both initial and final.

The output of a run ρ = c0 · · · cn is the concatenation of
the output of the configurations, and will be denoted [[ρ]] =
γ(c0) · · · γ(cn−1). Given a deterministic two-way transducer
A and an input word w, there is at most one accepting run of
A over `wa, which we will denote ρ(w). The output of A
over w is then [[A]](w) = [[ρ(w)]]. The domain of A is the set
dom(A) of words w such that there exists an accepting run of
A over w. Finally, the semantics of A is the partial function
[[A]] : Σ∗ → Γ∗ defined on dom(A) by w 7→ [[A]](w).

Let ρ = (p0, i0) · · · (pn, in) be a run over a nonempty word
w ∈ (Σ ∪ {`,a})+ such that 1 ≤ ij ≤ |w| for all 0 ≤ j < n.
It is a left-right run if i0 = 1 and in = |w| + 1. If this is
the case, we say that ρ is a (→, p0, pn)-run. Similarly, it is a
left-left (

y

, p0, pn)-run if i0 = 1 and in = 0. It is a right-left
(←, p0, pn)-run if i0 = |w| and in = 0 and it is a right-right
( x, p0, pn)-run if i0 = |w| and in = |w| + 1. Notice that if
|w| = 1, then left-right runs and right-right runs coincide, also
right-left runs and left-left runs coincide.

Remark 1. Given our semantics of two-way transducers, a
run associates states to each position, whereas the classical
semantics of one-way automata keeps the states between two
positions. Then, if we consider a word w = uv and a left-left
run (

y
, p, q) on v, we begin on the first position of v in state

p, and the state q is reached at the end of the run on the last
position of u. This allows for easy sequential composition of
partial runs when concatenating non empty words, as the end
of a partial run is the start of the next one.

However, in order to keep our figures as readable as
possible, we will represent these states between words. A state
q between two words u and v is to be placed on the first
position of v if it is the start of a run going to the right, and
on the last position of u otherwise. For instance, in Figure 3,
state q1 is on the first position of ui+1 and state q3 is on the
last position of ui.

Transition monoid of a two-way automaton. Let A be a
deterministic two-way automaton (2DFA) with set of states

Q. When computing the transition monoid of a two-way
automaton, we are interested in the behaviour of the partial
runs, i.e., how these partial runs can be concatenated. Thus
we abstract a given (d, p, q)-run ρ over a word w to a step
(d, p, q) ∈ {→, y , x,←}×Q2 and we say that w realises the
step (d, p, q). The transition monoid TrM of A is a subset of
the powerset of steps: TrM ⊆ P({→, y , x,←} × Q2). The
canonical surjective morphism ϕ : (Σ ] {`,a})∗ → TrM =
ϕ((Σ ] {`,a})∗) is defined for a word w ∈ (Σ ] {`,a})∗
as the set of steps realised by w, i.e., ϕ(w) = {(d, p, q) |
there is a (d, p, q)-run on w} ⊆ {→, y , x,←} × Q2. As an
example, in Figure 1, we have

ϕ(a#) = {(→, q1, q2),( x, q1, q2), (

y

, q3, q3), (←, q3, q4),

(

y

, q4, q4), (→, q5, q6), ( x, q5, q6)} .

The unit of TrM is 1 = {(→, p, p), (←, p, p) | p ∈ Q} and
ϕ(ε) = 1.

A 2DFA is aperiodic if its transition monoid TrM is
aperiodic. Also, a 2DFT is aperiodic if its underlying input
2DFA is aperiodic.

When talking about a given step (d, p, q) belonging to an
element of TrM, we will sometimes forget p and q and talk
about a d-step, for d ∈ {y , x,→,←} if the states p, q are clear
from the context, or are immaterial for the discussion. In this
case we also refer to a step (d, p, q) as a d-step having p as
the starting state and q as the final state.

III. COMPLEMENT-FREE EXPRESSIONS FOR APERIODIC
LANGUAGES

As the aim of the paper is to obtain rational expressions
corresponding to transformations computed by aperiodic two-
way transducers, we cannot rely on extending the classical
(SF=AP) star-free characterization of aperiodic languages,
since the complement of a function is not a function. We
solve this problem by considering the SD=AP characterization
of aperiodic languages, namely prefix codes with bounded
synchronisation delay, introduced by Schützenberger [11].

A language L is called a code if for any word u ∈ L∗, there
is a unique decomposition u = v1 · · · vn such that vi ∈ L for
1 ≤ i ≤ n. For example, the language W = {a, ab, ba, bba} is
not a code: the words abba, aba ∈ W ∗ have decompositions
a ·bba = ab ·ba and a ·ba = ab ·a respectively. A prefix code is
a language L such that for any pair of words u, v, if u, uv ∈ L,
then v = ε. W is not a prefix code, while W1 = W \{ab} and
W2 = W \{a} are prefix codes. Prefix codes play a particular
role since the unique decomposition can be obtained on the
fly while reading the word from left to right.

Definition 2. Let d be a positive integer. A prefix code C over
an alphabet Σ has a synchronisation delay d (denoted d-SD) if
for all u, v, w ∈ Σ∗, uvw ∈ C∗ and v ∈ Cd implies uv ∈ C∗
(hence also w ∈ C∗). An SD prefix code is a prefix code with
a bounded synchronisation delay.

As an example, consider the prefix code C = {aa, ba} and
the word ba(aa)d ∈ C∗. We have ba(aa)d = uvw with u = b,
v = (aa)d ∈ Cd and w = a. Since uv /∈ C∗, the prefix code C



is not of bounded synchronisation delay. Likewise, C = {aa}
is also not of bounded synchronisation delay. On the other
hand, the prefix code C = {ba} is 1-SD.

The syntax of regular expressions over the alphabet Σ is
given by the grammar

E ::= ∅ | ε | a | E ∪ E | E · E | E∗

where a ∈ Σ. We say that an expression is ε-free (resp. ∅-
free) if it does not use ε (resp. ∅) as subexpressions. The
semantics of a regular expression E is a regular language over
Σ∗ denoted L(E).

An SD-regular expression is a regular expression where
Kleene-stars are restricted to SD prefix codes: If E∗ is a
sub-expression then L(E) is a prefix code with bounded
synchronization delay. Thus, the regular expression (ba)∗ is
a SD-regular expression while (aa)∗ is not.

The relevance of SD-regular expressions comes from the
fact that they are a complement-free characterization of ape-
riodic languages.

Theorem III.1. [11] A language L is recognized by an
aperiodic monoid if, and only if, there exists an SD-regular
expression E such that L = L(E).

Theorem III.2 concretizes this result, and extends it to
get more specific expressions which are (i) unambiguous,
a property required for the regular combinators expressing
functions over words, and (ii) stabilising, which is a new
notion introduced below that suits our need for characterizing
runs of aperiodic two-way transducers.

A regular expression E is unambiguous, if it satisfies:

1) L(E1) ∩ L(E2) = ∅ for each subexpression E1 ∪ E2,
2) for each subexpression E1 ·E2, each word w ∈ L(E1 ·E2)

has a unique factorisation w = uv with u ∈ L(E1) and
v ∈ L(E2),

3) for each subexpression E∗1 , the language L(E1) is a code,
i.e., each word w ∈ L(E∗1 ) has a unique factorisation
w = v1 · · · vn with vi ∈ L(E1) for 1 ≤ i ≤ n.

Definition 3. Given an aperiodic monoid M and X ⊆ M ,
we say that X is n-stabilising if xy = x for all x ∈ Xn and
y ∈ X . We say that X is stabilising if it is n-stabilising for
some n ≥ 1.

Remark. Stabilisation generalizes aperiodicity in some sense.
For aperiodicity, we require xn = xn+1 for each element x ∈
M and some n ∈ N, i.e., all singleton subsets of M should
be stabilising.

Continuing Example II.1, any subset X ⊆ {s1, . . . , sn} ⊆
Ũn is 1-stabilising.

Example III.1. As another example, consider the aperiodic
2DFT A in Figure 1, and consider its transition monoid TrM.
Clearly, TrM is an aperiodic monoid. Let ϕ be the morphism
from (Σ]{`,a})∗ to TrM. Consider the subset Z = {Y, Y 2}

s q0 q1 q2 q3

q4q5q6

`/ε,+1

b/ε,+1

a/ε,+1

b/ε,+1

a/ε,+1

b/ε,+1

a/a,+1

b/b,−1

a/ε,−1

b/ε,−1

a/ε,−1
b/ε,−1

a/ε,−1

b/ε,+1

a/a,+1

b/b,+1

Fig. 2. For ui ∈ a∗b, an aperiodic 2DFT A computing the partial function
[[A]](bu1u2 · · ·unak) = u3u1u4u2 · · ·unun−2ak if n ≥ 3, and ak if
n = 2. The domain is b(a∗b)≥2a∗.

of TrM where Y = ϕ(a#a$):

Y = {(y , q1, q4), (

y
, q3, q3), (

y

, q4, q4), (→, q5, q1),

( x, q0, q1), (←, q2, q4), ( x, q4, q5), ( x, q6, q1)}
Y 2 = {(y , q1, q4), (

y

, q3, q3), (

y

, q4, q4), (→, q5, q1),

( x, q0, q1), ( x, q2, q1), ( x, q4, q5), ( x, q6, q1)} .

It can be seen that Y 3 = Y 2, hence Z is 2-stabilising.

Let ϕ : Σ∗ → M be a morphism. We say that a regular
expression E is ϕ-stabilising (or simply stabilising when ϕ is
clear from the context) if for each subexpression F ∗ of E, the
set ϕ(L(F )) is stabilising.

Continuing Example III.1, we can easily see that ϕ(a) is
idempotent and we get ϕ(a+#a+$) = {Y }. Since Y 3 =
Y 2, we deduce that (aa∗#aa∗$)∗ is a stabilising expression.
Notice also that, by definition, expressions without a Kleene-
star are stabilising vacuously.

A more detailed example for the transducer of Figure 2 is
given in [14].

Given a morphism ϕ from Σ∗ to some aperiodic monoid
M , our goal is to build, for each language ϕ−1(s) with s ∈
M , an SD-regular expression which is both unambiguous and
stabilising. The proof is by induction on the monoid M via the
local divisor technique, similar to Diekert and Kufleitner [16],
[17], [18], and to Perrin and Pin [19, Chapter VIII, Section
6.1], with the objective to get stronger forms of SD-regular
expressions.

Theorem III.2. Given a morphism ϕ from the free monoid
Σ∗ to a finite aperiodic monoid M , for each s ∈ M there
exists an unambiguous, stabilising, SD-regular expression Es

such that L(Es) = ϕ−1(s).

The proof of this theorem is given in [14], it makes crucial
use of marked substitutions (see [19]) that we define and study.

IV. COMBINATOR EXPRESSIONS

In this section, we present our combinators to compute first
order definable functions from finite words to finite words.
The simpler combinators of unambiguous concatenation and
sum are similar to those in [3], [5], but we use SD k-chained
Kleene-star in lieu of chained-sums.

Simple Functions. For each v ∈ Γ∗ we have a constant
function fv defined by fv(u) = v for all u ∈ Σ∗. Abusing



notations, we simply denote the constant function fv by v.
We denote by ⊥ : Σ∗ → Γ∗ the function with empty domain.
These atomic functions are the most simple ones.

Unambiguous sums We will use two equivalent ways of
defining a function by cases. First, the if-then-else construct
is given by h = L ? f : g where f, g : Σ∗ → Γ∗ are
functions and L ⊆ Σ∗ is a language. We have dom(h) =
(dom(f)∩L)∪ (dom(g)\L). Then, for w ∈ dom(h) we have

h(w) =

{
f(w) if w ∈ L
g(w) otherwise.

We will often use this case definition with L = dom(f).
To simplify notations we define f + g = dom(f) ? f : g.
Note that dom(f + g) = dom(f)∪ dom(g) but the sum is not
commutative and g + f = dom(g) ? g : f . For w ∈ dom(f) ∩
dom(g) we have (f + g)(w) = f(w) and (g+ f)(w) = g(w).
When the domains of f and g are disjoint then f + g and
g+f are equivalent functions with domain dom(f)]dom(g).
In all cases the sum is associative and the sum notation is
particularly useful when applied to a sequence f1, . . . , fn of
functions:∑

1≤i≤n

fi = f1 + · · ·+ fn

= dom(f1) ? f1 : · · · dom(fn−1) ? fn−1 : fn

If the domains of the functions are pairwise disjoint then this
sum is associative and commutative.

Further, we let L . f = L ? f : ⊥ denote the function f
restricted to L ∩ dom(f). For a singleton L = {w}, we write
w . f .

The Hadamard product The Hadamard product of two
functions f, g : Σ∗ → Γ∗ first applies f and then applies g its
input. It is denoted by f � g. Its domain is dom(f)∩ dom(g)
and (f � g)(u) = f(u)g(u) for each input word u in its
domain.

The unambiguous Cauchy product Consider two functions
f, g : Σ∗ → Γ∗. The unambiguous Cauchy product of f and g
is the function f ·g whose domain is the set of words w ∈ Σ∗

which admit a unique factorization w = uv with u ∈ dom(f)
and v ∈ dom(g), and in this case, the computed output is
f(u)g(v).

Contrary to the Hadamard product which reads its full input
word w twice, first applying f and then applying g, the Cauchy
product splits unamgibuously its input word w as uv, applies
f on u and then g on v.

The k-chained Kleene-star and its reverse Let L ⊆ Σ∗

be a code, let k ≥ 1 be a natural number and let f : Σ∗ →
Γ∗ be a partial function. We define the k-chained Kleene-star
[L, f ]k? : Σ∗ → Γ∗ and its reverse [L, f ]k?r : Σ∗ → Γ∗ as
follows.

The domain of both these functions is contained in L∗, the
set of words having a (unique) factorization over the code
L. Let w ∈ L∗ and consider its unique factorization w =
u1u2 · · ·un with n ≥ 0 and ui ∈ L for all 1 ≤ i ≤ n.

Then, w ∈ dom([L, f ]k?) = dom([L, f ]k?r ) if ui+1 · · ·ui+k ∈
dom(f) for all 0 ≤ i ≤ n− k and in this case we set

[L, f ]k?(w) = f(u1 · · ·uk) · f(u2 · · ·uk+1) · · · f(un−k+1 · · ·un)

[L, f ]k?r (w) = f(un−k+1 · · ·un) · · · f(u2 · · ·uk+1) · f(u1 · · ·uk) .

Notice that when n < k, the right-hand side is an empty
product and we get [L, f ]k?(w) = ε and [L, f ]k?r (w) = ε.
When k = 1 and L = dom(f) is a code then we simply
write f? = [dom(f), f ]1? and f?r = [dom(f), f ]1?r . We have
dom(f?) = dom(f?r ) = L∗.

The k-chained Kleene star was also defined in [3], [5];
however as we will see below, we use it in a restricted way
for aperiodic functions.
SD-regular transducer expressions (SDRTE) SD-regular
transducer expressions (SDRTEs) are obtained from classical
regular transducer expressions (RTEs) [3], [5] by restricting
the k-chained Kleene-star [L, f ]k? and its reverse [L, f ]k?r
to aperiodic languages L that are prefix codes of bounded
synchronisation delay. The if-then-else choice L ? f : g is
also restricted to aperiodic languages L. Hence, the syntax
of SDRTEs is given by the grammar:

C ::= ⊥ | v | L ?C : C | C � C | C · C | [L,C]k? | [L,C]k?r

where v ∈ Γ∗, and L ⊆ Σ∗ ranges over aperiodic languages
(or equivalently SD-regular expressions), which are also prefix
codes with bounded synchronisation delay for [L,C]k? and
[L,C]k?r .

The semantics of SDRTEs is defined inductively. [[⊥]] is the
function which is nowhere defined, [[v]] is the constant function
such as [[v]](u) = v for all u ∈ Σ∗, and the semantics of the
other combinators has been defined in the above sections.

As discussed in Section IV, we will use binary sums C +
C ′ = dom(C) ?C : C ′ and generalised sums

∑
i Ci. Also, we

use the abbreviation L . C = L ?C : ⊥.
We now give a serie of technical properties of SDRTEs that

will be used in the following sections. The proofs are given
in [14].

Lemma 1. If C is an SDRTE, then dom(C) is an aperiodic
language.

Proposition 1. Given an SDRTE C and a letter a ∈ Σ,
1) we can construct an SDRTE a−1C such that

dom(a−1C) = a−1dom(C) and [[a−1C]](w) = [[C]](aw)
for all w ∈ a−1dom(C),

2) we can construct an SDRTE Ca−1 such that
dom(Ca−1) = dom(C)a−1 and [[Ca−1]](w) = [[C]](wa)
for all w ∈ dom(C)a−1.

Lemma 2. Given an SDRTE C over an alphabet Σ and a
sub-alphabet Σ′ ⊆ Σ, we can construct an SDRTE C ′ over
alphabet Σ′ such that dom(C ′) ⊆ Σ′∗ and for any word w in
Σ′∗, [[C]](w) = [[C ′]](w).

Can the 2-chained Kleene star suffice for all aperiodic
functions? It is known [5] that the 2-chained Kleene star can



simulate the k-chained Kleene-star for regular functions. How-
ever, we believe that, contrary to the case of regular functions,
the k-chained Kleene-star operator cannot be simulated by the
2-chained Kleene-star while preserving the aperiodicity of the
expression. The key idea is that, in order to simulate a k-
chained Kleene-star on a SD prefix code L using a 2-chained
Kleene-star, one needs to use Ldk/2e as a parser. However, for
any given prefix code L, the language Ln for n > 1, while
still a prefix code, is not of bounded synchronisation delay (for
the same reason that {aa} is not, i.e., for v = (aa)d that we
consider, ava belongs to (aa)∗ but av does not). Intuitively,
parsing Ln reduces to counting factors of L modulo n, which
is a classical example of non-aperiodicity.

As an example, consider the prefix code L = (a + b)∗c
which has synchronisation delay 1. Define a function f with
domain L3 by f(u1u2u3) = u3u1 when u1, u2, u3 ∈ L,
which can be written using combinators as

(
(L2 . ε) · (L .

id)
)
�
(
(L . id) · (L2 . ε)

)
. The identity function id can

itself be written as (a . a+ b . b+ c . c)? (see also Figure 2,
which is a simplification of the same function, but neverthless
has the same inexpressiveness with 2 chained star). Then we
believe that the function [L, f ]3?, which associates to a word
u1 · · ·un ∈ L∗ the word u3u1u4u2 · · ·unun−2 is not definable
using only 2-chained Kleene-stars. While not a proof, the
intuition behind this is that, in order to construct ui+1ui−1,
we need to highlight words from L3. In order to do this with
a 2-chained Kleene-star, it seems necessary to apply a chained
star with parser L2, which is a prefix code but not of bounded
synchronisation delay. A similar argument would hold for any
[L, f ]k?, k ≥ 3 with a function f(u1u2 · · ·uk) = uku1.

V. THE EQUIVALENCE OF SDRTE AND APERIODIC 2DFT
In this section, we prove the main result of the paper,

namely the equivalence between SDRTE and aperiodic 2DFT
stated in Theorem I.1. The first direction, given an SDRTE
C, constructing an equivalent aperiodic 2DFT A is given by
Theorem V.1, while Theorem V.2 handles the converse.

A. Aperiodic 2DFTs for SD-regular transducer expressions

Theorem V.1. Given an SDRTE C, we can construct an
equivalent aperiodic 2DFT A with [[C]] = [[A]].

Proof. We construct A by induction on the structure of the
SDRTE C. In the suitable cases, we will suppose thanks to
induction that we have aperiodic transducers Ai for expres-
sions Ci, i ≤ 2. We also have a deterministic and complete
aperiodic automaton AL for any aperiodic language L.
• C = ⊥. Then A is a single state transducer with no final

state so that its domain is empty.
• C = v. Then A is a single state transducer which produces

v and accepts any input word. Clearly, A is aperiodic.
• C = L ?C1 : C2. The transducer A first reads its input,

simulating AL. Upon reaching the end of the input word, it
goes back to the beginning of the word, and either executes
A1 if the word was accepted by AL, or executes A2 otherwise.
Since every machine was aperiodic, so is A.

• C = C1�C2. The transducer A does a first pass executing
A1, then resets to the beginning of the word and simulates A2.
Since both transducers are aperiodic, so is A.
• C = C1 · C2. We express A as the composition of three

functions f1, f2, f3, each aperiodic. Since aperiodic functions
are closed under composition, we get the result. The first
function f1 associates to each word w ∈ Σ∗ the word
u1#u2# · · ·#un, such that w = u1u2 · · ·un and for any
prefix u of w, u belongs to the domain of C1 if, and only
if, u = u1 · · ·ui for some 1 ≤ i < n. Notice that u1 = ε iff
ε ∈ dom(C1) and un = ε iff w ∈ dom(C1). The other ui’s
must be nonempty. The second function f2 takes as input a
word in (Σ∪{#})∗, reads it from right to left, and suppresses
all # symbols except for the ones whose corresponding suffix
belongs to the domain of C2. Then, f2(f1(w)) contains exactly
one # symbol if and only if w has a unique factorisation
w = uv with u ∈ dom(C1) and v ∈ dom(C2). In this case,
f2(f1(w)) = u#v.

Finally, the function f3 has domain Σ∗#Σ∗ and first exe-
cutes A1 on the prefix of its input upto the # symbol, treating
it as the right endmarker a, and then executes A2 on the
second part, treating # as the left endmarker `.

The functions f1 and f2 can be realised by aperiodic
transducers as they only simulate automata for the aperiodic
domains of C1 and the reverse of C2 respectively, and the
function f3 executes A1 and A2 one after the other, and hence
is also aperiodic.
• C = [L,C1]k? or C = [L,C1]k?r . Here L ⊆ Σ∗ is an

aperiodic language which is also a prefix code with bounded
synchronisation delay, and k ≥ 1 is a natural number. Let
f = [[C1]] : Σ∗ → Γ∗ be the aperiodic function defined by
C1. We write [L, f ]k? = L<k ? (Σ∗ . ε) : (f3 ◦ f2 ◦ f1),
where ε is the output produced when the input has less
than k L factors; otherwise the output is produced by the
composition of 3 aperiodic functions. As aperiodic functions
are closed under composition, this gives the result. The first
one, f1 : Σ∗ → (Σ ∪ {#})∗ splits an input word w ∈ L∗

according to the unique factorization w = u1u2 · · ·un with
n ≥ 0 and ui ∈ L for all 1 ≤ i ≤ n and inserts # symbols:
f1(w) = #u1#u2# · · ·#un#. The domain of f1 is L∗.

The second function f2 constructs the sequence of k factors.
Its domain is #(Σ∗#)≥k and it is defined as follows, with
ui ∈ Σ∗: f2(#u1#u2# · · ·#un#) =

#u1u2 · · ·uk#u2 · · ·uk+1# · · ·#un−k+1 · · ·un# .

Finally, the third function simply applies f and erases the
# symbols:

f3(#v1#v2# · · ·#vm#) = f(v1)f(v2) · · · f(vm) .

In particular, f3(#) = ε. We have dom(f3) =
#(dom(f)#)∗.

For the reverse iteration, we simply change the last function
and use instead

f4(#v1#v2# · · ·#vm#) = f(vm) · · · f(v2)f(v1) .



It is easy to see that the functions fi for i ≤ 4 can be
realised by 2DFTs. We prove in [14] Lemma 18 that these
functions are realised by aperiodic 2DFTs.

B. Stabilising runs in aperiodic two-way automata

In this section, we show that runs of an aperiodic 2DFT have
a “stabilising” property. This property crucially distinguishes
aperiodic 2DFTs from non aperiodic ones, and we use this
in our proof to obtain SDRTEs from aperiodic 2DFTs. In
the remainder of this section, we fix an aperiodic 2DFT A =
(Q,Σ,Γ, δ, γ, q0, F ). Let ϕ : (Σ ] {`,a})∗ → TrM be the
canonical surjective morphism to the transition monoid of A.

Consider a code L ⊆ Σ∗ such that X = ϕ(L) is k-
stabilizing for some k > 0. We will see that a run of A over
a word w ∈ L∗ has some nice properties. Intuitively, if it
moves forward through k factors from L then it never moves
backward through more than k factors. An illustration of these
nice properties is given in [14].

More precisely, let w = u1u2 · · ·un be the unique factori-
sation of w ∈ L∗ with ui ∈ L for 1 ≤ i ≤ n. We assume that
n ≥ k. We start with the easiest fact.

Lemma 3. If (

y

, p, q) ∈ ϕ(w) then the run of A over w
starting on the left in state p only visits the first k factors
u1 · · ·uk of w.

Proof. Since X is k-stabilising, we have ϕ(w) =
ϕ(u1 · · ·uk). Hence, (

y

, p, q) ∈ ϕ(u1 · · ·uk) and the result
follows since A is deterministic.

Notice that the right-right ( x) runs of A over w need not
visit the last k factors only (see Lemma 6 below). This is due
to the fact that stabilising is not a symmetric notion.

Next, we consider the left-right runs of A over w.

Lemma 4. Assume that (→, p, q) ∈ ϕ(w). Then the run ρ ofA
over w starting on the left in state p has the following property,
that we call k-forward-progressing: for each 1 ≤ i < n − k,
after reaching the suffix ui+k+1 · · ·un of w, the run ρ will
never visit again the prefix u1 · · ·ui. See Figure 3 for a non-
example and Figure 7 for an example.

Proof. Towards a contradiction, assume that for some 1 ≤ i <
n−k, the run ρ visits u1 · · ·ui after visiting ui+k+1 · · ·un (See
Figure 3). Then, there exists a subrun ρ′ of ρ making some (

y

, q1, q3)-step on ui+1 · · ·un and visiting ui+k+1 (on Figure 3
we have ρ′ = ρ2ρ3). Hence (

y

, q1, q3) ∈ ϕ(ui+1 · · ·un) and
by Lemma 3 we deduce that ρ′ visits ui+1 · · ·ui+k only, a
contradiction.

Lemma 5. Assume that (←, p, q) ∈ ϕ(w). Then the run ρ of
A over w starting on the right in state p has the following
property, that we call k-backward-progressing: for each 1 ≤
i < n− k, after reaching the prefix u1 · · ·ui of w, the run ρ
will never visit again the suffix ui+k+1 · · ·un.

Proof. This Lemma is a consequence of Lemma 3. Indeed,
consider any part of ρ that visits ui+1 again (in some state
q1) after visiting ui, for some 1 ≤ i < n − k. As ρ is a ←

u1 u2 ui ui+1 ui+k ui+k+1 un

ρ1 ρ2

ρ3

ρ4

p

q1 q2

q3

q

Fig. 3. A left-right run which is not k-forward-progressing

u1 u2 ui ui+1 ui+k ui+k+1 un

ρ1

ρ2

ρ3
ρ4

p

q1 q2

q3

q

Fig. 4. A right-left run which is not k-backward-progressing

run, it will later cross from ui+1 to ui (reaching some state
q3). Then (

y

, q1, q3) is a run on ui+1 · · ·un. By Lemma 3, it
does not visit ui+k+1 · · ·un, which concludes the proof (See
Figure 4 for a non-example).

Lemma 6. Assume that ( x, p, q) ∈ ϕ(w) and let ρ be the
run of A over w starting on the right in state p. Then, either
ρ visits only the last k factors un−k+1 · · ·un, or for some
1 ≤ i ≤ n − k the run ρ is the concatenation ρ1ρ2ρ3 of a
k-backward-progressing run ρ1 over ui+1 · · ·un followed by
a run ρ2 staying inside some ui · · ·ui+k, followed by some
k-forward-progressing run ρ3 over ui+1 · · ·un. See Figure 5.

Proof. Assume that ρ visits u1 · · ·un−k and let ui (1 ≤ i ≤
n−k) be the left-most factor visited by ρ. We split ρ in ρ1ρ2ρ3

(see Figure 5) where

• ρ1 is the prefix of ρ, starting on the right of w in state
p and going until the first time ρ crosses from ui+1 to
ui. Hence, ρ1 is a run over ui+1 · · ·un starting on the
right in state p and exiting on the left in some state q1.
We have (←, p, q1) ∈ ϕ(ui+1 · · ·un). By Lemma 5 we
deduce that ρ1 is k-backward-progressing.

• Then, ρ2 goes until the last crossing from ui to ui+1.
• Finally, ρ3 is the remaining suffix of ρ. Hence, ρ3 is a

run over ui+1 · · ·un starting on the left in some state q2

and exiting on the right in state q. We have (→, q2, q) ∈
ϕ(ui+1 · · ·un). By Lemma 4 we deduce that ρ3 is k-
forward-progressing.

It remains to show that ρ2 stays inside ui · · ·ui+k. Since ui
is the left-most factor visited by ρ, we already know that ρ2

does not visit u1 · · ·ui−1. Similarly to Lemma 5, any maximal
subrun ρ′2 of ρ2 that does not visit ui is a y run on ui+1 · · ·un
since ρ2 starts and ends at the frontier between ui and ui+1.
By Lemma 3, the subrun ρ′2 does not visit ui+k+1 · · ·un and
thus ρ2 stays inside ui · · ·ui+k.



u1 u2 ui ui+1 ui+k ui+k+1 un

ρ1

ρ2

ρ3

p

q1

q2

q

Fig. 5. A right-right run ρ1ρ2ρ3 where ρ1 is k-backward-progressing, ρ2 is
local to ui · · ·ui+k and ρ3 is k-forward-progressing.

C. SD-regular transducer expressions for aperiodic 2DFTs

In this section, we show how to construct SDRTEs which
are equivalent to aperiodic 2DFTs. Recall that ϕ : (Σ ]
{`,a})∗ → TrM is the canonical surjective morphism to
the transition monoid of the 2DFT A = (Q,Σ,Γ, δ, γ, q0, F ).
Given a regular expression E and a monoid element s ∈ TrM,
we let L(E, s) = L(E) ∩ ϕ−1(s). The main construction of
this section is given by Theorem V.2. It relies on the transition
monoid of 2DFT that is given in Section II.

Theorem V.2. Let E be an unambiguous, stabilising, SD-
regular expression over Σ]{`,a} and let s ∈ TrM. For each
step x ∈ {→, y , x,←} × Q2, we can construct an SDRTE
CE,s(x) such that:

1) CE,s(x) = ⊥ when x /∈ s, and otherwise
2) dom([[CE,s(x)]]) = L(E, s) and for all words w ∈
L(E, s), [[CE,s(x)]](w) is the output produced by A
running over w according to step x.
When w = ε and s = 1 = ϕ(ε) with x ∈ 1, this means
[[CE,s(x)]](ε) = ε.

Proof. The construction is by structural induction on E.

Atomic expressions We first define CE,s(x) when E is an
atomic expression, i.e., ∅, ε or a for a ∈ Σ.
• E = ∅: we simply set C∅,s(x) = ⊥, which is the nowhere

defined function.
• E = ε: when s = 1 and x ∈ s then we set Cε,s(x) = ε.ε

and otherwise we set Cε,s(x) = ⊥.
• E = a ∈ Σ ] {`,a}: again, we set Ca,s(x) = ⊥ if

s 6= ϕ(a) or x /∈ s. Otherwise, there are two cases. Either x ∈
{(→, p, q), ( x, p, q)} for some states p, q such that δ(p, a) =
(q,+1), or x ∈ {(←, p, q), (y , p, q)} for some states p, q with
δ(p, a) = (q,−1). In both cases the output produced is γ(p, a)
and we set Ca,s(x) = a . γ(p, a).

Disjoint union Consider E∪F with L(E) and L(F ) disjoint,
then we simply set CE∪F,s(x) = CE,s(x) + CF,s(x).

Unambiguous concatenation E · F
Here, we suppose that we have SDRTEs for CE,s(x) and

CF,s(x) for all s in TrM and all steps x ∈ {→, y , x,←} ×
Q2. We show how to construct SDRTEs for CE·F,r(x) for all
elements r ∈ TrM, assuming that the concatenation L(E) ·
L(F ) is unambiguous.

A word w ∈ L(E · F ) has a unique factorization w = uv
with u ∈ L(E) and v ∈ L(F ). Let s = ϕ(u) and t = ϕ(v).
A run ρ over w is obtained by stitching together runs over u

u v

ρ0
ρ1

ρ2

ρ3ρ4

ρ5

p
p1

p2

p3

p4 p5

q
u v

ρ0
ρ1

ρ2

ρ3ρ4

p
p1

p2

p3

p4

q

Fig. 6. Decomposition of a (→, p, q)-run and a (

y

, p, q)-run over the product
w = uv.

and runs over v as shown in Figure 6. In the top figure, the
run over w follows step x = (→, p, q) starting on the left in
state p and exiting on the right in state q. The run ρ splits as
ρ0ρ1ρ2ρ3ρ4ρ5 as shown in the figure. The output of the initial
part ρ0 is computed by CE,s((→, p, p1)) over u and the output
of the final part ρ5 is computed by CF,t((→, p5, q)) over v.
We focus now on the internal part ρ1ρ2ρ3ρ4 which consists
of an alternate sequence of left-left runs over v and right-right
runs over u. The corresponding sequence of steps x1 = (

y

, p1, p2) ∈ t, x2 = ( x, p2, p3) ∈ s, x3 = (

y

, p3, p4) ∈ t and
x4 = ( x, p4, p5) ∈ s depends only on s = ϕ(u) and t = ϕ(v).

These internal zigzag runs will be frequently used when
dealing with concatenation or Kleene star. They alternate left-
left (y ) steps on the right word v and right-right ( x) steps
on the left word u. They are also uniquely determined by the
starting configuration thanks to the determinism of A. They
may start with a y -step or a x-step. The sequence of steps
in a maximal zigzag run is entirely determined by the monoid
elements s = ϕ(u), t = ϕ(v), the starting step d ∈ {y , x} and
the starting state p′ of step d. The final step of this maximal
sequence is some d′ ∈ { y , x} and reaches some state q′. We
write Zs,t(p

′, d) = (d′, q′). For instance, for Figure 6 (top) we
get Zs,t(p1,

y

) = ( x, p5) whereas for Figure 6 (bottom) we
get Zs,t(p1,

y

) = (

y

, p4). By convention, if the sequence of
zigzag steps is empty then we define Zs,t(p,

y

) = ( x, p) and
Zs,t(p, x) = (

y

, p). The construction is illustrated in [14].

Lemma 7. We use the above notation. We can construct
SDRTEs ZCF,t

E,s(p, d) for p ∈ Q and d ∈ {y , x} such
that dom([[ZCF,t

E,s(p, d)]]) = L(E, s)L(F, t) and for all u ∈
L(E, s) and v ∈ L(F, t) the value [[ZCF,t

E,s(p, d)]](uv) is the
output produced by the internal zigzag run of A over (u, v)
following the maximal sequence of steps starting in state p
with a d-step.



Proof. We first consider the case d =

y and Zs,t(p,

y

) =
( x, q) for some q ∈ Q which is illustrated on the left of
Figure 6. Since A is deterministic, there is a unique maximal
sequence of steps (with n ≥ 0, p1 = p and p2n+1 = q):
x1 = (

y

, p1, p2) ∈ t, x2 = ( x, p2, p3) ∈ s, . . . , x2n−1 = (

y

, p2n−1, p2n) ∈ t, x2n = ( x, p2n, p2n+1) ∈ s. The zigzag run ρ
following this sequence of steps over uv splits as ρ1ρ2 · · · ρ2n

where ρ2i is the unique run on u following step x2i and ρ2i+1

is the unique run on v following step x2i+1. The output of
these runs are given by [[CE,s(x2i)]](u) and [[CF,t(x2i+1)]](v).
When n = 0 the zigzag run ρ is empty and we simply
set ZCF,t

E,s(p,

y

) = (L(E, s)L(F, t)) . ε. Assume now that
n > 0. The required SDRTE computing the output of ρ can
be defined as ZCF,t

E,s(p,

y

) =(
(L(E, s) . ε) · CF,t(x1)

)
�
(
CE,s(x2) · CF,t(x3)

)
� · · ·�(

CE,s(x2n−2) · CF,t(x2n−1)
)
�
(
CE,s(x2n) · (L(F, t) . ε)

)
.

Notice that each Cauchy product in this expression is
unambiguous since the product L(E) · L(F ) is unambiguous.

The other cases can be handled similarly. For instance, when
Zs,t(p,

y

) = (

y

, q) as on the right of Figure 6, the sequence of
steps ends with x2n−1 = (

y

, p2n−1, p2n) ∈ t with n > 0 and
p2n = q and the zigzag run ρ is ρ1ρ2 · · · ρ2n−1. The SDRTE
ZCF,t

E,s(p,

y

) is given by(
(L(E, s) . ε) · CF,t(x1)

)
�
(
CE,s(x2) · CF,t(x3)

)
� · · ·

· · · �
(
CE,s(x2n−2) · CF,t(x2n−1)

)
.

The situation is symmetric for ZCF,t
E,s(p, x): the sequence starts

with a right-right step x2 = ( x, p2, p3) ∈ s with p = p2 and
we obtain the SDRTE simply by removing the first factor(
(L(E, s).ε)·CF,t(x1)

)
in the Hadamard products above.

We come back to the definition of the SDRTEs for
CE·F,r(x) with r ∈ TrM and x ∈ r. As explained above,
the output produced by a run ρ following step x over a word
w = uv with u ∈ L(E, s), v ∈ L(F, t) and r = st consists of
an initial part, a zigzag internal part, and a final part. There
are four cases depending on the step x.
• x = (

y
, p, q). Either the run ρ stays inside u (zigzag part

empty) or there is a zigzag internal part starting with (p′,

y

)
such that (→, p, p′) ∈ ϕ(u) and ending with (

y

, q′) such that
(←, q′, q) ∈ ϕ(u). Thus we define the SDRTE CE·F,r(x) as

∑
st=r|x∈s

CE,s(x) ·
(
L(F, t) . ε

)
+

∑
st=r, (p′,q′) |

Zs,t(p
′,

y

)=(

y

,q′)

(
CE,s((→, p, p′)) · (L(F, t) . ε)

)
� ZCF,t

E,s(p
′,

y

)

�
(
CE,s((←, q′, q)) · (L(F, t) . ε)

)
Notice that all Cauchy products are unambiguous since the

concatenation L(E) ·L(F ) is unambiguous. The sums are also
unambiguous. Indeed, a word w ∈ L(E · F, r) has a unique
factorization w = uv with u ∈ L(E) and v ∈ L(F ). Hence
s = ϕ(u) and t = ϕ(v) are uniquely determined and satisfy
st = r. Then, either x ∈ s and w is only in the domain of

CE,s(x)·
(
L(F, t).ε

)
. Or there is a unique p′ with (→, p, p′) ∈

s and a unique q′ with Zs,t(p
′,

y

) = (

y

, q′) and (←, q′, q) ∈ s.
Notice that if (→, p, p′) /∈ s then CE,s((→, p, p′)) = ⊥ and
similarly if (←, q′, q) /∈ s. Hence we could have added the
condition (→, p, p′), (←, q′, q) ∈ s to the second sum, but do
not, to reduce clutter.
• x = (→, p, q). Here the run must cross from left to right.

Thus we define the SDRTE CE·F,r(x) as∑
st=r, (p′,q′) |

Zs,t(p
′,

y

)=( x,q′)

(
CE,s((→, p, p′)) · (L(F, t) . ε)

)
� ZCF,t

E,s(p
′,

y

)

�
(
(L(E, s) . ε) · CF,t((→, q′, q))

)
• x = (←, p, q). This case is similar, CE·F,r(x) is∑
st=r, (p′,q′) |

Zs,t(p
′, x)=(

y
,q′)

(
(L(E, s) . ε) · CF,t((←, p, p′))

)
� ZCF,t

E,s(p
′, x)

�
(
CE,s((←, q′, q)) · (L(F, t) . ε)

)
• x = ( x, p, q). Finally, for right-right runs, CE·F,r(x) is∑

st=r|x∈t

(L(E, s) . ε) · CF,t(x) +

∑
st=r, (p′,q′) |

Zs,t(p
′, x)=( x,q′)

(
(L(E, s) . ε) · CF,t((←, p, p′))

)
� ZCF,t

E,s(p
′, x)

�
(
(L(E, s) . ε) · CF,t((→, q′, q))

)
SD-Kleene Star The most interesting case is when E = F ∗.
Let L = L(F ) ⊆ Σ∗. Since E is a stabilising SD-regular
expression, L is an aperiodic prefix code of bounded synchro-
nisation delay, and X = ϕ(L) is k-stabilising for some k > 0.
Hence, we may apply the results of Section V-B.

By induction, we suppose that we have SDRTEs CF,s(x)
for all s in TrM and steps x. Since L = L(F ) is a code,
for each fixed ` > 0, the expression F ` = F · F · · ·F is an
unambiguous concatenation. Hence, from the proof above for
the unambiguous concatenation, we may also assume that we
have SDRTEs CF `,s(x) for all s ∈ TrM and steps x. Similarly,
we have SDRTEs for ZCF,t

Fk,s
(−) and ZCFk,t

F,s (−). Notice that
F 0 is equivalent to ε hence we have CF 0,s(x) = Cε,s(x).

We show how to construct SDRTEs CE,s(x) for E = F ∗.
There are four cases, which are dealt with below, depending
on the step x. We fix some notations common to all four cases.
Fix some w ∈ L(E, s) = L∗ ∩ ϕ−1(s) and let w = u1 · · ·un
be the unique factorization of w with n ≥ 0 and ui ∈ L for
1 ≤ i ≤ n. For a step x ∈ s, we denote by ρ the unique
run of A over w following step x. Again the constructions are
illustrated in [14].
• x = (

y

, p, q) ∈ s. The easiest case is for left-left steps.
If n < k then the output of ρ is [[CFn,s(x)]](w). Notice that
here, CF 0,s(x) = ⊥ since x /∈ 1 = ϕ(ε). Now, if n ≥ k then,
by Lemma 3, the run ρ stays inside u1 · · ·uk. We deduce that
the output of ρ is [[CFk,s(x)]](u1 · · ·uk). Therefore, we define

CE,s(x) =
(∑

n<k

CFn,s(x)
)

+
(
CFk,s(x) · (F ∗ . ε)

)
Notice that the sums are unambiguous since L = L(F ) is

a code. The concatenation F k · F ∗ is also unambiguous.
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Fig. 7. A left-right run which is 2-forward-progressing.

• x = (→, p, q) ∈ s. We turn now to the more interesting
left-right steps. Again, if n < k then the output of ρ is
[[CFn,s(x)]](w). Assume now that n ≥ k. We apply Lemma 4
to deduce that the run ρ is k-forward-progressing. See Figure 7
for a sample run which is 2-forward-progressing. We split ρ
in ρ0ρ1 · · · ρn−k where ρ0 is the prefix of ρ going until the
first crossing from uk to uk+1. Then, ρ1 goes until the first
crossing from uk+1 to uk+2. Continuing in the same way, for
1 ≤ i < n − k, ρi goes until the first crossing from uk+i to
uk+i+1. Finally, ρn−k is the remaining suffix, going until the
run exits from w on the right. Since the run ρ is k-forward
progressing, we deduce that ρi does not go back to u1 · · ·ui−1,
hence it stays inside ui · · ·ui+k, starting on the left of ui+k

and exiting on the right of ui+k.
Since X = ϕ(L) is k-stabilising, we have ϕ(u1 · · ·uk+i) =

ϕ(w) for all 0 ≤ i ≤ n − k. Now, ρ0 · · · ρi is a run on
u1 · · ·uk+i starting on the left in state p and exiting on the
right. Since A is deterministic and x = (→, p, q) ∈ ϕ(w) =
ϕ(u1 · · ·uk+i) we deduce that ρi exits on the right of uk+i in
state q. In particular, ρ0 is a run on u1 · · ·uk starting on the left
in state p and exiting on the right in state q. Moreover, for each
1 ≤ i ≤ n − k, ρi is the concatenation of an internal zigzag
run over (ui · · ·ui+k−1, ui+k) starting with (q,

y

) ending
with ( x, qi) = Zs′,s′′(q,

y
) where s′ = ϕ(ui · · ·ui+k−1),

s′′ = ϕ(ui+k) and a (→, qi, q) run over ui+k.
Let vi be the output produced by ρi for 0 ≤ i ≤ n − k.

Then, using Lemma 7, the productions vi with 0 < i ≤ n− k
are given by the SDRTE f defined as

f =
∑

s′,s′′,q′ |
( x,q′)=Zs′,s′′ (q,

y

)

ZCF,s′′

Fk,s′
(q,

y

)�(
(L(F k, s′) . ε) · CF,s′′((→, q′, q))

)
Then the product v1 · · · vn−k is produced by the (k + 1)-

chained Kleene-star [L, f ](k+1)?(w). From the above dis-
cussion, we also deduce that v0 = [[CFk,s(x)]](u1 · · ·uk).
Therefore, we define CE,s(x) =(∑

n<k

CFn,s(x)
)

+
((

CFk,s(x) · (F ∗ . ε)
)
� [F, f ](k+1)?

)
• x = (←, p, q) ∈ s. Though slightly more complicated,

the case of right-left runs is symmetric to the case of left-
right runs. The proof is in [14].
• x = ( x, p, q) ∈ s. As explained in Lemma 6 and Figure 5,

a right-right run combines a right-left run, a zigzag, and a left-
right run. The detailed proof is in [14].

We conclude the section by showing how to construct
SDRTEs equivalent to 2DFTs.

Theorem V.3. Let A = (Q,Σ,Γ, δ, γ, q0, F ) be an aperiodic
2DFT. We can construct an equivalent SDRTE CA over
alphabet Σ with dom([[CA]]) = dom([[A]]) and [[A]](w) =
[[CA]](w) for all w ∈ dom([[A]]).

Proof. We first construct below an SDRTE C ′A with
dom([[C ′A]]) = `dom([[A]])a and such that [[A]](w) =
[[C ′A]](`wa) for all w ∈ dom([[A]]). Then, we obtain C ′′A using
Proposition 1 by C ′′A = (`−1C ′A)a−1.

Finally, we get rid of lingering endmarkers in C ′′A using
Lemma 2 to obtain CA as the projection of C ′′A on Σ∗.

Let ϕ : (Σ ] {`,a})∗ → TrM be the canonical surjective
morphism to the transition monoid of A. Since A is aperiodic,
the monoid TrM is also aperiodic. We can apply Theorem III.2
to the restriction of ϕ to Σ∗: for each s ∈ TrM, we get
an unambiguous, stabilising, SD-regular expression Es with
L(Es) = ϕ−1(s) ∩ Σ∗. Let E = ` · (

⋃
s∈TrMEs) which

is an unambiguous, stabilising, SD-regular expression with
L(E) = `Σ∗. Applying Theorem V.2, for each monoid
element s ∈ TrM and each step x ∈ {→, y , x,←} ×Q2, we
construct the corresponding SDRTE CE,s(x). We also apply
Lemma 7 and construct for each state p ∈ Q an SDRTE
ZCa,tE,s(p,

y

) where t = ϕ(a).
Finally, we define

C ′A =
∑

s,p,q|q∈F
(→,q0,p)∈s

Zs,t(p,

y

)=( x,q)

(
CE,s((→, q0, p)) · (a . ε)

)
� ZCa,tE,s(p,

y

)

We can easily check that C ′A satisfies the requirements above.

One can find in [14] an application of the construction to
our running example.

VI. ADDING COMPOSITION

Since SDRTEs are used to define functions over words, it
seems natural to consider the composition of functions, as it
is an easy to understand but powerful operator. In this section,
we discuss other formalisms using composition as a basic
operator, and having the same expressive power as SDRTEs.

Theorem I.1 gives the equivalence between SDRTEs and
aperiodic two-way transducers, the latter being known to
be closed under composition. Hence, adding composition to
SDRTEs does not add expressiveness, while allowing for
easier modelisation of transformations.

Moreover, we prove that, should we add composition of
functions, then we can replace the k-chained star operator and
its reverse by the simpler 1-star [L, f ]1? and its reverse, which
in particular are one-way (left-to-right or right-to-left) operator
when f is also one-way.

Finally, we prove that we can furthermore get rid of the
reverse operators as well as the Hadamard product by adding
two basic functions: reverse and duplicate. The reverse func-
tion is straightforward as it reverses its input. The duplicate



function is parameterised by a symbol, say #, duplicates its
input inserting # between the two copies: dup#(u) = u#u.

Theorem VI.1. The following families of expressions have the
same expressive power:

1) SDRTEs,
2) SDRTEs with composition of functions,
3) SDRTEs with composition and 1-star only.
4) Expressions with simple functions, unambiguous sum,

Cauchy product, 1-star, duplicate, reverse, composition.

Proof. It is trivial that 3 ⊆ 2 as 3 is obtained as a syntaxical
restriction of 2. Although it is not needed in our proof, 1 ⊆ 2
holds for the same reason. Now, thanks to Theorem I.1, we
know that SDRTEs are equivalent to aperiodic 2DFTs that are
closed under composition. Hence, composition does not add
expressive power and we have 2 ⊆ 1.

To prove that 4 ⊆ 3, we simply have to prove that
the duplicate and reverse functions can be expressed with
SDRTEs using only the 1-star operator and its reverse. The
duplicate function definition relies on the Hadamard and is
given by the expression: dup# = (idΣ∗ · (ε .#))� idΣ∗

where idΣ∗ is the identity function and can be written as
[Σ, idΣ]1? where idΣ =

∑
a∈Σ a . a. The reverse function is

also easy to define using the 1-star reverse: rev = [Σ, idΣ]1?r
To prove the last inclusion 1 ⊆ 4, we need to express

the Hadamard product and the (reverse) k-chained star, using
duplicate, reverse and composition.

The Hadamard product f � g is easy to define using dup#

where # is a fresh marker:

f � g = (f · (# . ε) · g) ◦ dup# .

We show now how to reduce k-star to 1-star using duplicate
and composition. The proof is by induction on k. When k = 1
there is nothing to do. Assume that k > 1. We show how to
express [L, f ]k? using (k − 1)-star, 1-star and duplicate. The
main idea is to use composition to mark each factor in L in
order to duplicate them, then use a (k−1)-star to have a reach
of k factors of L (with some redundant information), and lastly
use composition to prune the input to a form suitable to finally
apply f .

More formally, let # and $ be two fresh markers and define

f1 = [L, dup$ · (ε .#)]1?

with domain L∗ and, when applied to a word u = u1 · · ·un
with ui ∈ L, produces

u1$u1#u2$u2#u3$u3# · · ·un−1$un−1#un$un#

in {ε}∪Σ∗$(Σ∗#Σ∗$)∗Σ∗#. Notice that Σ∗#Σ∗$ is a 1-
SD prefix code and that taking k−1 consecutive factors from
this language allows us to have a reach of k factors of L.

Then we define the function g

g =
(
idΣ∗ · (#Σ∗$ . ε)

)k−2 ·
(
idΣ∗ · (# . ε) · idΣ∗ · ($ . ε)

)

with domain (Σ∗#Σ∗$)k−1, it produces v1v2 · · · vk−1v
′
k−1

when applied to v1#v′1$v2#v′2$ · · · vk−1#v′k−1$. In par-
ticular, g(ui+1#ui+2$ui+2#ui+3$ · · ·ui+k−1#ui+k$) gives
ui+1 · · ·ui+k. Finally, we have [L, f ]k? =(
(ε . ε) + (Σ∗$ . ε) · [Σ∗#Σ∗$, f ◦ g](k−1)? · (Σ∗# . ε)

)
◦ f1 .

The reverse k-star [L, f ]k?r is not expressed in a straight-
forward fashion using reverse composed with k-star, because
while reverse applies on all the input, the reverse k-star swaps
the applications of function f while keeping the function f
itself untouched. In order to express it, we reverse a k-star
operator not on f , but on f reversed. The result is that the
applications of f are reversed twice, thus preserving them.
Formally, we have: [L, f ]k?r = rev ◦ [L, rev ◦ f ]k?.

VII. CONCLUSION

We conclude with some interesting avenues for future work,
arising from the open questions based on this paper.

We begin with complexity questions, and then move on to
other directions for future work. The complexity of our pro-
cedure, especially when going from the declarative language
SDRTE to the operational 2DFT machine, is open. This part
relies heavily on the composition of 2DFTs which incurs at
least one exponential blowup in the state space. A possibility
to reduce the complexity incurred during composition, is to
obtain reversible 2FT (2RFT) for each of the intermediate
functions used in the composition. 2RFTs are a class of 2DFTs
which are both deterministic and co-deterministic, and were
introduced in [20], where they prove that composition of
2RFTs results in a 2RFT with polynomially many states in
the number of states of the input transducers. Provided that
the composition of 2RFTs preserves aperiodicity, if we could
produce 2RFTs in our procedures in section V-A, then we
would construct a 2RFT which is polynomial in the size of the
SDRTE. Another open question is the efficiency of evaluation,
i.e., given an SDRTE and an input word, what is the time
complexity of computing the corresponding output. This is
crucial for an implementation, along the lines of DReX [21].

Yet another direction is to extend our result to transforma-
tions over infinite words. While Perrin [22] generalized the
SF=AP result of Schützenberger to infinite words in the mid
1980s, Diekert and Kufleitner [16], [17] generalized recently
Schützenberger’s SD=AP result to infinite words. Based on
this extended SD=AP, one could check how to adapt our proof
to the setting of transformations over infinite words. Finally, a
long standing open problem in the theory of transformations
is to decide if a function given by a 2DFT is realizable by an
aperiodic one. This question has been solved in the one-way
case [23], or in the case when we have origin information
[24], but the general case remains open. We believe that our
characterisation of stabilising runs provided in Section V-B
could lead to forbidden pattern criteria to decide this open
problem.
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