Skip to Main content Skip to Navigation
Journal articles

More frequent extreme climate events stabilize reindeer population dynamics

Abstract : Extreme climate events often cause population crashes but are difficult to account for in population-dynamic studies. Especially in long-lived animals, density dependence and demography may induce lagged impacts of perturbations on population growth. In Arctic ungulates, extreme rain-on-snow and ice-locked pastures have led to severe population crashes, indicating that increasingly frequent rain-on-snow events could destabilize populations. Here, using empirically parameterized, stochastic population models for High-Arctic wild reindeer, we show that more frequent rain-on-snow events actually reduce extinction risk and stabilize population dynamics due to interactions with age structure and density dependence. Extreme rain-on-snow events mainly suppress vital rates of vulnerable ages at high population densities, resulting in a crash and a new population state with resilient ages and reduced population sensitivity to subsequent icy winters. Thus, observed responses to single extreme events are poor predictors of population dynamics and persistence because internal density-dependent feedbacks act as a buffer against more frequent events.
Document type :
Journal articles
Complete list of metadata
Contributor : Marlène Gamelon Connect in order to contact the contributor
Submitted on : Thursday, July 8, 2021 - 5:03:35 PM
Last modification on : Wednesday, February 2, 2022 - 9:46:12 AM
Long-term archiving on: : Saturday, October 9, 2021 - 7:05:50 PM


Hansen, Gamelon et al. 2019.pd...
Publisher files allowed on an open archive




Brage B Hansen, Marlène Gamelon, Steve D Albon, Aline M Lee, Audun Stien, et al.. More frequent extreme climate events stabilize reindeer population dynamics. Nature Communications, Nature Publishing Group, 2019, 10, pp.1616. ⟨10.1038/s41467-019-09332-5⟩. ⟨hal-03282108⟩



Record views


Files downloads