Methods for studying cause-specific senescence in the wild

David N Koons, Marlène Gamelon, Jean-Michel Gaillard, Lise M Aubry, Robert F Rockwell, François Klein, Rémi Choquet, Olivier Gimenez

- To cite this version:

David N Koons, Marlène Gamelon, Jean-Michel Gaillard, Lise M Aubry, Robert F Rockwell, et al.. Methods for studying cause-specific senescence in the wild. Methods in Ecology and Evolution, 2014, 5 (9), pp. $924-933$. 10.1111/2041-210x. 12239 . hal-03282076

HAL Id: hal-03282076

https://hal.science/hal-03282076

Submitted on 8 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Methods for Studying Cause-Specific Senescence in the Wild

Journal: Methods in Ecology and Evolution
Type of Paper: Standard Article

David N. Koons ${ }^{1,6}$, Marlène Gamelon ${ }^{2}$, Jean-Michel Gaillard ${ }^{3}$, Lise M. Aubry ${ }^{1,6}$, Robert F. Rockwell ${ }^{4}$, François Klein ${ }^{5}$, Rémi Choquet ${ }^{6}$, Olivier Gimenez ${ }^{6}$
${ }^{1}$ Department of Wildland Resources and the Ecology Center, 5230 Old Main Hill, Utah State University, Logan, UT 84322-5230, USA
${ }^{2}$ Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, N-7491-Trondheim, Norway
${ }^{3}$ Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, F69622 Villeurbanne, France
${ }^{4}$ Division of Vertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, N.Y. 10024, USA
${ }^{5}$ Office National de la Chasse et de la Faune Sauvage, Centre d'Etude et de Recherche Appliquée Cervidés-Sanglier, 85 bis avenue de Wagram, 75008 Paris, France
${ }^{6}$ Centre d'Ecologie Fonctionnelle et Evolutive, Campus CNRS, UMR 5175, 1919 Route de Mende, 34293 Montpellier Cedex 5, France

Contact Information:
David N. Koons, Ph.D.
Utah State University
Dept. of Wildland Resources
5230 Old Main Hill
Logan, UT 84322-5230, USA
phone: 1-435-797-8670
e-mail: david.koons@.usu.edu

Running title: Age trajectories of cause-specific mortality
Word count: 8,118

Summary

1. The founding evolutionary theories of ageing indicate that the force of mortality imposed by environmental factors should influence the strength of natural selection against actuarial senescence and its evolution. To rigorously test this idea, field biologists need methods that yield estimates of agespecific mortality according to cause of death.
2. Here, we present existing methods commonly applied in studies of human health that could be used to accomplish these goals in studies of wild species for which fate can be determined with certainty. We further present a new application of hidden Markov models for capture-reencounter studies of wild animals that can be used to estimate age-specific trajectories of cause-specific mortality when detection is imperfect.
3. By applying our new hidden Markov model with the E-SURGE and MARK softwares to capturereencounter datasets for long-lived species, we demonstrate that senescence can be severe for natural causes of mortality in the wild, while being largely nonexistent for anthropogenic causes.
4. Moreover, we show that conflation of mortality causes in commonly used survival analyses can induce an underestimation of the intensity of senescence and overestimation of mortality for presenescent adults. These biases have important implications for both age-structured population modelling used to guide conservation and comparative analyses of senescence across species. Similar to frailty, individual differences in causes of death can generate individual heterogeneity that needs to be accounted for when estimating age-specific mortality patterns.
5. The proposed hidden Markov method and other competing risk estimators can nevertheless be used to formally account for these confounding effects, and we additionally discuss how our new method can be used to gain insight into the mechanisms that drive variation in ageing across the tree of life.

Key-words: ageing, capture-reencounter, competing risk analysis, frailty, harvest, heterogeneity, hidden Markov model, predation.

Introduction

Assessing the sources of mortality over life and how they shape age-specific mortality trajectories is of paramount importance in ecology, evolution and public health. Biostatisticians have long known that much can be learned by decomposing mortality into its respective causes (Chiang 1968). For example, if an individual smokes, a 'competing risk analysis' can help identify how this affects the chance of dying from lung cancer relative to heart disease or other causes (Berkson \& Elveback 1960; Chiang 1991). Competing risk analyses can additionally be used to help identify gene loci and gene expressions that are involved in the phenotypic expression of early- and late-life chances of dying from various causes (e.g. Slagboom et al. 2000). Cause of death data can thus shed light on the underlying life choices, environmental factors, and genetic mechanisms that shape mortality risks over the life course compared to a common survival analysis that disregards diverse causes of death (Finch 1990). For these reasons, great effort has been devoted to studying cause-specific mortality from the youngest to the oldest age classes in human populations (e.g. Horiuchi \& Wilmoth 1997; Horiuchi et al. 2003).

In wild vertebrates, there is also a long history of studying cause-specific mortality, but with a specific focus on pre-defined single (e.g. Singer et al. 1997 on juveniles; Brodie et al. 2013 on adults) or multiple (e.g. Dumke \& Pils 1973; Nelson \& Mech 1986) age classes. Determining the cause-specific drivers of mortality in both juvenile and adult age classes can indeed help focus management efforts aimed at conserving populations (Forrester \& Wittmer 2013). Apart from the study of simple age classes, however, empirical studies of age-specific causes of mortality and their consequences on the shape of mortality trajectories in wild organisms are lacking.

This is surprising because the original theories on the evolution of senescence (here, the actuarial definition of an increase in mortality and decrease in survival with age) hinge upon concepts of causespecific mortality (see Box 1). Methods for estimating competing risks of mortality in the wild, and how they change with age, could help evolutionary ecologists identify the mechanisms underlying patterns of
senescence across species and environmental conditions (Jones et al. 2008, 2014; Baudisch et al. 2013; Nussey et al. 2013).

Studying senescence in the wild is further complicated by the fact that individual heterogeneity can have important effects on the estimation of age-specific patterns of mortality and survival (Cam et al. 2002; Nussey et al. 2008; Péron et al. 2010; Aubry et al. 2011). In most populations, 'frail' individuals readily die, leaving only the more 'robust' individuals in a study sample at advanced ages (sensu Vaupel et al. 1979). When not accounted for, intra-generational viability selection (Endler 1986) among heterogeneous individuals can bias marginal estimates of age-specific mortality (Vaupel \& Yashin 1985). At the end of life, cause of death is a component of the phenotype and can therefore be thought of as a type of individual heterogeneity. Although different than individual heterogeneity at the beginning of life, individual variation in fates could also affect the estimation of age-specific mortality but has not previously been considered to our knowledge. We fill this gap by reviewing contemporary competingrisk analyses that can be used to examine age-specific variation within each risk, and additionally provide an original method for estimating age-specific mortality trajectories while accounting for individual differences in mortality causes when detection is imperfect.

We focus on capture-reencounter hidden Markov models that account for imperfect detection and can even accommodate fates that are not observable (i.e. hidden states; Pradel 2005; Gimenez et al. 2012), both of which are common to studies of wild organisms (Williams et al. 2002). Applying this method to example datasets, we provide a first demonstration that decomposing age-specific mortality into its respective causes can have notable effects on the estimated rate of senescence in the wild. In addition, age profiles of cause-specific mortality provide more explicit targets for associating physiological condition, gene loci, and quantitative gene expressions with senescence in the competing risks they affect most (Nussey et al. 2008).

Estimating cause-specific mortality across ages in the wild

Perfect detection

In plants, sessile organisms, and captive or semi-captive animal populations, cause-of-death data for studied individuals can be collected along with the standard actuarial life table (e.g. Mumby et al. 2013). In addition, cause of mortality data is often collected in radio-telemetry and GPS-transponder studies of free-ranging animals (Heisey \& Fuller 1985; Tomkiewicz et al. 2010). In the past, cost and logistics associated with these technologies have prohibited the large sample sizes needed to examine senescence at advanced ages, but that may change as GPS and associated battery-life technology develop (Tomkiewicz et al. 2010).

In some cases, the immediate cause of death might be obvious (e.g. vehicle or wind turbine collision, hunting or fishing recoveries of marked individuals, bark beetle kill in trees, etc.), but necropsies and other types of expert assessments on the less obvious causes of death could provide more detailed insight into the array of factors that kill individuals in the wild (e.g. Mar et al. 2012). Often times, however, such detail is out of reach and cause of death will have to be collapsed into broader categories. Grouped causes of death (e.g. predation, disease) can nevertheless provide deeper insight into mortality dynamics than an assessment of overall mortality (as demonstrated by the examples below).

In studies where observers can at least ascertain whether an individual is alive or not at each census period (i.e. known-fate data), age-specific cause of death data can be analyzed with existing competingrisk statistical models. The general approach is straightforward; instead of specifying a standardized calendar date as the unit of time at which an individual enters and exits the study sample, one must simply substitute 'age' as the unit of time (e.g. Aubry et al. 2011). Even the popular Cox proportional hazard model (Cox 1972) can be extended to estimate age- and cause-specific mortality (Heisey \& Patterson 2006). To address questions related to the rate of senescence, one might prefer to fit parametric relationships between age and mortality rate according to cause of death (e.g. accelerated failure time models; Wei 1992), whereas for questions related to the shape of mortality over life, one
might prefer to fit semi-parametric or non-parametric models (e.g. Kaplan-Meier models [1958]). The extensive repertoire of modelling possibilities that are available in traditional survival analysis can for the most part be extended to the study of competing risks (Kleinbaum \& Klein 2012).

There are nevertheless caveats associated with analyzing cause of death data (see Heisey \& Patterson 2006). Similar to any statistical analysis with dichotomous variables, specifying too many causes of mortality may limit degrees of freedom, diminishing precision of parameter estimates. In addition, staggered entry of individuals into the study sample is common in studies of wild organisms (i.e. left truncation: the addition of individuals to the study sample after the beginning of the study). However, only a few competing risk methods properly account for staggered entry that affects the at-risk sample in ways that are not due to death or right censoring (Lunn \& McNeil 1995; de Wreede et al. 2011; Geskus 2011). These methods offer a fruitful way forward for examining age-specific competing risks in data that are often augmented with staggered entries to maintain the sample sizes needed to address questions concerning senescence.

The challenge of imperfect detection and unobservable fates in the wild

In non-captive animal populations, live individuals might not be detected during a survey for an array of reasons. In such cases, the standard life table and aforementioned competing-risk methods yield measures of age-specific 'return rates' to the observer, as opposed to the desired quantities of survival and mortality. This is problematic because a return rate is a function of three different events: survival, fidelity to the study area (i.e. 1 - emigration), and the probability of detection given an individual is alive and on the study area (Martin et al. 1995). Failure to account for imperfect detection can thus lead to flawed inference in both ecological (Nichols 1992) and evolutionary studies (Gimenez et al. 2008).

Fortunately, capture-reencounter (CR) methods can decouple the probabilities that comprise a return rate (Burnham 1993), and are often used to robustly estimate survival in wild populations (Williams et al. 2002). Because of their properties, CR methods are now commonly used to study senescence in the wild (e.g. Gaillard et al. 2004; Péron et al. 2010). The nuisance of imperfect detection nevertheless
presents a challenge to estimating cause-specific mortality in wild animal populations. Death is never observed for most individuals in a wild animal population, and determination of certain causes of death might be completely 'unobservable'.

All is not lost, however, because modern multistate CR methods make it possible to estimate causespecific probabilities of mortality when detection is imperfect. The original multistate CR estimators for cause-specific mortality were restricted to situations where each cause of mortality was at least partially observable (Lebreton et al. 1999; Schaub \& Lebreton 2004; Schaub \& Pradel 2004). This approach has since been extended to allow for an additional 'unobservable' cause of mortality using a hidden Markov specification of the multistate CR model (hereafter CR HMM; Pradel 2005; Servanty et al. 2010; Gimenez et al. 2012). The CR HMM for cause-specific mortality may be more generally applicable to the study of marked animals because it does not exclude causes of death that are completely hidden from the observer (e.g. consumption by certain predators), but does nevertheless require the combination of live recaptures and marked-individual recoveries from at least one source of mortality. In practice, the combination of live recapture and dead recovery data are typically represented using a capture history for each individual where, e.g., 0AA0C would represent an individual that was captured and released alive (A) on the second capture occasion, recaptured alive (A) on the third occasion, and then not observed until it was recovered between occasions four and five when it died of cause C (note that letter identifiers could be replaced with numbers). The zeros between non-zeros in a capture history provide critical information about imperfect detection.

The individual-based encounter histories are combined into a population-level dataset to estimate the probability of individual i dying from cause k between discrete time step t and $t+1\left(\mu_{i, t}^{k}\right)$ using a CR HMM like that shown in Figure 2. By defining dead states as absorbing states, the probabilities of transitioning from a live state (A in Fig. 2) to a dead state (B, C, and O in Fig. 2) naturally become cause-specific mortality probabilities (Gauthier \& Lebreton 2008). Of key importance, the transition
probabilities are estimated conditionally on state-specific probabilities of detecting each individual i in state k at time step $t\left(p_{i, t}^{k}\right)$ that are simultaneously solved for using either a maximum-likelihood or Bayesian approach (Lebreton et al. 2009). According to the example (Fig. 2), $p_{i, t}^{\mathrm{A}}$ would represent the probability of recapturing a live individual i at time t. As long as dead recoveries can be attained at a spatial scale much larger than the study area, fidelity can be subsumed within $p_{i, t}^{\mathrm{A}}$ like in our example (Schaub \& Lebreton 2004), or fidelity can be separately estimated (Burnham 1993). For the dead states $p_{i, t}^{\mathrm{B}}$ is the probability that an individual i that died of cause B between $t-1$ and t was 'recovered dead and reported' to the observers at time t, and $p_{i, t}^{\mathrm{C}}$ the same detection probability for an individual that died of cause C . The detection probability must be fixed to 0 for other sources of mortality that are not observable (state O in Fig. 2). It is nevertheless possible to identify the probability of dying from collectively unobservable causes ($\mu_{i, t}^{\mathrm{O}}$ in Fig. 2) by borrowing information from the joint live recaptures and dead recoveries (Servanty et al. 2010).

With regard to cause-specific mortality, multistate CR models have been used to compare and identify problematic sources of mortality in declining or managed populations (Schaub \& Pradel 2004; Bischof et al. 2009), estimate the strength of natural selection on hunting mortality relative to nonhunting mortality in harvested populations (Gamelon et al. 2011), and to estimate the degree of compensation or additivity between sources of mortality (Schaub \& Lebreton 2004; Servanty et al. 2010; Koons et al. 2014). To our knowledge, however, complete age trajectories of cause-specific mortality have never been estimated appropriately while accounting for imperfect detection. When trying to focus on senescence in natural causes of mortality, past studies of ageing in the wild have typically right-censored individuals once they were known to have died from anthropogenic causes. Because fates are not known for all individuals in a CR study, this form of non-random censoring introduces a source of bias. In the examples below, we use long-term studies of two long-lived
vertebrates to illustrate how to overcome these important gaps in our understanding of ageing in the wild. To help others use the CR HMM method for their own, potentially more illuminating studies and questions pertaining to senescence and cause-specific mortality, we provide annotated code for implementing the examples using the two leading CR softwares: E-SURGE and program MARK (see App. 1).

Examples demonstrating the use of CR HMM for estimating age trajectories of cause-specific mortality

Age-specific trajectories of mortality causes in the lesser snow goose
A marked population of lesser snow geese (Chen caerulescens caerulescens) has been studied near La Pérouse Bay, Manitoba, Canada since 1969 ($58^{\circ} 44^{\prime} \mathrm{N}, 94^{\circ} 28^{\prime}$ W; Cooke et al. 1995), where recaptures of previously marked individuals are recorded every year during banding drives. In parallel, public hunters across North America submit records of harvested birds with bands to the USGS Bird Banding Laboratory. To estimate age-specific mortality according to cause, we focused on a sample of knownage females banded and released as goslings ($n=45,914$) with subsequent live recaptures $(n=1,976)$ and hunter recoveries ($n=5,163$) between 1969 and 2011. Because the human hunter is the predominant predator of adult lesser snow geese (Koons et al. 2014), the age-specific level of hunting mortality may modify the strength of natural selection against senescence in both direct and indirect ways (Box 1, Fig. 1). Thus, we developed a CR HMM with one alive state (A) and two dead states: a partially observable state of 'died from hunting' (H; i.e. legally hunted) and an unobservable state of 'died from non-hunting' (NH , which includes any unobservable crippling loss). Observed capture histories never contain explicit information about individuals in unobserved states like NH. To develop a CR HMM, one must therefore define the unobserved states of interest and fix the respective detection probabilities to 0 (Pradel 2005). In appendix 1 we demonstrate how to do this for the snow goose example using the RMark package for R (Laake \& Rexstad 2012), describe our analysis in more detail, and provide annotated code for the
modelling steps. Here, we focus on demonstrating the approach of using a CR HMM to study agespecific mortality according to cause in the wild.

Drawing from the long history of research on snow goose survival and previous findings for the same or similar dataset (Francis et al. 1992a; Cooch et al. 2001; Aubry et al. 2013; Koons et al. 2014), we developed CR HMMs that account for important sources of age and temporal variation in the detection probabilities, as well as temporal variation in cause-specific mortality probabilities for each of two age classes (hatch-year and after-hatch-year; see App. 1A). To estimate the trajectory of causespecific mortality at each age x, μ_{x}^{k}, we considered the Gompertz, Weibull, and logit-linear functions (Gaillard et al. 2004), with alternative ages of onset for senescence (ages 4, 6, 8, 10, 12, 14, or 16; nonstatistically significant results from Francis et al. 1992b indicate that if there is senescence, the onset may be delayed until ~ age 10). At each modelling step, we used Akaike's Information Criterion adjusted for sample size $\left(\mathrm{AIC}_{\mathrm{c}}\right.$; Akaike 1973; Burnham \& Anderson 2002) to identify the model structure most supported by the data.

While controlling for temporal variation, we found strong support for Gompertz senescence in nonhunting mortality past age 14 (loglog link: $\hat{\beta}=0.119,95 \% \mathrm{CI}: 0.083-0.154$; Fig. $3 ; \Delta \mathrm{AIC}_{\mathrm{c}}=45.2$ for simple age-class effects). This model was more supported than other ages of onset in non-hunting mortality senescence $\left(\Delta \mathrm{AIC}_{c}>0.8\right)$, as well as the Weibull $\left(\Delta \mathrm{AIC}_{c}=0.1\right)$ and logit-linear ageing functions $\left(\Delta \mathrm{AIC}_{\mathrm{c}}=11.0\right)$. We detected marginal support for reduced hunting mortality with age (1.1 unit improvement in $\mathrm{AIC}_{\mathrm{c}}$), but the effect was biologically minor and imprecisely estimated ($\hat{\beta}=-0.006$, 95% CI: $-0.014-0.001$).

Thus, it seems that actuarial senescence is delayed and restricted to non-hunting sources of mortality in lesser snow geese. Studies of senescence in other long-lived avian species have similarly found delayed onsets of aging that begin well past the age of primiparity (which ranges from 2-4 in snow geese; Juillet et al. 2012), but also less severe senescence in species that are longer-lived than snow
geese on average (e.g. Pardo et al. 2013; Jones et al. 2014). Interestingly, previous studies of agespecific demography in snow geese had detected senescence in reproductive success (Rockwell et al. 1993) but not in survival (Francis et al. 1992b). This may have been due to the lack of a large enough sample of old-age individuals at the time of analysis, conflation of individuals that died from senescent non-hunting sources of mortality with those that died from non-senescent hunting mortality, or both.

Indeed, a multistate CR model without specification of mortality cause (i.e. just live and dead states) offered a relatively poor fit to the same dataset. Although the onset of senescence at age 14 was once again more supported than onset at other ages, the model was $1180 \mathrm{AIC}_{\mathrm{c}}$ units worse than a causespecific mortality model with two age classes and $1210 \mathrm{AIC}_{\mathrm{c}}$ units worse than the top cause-specific mortality model with senescence past age 14 in non-hunting mortality. In addition, not accounting for cause of mortality led to an underestimation of overall juvenile mortality, overestimation of mortality during pre-senescent adult life, and a 44.5% reduction in the estimated rate of senescence ($\hat{\beta}=0.066$, 95% CI: $0.035-0.098$; Fig. 3, compare open and closed circles). In essence, conflation of mortality causes led to a flattening of the estimated boat-shaped mortality curve and forced the bottom of the boat to pop up.

Age-specific trajectories of mortality causes in roe deer

Our second example pertains to a roe deer (Capreolus capreolus) population in the enclosed forest (13.6 km^{2}) of the Territoire d'Etude et d'Expérimentation of Trois Fontaines, in eastern France ($48^{\circ} 43^{\prime} \mathrm{N}$, $\left.54^{\circ} 10^{\prime} \mathrm{W}\right)$, that has been intensively monitored using CR methods from 1975 to 2013. Each year since 1985, newborn fawns were captured, sexed, marked, and released after handling (Gaillard et al. 1998). Here we focus on the 556 known-age females, of which 217 were recaptured at least once and 41 were deadly injured during handling, victim of car collisions, or recovered and reported by hunters (collectively denoted as human-related mortalities). To control population size, some individuals were removed from the forest and released outside the study area (and right-censored from the dataset). There
are no predators of adult roe deer at Trois Fontaines, and thus the age-specific level of human-related mortality may modify the strength of natural selection against senescence in both direct and indirect ways (Box 1, Fig. 1).

We estimated natural and human-caused mortality using a CR HMM allowing for the joint analysis of live recaptures and dead recoveries of individuals (Schaub \& Pradel 2004; Lebreton et al. 2009). Four states were used to describe the fates of each individual: two partially observable states, one for individuals that were alive (A) at time t and another for individuals that had just died from humanrelated causes (H), and two unobservable states, one for individuals that had just died from natural causes (NH) and an absorbing state for the collection of individuals that were already dead (D). Given these state definitions, the human-related mortality probability $\left(\mu^{H}\right)$ corresponded to the transition probability from the state A at time t to state H by time $t+1$, and similarly, the natural mortality probability ($\mu^{N H}$) corresponded to the transition probability from state A at time t to state NH by time $t+1$. Because an individual could not return to state A once dead, we fixed these transitions to 0 . To ensure that all probabilities were estimated within the interval $[0,1]$ and summed to 1 , we used a generalized (or multinomial) logit link function (e.g. Choquet et al. 2009). A live individual could be recaptured with probability $p_{i, t}$, or not recaptured with probability $1-p_{i, t}$. Because capture effort varied among years and age classes (Gaillard et al. 2003; Choquet et al. 2011), we included an interactive effect of time-dependence in $p_{i, t}$ for age class 1 relative to individuals older than 1 year of age. An individual that just died from human causes could be recovered and reported with probability $r_{i, t}$, or not recovered and reported with probability 1- $r_{i, t}$. Because tag recovery protocols were constant over the course of the study, we considered $r_{i, t}$ to be constant over time and across age classes.

To estimate cause- and age-specific mortality, we allowed natural and/or human-related mortalities to vary linearly on the generalized logit scale from age 1 or 2 onward based on previous studies (e.g. Gaillard et al. 2004). When natural mortality was allowed to vary linearly with age on a generalized
logit scale, human-related mortality was either constrained to be constant, allowed to vary among 'age classes', or allowed to vary linearly with age on the generalized logit scale (and vice versa when humanrelated mortality was a generalized logit-linear function of age). We considered and compared the following age class parameterizations: $0-1,>1$, or $0-1,1-2,>2$. In addition, according to previous research on roe deer survival (Festa-Bianchet et al. 2003), we also tested models that allowed causespecific mortality probabilities to vary among 5 age classes: fawn summer mortality up to age 1 , age 1 to 2 , ages 2 to 8 , an early senescent category for individuals between age 8 and 13 , and a senescent category for older individuals. We then used QAIC to compare the various competing models using the E-SURGE software (Choquet et al. 2009). In appendix 1B, we show how to implement CR HMM models for the roe deer example.

The best model indicated senescence in natural mortality from age 2 onwards (generalized logit link $\hat{\beta}=2.239,95 \% \mathrm{CI}: 0.942-3.535$; Fig. 4). The best model also retained a constant human-related mortality probability from age 1 onwards but a higher mortality in the first year of life after birth (human-related mortality probability ${ }_{0-1}=0.132,95 \% \mathrm{CI}: 0.053-0.294$; human-related mortality probability ${ }_{1+}=0.057,95 \%$ CI: $0.027-0.115$; Fig. 4). This model performed better than other ages of onset for senescence in natural mortality ($\Delta \mathrm{QAIC}>2$) and other parameterizations of age effects for human-related mortality ($\Delta \mathrm{QAIC}>1.5$).

To examine the effect of conflating the causes of mortality on the estimated age-specific mortality trajectory, we developed a multistate CR model without specifying mortality causes similar to that developed for the snow goose example above. For this analysis, three states were considered in ESURGE: one for individuals that were alive (A) at time t, another for individuals that had newly died (from human-related or natural causes) (ND), and an absorbing state for the collection of individuals that were already dead (D). Given these state definitions, the overall mortality probability corresponded to the transition probability from state A at time t to state ND by time $t+1$. We then cast model structures
similar to those described above for the CR HMMs, and although senescence was still detected, the estimated rate of senescence was 48.4% lower than in the CR HMM that accounted for mortality cause ($\hat{\beta}=1.155,95 \%$ CI: $0.784-1.526$, Fig. 4 open circles). Moreover, this model was 7.64 QAIC units worse than the top cause-specific mortality model. Similar to the snow geese, failure to account for the cause of mortality led to an overestimation of mortality in roe deer from age 4 to 10 , and underestimation from age 11 to 17 (Fig. 4, compare open and closed circles).

Discussion

Nature provides a vast array of ecological conditions that provide a powerful stage for testing evolutionary theory (sensu Hutchinson 1965). This is especially relevant for studies of senescence because the environmental factors that shape the onset and magnitude of senescence in the wild are poorly understood. Using the comparative method, much has recently been learned about the great variety of age-specific mortality trajectories across the tree of life (Jones et al. 2008, 2014; Baudisch et al. 2013; Nussey et al. 2013). Here, we presented old and new methods that can improve the estimation of senescence by decomposing age-specific mortality into proximate causes. When applied to specific questions and mechanisms, the presented methods could even be used to gain a deeper understanding of senescence in the wild (or lack thereof).

Given the impact that exposure to additional mortality can have on selection pressures affecting senescence (Box 1, Fig. 1), both known-fate and CR HMM methods should be used to compare trajectories of age-specific mortality according to cause of death across populations and species where data are available or can be collected. Moreover, these methods can be used to refine insight into findings that indicate old individuals in the wild are sometimes more susceptible to hunting or predation because of interactions between physiological and ecological processes (e.g. Garrott et al. 2002; Carlson et al. 2007), pressures of trophy hunting (Coltman et al. 2003), or because of social organization that exposes the eldest individuals first (Festa-Bianchet et al. 2006). In the case of the human hunter, it has
been found in some systems that the 'human predator' may simply consume prey in proportion to their occurrence (e.g. abundant prime-aged adult elk; Wright et al. 2006). In our examples, we found that the chance of dying from human-related causes was largely age-independent after maturity in both female snow geese and roe deer. A high rate of hunting mortality can nevertheless select for increased early-life allocation to reproduction (Gamelon et al. 2011), and future studies should examine how this may in turn affect the rate of actuarial senescence (Fig. 1) as well as senescence in reproductive success (Rockwell et al. 1993).

Our examples also indicate that some sources of mortality may senesce at a rapid pace while others may not senesce at all. By decoupling human-related from natural causes of mortality with CR HMMs, we were able to estimate the rate of senescence in both natural and overall mortality in snow geese and roe deer (Figs. $3 \& 4$). Past CR studies that have attempted to make inference about senescence in natural causes of mortality have typically right-censored individuals once they were known to have died from anthropogenic causes, but because fates are not known for all individuals in a CR study, this nonrandom censoring introduces a source of bias. Our CR HMM is a type of 'competing risk analysis' that allows for appropriate estimation of age- and cause-specific mortality probabilities when detection is imperfect. Going forward, methods like ours should be used to examine age trajectories of mortality among competing risks experienced by wild populations. In addition, we have shown that conflating causes of mortality in a traditional CR analysis can lead to an underestimation of the rate of senescence and overestimation of mortality in pre-senescent adults. Both of these biases have important implications for age-structured modelling used to guide conservation and management. Based on simulation, the underestimation of senescence in a traditional CR analysis is most severe when the age trajectories of underlying competing risks are very different (see Table 1A). Like frailty (Vaupel et al. 1979), heterogeneity in the eventual causes of death can thus also affect marginal estimates of age-specific mortality. Whether this is also true for known-fate analyses remains to be explored.

Examining age trajectories of cause-specific mortality (e.g. in humans, Horiuchi et al. 2003) can also provide more explicit targets for associating environmental conditions (e.g. toxin or pathogen exposure), physiological condition, gene loci, and quantitative gene expressions with senescence in the competing risks they affect most (Nussey et al. 2008). For example, the CR HMM method presented here can readily be used in longitudinal studies of individual life histories (Clutton-Brock \& Sheldon 2010) to examine trade-offs between age-specific allocations to reproduction, the cause of mortality these allocations affect most at given points in the life cycle, and the net impact this has on selection against overall actuarial or reproductive senescence. By honing in on the specific causes of mortality that reproductive allocations affect most, the CR HMM method could be used to help clarify the role of pleiotropic gene expressions (Charmantier et al. 2006) and environmental conditions (van Noorwijk \& de Jong 1986) that shape trade-offs in the wild.

Similar to event-history analysis (Tuma et al. 1979), the CR HMM method could be extended to include individual transitions among live states (e.g. epidemiological or morbidity states; Choquet et al. 2013) over the life course to determine how this affects cause-specific chances of dying at a given age. Such developments would offer an especially promising avenue to gain deeper insight into the mechanistic drivers of ageing for species where cause of death could be categorized according to disease, predation, hunger, and toxicity exposure for example. Another useful extension of our CR HMM method would be to couple it with recently developed capture-reencounter methods for estimating age-specific survival from data collected on unknown-age individuals (Colchero et al. 2012; Matechou et al. 2013). The rich history of research on snow geese and roe deer allowed us to streamline the age structures considered in our examples, however, this will not always be possible. The use of flexible hazard functions or penalized splines that accommodate an array of both early- and late-life mortality trajectories in the CR HMM framework would allow for powerful comparisons of causespecific mortality trajectories across species (Gimenez et al. 2006; Choquet et al. 2011).

Although the CR HMMs used in our examples were a priori identifiable, not all CR HMM parameterizations will be (see Table 1B). As in our examples (App. 1), accounting for temporal variation and other variables can actually help improve parameter identifiability (Schaub \& Lebreton 2004; Schaub \& Pradel 2004). Future studies should conduct thorough analyses of parameter identifiability to determine the types of CR HMMs and link functions that can and cannot be fit to causespecific mortality data (Gimenez et al. 2003; Table 1). In conclusion, the methods presented here provide a baseline for enhancing methodological developments and advancing the analysis of mechanisms that drive the large variation in ageing observed across the tree of life (Jones et al. 2014).

Acknowledgements

This research was in part supported by NSF grant DEB 1019613 to DN Koons, RF Rockwell, O Gimenez and LM Aubry. We thank two anonymous reviewers for constructive comments on an earlier version of this manuscript.

References

Abrams, P.A. (1993) Does increased mortality favor the evolution of more rapid senescence? Evolution, 47, 877-887.

Akaike, H. (1973) Information theory as an extension of the maximum likelihood principle. Second International Symposium on Information Theory (eds B.N. Petrov, F. Csaki), pp. 267-281. Akademiai Kiado, Budapest, Hungary.

Aubry, L.M., Cam, E., Koons, D.N., Monnat, J.-Y. \& Pavard, S. (2011) Drivers of age-specific survival in a long-lived seabird: contributions of observed and hidden sources of heterogeneity. Journal of Animal Ecology, 80, 375-383.

Aubry, L.M., Rockwell, R.F., Cooch, E.G. Brook, R.W., Mulder, C.P. \& Koons, D.N. (2013) Climate change, phenology, and habitat degradation: drivers of gosling body condition and juvenile survival in lesser snow geese. Global Change Biology, 19, 149-160.

Austad, S.N. (1993) Retarded senescence in insular populations of Virginia opossums (Didelphis virginiana). Journal of Zoology, 229, 695-708.

Baudisch, A. (2005) Hamilton's indicators of the force of selection. Proceedings of the National Academy of Sciences, 101, 8263-8268.

Baudisch, A., Salguero-Gómez, R., Jones, O.R., Wrycza, T., Mbeau-Ache, C., Franco, M. \& Colchero, F. (2013) The pace and shape of senescence in angiosperms. Journal of Ecology, 101, 595-606.

Berkson, J. \& Elveback, L. (1960) Competing exponential risks, with particular reference to the study of smoking and lung cancer. Journal of the American Statistical Association, 55, 415-428.

Bischof, R. Swenson, J.E., Yoccoz, N.G., Mysterud, A. \& Gimenez, O. (2009) The magnitude and selectivity of natural and multiple anthropogenic mortality causes in hunted brown bears. Journal of Animal Ecology, 78, 656-665.

Brodie, J., Johnson, H., Mitchell, M., Zager, P., Proffitt, K., Hebblewhite, M. et al. (2013) Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America. Journal of Applied Ecology, 50, 295-305.

Bryant, M.J. \& Reznick, D. (2004) Comparative studies of senescence in natural populations of guppies. American Naturalist, 163, 55-68.

Burnham, K.P. (1993) A theory for combined analysis of ring recovery and recapture data. Marked Individuals in the Study of Bird Population (eds J.-D. Lebreton, P.M. North), pp. 199-213. Birkhauser Verlag, Basel, Switzerland.

Burnham, K.P. \& Anderson, D.R. (2002) Model Selection and Inference: A Practical InformationTheoretic Approach. Springer, New York.

Cam, E., Link, W.A., Cooch, E.G., Monnat, J.Y. \& Danchin, E. (2002) Individual covariation in lifehistory traits: seeing the trees despite the forest. American Naturalist, 159, 96-105.

Carlson, S.M., Hilborn, R., Hendry, A.P. \& Quinn, T.P. (2007) Predation by bears drives senescence in natural populations of salmon. PLoS ONE, 2(12), e1286. doi:10.1371/journal.pone.0001286Carlson et al. 2007

Caswell, H. (2007) Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22, 173-174.

Charmantier, A., Perrins, C., McCleery, R.H. \& Sheldon, B.C. (2006). Quantitative genetics of age at reproduction in wild swans: support for antagonistic pleiotropy models of senescence. Proceedings of the National Academy of Sciences, 103, 6587-6592.

Chiang, C.L. (1968) Introduction to Stochastic Processes in Biostatistics. John Wiley, New York.
Chiang, C.L. (1991) Competing risks in mortality analysis. Annual Review of Public Health, 12, 281307.

Choquet, R., Rouan, L. \& Pradel, R. (2009) Program E-SURGE: a software application for fitting multievent models. Modeling Demographic Processes in Marked Populations (eds D.L. Thomson, E.G. Cooch \& M.J. Conroy), pp. 845-865. Vol. 3 of Springer Series: Environmental and Ecological Statistics. Springer, Dunedin.

Choquet, R., Viallefont, A., Rouan, L., Gaanoun, K. \& Gaillard, J.-M. (2011) A semi-Markov model to assess reliably survival patterns from birth to death in free-ranging populations. Methods in Ecology and Evolution, 2, 383-389.

Choquet, R., Carrié, C., Chambert, T. \& Boulinier, T. (2013) Estimating transitions between states using measurements with imperfect detection: application to serological data. Ecology, 94, 2160-2165.

Clutton-Brock, T.H. \& Sheldon, B.C. (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends in Ecology and Evolution, 25, 562-573.

Colchero, F., Jones, O.R. \& Rebke, M. (2012) BaSTA: an R package for Bayesian estimation of agespecific survival from incomplete mark-recapture/recovery data with covariates. Methods in Ecology and Evolution, 3, 466-470.

Coltman, D.W., O’Donoghue, P., Jorgenson, J.T., Hogg, J.T., Strobeck, C. \& Festa-Bianchet, M. (2003) Undesirable evolutionary consequences of trophy hunting. Nature, 426, 655-658.

Cooch, E.G, Rockwell, R.F \& Brault, S. (2001) Retrospective analysis of demographic responses to environmental change: a lesser snow goose example. Ecological Monographs, 71, 377-400.

Cooke, F., Rockwell, R.F. \& Lank, D.B. (1995) The Snow Geese of La Perouse Bay: Natural Selection in the Wild. Oxford University Press, Oxford, UK

Cox, D.R. (1972) Regression models and life-tables. Journal of the Royal Statistical Society B, 34, 187220.
de Wreede, L.C., Fiocco, M. \& Putter, H. (2011) mstate: an R package for the analysis of competing risks and multi-state models. Journal of Statistical Software, 38(7), 1-30.

Dumke, R.T., \& Pils, C.M. (1973) Mortality of radio-tagged pheasants on the Waterloo Wildlife Area. Wisconsin Department of Natural Resource Technical Bulletin 72, Madison, Wisconsin, USA.

Endler, J.A. (1986) Natural Selection in the Wild. Princeton University Press, Princeton,USA.
Festa-Bianchet, M., Gaillard, J.M. \& Côté, S.D. (2003) Variable age structure and apparent density dependence in survival of adult ungulates. Journal of Animal Ecology, 72, 640-649.

Festa-Bianchet, M., Coulson, T., Gaillard, J.M., Hogg, J.T. \& Pelletier, F. (2006) Stochastic predation events and population persistence in bighorn sheep. Proceedings of the Royal Society B, 273, 15371543.

Finch, C.E. (1990) Longevity, Senescence, and the Genome. University of Chicago Press, Chicago, IL, USA.

Forrester, T.D. \& Wittmer, H.U. (2013) A review of the population dynamics of mule deer and blacktailed deer Odocoileus hemionus in North America. Mammal Review, 43, 292-308.

Francis, C.M., Richards, M.H., Cooke, F. \& Rockwell, R.F. (1992) Long-term changes in survival rates of lesser snow geese. Ecology, 73, 1346-1362.

Francis, C.M., Richards, M.H., Cooke, F. \& Rockwell, R.F. (1992b) Changes in survival rates of lesser snow geese with age and breeding status. $A u k, 109,731-747$.

Gaillard, J.M., Andersen, R., Delorme, D. \& Linnell, J.D.C. (1998) Family effects on growth and survival of juvenile roe deer. Ecology, 79, 2878-2889.

Gaillard, J.M., Duncan, P., Delorme, D., Van Laere, G., Pettorelli, N., Maillard, D. \& Renaud, G. (2003) Effects of Hurricane Lothar on the population dynamics of European roe deer. Journal of Wildlife Management, 67, 767-773.

Gaillard, J.M., Viallefont, A., Loison, A. \& Festa-Bianchet, M. (2004) Assessing senescence patterns in populations of large mammals. Animal Biodiversity and Conservation, 27, 47-58.

Gamelon, M., Besnard, A., Gaillard, J.-M., Servanty, S., Baubet, E., Brandt, S. \& Gimenez, O. (2011) High hunting pressure selects for earlier birth date: wild boar as a case study. Evolution, 65, 31003112.

Garrott, R.A., Eberhardt, L.L., Otton, J.K., White, P.J. \& Chaffee, M.A. (2002) A geochemical trophic cascade in Yellowstone's geothermal environments. Ecosystems, 5, 659-666.

Gauthier, G. \& Lebreton, J.-D. (2008) Analysis of band-recovery data in a multistate capture-recapture framework. The Canadian Journal of Statistics, 36, 59-73.

Geskus, R.B. (2011) Cause-specific cumulative incidence estimation and the Fine and Gray model under both left truncation and right censoring. Biometrics, 67, 39-49.

Gimenez, O., Choquet, R. \& Lebreton, J.-D. (2003) Parameter redundancy in multistate capturerecapture models. Biometrical Journal, 45, 704-722.

Gimenez, O., Crainiceanu, C., Barbraud, C., Jenouvrier, S. \& Morgan, B.J.T. (2006) Semiparametric regression in capture-recapture modeling. Biometrics, 62, 691-698.

Gimenez, O., Viallefont, A., Charmantier, A., Pradel, R., Cam, E., Brown, C.R., Anderson, M.D., Bomberger Brown, M., Covas, R. \& Gaillard, J.-M. (2008) The risk of flawed inference in evolutionary studies when detectability is less than one. American Naturalist 172, 441-448.

Gimenez, O., Lebreton, J.-D., Gaillard, J.-M., Choquet, R. \& Pradel, R. (2012) Estimating demographic parameters using hidden process dynamic models. Theoretical Population Biology, 82, 307-316.

Hamilton, W.D. (1966) Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 12-45.

Heisey, D.M. \& Fuller, T.K. (1985) Evaluation of survival and cause-specific mortality rates using telemetry data. Journal of Wildlife Management, 49, 68-674.

Heisey, D.M. \& Patterson, B.R. (2006) A review of methods to estimate cause-specific mortality in presence of competing risks. Journal of Wildlife Management, 70, 1544-1555.

Horiuchi, S. \& Wilmoth, J.R. (1997) Age patterns of the life-table aging rate for major causes of death in Japan, 1951-1990. Journal of Gerontology: Biological Sciences, 52A, B67-B77.

Horiuchi, S., Finch, C.E., Meslé, F. \& Vallin, J. (2003) Differential patterns of age-related mortality increase in middle age and old age. Journal of Gerontology: Biological Sciences, 58A, 495-507. Hutchinson, G.E. (1965) The Ecological Theater and the Evolutionary Play. Yale University Press, New Haven, Connecticut, USA.

Jones, O.R., Gaillard, J.M., Tuljapurkar, S., Alho, J.S., Armitage, K.B., Becker, P.H. et al. (2008) Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecology Letters, 11, 664-673.

Jones, O.R., Scheuerlein, A., Salguero-Gómez, R., Camarda, C.G., Schaible, R., Casper, B.B., et al. (2014) Diversity of ageing across the tree of life. Nature, 505, 169-173.

Juillet, C. Choquet, R., Gauthier, G., Lefebvre, J. \& Pradel, R. (2012) Carry-over effects of spring hunt and climate on recruitment to the natal colony in a migratory species. Journal of Applied Ecology, 49, 1237-1246.

Kaplan, E.L. \& Meier, P. (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457-481.

Kirkwood, T.B.L. (1977) Evolution of ageing. Nature, 270, 301-304.
Kleinbaum, D.G. \& Klein, M. (2012) Survival Analysis: A Self-Learning Text, 3rd edn. Springer-Verlag, New York.

Koons, D.N., Rockwell, R.F. \& Aubry, L.M. (2014) Effects of exploitation on an overabundant species: the lesser snow goose predicament. Journal of Animal Ecology, 83, 365-374.

Laake, J. \& Rexstad, E. (2012) RMark - an alternative approach to building linear models in MARK. Program MARK: A Gentle Introduction, 11th Edition (eds E.G. Cooch \& G.C. White), App. C. http://www.phidot.org/software/ mark/docs/book/

Lebreton, J.-D., Almeras, T. \& Pradel, R. (1999) Competing events, mixtures of information and multistratum recapture models. Bird Study, 46 (suppl.), 39-46.

Lebreton, J.-D., Nichols, J.D., Barker, R.J., Pradel, R. \& Spendelow, J.A. (2009) Modeling individual animal histories with multistate capture-recapture models. (ed H. Caswell), pp. 87-173. Advances in Ecological Research, vol. 41. Academic Press, Burlington, Massachusetts, USA.

Loe, L.E., Mysterud, A., Langvatn, R. \& Stenseth, N.C. (2003) Decelerating and sex-dependent tooth wear in Norwegian red deer. Oecologia, 135, 346-353.

Lunn, M. \& McNeil, D. (1995) Applying Cox regression to competing risks. Biometrics, 51, 524-532. Mar, K.U., Lahdenperä, M. \& Lummaa, V. (2012) Causes and correlates of calf mortality in captive Asian elephants (Elephas maximus). PLoS ONE, 7(3), e32335.

Martin, T.E., Clobert, J. \& Anderson, D.R. (1995) Return rates in studies of life history evolution: are biases large? Journal of Applied Statistics, 22, 863-875.

Matechou, E., Pledger, S., Efford, M., Morgan, B.J.T. \& Thomson, D.L. (2013) Estimating age-specific survival when age is unknown: open population capture-recapture models with age structure and heterogeneity. Methods in Ecology and Evolution, 4, 654-664.

Medawar, P.B. (1952) An Unsolved Problem in Biology. H.K. Lewis, London, UK.
Mumby, H.S. Courtiol, A., Mar, K.U. \& Lummaa, V. (2013) Climatic variation and age-specific survival in Asian elephants from Myanmar. Ecology, 94, 1131-1141.

Nelson, M.E., \& Mech, L.D. (1986) Mortality of white-tailed deer in northeastern Minnesota. Journal of wildlife management, 50, 691-698.

Nichols, J.D. (1992) Capture-recapture models. Bioscience, 42, 94-102
Nussey, D.H., Coulson, T., Festa-Bianchet, M. \& Gaillard, J.-M. (2008) Measuring senescence in wild animal populations: towards a longitudinal approach. Functional Ecology, 22, 393-406.

Nussey, D.H., Froya, H., Lemaitrec, J.-F., Gaillard, J.-M. \& Austad, S.N. (2013) Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214-225.

Pardo, D., Barbraud, C., Authier, M. \& Weimerskirch, H. (2013) Evidence for an age-dependent influence of environmental variations on a long-lived seabird's life-history traits. Ecology, 94, 208220.

Péron, G., Crochet, P.-A., Choquet, R. Pradel, R., Lebreton, J.-D. \& Gimenez, O. (2010) Capturerecapture models with heterogeneity to study survival senescence in the wild. Oikos, 119, 524-532.

Pradel, R. (2005) Multievent: an extension of multistate capture-recapture models to uncertain states. Biometrics, 61, 442-447.

Reznick, D.N., Bryant, M.J., Roff, D., Ghalambor, C.K. \& Ghalambor, D.E. (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature, 431, 1095-1099.

Ricklefs, R.E. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. American Naturalist, 152, 24-44.

Ricklefs, R.E. (2000) Intrinsic aging-related mortality in birds. Journal of Avian Biology, 31, 103-111.
Ricklefs, R. (2008) The evolution of senescence from a comparative perspective. Functional Ecology, 22, 379-392.

Ricklefs, R.E. \& Scheuerlein, A. (2001) Comparison of age-related mortality among birds and mammals. Experimental Gerontology, 36, 845-857.

Ricklefs, R.E. \& Scheuerlein, A. (2002) Biological implications of the Weibull and Gompertz models of aging. Journals of Gerontology: Biological Sciences, 57A, B69-B76.

Rockwell, R.F., Cooch, E.G., Thompson, C.B. \& Cooke, F. (1993) Age and reproductive success in female lesser snow geese: experience, senescence, and the cost of philopatry. Journal of Animal Ecology, 62, 323-333.

Schaub, M. \& Lebreton, J.-D. (2004) Testing the additive versus compensatory hypothesis of mortality from ring recovery data using a random effects model. Animal Biodiversity and Conservation, 27, 73-85.

Schaub, M. \& Pradel, R. (2004) Assessing the relative importance of different sources of mortality from recoveries of marked animals. Ecology, 85, 930-938.

Shokhirev, M.N. \& Johnson, A.A. (2014) Effects of extrinsic mortality on the evolution of aging: A stochastic modeling approach. PLoS ONE 9(1): e86602. doi:10.1371/journal.pone.0086602.

Servanty, S., Choquet, R., Baubet, É., Brandt, S., Gaillard, J.-M., Schaub, M., et al. (2010) Assessing whether mortality is additive using marked animals: a Bayesian state-space modeling approach. Ecology, 91, 1916-1923.

Singer, F.J., Harting, A., Symonds, K.K. \& Coughenour, M.B. (1997) Density dependence, compensation, and environmental effects on elk calf mortality in Yellowstone National Park. Journal of Wildlife Management, 61, 12-25.

Slagboom, P.E., Heijmans, B., Beekman, M., Westendorp, R.G.J. \& Meulenbelt, I. (2000) Genetics of human aging: The search for genes contributing to human longevity and diseases of the old. Annals of the New York Academy of Sciences, 908, 50-63.

Smith, D.W., Drummer, T.D., Murphy, K.M., Guernsey, D.S. \& Evans, S.B. (2004) Winter prey selection and estimation of wolf kill rates in Yellowstone National Park, 1995-2000. Journal of Wildlife Management, 68, 153-166.

Tomkiewicz, S.M., Fuller, M.R., Kie, J.G. \& Bates, K.K. (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philosophical Transactions of the Royal Society B, 365, 2163-2176.

Tuma, N.B., Hannan, M.T. \& Groeneveld, L.P. (1979) Dynamic analysis of event histories. American Journal of Sociology, 84, 820-854.

Van Noordwijk, A.J. \& de Jong, G. (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. American Naturalist, 128, 137-142.

Vaupel, J.W., Manton, K.G. \& Stallard, E. (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439-454.

Vaupel, J.W. \& Yashin, A.I. (1985) Heterogeneity's ruses-some surprising effects of selection on population dynamics. American Statistician, 39, 176-185.

Vaupel, J.W., Baudisch, A., Dolling, M., Roach, D.A. \& Gampe, J. (2004) The case for negative senescence. Theoretical Population Biology, 65, 339-351.

Wei, L.J. (1992) The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis. Statistics in Medicine, 11, 1871-1879.

Wensink, M.J., van Heemst, D., Rozing, M.P. \& Westendorp, R.G.J. (2012) The maintenance gap: a new theoretical perspective on the evolution of aging. Biogerontology, 13, 197-201.

Williams, G.C. (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398-411.

Williams, B.K., Nichols, J.D. \& Conroy, M.J. (2002) Analysis and Management of Animal Populations. Academic Press, San Diego, California.

Williams, P.D. and Day, T. (2003) Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution, 57, 1478-1488.

Williams, P.D., Day, T., Fletcher, Q. and Rowe, L. (2006) The shaping of senescence in the wild. Trends in Ecology and Evolution, 21, 458-463

Wright, G.J., Peterson, R.O., Smith, D.W. \& Lemke, T.O. (2006) Selection of northern Yellowstone elk by gray wolves and hunters. Journal of Wildlife Management, 70, 1070-1078.

Table 1. Simulated logit-linear coefficients for age effects on mortality probabilities in a CR HMM with one alive state, a partially observable state for mortality cause X, an unobservable state for other (O) causes of mortality, and an absorbing state for those already dead (++ = 0.5 increase in mortality with age on the real scale, $+=0.25$ increase, and 0 no increase; implemented using a continuous age variable on the logit scale with value 0 for age $0,0.1$ for age $1,0.2$ for age 2 and so on). Provided in A) are the estimated coefficients relative to simulated values (95% CI provided within brackets), as well as the estimated age effects for mortality when states X and O are collapsed (conflated) into a single state. Simulations involved the release of newborns in a fashion that maintained 10,000 individuals in the simulated sample at all time steps, $p^{X}=0.3, p^{O}=0.3$, and a common mortality intercept (-1.50). Simulations in B) were similar but included unique parameters for the mortality intercepts of cause X and O (each simulated with a value of -1.50). Differences between simulated and estimated coefficients indicate problems with either partial or complete non-identifiability of model parameters. Interestingly, estimation with a constrained identity link function (not shown) corrected these problems.

Simulated						
$\boldsymbol{\beta}_{\text {age }}^{X}$		$\boldsymbol{\beta}_{\text {age }}^{O}$	$\hat{\beta}_{\text {age }}^{X}$	$\hat{\beta}_{\text {age }}^{o}$	Estimated	Conflated
A$)$	++	+	0.50	0.18	$\hat{\beta}_{\text {int }}^{X}$	$\hat{\beta}_{\text {int }}^{O}$

Box 1 . The role of cause-specific mortality in evolutionary theories of senescence.
George C. Williams (1957) predicted that according to either Medawar's (1952) Mutation Accumulation (MA) theory or his own Antagonistic Pleiotropy (AP) theory, greater environmentally-driven adult mortality should lead to more rapid senescence. The reasoning being that a reduced chance of making it to old age should either reduce selection on mortality at old age, allowing mutations to accumulate (MA), or reduce the selective advantage of living long relative to investing more in early-life reproduction (AP and the Disposable Soma theory launched by Kirkwood in 1977); thereby allowing more rapid senescence to evolve (Hamilton 1966). Moreover, both Hamilton and Williams' models predicted that senescence should be more apparent in populations exposed to higher levels of mortality (e.g. wild vs. captive populations, harvested vs. protected; see Fig. 1a for a graphical example).

Although not unanimous (Vaupel et al. 2004; Ricklefs 2008), a large number of experimental and comparative studies have shown that more rapid senescence tends to occur in populations that are thought to experience higher adult mortality (e.g. Austad 1993; Ricklefs 1998, 2000; Ricklefs \& Scheuerlein 2001, 2002; Bryant \& Reznick 2004, Reznick et al. 2004). However, Abrams (1993) and Caswell (2007) clearly showed that all else being equal, exposure to additional age-independent adult mortality does not affect the strength of selection on age-specific mortality, and therefore cannot affect the evolution of senescence (see Fig 1b and Shokhirev \& Johnson (2014) for theoretical evidence that higher predation can lead to both slower or faster life histories depending on the context). That said, if traditionally dichotomized environmental and physiological processes interact (e.g. Williams \& Day 2003; Williams et al. 2006) to alter age-dependent mortality (e.g. starvation or predation; see Garrott et al. 2002; Loe et al. 2003; Smith et al. 2004; Festa-Bianchet et al. 2006; Wright et al. 2006; Carlson et al. 2007), then the strength of selection acting on agespecific mortality will change (Caswell 2007; see Fig. 1c) and may even allow for the evolution of decreased mortality with age (Vaupel et al. 2004; Baudisch 2005). Furthermore, 'all else is rarely equal' in nature; if exposure to additional age-independent adult mortality drives increased allocation to earlier reproduction in order to compensate for increased mortality (as was shown in guppies; Bryant \& Reznick 2004; Reznick et al. 2004), the strength of selection against actuarial senescence will weaken (Hamilton 1966; see Fig. 1d) and affect the evolutionarily optimal level of allowable senescence (Kirkwood 1977; Wensink et al. 2012).

Box 1, Figure 1. A graphical example of how exposing a population to additional mortality (left panels) affects the pressure of selection on age-specific mortality hazards (right panels; sensu Hamilton 1966). The left side of panel ' a ' depicts the original prediction that exposing a population already experiencing senescence (dashed line) to additional age-independent mortality (resulting solid line) will lead to a decrease in selection pressure on age-specific mortality (right side), which has since been shown to be false (denoted by the X). Rather, there is no effect on the selection pressure (panel b , lines on the right side overlap). If a population is instead exposed to additional 'age-dependent' mortality, the selection pressure on age-specific mortality will indeed decline (panel c), allowing for more rapid senescence to evolve. Interestingly, if a population that is exposed to additional age-independent mortality responds by allocating more to early-life reproduction (solid circles) than it had before (open circles) and maintain the original level of fitness, the selection pressure on age-specific mortality will decline (panel d).

Figure 2. The observable (solid lines) demographic transitions of remaining alive (A), dying from cause B or C, and the unobservable (dashed line) transition of dying from other causes (O); where $\mu_{i, t}^{k}$ denotes the cause-specific probability of mortality per time step (subscripts are as described in the text).

Figure 3. Trajectories of age-specific mortality probability according to hunting (solid line) and nonhunting (dashed line) causes for female lesser snow geese at La Pérouse Bay, Canada from 1969 to 2010. Shaded polygons represent 95% confidence bounds. The closed circles represent total mortality (i.e. the addition of the two causes), and the open circles represent estimates of overall mortality from a multistate CR analysis where cause was not specified.

Figure 4. Trajectories of age-specific mortality probability for human-related (solid line) and natural (dashed line) causes in female roe deer at Trois-Fontaines, France, from 1985 to 2013. Shaded polygons represent 95% confidence bounds. The closed circles represent total mortality (i.e. the addition of the two causes), and the open circles represent estimates of overall mortality from a multistate CR analysis where cause was not specified.

Appendix 1A. Estimation of age-specific profiles of hunting and non-hunting mortality in lesser snow geese.

For the lesser snow goose analysis we used the RMark package (Laake \& Rexstad 2012), which calls program MARK from R (Cooch \& White 2012), in part because of complications with the data that sometimes occurred over the many years of study. Specifically, banding did not take place in 1996, 1997, and 2009 (and thus recaptures could not occur), and in 2002 and 2004, the gosling cohort was not marked and released (because of either reproductive failure or the goslings being too small to hold bands at the time of marking; see Aubry et al. 2013). Given our desire to fit models that accounted for sources of age-class and time variation in the detection probabilities that were known to be important (see Cooch et al. 2001; Koons et al. 2014), as well as age- and cause-specific mortality, we needed to fix detection and mortality probabilities to 0 for specific age, time, and state combinations. These complications are relatively straightforward to deal with in a programming language like R (see below). We use courier font like this to indicate annotated RMark code for analyzing live and dead encounters with a CR HMM (comments in R code follow a \# sign).

For RMark to recognize the unobservable NH state, the following two-part trick was needed when importing the data into the RMark environment.

```
# Bring in the .inp file and convert it to the RMark format:
MSdata <- convert.inp("MS_LD_knagefemale_19692011.inp", covariates =
    c("x1","x2","x3","x4","x5"))
# Part 1 of trick for incorporating the unobservable NH state 3 by
# temporarily changing the first observed capture history:
MSdata$ch[1] <- '1000000000000000000000000000000000000000003'
# An initial age is defined as O since all birds in the sample were
# marked as nearly fledged goslings:
MS.process <- process.data(MSdata,model="Multistrata",begin.time=1969,
    age.var=1,initial.age=0)
# Part 2 of trick for the unobservable NH state by changing the first
# capture history back to the original observation:
MS.process$data$ch[1] <- '1000000000000000000000000000000000000000000'
MS.ddl <- make.design.data(MS.process)
```

Once the data are read into RMark, the user can create additional explanatory covariates and factors not already attached to the imported data. This can be especially useful when wanting to create dynamic age-class variables or customized temporal covariates (see Laake \& Rexstad 2012 for details). As an example, we show how we built a dynamic 5 age-class variable for live recapture probabilities (age 1, 2, 3,4 , and $5+$),

```
MS.ddl$p$a1=0
MS.ddl$p$a1[MS.ddl$p$age==1 & MS.ddl$p$stratum==1]=1
MS.ddl$p$a2=0
MS.ddl$p$a2[MS.ddl$p$age==2 & MS.ddl$p$stratum==1]=1
MS.ddl$p$a3=0
MS.ddl$p$a3[MS.ddl$p$age==3 & MS.ddl$p$stratum==1]=1
MS.ddl$p$a4=0
MS.ddl$p$a4[MS.ddl$p$age==4 & MS.ddl$p$stratum==1]=1
MS.ddl$p$a5=0
MS.ddl$p$a5[MS.ddl$p$Age>=5 & MS.ddl$p$stratum==1]=1
```

and a variable for activating a parametric aging function at a specified age of onset (here age 14).

```
MS.ddl$Psi$M14Age=0
for (i in 14:30){
    MS.ddl$Psi$M14Age[MS.ddl$Psi$Age==i&MS.ddl$Psi$stratum==1]=i-13
}
MS.ddl$Psi$M14Age[MS.ddl$Psi$Age>=30&MS.ddl$Psi$stratum==1]=30-13
```

As the first important step in analysis, we fixed the survival probabilities for individuals in states A, H, and NH (denoted in the code as strata 1,2 , and 3) to 1,0 , and 0 respectively.

```
S1=as.numeric(row.names(MS.ddl$S[MS.ddl$S$stratum==1, ]))
S2=as.numeric (row.names (MS.ddl$S [MS.ddl$S$stratum==2, ]))
S3=as.numeric(row.names(MS.ddl$S[MS.ddl$S$stratum==3, ]))
S1val=rep (1,length(S1))
S2val=rep(0,length(S2))
S3val=rep(0,length(S3))
```

Next, we fixed the probabilities of transitioning 'from' states H and NH to any other state to 0 , and therefore the probabilities of 'remaining' in states H and NH to 1 (i.e. the dead states were defined as absorbing states). By fixing these parameters, the remaining transition probabilities from state A to H and from state A to NH become the $\mu_{i, t}^{k}$ (Fig. 1 in main text). In theory, the dead states should be split into 'newly dead' and 'already dead' states because an individual can only be recovered during the
particular time step that it dies. However, given our parameterizations in RMark, the addition of an 'already dead' state is not needed (Gauthier \& Lebreton 2008).

```
Psi2=as.numeric(row.names(MS.ddl$Psi[MS.ddl$Psi$stratum==2,]))
Psi3=as.numeric(row.names(MS.ddl$Psi[MS.ddl$Psi$stratum==3,]))
Psi2val=rep(0,length(Psi2))
Psi3val=rep(0,length(Psi3))
```

Shown below are examples of how we fixed a few of the detection probabilities to 0 , a key one being that for the NH state (denoted as r 3 in the code).

```
pa1=as.numeric(row.names(MS.ddl$p[MS.ddl$p$a1==1 &
    MS.ddl$p$stratum==1,]))
p2004.y=as.numeric(row.names(MS.ddl$p[MS.ddl$p$time==2004 &
    MS.ddl$p$stratum==1 & MS.ddl$p$cohort==2002,]))
pa1val=rep(0,length(pa1))
p2004.yval=rep(0,length(p2004.y))
r3=as.numeric(row.names(MS.ddl$p[MS.ddl$p$stratum==3, ]))
r3val=rep(0,length(r3))
```

We then show how these specifications (and others not shown here) were implemented into the required or most-supported model structures for survival, transition probabilities (i.e. the cause-specific mortality probabilities), and detection probabilities, with details provided in the commented text.

```
\# Survival model specification with \(S\) fixed to 1 for state 1 and 0 for
\# dead states 2 and 3 as specified above.
Sfix <- list (formula \(=\sim\) stratum, fixed \(=\) list(index \(=c(S 1, S 2, S 3)\),
    value \(=c(S 1 v a l, S 2 v a l, S 3 v a l))\) )
```

```
# Gompertz age trajectory of adult NH mortality from age 14 onward, and age-
# class differences in H mortality. The variables to2 and to3 denote
# mortality transitions to states H and NH respectively; from2 and from3 are
# specified so that they can be fixed to 0 later in the statement; hy and
# ahy denote age classes for the first year of life and thereafter; the
# M14Age variable specifies the onset of Gompertz senescence as shown above;
# the variables ending in tscr account for temporal variation in the age-
# class and cause-specific mortality probabilities; and the loglog link was
# used to implement Gompertz senescence.
PsigomNH14p <- list(formula = ~ -1 + to2:hy + to2:ahy + to2:hy:hyhtscr
    + to2:ahy:ahyhtscr + to3:hy + to3:ahy + to3:hy:hynhtscr +
    to3:ahy:ahynhtscr + to3:a14p:M14Age + from2 + from3,
    fixed = list(index = c(Psi2,Psi3,Psi1996.g,Psi1997.g,Psi2002.g,
    Psi2004.g,Psi2009.g), value = c(Psi2val,Psi3val,Psi1996.gval,
    Psi1997.gval,Psi2002.gval,Psi2004.gval,Psi2009.gval)), link =
    "loglog")
```

```
# Age-class and time variation in the state-specific detection
# probabilities. The variables str1, str2, and str3 denote strata A,H, and
# NH respectively, with required fixes specified later in the model
# statement; the al through a5 age-class variables were defined above; and
# the time variables are described below.
p5spl30rspl35 <- list(formula = ~ -1 + str1:a1 + str1:a2 + str1:a3 +
    str1:a4 + str1:a5 + str1:bs(Time,df=3,degree=3) + str2 +
    str2:bs(Time,df=8,degree=3) + str3, fixed = list(index=c(pa1,p1996,
    p1997,p1998.y,p1999.y,p2004.y,p2006.y,p2009,p2011.y,r3,r1997.g,
    r1998.g,r2003.g,r2005.g,r2010.g),value=c(pa1val,p1996val,p1997val,
    p1998.yval,p1999.yval,p2004.yval,p2006.yval,p2009val,p2011.yval,
    r3val, r1997.gval,r1998.gval,r2003.gval,r2005.gval,r2010.gval)),
    link="logit")
```

These model specifications were then run in RMark using the mark function and the simulated annealing algorithm to maximize the potentially multi-modal likelihood:

```
PsigomNH14p <- mark(MS.process,MS.ddl,model.parameters=list(S=Sfix,
    p=p5spl30rspl35,Psi=PsigomNH14p),options="SIMANNEAL")
```

In the model for detection probabilities presented above in the annotated code, we interfaced RMark with the 'splines' package in R (see posts on www.phidot.org for details) to implement polynomial Bspline functions for temporal variation, where degree specifies the order of the polynomial function and the difference between df and degree specifies the numbers of inner knots (Hastie 1992). Methods for automatically selecting the amount of smoothing (e.g. Gimenez et al. 2006) are not currently available for use in RMark. We additionally fit B-spline functions for age-specific mortality according to cause, but the fit was quite poor, with large confidence intervals.

Appendix 1B. Estimation of age-specific profiles of human-related and natural mortality in roe deer. All individuals included in the analyses were first captured as fawns (i.e. known-age individuals). Some of them were recaptured alive, some were reported from dying of anthropogenic causes, and others were not detected. A capture history could thus take the following form: 10112, meaning that the individual was first captured and marked, not seen the second year, recaptured the $3^{\text {rd }}$ and the $4^{\text {th }}$ years, and finally killed by a hunter or vehicle and reported in the $5^{\text {th }}$ year. These records were denoted as 'events': $\mathbf{0}$, not seen; $\mathbf{1}$, captured for the first time or recaptured; $\mathbf{2}$, killed by human activities and reported. The
corresponding individual states that we considered were: \mathbf{A}, alive; \mathbf{H}, individual just died from human causes; $\mathbf{N H}$, individual just died from a natural (non-human) cause; \mathbf{D}, individual already dead.

We then built CR HMM models in several stages using program E-SURGE (Choquet et al. 2009). Below, the sum of a row $=1$. Consequently, one cell of each row in a parameter matrix will be calculated as the complement of the sum of the others, denoted with a '*' symbol. Cells equal to 0 are denoted with a '-' symbol. An active cell containing a parameter to be estimated receives an arbitrary letter. Note that the same letter in two cells does not mean that the two values are equal (these constraints are made later). The primary symbols for parameters are: $\boldsymbol{\mu}$, mortality probability, and \boldsymbol{p}, detection (or event) probability.

The Gepat interface:

Initial state probabilities

A	H	NH
$*$	-	-

Transition probabilities: Survival \& Cause-Specific Mortality

In the transition probabilities matrix below, the probabilities of an individual transitioning from (rows) being alive at time $t\left(\mathbf{A}_{t}\right)$ to (columns) either being dead due to human $\left(\mathbf{H}_{t+1}\right)$ or natural $\left(\mathbf{N H}_{t+1}\right)$ causes by time $t+1$ are denoted with a ' μ ' symbol. Individuals dead at time t or 'already dead' at time t remain in the state \mathbf{D} with a probability of 1 . Note that this latter state was not explicitly included in the RMark analysis for lesser snow geese above.

	$\mathbf{A}_{t+1}{ }^{-}$	$\mathbf{H}_{t+1}{ }^{-}$	$\mathbf{N H}_{t+1}{ }^{-}$	\mathbf{D}
\mathbf{A}_{t}	$*$	$\boldsymbol{\mu}$	$\boldsymbol{\mu}$	-
\mathbf{H}_{t}	-	-	-	$*$
$\mathbf{N H}_{t}$	-	-	-	$*$
\mathbf{D}_{t}	-	-	-	$*$

Event probabilities: Live Recapture \& Dead Recovery

The matrix for event probabilities shown below denotes both live recapture and dead recovery probabilities with a ' \boldsymbol{p} ' symbol (modelled difference in \boldsymbol{p} between the states are designated below). At occasion t, individual states are shown in rows and encounter observations in columns. For example, in the first row individuals not seen (0) but alive (\mathbf{A}) are not recaptured $(*)$, whereas individuals alive (A) and seen (1) are recaptured with probability \boldsymbol{p}. In the second row, individuals dead from human causes (\mathbf{H}) and not seen (0) are not recovered $(*)$, whereas individuals dead from human-related causes and recovered have a probability \boldsymbol{p} of being observed as such. Individuals dead from natural causes (NH) are never seen (0), and thus the corresponding detection probability was fixed to 0 , as was also done for individuals that were already dead (D, which was specified as an absorbing state):

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
\mathbf{A}_{t}	$*$	\boldsymbol{p}	$\mathbf{-}$
\mathbf{H}_{t}	$*$	-	\boldsymbol{p}
$\mathbf{N H}_{t}$	$*$	-	$\mathbf{-}$
\mathbf{D}_{t}	$*$	-	-

The Gemaco interface:

Phrase for initial state: There is no active parameter, just use the keyword ' i '.
Phrase for transition probabilities: Given our specifications in the 'Gepat' step above, this step corresponds to specifying individual variation in cause-specific mortality probabilities (human-related and natural). For instance, in the best model retained for females we considered a parameter specifying a separate human-related mortality probability for age 1 , and another for individuals older than 1 year of age. We made similar specifications for natural mortality probability, but additionally specified a generalized logit-linear increase in natural mortality probability from 2 years of age onwards, using the external variable $\mathrm{x}(1)$ and the following text in the Gemaco interface (note that age 1 in E-SURGE relates to biological age 0):
$' \operatorname{from}(1) \cdot \operatorname{to}(2) \cdot[\mathrm{a}(1)+\mathrm{a}(2: 18)]+\operatorname{from}(1) \cdot \operatorname{to}(3) \cdot[\mathrm{a}(1)+\mathrm{a}(2)+[\mathrm{a}(3) \& \mathrm{a}(4) \& \mathrm{a}(5) \& \mathrm{a}(6) \& \mathrm{a}(7) \& \mathrm{a}(8) \& \mathrm{a}(9) \& \mathrm{a}(10)$ $\& a(11) \& a(12) \& a(13) \& a(14) \& a(15) \& a(16) \& a(17) \& a(18)]+[a(3)+a(4)+a(5)+a(6)+a(7)+a(8)+a(9)+a(10)$ $\left.+\mathrm{a}(11)+\mathrm{a}(12)+\mathrm{a}(13)+\mathrm{a}(14)+\mathrm{a}(15)+\mathrm{a}(16)+\mathrm{a}(17)+\mathrm{a}(18)]^{*} \mathrm{x}(1)\right]^{\prime}$.

Phrase for event probabilities: The last step corresponds to specifying the variation in live recapture and dead recovery probabilities. We considered interactive time-dependence in recapture probabilities for the first age class and that for individuals older than 1 year of age, and a constant dead recovery
probability using the following text in the Gemaco interface (where 'from' refers to the row, and 'to' refers to the column in the event probabilities matrix above):
'from(1).to(2).[a(1)+a(2:18)].t+from(2).to(3)'.

References

Aubry, L.M., Rockwell, R.F., Cooch, E.G. Brook, R.W., Mulder, C.P. \& Koons, D.N. (2013) Climate change, phenology, and habitat degradation: drivers of gosling body condition and juvenile survival in lesser snow geese. Global Change Biology, 19, 149-160.

Choquet, R., Rouan, L. \& Pradel, R. (2009) Program E-SURGE: a software application for fitting multievent models. Modeling Demographic Processes in Marked Populations (eds D.L. Thomson, E.G. Cooch \& M.J. Conroy), pp. 845-865. Vol. 3 of Springer Series: Environmental and Ecological Statistics. Springer, Dunedin.

Cooch, E.G, Rockwell, R.F \& Brault, S. (2001) Retrospective analysis of demographic responses to environmental change: a lesser snow goose example. Ecological Monographs, 71, 377-400.

Cooch, E.G. \& White, G.C. (2012) Program MARK: A Gentle Introduction, llth Edition. http://www.phidot.org/software/mark/docs/book/.

Gauthier, G. \& Lebreton, J.-D. (2008) Analysis of band-recovery data in a multistate capture-recapture framework. The Canadian Journal of Statistics, 36, 59-73.

Gimenez, O., Crainiceanu, C., Barbraud, C., Jenouvrier, S. \& Morgan, B.J.T. (2006) Semiparametric regression in capture-recapture modeling. Biometrics, 62, 691-698.

Hastie, T.J. (1992) Generalized additive models. Statistical Models (eds in S.J.M. Chambers \& T.J. Hastie), ch. 7. Chapman \& Hall/CRC, Boca Raton, Florida, USA.

Koons, D.N., Rockwell, R.F. \& Aubry, L.M. (2014) Effects of exploitation on an overabundant species: the lesser snow goose predicament. Journal of Animal Ecology, 83, 365-374.

Laake, J. \& Rexstad, E. (2012) RMark - an alternative approach to building linear models in MARK. Program MARK: A Gentle Introduction, 11th Edition (eds E.G. Cooch \& G.C. White), App. C. http://www.phidot.org/software/ mark/docs/book/

