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Abstract: Driving a motorcycle relies on the feedback provided by several human sensory systems, on the one hand, 

and anticipation of the consequences of control actions, on the other hand. Driving simulators aim to create 

the illusion of driving by stimulating the driver’s sensory systems. However, a significant number of drivers 

experience simulator sickness, which hinders the usefulness of driving simulators in their applications, such 

as driving behavior research or training / re-training. Simulator sickness occurrence is often attributed to 

sensory conflict. In this work, we propose an approach to understanding simulator sickness by considering 

the need for coherence between the complexity of the vehicle model and the complexity of the simulator from 

a hardware point-of-view, which constrains the fidelity of the reproduced sensory stimuli. We then describe 

the design of a proof-of-concept system that considers the particular issue of haptic feedback for the 

handlebars of a motorcycle-riding simulator. We will use this system in further experiments to demonstrate 

the impact of the coherence or mismatch of those two aspects on controllability and simulator sickness 

occurrence. 

1 INTRODUCTION 

Driving a vehicle requires the use of several human 

sensory systems: the visual, vestibular, haptic, and 

auditory are the main ones. Each of them plays a 

different role in the accomplishment of the driving 

task. In combination, they make it possible to 

estimate distance and speed, crucial parameters for 

driving, particularly for vehicle trajectory control, 

e.g. braking or collision avoidance. The coherence of 

the various sensory feedback, and the removal of any 

ambiguity between them, are ensured thanks to 

multisensory integration, i.e. fusion of this 

information carried out by the brain. The resulting 

information is the movement of the body in relation 

to the vehicle and its environment. In a driving task, 

this allows the driver to decide on a single 

interpretation of the current state of the vehicle being 

driven (position, speed, acceleration) (Kemeny et al., 

2020), as well as the current state of other objects in 
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the environment (e.g., other vehicles, pedestrians, 

road markings and signs, etc.). 

 

The driver's sensory feedback is not sufficient 

to accomplish a driving task. The vehicle must also 

be guided to the desired destination (short-term and 

medium-term), which is an active closed-loop 

control-command and guidance task. The driving 

activity is traditionally divided into three task levels: 

strategical, tactical, and operational (Michon, 1985; 

see also Motte et al., 2019). To control the vehicle 

efficiently, i.e. to converge towards precise control, 

with minimal oscillations, a model of the controlled 

vehicle is required. In the case of human motor 

control, it is called the internal model and is learned 

and reinforced by experience (Wolpert et al., 2011; 

McNamee & Wolpert, 2019; Pierella et al., 2019). 

 

The goal of a driving simulator is to create the 

illusion of driving by stimulating the driver's sensory 



systems (Siegler et al., 2001; Fischer et al., 2016; 

Salisbury & Limebeer, 2017). Inevitably, driving 

simulators provide only a subset of the sensory 

stimuli available in a real driving situation. The 

implementation of a high-fidelity dynamic vehicle 

model is a design constraint considered necessary to 

best reproduce real-world driving situations. This 

constraint, called physical validity (Malaterre & 

Fréchaux, 2001; see also Faure, 2017, and Lobjois et 

al., 2021), is often taken into account without concern 

for the hardware architecture of the simulator and the 

sensory cues' fidelity. However, the poor or delayed 

restitution of a stimulus, similarly to the absence of 

its restitution, can lead to multisensory integration 

failing. Furthermore, all drivers do not use each 

sensory feedback in the same way. This makes it 

difficult to build a simulator suitable for all drivers 

and all purposes. Multisensory integration relies on 

the redundancy of sensory signals for disambiguation, 

but this is not always possible in driving simulators. 

This causes discomfort for drivers because it results 

in sensory conflict, which is identified and widely 

accepted as a cause of Simulator Sickness (SS) as 

well as Motion Sickness (MS) (Reason & Brand, 

1975). 

 

In this work, we propose an approach to 

understanding SS, an adverse physiological reaction 

to a simulated driving situation. While MS primarily 

affects passengers in vehicles, all users of driving 

simulators can suffer from SS (Diels, 2016; Iskander 

et al., 2019). This is an essential concern for all 

driving simulator applications. We argue that SS 

comes from inadequacy between the complexity of 

the vehicle model and qualities of the cues provided 

to the driver (*). Driving simulators often implement 

a high complexity vehicle model, e.g. with a large 

number of degrees of freedom and/or non-linearities, 

etc. Using a high complexity vehicle model, a driving 

simulator can simulate the dynamics of the real 

vehicle with high fidelity. However, if the 

architecture (HW/SW) of the simulator is not adapted 

accordingly, all of the sensory cues corresponding to 

the modeled physics cannot be provided to the driver. 

For example, in the case of motorcycle riding, the 

gyroscopic effect can be modeled but cannot be 

rendered using current technology. This inadequacy 

may lead to uncontrollability or poor controllability 

of the simulated vehicle that induces SS.  

We focus on the complex case of reproducing 

haptic cues on the handlebars of a motorcycle driving 

simulator. We then describe the design of our Proof-

Of-Concept (POC) system, which we plan to use to 

test our hypothesis (*) in various experiments. Our 

POC system is a motorcycle driving simulator with 

haptic feedback on the handlebars. Its design takes 

into account the specific constraints of human sensory 

systems.  

2 ARCHITECTURE / MODEL 

MISMATCH AND SIMULATOR 

SICKNESS: OUR HYPOTHESIS 

Symptoms of SS may vary in type and intensity 

depending on the individual (Schweig et al., 2018). 

They can be separated into three clusters of 

symptoms: (1) oculomotor symptoms, (2) 

disorientation, and (3) nausea (Kennedy et al., 1993). 

Symptoms and intensity may also vary across 

situations for the same individual. In particular, they 

depend on the simulated task to accomplish 

(Kolasinski, 1995): for example, cornering is one of 

the most SS-inducing tasks, especially for the 

smallest curvature radii. Rich environments, such as 

urban junctions, are also particularly problematic. 

However, these situations cannot be excluded from 

driving simulators experiments. They are of great 

interest both in road safety research and public 

education initiatives and in training/retraining 

applications. 

 

Experiencing symptoms of SS can affect the 

driver’s task performance and/or reduce experiment 

duration (Money, 1970; Stoner et al., 2011; Liebherr 

et al., 2020). Besides, when a susceptible driver does 

not quit the experiment of their own accord, 

experiments are often only stopped when the 

experimenter is forced to (e.g., after the driver 

vomits). This constitutes a bad experience for the 

driver and can lead to them having a negative 

preconception of driving simulators in general. If the 

person agrees to participate in further driving 

simulator experiments, this tainted image can produce 

anxiety and pre-discomfort (Liebherr et al., 2021), 

which have been demonstrated to be negatively 

linked to SS (Bertin et al., 2004; Stelling et al., 2021). 

This negative preconception can also lead to 

definitive refusal of further participation in such 

experiments. Furthermore, the elderly population is 

particularly susceptible to SS. All of this induces 

involuntary “at the door” filtering of the population 

studied on driving simulators, i.e. the selection of the 

population that is not susceptible to SS. Recent 

studies report drop-out rates due to simulator sickness 

ranging from 5% to 30% when the participants are 

part of the general population (Balk et al., 2013; 



Liebherr et al., 2020; Saredakis et al., 2020). 

Additionnally, Matas et al. (2015) reported a drop-out 

rate of 59% for an experiment focusing on older 

adults. The results acquired thanks to driving 

simulators are hence often biased.   

 

In a simulated driving simulation, as opposed 

to a real-world driving situation, the driver 

teleoperates a vehicle model, as represented in 

Figure 1. This is fundamentally different from driving 

a vehicle. Teleoperation control-command rules 

could be used.  

 

 

Figure 1: Illustration of the interactions between driver 

and driving simulator. 

Motorcycle riding is more complex than 

driving a car. The rider controls the trajectory of their 

motorcycle through two torques: the roll torque and 

the steering torque, i.e. the torque applied by the rider 

on the motorcycle handlebars. The handlebars of a 

motorcycle serve a double action-perception purpose: 

the rider controls the system by interacting with them 

and they provide sensory feedback.  Haptic cues on 

the handlebars are essential to the rider and 

significantly affect their riding behavior. For 

example, they provide feedback on the interaction 

between the motorcycle’s tires and the road. 

However, measuring the rider’s steer torque is a 

complex issue: when the rider exerts a torque on the 

motorcycle’s handlebars, the steering column rotates. 

Moreover, at high speed, the variations of the angular 

position are of small amplitude. This means that any 

torque measure will not only reflect the torque 

applied by the rider but also the motorcycle’s inherent 

dynamics. In motorcycle riding simulators, restitution 

of the sensory cues corresponding to haptic 

perception on the handlebars is therefore particularly 

complex and crucial. Poor or delayed restitution of 

haptic cues hinders the controllability of the virtual 

vehicle.  

 

Motorcycles are inherently dynamically 

unstable: a rider needs to stabilize their motorcycle to 

ride it. That is why controllability is a crucial concern 

for motorcycle riding simulators, and similarly for car 

driving simulators. However, the research on the link 

between the controllability of a simulator and SS is 

still limited. Car-driving and motorcycle-riding 

simulators are currently used only in situations where 

they are fully controllable. However, as we 

previously mentioned, this means that driving 

simulation usage is deprived of situations that are of 

great interest such as driving at urban junctions.    

 

A simulator being non-controllable may result 

in erratic, oscillating movements that produce 

uncontrolled image rotations, which have been shown 

to cause SS occurrence (Golding, 2006; Cohen et al., 

2019). Moreover, experiencing control difficulties 

may prompt the driver to feel anxious and 

uncomfortable, feelings which, as mentioned above, 

are also negatively linked to SS. 

 

Our opinion is that a mismatch between the 

complexity of the vehicle model and the fidelity of 

the sensory stimuli that correspond to it prevents the 

driver from being able to adequately control the 

virtual vehicle, which then induces SS. As discussed, 

SS occurrence and SS symptoms severity are 

intrinsically linked to psychological validity, which 

we believe should be the goal in designing driving 

simulators for road safety research or training 

applications. In the following, we focus on the design 

of a POC system for this hypothesis, with a special 

interest in providing haptic feedback.  

3 OUR PROOF-OF-CONCEPT 

SYSTEM 

Because driving a motorcycle involves several human 

sensory systems, each of which the precise role in the 

driving task depends on the rider, deciding what 

sensory stimuli is reproduced and how is a complex 

issue. However, human sensory systems have 

inherent time and frequency sensitivities, as well as 

physical and biochemical limitations that need to be 

taken into account. For example, sensory receptor and 

neuromuscular dynamics, nerve conduction, and 

neural processing altogether are responsible for a time 

delay between the instant when a sensory stimulus (or 

stimuli) is applied and the instant when the control 

response begins. Time delays respectively introduced 



by the visual and haptic system are presented in 

Table 1. In this section, we describe the design of our 

POC system under these constraints.  

Table 1: Sensory delays characteristic of the visual and 

haptic systems (Nash et al., 2016). 

Sensory system Sensory delay 

Visual 100ms – 560ms 

Haptic > 34ms  

or > 48ms 

(depending on 

the receptors) 

3.1 System architecture 

Our POC system, represented in Figure 2 provides the 

driver with haptic cues using motorcycle handlebars 

mechanically coupled to a CanisDrive-20A-160-AM-

H-SIE servo actuator, pictured in Figure 3. Our 

system also provides visual cues using a Virtual 

Reality (VR) headset, the HTC Vive Pro system. The 

goal for the driver is to control the trajectory of a 

virtual motorcycle through a virtual scene using this 

bimodal feedback. 

 

 

Figure 2: Schematic representation of the interactions 

between the driver and our POC system. 

 

Figure 3: Haptic feedback motorcycle handlebars used in 

our POC system. 

We use a distributed architecture, as 

represented by its deployment diagram in Figure 4. It 

is implemented across: 

• a PC embedding an Intel® Core™ i7-8700 

CPU @ 3.20GHz and a Nvidia GeForce 

GTX 1060 responsible for the computing of 

the dynamic model of the simulated system 

(e.g., bicycle or motorcycle). The dynamic 

model is computed at a frequency of 1 kHz. 

This PC is also responsible for generating 

the images for visual rendering; 

• a lab-made board embedding a mbed 

(LPC1768) microcontroller and a Field-

Programmable Gate Array (FPGA), a DE0-

Nano board, responsible for the data 

acquisition of the torque applied to the 

handlebars by the driver; 

• a lab-made board embedding a STM32F446 

microcontroller and a DE0-Nano board, 

responsible for generating haptic cues in 

conjunction with a YukonDrive-1021-ADO 

servo controller.  

This distributed architecture guarantees the stability 

of the calculation, sampling, and transmission 

frequencies imposed by the constraints we will 

discuss in this part. Frequency jitters would 

negatively impact the controllability of the riding 

simulator, which we want to avoid per our hypothesis 

(*). 

 

 

Figure 4: Deployment diagram of our POC system. 

The servo actuator and servo controller are 

isolated with special care to avoid electromagnetic 

interference between them and the VR headset’s 

display. 

3.2 Human control input 

In motorcycle riding simulation, as previously stated, 
the rider does not drive a real motorcycle, but 
remotely operates a motorcycle model by interacting 
with a physical system. In the case of our POC 
system, the driver controls the trajectory of the 



motorcycle model by acting on the handlebars. The 
resulting torque on the steering column is an input of 
the motorcycle model and needs to be measured. The 
servo actuator we use has been specifically picked 
because of its high gear ratio (R=160), which makes 
it non-manually reversible, ensuring the separation of 
the system’s inherent dynamics and the human action 
on the system. The torque exerted by the driver on the 
handlebars can thus be measured directly using a 
strain gauge. 
 
 The torque data acquisition board was 
designed so that the embedded FPGA can sample the 
measure of up to four sensors via SPI communication. 
In our application, only one channel is used. The 
sampled measures are sent to the embedded 
microcontroller after being requested, also via SPI 
communication. Both SPI blocks implemented on the 
FPGA use a 10MHz SCLK frequency for data 
transfer. The microcontroller filters the strain gauge 
data using an Infinite Impulse Response (IIR) filter, 
specifically a 2nd order low-pass Butterworth 
numerical filter. The filter data is then re-transmitted 
via CAN bus, with a CAN bus speed of 1Mbits/s.  

3.3 Visual cueing 

Visual cues projected into the Head-Mounted Display 

(HMD) are computed in real-time by a 3D graphics 

generator, the Unity3D engine with the OpenXR 

plugin. Relevant model outputs (e.g., position, speed, 

acceleration) are sent over Ethernet using UDP at a 

frequency of 90 Hz. Using an HMD will also allow 

us to implement audio cueing in further work.  

 

For visual rendering, the first time-related 

constraint that was taken into account is the image 

refresh rate. A constant, sufficient refresh rate is 

necessary for the driver to operate under the 

impression of continuous, fluid visual motion. 30 

frames per second (FPS) is commonly defined as the 

acceptable minimum frame rate for this purpose. 

However, the images projected in the case of driving 

simulators often include vehicles moving at high 

speeds, which require a higher refresh rate for the 

animation to appear continuous and fluid. Moreover, 

a variable refresh rate induces image flickering, as 

well as instability of the virtual environment when 

using an HMD. These visual effects result in erratic, 

oscillating movements of the simulated motorcycle 

from the point-of-view of the driver. In our system, 

visual cues are generated by the 3D graphics 

generator at a constant refresh rate of 90FPS.  

 

 As presented in Table 1, the visual system is 

characterized by a sensory delay between the 

perception of a visual change in the environment and 

control response ranging from 100ms to 560ms (Nash 

et al., 2016). However, drivers are sensible to much 

lower transport delay, i.e. time difference between the 

instant of a control-command action – in the case of 

our system, turning the handlebars – and system 

response. For vision, system response is a change in 

the visual scene. When the transport delay introduced 

by a system is greater than an acceptable transport 

delay, the system becomes more difficult to control or 

even uncontrollable. It also causes uneasiness for the 

driver. In our application, feedback is bimodal: 

visual-tactile. This impacts acceptable latencies for 

both the visual and haptic feedback. The maximum 

acceptable transport delays are system-, task- and 

person-dependent (Attig et al., 2017). For a simulated 

driving task, which is a time-critical task, the 

maximum acceptable visual latency reported in the 

literature is 50ms (Frank et al., 1988; Padmos & 

Milders, 1992). As previously stated, in our system, 

the VR environment simulation runs at 90FPS. 

Assuming that all computations are performed within 

one frame, this frame rate alone introduces a latency 

of 11ms. However, there are additional software and 

hardware sources of transport delay. For the HTC 

Vive Pro used in conjunction with the Unity3D game 

engine, Le Chénéchal and Chatel-Goldman (2018) 

found a mean transport delay of 31.33ms. This is an 

acceptable visual latency for a simulated driving task. 

However, transport delay does not only depend on the 

visual rendering sub-system, but also on the human 

haptic cueing sub-system, which will be discussed in 

the next subsection. 

  

 In conclusion of this section, the design of the 

visual cueing sub-system of our POC system takes 

into account physiological constraints specific to 

vision in the particular context of having to 

accomplish a simulated driving task. Consideration of 

these constraints allows us to avoid involuntary non-

controllability of the simulated motorcycle and image 

flickering and/or oscillations. This will enable us to 

test our hypothesis (*) by changing visual feedback 

modalities without the risk of uncontrolled changes in 

those modalities caused by the system. 

3.4 Haptic cueing 

Haptic perception is divided into two dependent 

sensory sub-modalities (Reed & Ziat, 2018):  

• kinesthesia, i.e. the perception of the body’s 

movement thanks to proprioceptive sensors 



that provide feedback on efforts endured by 

the muscles and on the angular position of 

the body’s limbs; 

• tactile perception, or sense of touch, i.e., the 

perception of the skin’s interaction with the 

environment (pressure, vibration, 

temperature, texture, roughness, etc.) thanks 

to cutaneous surface feedback on the 

material properties of objects in contact with 

the body and the angular position of its 

limbs. 

 

The mechanoreceptors, specific sensory 

receptors located in the different layers of the skin and 

the joints and muscles, are respectively responsible 

for tactile perception and kinesthesia. There are 

several types of mechanoreceptors, which are each 

sensitive to specific stimuli of different frequencies. 

Riding a motorcycle using handlebars activates three 

particular types of mechanoreceptors, the 

characteristics of which are summarized in Table 2. 

Their respective frequency sensitivities impose 

design constraints for the frequency-related 

parameters of haptic cueing in our POC system. The 

torque exerted by the driver on the handlebars is 

sampled at a frequency of 500Hz. This is coherent 

with the frequency sensitivities of the 

mechanoreceptors involved in the driving task. It also 

complies with teleoperation control-command rules 

that specify a haptic refresh rate in the range of 500Hz 

to 1kHz to ensure the stability and transparency of the 

haptic interaction. This loop frequency guarantees the 

controllability of the system and thus of the simulated 

motorcycle. 

 

The haptic rendering board was specifically 

designed for this application so that the embedded 

FPGA can sample the encoder data directly from its 

serial transmission by the servo controller. Like the 

strain gauge data acquisition board, the FPGA and 

microcontroller of this board communicate using SPI 

with a 10MHz SCLK frequency. Encoder data, i.e. 

position and speed of the handlebars, is re-transmitted 

over CAN bus at a 1ms period by the microcontroller. 

This information is used as inputs of the dynamic 

model. This sampling and transmission frequency is 

compliant with the haptic loop constraints previously 

established. 

 

 

 

Table 2: Characteristics (stimulation type sensitivity and 

frequency sensitivity) of the mechanoreceptors relevant to 

the driving task (Hale & Stanney, 2004). 

Mechanoreceptors Stimulation type 

(relevant for the 

driving task) 

sensitivity 

Frequency 

sensitivity 

Pacinian corpuscles Vibration, 

acceleration 

100Hz – 

1kHz 

Ruffini endings lateral force, 

motion 

direction, static 

force 

0.4Hz – 

100Hz 

Meissner corpuscles Velocity, grip 

control 

2Hz – 

40Hz 

 

  

 We have described what feedback is 

transmitted to the PC that computes the dynamic 

model, and how and when it is. Our haptic feedback 

actuator is speed controlled using a Proportional 

Integral (PI) controller. However, in our 

implementation, the speed output of the model is not 

applied directly as speed reference but is first 

corrected using the current position error. This 

position-speed dual control avoids position derivation 

due to incremental speed tracking error and numerical 

integration. The block diagram representation of the 

position-speed control is given in Figure 5. For 

clarity, model inputs are not exhaustively 

represented, but they have been described in the text. 

 

 

 

Figure 5: Block diagram representation of the servo 

actuator’s position-speed control.  

Similarly to vision, haptic perception allows 

for a maximum acceptable transport delay between 

the driver trying to turn the handlebars and the 

handlebars effectively turning. Even though nerve 

messages have a longer distance to travel between the 

arms and hands and the brain than between the eyes 

and the brain, delays characteristic of haptic 

perception are significantly shorter than delays 

characteristic of vision (as evidenced in Table 1; see 

also Cameron et al., 2014; Crevecoeur et al., 2016). 

The maximum acceptable haptic delay varies 

significantly on the task, the system, and the person 

(Kaber & Zhang, 2011). Our objective was the 



minimization of haptic latency in our system. CAN 

bus communication introduces a well-known delay 

that corresponds to the duration of a CAN frame. The 

maximum duration of a CAN base frame is around 

134µs (for an 8 bytes data frame). The CAN 

arbitration process also adds another delay that is 

difficult to quantify. This is why the speed reference 

value for the servo actuator is transmitted via an 

analog input directly to the servo controller. Speed is 

thus controlled while minimizing additional delay in 

the system control that affects both haptic and visual 

latency. 

 

To summarize, we designed the haptic 

rendering sub-system of our POC system by taking 

into account physiological constraints specific to 

haptic perception, such as haptic sensory receptors 

frequency sensitivities and minimal haptic latency. 

This ensures that this sub-system induces no 

involuntary non-controllability of the simulated 

motorcycle. This will allow us to test our hypothesis 

(*) by changing haptic feedback modalities without 

risk of uncontrolled changes in those modalities 

caused by reasons inherent to the system. 

Furthermore, our POC system provides the rider with 

good quality haptic feedback on motorcycle 

handlebars, which we believe is necessary to ensure 

the controllability of any motorcycle driving 

simulator. 

4 CONCLUSIONS 

We argue that Simulator Sickness comes from 

inadequacy between the complexity of the vehicle 

model and the fidelity of the sensory cues to be 

reproduced. We have taken a special interest in 

motorcycle riding simulators and in particular in the 

issue of providing good quality haptic feedback on 

the motorcycle handlebars. Indeed, this feedback 

significantly affects the simulator’s controllability 

and is not often taken into account. 

 

We aim to demonstrate the cruciality of the 

coherence between both of those aspects. To do so, 

we have designed a Proof-Of-Concept system that 

takes into account the specific constraints of human 

sensory systems. This design philosophy, detailed in 

this work, will thus allow us to modulate visual and/or 

haptic feedback. By doing so, we will be able to 

compare the results in terms of (1) controllability and 

task performance and (2) anxiety, discomfort, and 

eventual SS symptoms severity of a motor control 

task when the complexity of the vehicle model and 

the fidelity of the sensory cues (a) when they are 

coherent and (b) when they are mismatched. The 

exploration of our hypothesis in the case of a “simple” 

task using this POC system will be our next step. Our 

haptic feedback subsystem will allow us to explore 

the impact of the adequacy of the motorcycle 

dynamic model’s complexity with the complexity of 

the simulator architecture on trajectory control, 

presence, and SS occurrence in a future experiment. 

We plan to compare these aspects for coherent and 

mismatched modalities defined by: (1) two dynamic 

motorcycle models of different complexity, and (2) 

disabled or enabled haptic restitution for the same 

motorcycle riding simulator platform. 
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