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Summary 33 

1. The founding evolutionary theories of ageing indicate that the force of mortality imposed by 34 

environmental factors should influence the strength of natural selection against actuarial senescence and 35 

its evolution. To rigorously test this idea, field biologists need methods that yield estimates of age-36 

specific mortality according to cause of death.     37 

2. Here, we present existing methods commonly applied in studies of human health that could be used to 38 

accomplish these goals in studies of wild species for which fate can be determined with certainty. We 39 

further present a new application of hidden Markov models for capture-reencounter studies of wild 40 

animals that can be used to estimate age-specific trajectories of cause-specific mortality when detection 41 

is imperfect.  42 

3. By applying our new hidden Markov model with the E-SURGE and MARK softwares to capture-43 

reencounter datasets for long-lived species, we demonstrate that senescence can be severe for natural 44 

causes of mortality in the wild, while being largely nonexistent for anthropogenic causes.  45 

4. Moreover, we show that conflation of mortality causes in commonly used survival analyses can 46 

induce an underestimation of the intensity of senescence and overestimation of mortality for pre-47 

senescent adults. These biases have important implications for both age-structured population modelling 48 

used to guide conservation and comparative analyses of senescence across species. Similar to frailty, 49 

individual differences in causes of death can generate individual heterogeneity that needs to be 50 

accounted for when estimating age-specific mortality patterns.  51 

5. The proposed hidden Markov method and other competing risk estimators can nevertheless be used to 52 

formally account for these confounding effects, and we additionally discuss how our new method can be 53 

used to gain insight into the mechanisms that drive variation in ageing across the tree of life. 54 

Key-words: ageing, capture-reencounter, competing risk analysis, frailty, harvest, heterogeneity, hidden 55 

Markov model, predation. 56 

 57 
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Introduction 58 

Assessing the sources of mortality over life and how they shape age-specific mortality trajectories is of 59 

paramount importance in ecology, evolution and public health. Biostatisticians have long known that 60 

much can be learned by decomposing mortality into its respective causes (Chiang 1968). For example, if 61 

an individual smokes, a ‘competing risk analysis’ can help identify how this affects the chance of dying 62 

from lung cancer relative to heart disease or other causes (Berkson & Elveback 1960; Chiang 1991). 63 

Competing risk analyses can additionally be used to help identify gene loci and gene expressions that are 64 

involved in the phenotypic expression of early- and late-life chances of dying from various causes (e.g. 65 

Slagboom et al. 2000). Cause of death data can thus shed light on the underlying life choices, 66 

environmental factors, and genetic mechanisms that shape mortality risks over the life course compared 67 

to a common survival analysis that disregards diverse causes of death (Finch 1990). For these reasons, 68 

great effort has been devoted to studying cause-specific mortality from the youngest to the oldest age 69 

classes in human populations (e.g. Horiuchi & Wilmoth 1997; Horiuchi et al. 2003).   70 

 In wild vertebrates, there is also a long history of studying cause-specific mortality, but with a 71 

specific focus on pre-defined single (e.g. Singer et al. 1997 on juveniles; Brodie et al. 2013 on adults) or 72 

multiple (e.g. Dumke & Pils 1973; Nelson & Mech 1986) age classes. Determining the cause-specific 73 

drivers of mortality in both juvenile and adult age classes can indeed help focus management efforts 74 

aimed at conserving populations (Forrester & Wittmer 2013). Apart from the study of simple age 75 

classes, however, empirical studies of age-specific causes of mortality and their consequences on the 76 

shape of mortality trajectories in wild organisms are lacking.  77 

 This is surprising because the original theories on the evolution of senescence (here, the actuarial 78 

definition of an increase in mortality and decrease in survival with age) hinge upon concepts of cause-79 

specific mortality (see Box 1). Methods for estimating competing risks of mortality in the wild, and how 80 

they change with age, could help evolutionary ecologists identify the mechanisms underlying patterns of 81 
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senescence across species and environmental conditions (Jones et al. 2008, 2014; Baudisch et al. 2013; 82 

Nussey et al. 2013).  83 

 Studying senescence in the wild is further complicated by the fact that individual heterogeneity can 84 

have important effects on the estimation of age-specific patterns of mortality and survival (Cam et al. 85 

2002; Nussey et al. 2008; Péron et al. 2010; Aubry et al. 2011). In most populations, ‘frail’ individuals 86 

readily die, leaving only the more ‘robust’ individuals in a study sample at advanced ages (sensu Vaupel 87 

et al. 1979). When not accounted for, intra-generational viability selection (Endler 1986) among 88 

heterogeneous individuals can bias marginal estimates of age-specific mortality (Vaupel & Yashin 89 

1985). At the end of life, cause of death is a component of the phenotype and can therefore be thought of 90 

as a type of individual heterogeneity. Although different than individual heterogeneity at the beginning 91 

of life, individual variation in fates could also affect the estimation of age-specific mortality but has not 92 

previously been considered to our knowledge. We fill this gap by reviewing contemporary competing-93 

risk analyses that can be used to examine age-specific variation within each risk, and additionally 94 

provide an original method for estimating age-specific mortality trajectories while accounting for 95 

individual differences in mortality causes when detection is imperfect.   96 

 We focus on capture-reencounter hidden Markov models that account for imperfect detection and 97 

can even accommodate fates that are not observable (i.e. hidden states; Pradel 2005; Gimenez et al. 98 

2012), both of which are common to studies of wild organisms (Williams et al. 2002). Applying this 99 

method to example datasets, we provide a first demonstration that decomposing age-specific mortality 100 

into its respective causes can have notable effects on the estimated rate of senescence in the wild. In 101 

addition, age profiles of cause-specific mortality provide more explicit targets for associating 102 

physiological condition, gene loci, and quantitative gene expressions with senescence in the competing 103 

risks they affect most (Nussey et al. 2008).       104 

 105 

 106 
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Estimating cause-specific mortality across ages in the wild 107 

Perfect detection  108 

In plants, sessile organisms, and captive or semi-captive animal populations, cause-of-death data for 109 

studied individuals can be collected along with the standard actuarial life table (e.g. Mumby et al. 2013). 110 

In addition, cause of mortality data is often collected in radio-telemetry and GPS-transponder studies of 111 

free-ranging animals (Heisey & Fuller 1985; Tomkiewicz et al. 2010). In the past, cost and logistics 112 

associated with these technologies have prohibited the large sample sizes needed to examine senescence 113 

at advanced ages, but that may change as GPS and associated battery-life technology develop 114 

(Tomkiewicz et al. 2010).  115 

 In some cases, the immediate cause of death might be obvious (e.g. vehicle or wind turbine collision, 116 

hunting or fishing recoveries of marked individuals, bark beetle kill in trees, etc.), but necropsies and 117 

other types of expert assessments on the less obvious causes of death could provide more detailed 118 

insight into the array of factors that kill individuals in the wild (e.g. Mar et al. 2012). Often times, 119 

however, such detail is out of reach and cause of death will have to be collapsed into broader categories. 120 

Grouped causes of death (e.g. predation, disease) can nevertheless provide deeper insight into mortality 121 

dynamics than an assessment of overall mortality (as demonstrated by the examples below). 122 

 In studies where observers can at least ascertain whether an individual is alive or not at each census 123 

period (i.e. known-fate data), age-specific cause of death data can be analyzed with existing competing-124 

risk statistical models. The general approach is straightforward; instead of specifying a standardized 125 

calendar date as the unit of time at which an individual enters and exits the study sample, one must 126 

simply substitute ‘age’ as the unit of time (e.g. Aubry et al. 2011). Even the popular Cox proportional 127 

hazard model (Cox 1972) can be extended to estimate age- and cause-specific mortality (Heisey & 128 

Patterson 2006). To address questions related to the rate of senescence, one might prefer to fit 129 

parametric relationships between age and mortality rate according to cause of death (e.g. accelerated 130 

failure time models; Wei 1992), whereas for questions related to the shape of mortality over life, one 131 
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might prefer to fit semi-parametric or non-parametric models (e.g. Kaplan-Meier models [1958]). The 132 

extensive repertoire of modelling possibilities that are available in traditional survival analysis can for 133 

the most part be extended to the study of competing risks (Kleinbaum & Klein 2012).  134 

 There are nevertheless caveats associated with analyzing cause of death data (see Heisey & Patterson 135 

2006). Similar to any statistical analysis with dichotomous variables, specifying too many causes of 136 

mortality may limit degrees of freedom, diminishing precision of parameter estimates. In addition, 137 

staggered entry of individuals into the study sample is common in studies of wild organisms (i.e. left 138 

truncation: the addition of individuals to the study sample after the beginning of the study). However, 139 

only a few competing risk methods properly account for staggered entry that affects the at-risk sample in 140 

ways that are not due to death or right censoring (Lunn & McNeil 1995; de Wreede et al. 2011; Geskus 141 

2011). These methods offer a fruitful way forward for examining age-specific competing risks in data 142 

that are often augmented with staggered entries to maintain the sample sizes needed to address questions 143 

concerning senescence.   144 

The challenge of imperfect detection and unobservable fates in the wild 145 

In non-captive animal populations, live individuals might not be detected during a survey for an array of 146 

reasons. In such cases, the standard life table and aforementioned competing-risk methods yield 147 

measures of age-specific ‘return rates’ to the observer, as opposed to the desired quantities of survival 148 

and mortality. This is problematic because a return rate is a function of three different events: survival, 149 

fidelity to the study area (i.e. 1 – emigration), and the probability of detection given an individual is 150 

alive and on the study area (Martin et al. 1995). Failure to account for imperfect detection can thus lead 151 

to flawed inference in both ecological (Nichols 1992) and evolutionary studies (Gimenez et al. 2008). 152 

 Fortunately, capture-reencounter (CR) methods can decouple the probabilities that comprise a return 153 

rate (Burnham 1993), and are often used to robustly estimate survival in wild populations (Williams et 154 

al. 2002). Because of their properties, CR methods are now commonly used to study senescence in the 155 

wild (e.g. Gaillard et al. 2004; Péron et al. 2010). The nuisance of imperfect detection nevertheless 156 
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presents a challenge to estimating cause-specific mortality in wild animal populations. Death is never 157 

observed for most individuals in a wild animal population, and determination of certain causes of death 158 

might be completely ‘unobservable’.    159 

 All is not lost, however, because modern multistate CR methods make it possible to estimate cause-160 

specific probabilities of mortality when detection is imperfect. The original multistate CR estimators for 161 

cause-specific mortality were restricted to situations where each cause of mortality was at least partially 162 

observable (Lebreton et al. 1999; Schaub & Lebreton 2004; Schaub & Pradel 2004). This approach has 163 

since been extended to allow for an additional ‘unobservable’ cause of mortality using a hidden Markov 164 

specification of the multistate CR model (hereafter CR HMM; Pradel 2005; Servanty et al. 2010; 165 

Gimenez et al. 2012). The CR HMM for cause-specific mortality may be more generally applicable to 166 

the study of marked animals because it does not exclude causes of death that are completely hidden from 167 

the observer (e.g. consumption by certain predators), but does nevertheless require the combination of 168 

live recaptures and marked-individual recoveries from at least one source of mortality. In practice, the 169 

combination of live recapture and dead recovery data are typically represented using a capture history 170 

for each individual where, e.g., 0AA0C would represent an individual that was captured and released 171 

alive (A) on the second capture occasion, recaptured alive (A) on the third occasion, and then not 172 

observed until it was recovered between occasions four and five when it died of cause C (note that letter 173 

identifiers could be replaced with numbers). The zeros between non-zeros in a capture history provide 174 

critical information about imperfect detection. 175 

 The individual-based encounter histories are combined into a population-level dataset to estimate the 176 

probability of individual i dying from cause k between discrete time step t and t+1 ( ,
k
i t ) using a CR 177 

HMM like that shown in Figure 2. By defining dead states as absorbing states, the probabilities of 178 

transitioning from a live state (A in Fig. 2) to a dead state (B, C, and O in Fig. 2) naturally become 179 

cause-specific mortality probabilities (Gauthier & Lebreton 2008). Of key importance, the transition 180 
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probabilities are estimated conditionally on state-specific probabilities of detecting each individual i in 181 

state k at time step t ( ,
k
i tp ) that are simultaneously solved for using either a maximum-likelihood or 182 

Bayesian approach (Lebreton et al. 2009). According to the example (Fig. 2), A
,i tp  would represent the 183 

probability of recapturing a live individual i at time t. As long as dead recoveries can be attained at a 184 

spatial scale much larger than the study area, fidelity can be subsumed within A
,i tp  like in our example 185 

(Schaub & Lebreton 2004), or fidelity can be separately estimated (Burnham 1993). For the dead states 186 

B
,i tp  is the probability that an individual i that died of cause B between t-1 and t was ‘recovered dead and 187 

reported’ to the observers at time t, and C
,i tp  the same detection probability for an individual that died of 188 

cause C. The detection probability must be fixed to 0 for other sources of mortality that are not 189 

observable (state O in Fig. 2). It is nevertheless possible to identify the probability of dying from 190 

collectively unobservable causes ( O
,i t  in Fig. 2) by borrowing information from the joint live recaptures 191 

and dead recoveries (Servanty et al. 2010).  192 

 With regard to cause-specific mortality, multistate CR models have been used to compare and 193 

identify problematic sources of mortality in declining or managed populations (Schaub & Pradel 2004; 194 

Bischof et al. 2009), estimate the strength of natural selection on hunting mortality relative to non-195 

hunting mortality in harvested populations (Gamelon et al. 2011), and to estimate the degree of 196 

compensation or additivity between sources of mortality (Schaub & Lebreton 2004; Servanty et al. 197 

2010; Koons et al. 2014). To our knowledge, however, complete age trajectories of cause-specific 198 

mortality have never been estimated appropriately while accounting for imperfect detection. When 199 

trying to focus on senescence in natural causes of mortality, past studies of ageing in the wild have 200 

typically right-censored individuals once they were known to have died from anthropogenic causes. 201 

Because fates are not known for all individuals in a CR study, this form of non-random censoring 202 

introduces a source of bias. In the examples below, we use long-term studies of two long-lived 203 
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vertebrates to illustrate how to overcome these important gaps in our understanding of ageing in the 204 

wild. To help others use the CR HMM method for their own, potentially more illuminating studies and 205 

questions pertaining to senescence and cause-specific mortality, we provide annotated code for 206 

implementing the examples using the two leading CR softwares: E-SURGE and program MARK (see 207 

App. 1).    208 

Examples demonstrating the use of CR HMM for estimating age trajectories of cause-specific 209 

mortality  210 

Age-specific trajectories of mortality causes in the lesser snow goose 211 

A marked population of lesser snow geese (Chen caerulescens caerulescens) has been studied near La 212 

Pérouse Bay, Manitoba, Canada since 1969 (58º44’ N, 94º28’ W; Cooke et al. 1995), where recaptures 213 

of previously marked individuals are recorded every year during banding drives. In parallel, public 214 

hunters across North America submit records of harvested birds with bands to the USGS Bird Banding 215 

Laboratory. To estimate age-specific mortality according to cause, we focused on a sample of known-216 

age females banded and released as goslings (n = 45,914) with subsequent live recaptures (n = 1,976) 217 

and hunter recoveries (n = 5,163) between 1969 and 2011. Because the human hunter is the predominant 218 

predator of adult lesser snow geese (Koons et al. 2014), the age-specific level of hunting mortality may 219 

modify the strength of natural selection against senescence in both direct and indirect ways (Box 1, Fig. 220 

1). Thus, we developed a CR HMM with one alive state (A) and two dead states: a partially observable 221 

state of ‘died from hunting’ (H; i.e. legally hunted) and an unobservable state of ‘died from non-hunting’ 222 

(NH, which includes any unobservable crippling loss). Observed capture histories never contain explicit 223 

information about individuals in unobserved states like NH. To develop a CR HMM, one must therefore 224 

define the unobserved states of interest and fix the respective detection probabilities to 0 (Pradel 2005). 225 

In appendix 1 we demonstrate how to do this for the snow goose example using the RMark package for 226 

R (Laake & Rexstad 2012), describe our analysis in more detail, and provide annotated code for the 227 
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modelling steps. Here, we focus on demonstrating the approach of using a CR HMM to study age-228 

specific mortality according to cause in the wild.  229 

 Drawing from the long history of research on snow goose survival and previous findings for the 230 

same or similar dataset (Francis et al. 1992a; Cooch et al. 2001; Aubry et al. 2013; Koons et al. 2014), 231 

we developed CR HMMs that account for important sources of age and temporal variation in the 232 

detection probabilities, as well as temporal variation in cause-specific mortality probabilities for each of 233 

two age classes (hatch-year and after-hatch-year; see App. 1A). To estimate the trajectory of cause-234 

specific mortality at each age x, k
x , we considered the Gompertz, Weibull, and logit-linear functions 235 

(Gaillard et al. 2004), with alternative ages of onset for senescence (ages 4, 6, 8, 10, 12, 14, or 16; non-236 

statistically significant results from Francis et al. 1992b indicate that if there is senescence, the onset 237 

may be delayed until ~ age 10). At each modelling step, we used Akaike’s Information Criterion 238 

adjusted for sample size (AICc; Akaike 1973; Burnham & Anderson 2002) to identify the model 239 

structure most supported by the data.   240 

 While controlling for temporal variation, we found strong support for Gompertz senescence in non-241 

hunting mortality past age 14 (loglog link: ̂ = 0.119, 95% CI: 0.083 – 0.154; Fig. 3; ΔAICc = 45.2 for 242 

simple age-class effects). This model was more supported than other ages of onset in non-hunting 243 

mortality senescence (ΔAICc > 0.8), as well as the Weibull (ΔAICc = 0.1) and logit-linear ageing 244 

functions (ΔAICc = 11.0). We detected marginal support for reduced hunting mortality with age (1.1 unit 245 

improvement in AICc), but the effect was biologically minor and imprecisely estimated ( ̂ = -0.006, 246 

95% CI: -0.014 – 0.001).  247 

 Thus, it seems that actuarial senescence is delayed and restricted to non-hunting sources of mortality 248 

in lesser snow geese. Studies of senescence in other long-lived avian species have similarly found 249 

delayed onsets of aging that begin well past the age of primiparity (which ranges from 2-4 in snow 250 

geese; Juillet et al. 2012), but also less severe senescence in species that are longer-lived than snow 251 
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geese on average (e.g. Pardo et al. 2013; Jones et al. 2014). Interestingly, previous studies of age-252 

specific demography in snow geese had detected senescence in reproductive success (Rockwell et al. 253 

1993) but not in survival (Francis et al. 1992b). This may have been due to the lack of a large enough 254 

sample of old-age individuals at the time of analysis, conflation of individuals that died from senescent 255 

non-hunting sources of mortality with those that died from non-senescent hunting mortality, or both.  256 

 Indeed, a multistate CR model without specification of mortality cause (i.e. just live and dead states) 257 

offered a relatively poor fit to the same dataset. Although the onset of senescence at age 14 was once 258 

again more supported than onset at other ages, the model was 1180 AICc units worse than a cause-259 

specific mortality model with two age classes and 1210 AICc units worse than the top cause-specific 260 

mortality model with senescence past age 14 in non-hunting mortality. In addition, not accounting for 261 

cause of mortality led to an underestimation of overall juvenile mortality, overestimation of mortality 262 

during pre-senescent adult life, and a 44.5% reduction in the estimated rate of senescence ( ̂ = 0.066, 263 

95% CI: 0.035 – 0.098; Fig. 3, compare open and closed circles). In essence, conflation of mortality 264 

causes led to a flattening of the estimated boat-shaped mortality curve and forced the bottom of the boat 265 

to pop up. 266 

Age-specific trajectories of mortality causes in roe deer 267 

Our second example pertains to a roe deer (Capreolus capreolus) population in the enclosed forest (13.6 268 

km²) of the Territoire d’Etude et d’Expérimentation of Trois Fontaines, in eastern France (48°43’N, 269 

54°10’W), that has been intensively monitored using CR methods from 1975 to 2013. Each year since 270 

1985, newborn fawns were captured, sexed, marked, and released after handling (Gaillard et al. 1998). 271 

Here we focus on the 556 known-age females, of which 217 were recaptured at least once and 41 were 272 

deadly injured during handling, victim of car collisions, or recovered and reported by hunters 273 

(collectively denoted as human-related mortalities). To control population size, some individuals were 274 

removed from the forest and released outside the study area (and right-censored from the dataset). There 275 
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are no predators of adult roe deer at Trois Fontaines, and thus the age-specific level of human-related 276 

mortality may modify the strength of natural selection against senescence in both direct and indirect 277 

ways (Box 1, Fig. 1).  278 

 We estimated natural and human-caused mortality using a CR HMM allowing for the joint analysis 279 

of live recaptures and dead recoveries of individuals (Schaub & Pradel 2004; Lebreton et al. 2009). Four 280 

states were used to describe the fates of each individual: two partially observable states, one for 281 

individuals that were alive (A) at time t and another for individuals that had just died from human-282 

related causes (H), and two unobservable states, one for individuals that had just died from natural 283 

causes (NH) and an absorbing state for the collection of individuals that were already dead (D). Given 284 

these state definitions, the human-related mortality probability ( H ) corresponded to the transition 285 

probability from the state A at time t to state H by time t+1, and similarly, the natural mortality 286 

probability ( NH ) corresponded to the transition probability from state A at time t to state NH by time 287 

t+1. Because an individual could not return to state A once dead, we fixed these transitions to 0. To 288 

ensure that all probabilities were estimated within the interval [0, 1] and summed to 1, we used a 289 

generalized (or multinomial) logit link function (e.g. Choquet et al. 2009). A live individual could be 290 

recaptured with probability pi,t, or not recaptured with probability 1 - pi,t. Because capture effort varied 291 

among years and age classes (Gaillard et al. 2003; Choquet et al. 2011), we included an interactive 292 

effect of time-dependence in pi,t for age class 1 relative to individuals older than 1 year of age. An 293 

individual that just died from human causes could be recovered and reported with probability ri,t, or not 294 

recovered and reported with probability 1- ri,t. Because tag recovery protocols were constant over the 295 

course of the study, we considered ri,t to be constant over time and across age classes. 296 

 To estimate cause- and age-specific mortality, we allowed natural and/or human-related mortalities 297 

to vary linearly on the generalized logit scale from age 1 or 2 onward based on previous studies (e.g. 298 

Gaillard et al. 2004). When natural mortality was allowed to vary linearly with age on a generalized 299 
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logit scale, human-related mortality was either constrained to be constant, allowed to vary among ‘age 300 

classes’, or allowed to vary linearly with age on the generalized logit scale (and vice versa when human-301 

related mortality was a generalized logit-linear function of age). We considered and compared the 302 

following age class parameterizations: 0-1, > 1, or 0-1, 1-2, > 2. In addition, according to previous 303 

research on roe deer survival (Festa-Bianchet et al. 2003), we also tested models that allowed cause-304 

specific mortality probabilities to vary among 5 age classes: fawn summer mortality up to age 1, age 1 to 305 

2, ages 2 to 8, an early senescent category for individuals between age 8 and 13, and a senescent 306 

category for older individuals. We then used QAIC to compare the various competing models using the 307 

E-SURGE software (Choquet et al. 2009). In appendix 1B, we show how to implement CR HMM 308 

models for the roe deer example. 309 

 The best model indicated senescence in natural mortality from age 2 onwards (generalized logit link 310 

̂ = 2.239, 95% CI: 0.942 – 3.535; Fig. 4). The best model also retained a constant human-related 311 

mortality probability from age 1 onwards but a higher mortality in the first year of life after birth 312 

(human-related mortality probability 0-1 = 0.132, 95% CI: 0.053 – 0.294; human-related mortality 313 

probability 1+ = 0.057, 95% CI: 0.027 – 0.115; Fig. 4). This model performed better than other ages of 314 

onset for senescence in natural mortality (ΔQAIC > 2) and other parameterizations of age effects for 315 

human-related mortality (ΔQAIC > 1.5). 316 

 To examine the effect of conflating the causes of mortality on the estimated age-specific mortality 317 

trajectory, we developed a multistate CR model without specifying mortality causes similar to that 318 

developed for the snow goose example above. For this analysis, three states were considered in E-319 

SURGE: one for individuals that were alive (A) at time t, another for individuals that had newly died 320 

(from human-related or natural causes) (ND), and an absorbing state for the collection of individuals that 321 

were already dead (D). Given these state definitions, the overall mortality probability corresponded to 322 

the transition probability from state A at time t to state ND by time t+1. We then cast model structures 323 
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similar to those described above for the CR HMMs, and although senescence was still detected, the 324 

estimated rate of senescence was 48.4% lower than in the CR HMM that accounted for mortality cause 325 

( ̂  = 1.155, 95% CI: 0.784 – 1.526, Fig. 4 open circles). Moreover, this model was 7.64 QAIC units 326 

worse than the top cause-specific mortality model. Similar to the snow geese, failure to account for the 327 

cause of mortality led to an overestimation of mortality in roe deer from age 4 to 10, and 328 

underestimation from age 11 to 17 (Fig. 4, compare open and closed circles). 329 

Discussion 330 

Nature provides a vast array of ecological conditions that provide a powerful stage for testing 331 

evolutionary theory (sensu Hutchinson 1965). This is especially relevant for studies of senescence 332 

because the environmental factors that shape the onset and magnitude of senescence in the wild are 333 

poorly understood. Using the comparative method, much has recently been learned about the great 334 

variety of age-specific mortality trajectories across the tree of life (Jones et al. 2008, 2014; Baudisch et 335 

al. 2013; Nussey et al. 2013). Here, we presented old and new methods that can improve the estimation 336 

of senescence by decomposing age-specific mortality into proximate causes. When applied to specific 337 

questions and mechanisms, the presented methods could even be used to gain a deeper understanding of 338 

senescence in the wild (or lack thereof). 339 

 Given the impact that exposure to additional mortality can have on selection pressures affecting 340 

senescence (Box 1, Fig. 1), both known-fate and CR HMM methods should be used to compare 341 

trajectories of age-specific mortality according to cause of death across populations and species where 342 

data are available or can be collected. Moreover, these methods can be used to refine insight into 343 

findings that indicate old individuals in the wild are sometimes more susceptible to hunting or predation 344 

because of interactions between physiological and ecological processes (e.g. Garrott et al. 2002; Carlson 345 

et al. 2007), pressures of trophy hunting (Coltman et al. 2003), or because of social organization that 346 

exposes the eldest individuals first (Festa-Bianchet et al. 2006). In the case of the human hunter, it has 347 
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been found in some systems that the ‘human predator’ may simply consume prey in proportion to their 348 

occurrence (e.g. abundant prime-aged adult elk; Wright et al. 2006). In our examples, we found that the 349 

chance of dying from human-related causes was largely age-independent after maturity in both female 350 

snow geese and roe deer. A high rate of hunting mortality can nevertheless select for increased early-life 351 

allocation to reproduction (Gamelon et al. 2011), and future studies should examine how this may in 352 

turn affect the rate of actuarial senescence (Fig. 1) as well as senescence in reproductive success 353 

(Rockwell et al. 1993). 354 

 Our examples also indicate that some sources of mortality may senesce at a rapid pace while others 355 

may not senesce at all. By decoupling human-related from natural causes of mortality with CR HMMs, 356 

we were able to estimate the rate of senescence in both natural and overall mortality in snow geese and 357 

roe deer (Figs. 3 & 4). Past CR studies that have attempted to make inference about senescence in 358 

natural causes of mortality have typically right-censored individuals once they were known to have died 359 

from anthropogenic causes, but because fates are not known for all individuals in a CR study, this non-360 

random censoring introduces a source of bias. Our CR HMM is a type of ‘competing risk analysis’ that 361 

allows for appropriate estimation of age- and cause-specific mortality probabilities when detection is 362 

imperfect. Going forward, methods like ours should be used to examine age trajectories of mortality 363 

among competing risks experienced by wild populations. In addition, we have shown that conflating 364 

causes of mortality in a traditional CR analysis can lead to an underestimation of the rate of senescence 365 

and overestimation of mortality in pre-senescent adults. Both of these biases have important implications 366 

for age-structured modelling used to guide conservation and management. Based on simulation, the 367 

underestimation of senescence in a traditional CR analysis is most severe when the age trajectories of 368 

underlying competing risks are very different (see Table 1A). Like frailty (Vaupel et al. 1979), 369 

heterogeneity in the eventual causes of death can thus also affect marginal estimates of age-specific 370 

mortality. Whether this is also true for known-fate analyses remains to be explored.  371 
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 Examining age trajectories of cause-specific mortality (e.g. in humans, Horiuchi et al. 2003) can also 372 

provide more explicit targets for associating environmental conditions (e.g. toxin or pathogen exposure), 373 

physiological condition, gene loci, and quantitative gene expressions with senescence in the competing 374 

risks they affect most (Nussey et al. 2008). For example, the CR HMM method presented here can 375 

readily be used in longitudinal studies of individual life histories (Clutton-Brock & Sheldon 2010) to 376 

examine trade-offs between age-specific allocations to reproduction, the cause of mortality these 377 

allocations affect most at given points in the life cycle, and the net impact this has on selection against 378 

overall actuarial or reproductive senescence. By honing in on the specific causes of mortality that 379 

reproductive allocations affect most, the CR HMM method could be used to help clarify the role of 380 

pleiotropic gene expressions (Charmantier et al. 2006) and environmental conditions (van Noorwijk & 381 

de Jong 1986) that shape trade-offs in the wild. 382 

 Similar to event-history analysis (Tuma et al. 1979), the CR HMM method could be extended to 383 

include individual transitions among live states (e.g. epidemiological or morbidity states; Choquet et al. 384 

2013) over the life course to determine how this affects cause-specific chances of dying at a given age. 385 

Such developments would offer an especially promising avenue to gain deeper insight into the 386 

mechanistic drivers of ageing for species where cause of death could be categorized according to 387 

disease, predation, hunger, and toxicity exposure for example. Another useful extension of our CR 388 

HMM method would be to couple it with recently developed capture-reencounter methods for 389 

estimating age-specific survival from data collected on unknown-age individuals (Colchero et al. 2012; 390 

Matechou et al. 2013). The rich history of research on snow geese and roe deer allowed us to streamline 391 

the age structures considered in our examples, however, this will not always be possible. The use of 392 

flexible hazard functions or penalized splines that accommodate an array of both early- and late-life 393 

mortality trajectories in the CR HMM framework would allow for powerful comparisons of cause-394 

specific mortality trajectories across species (Gimenez et al. 2006; Choquet et al. 2011). 395 



17 

 

 Although the CR HMMs used in our examples were a priori identifiable, not all CR HMM 396 

parameterizations will be (see Table 1B). As in our examples (App. 1), accounting for temporal 397 

variation and other variables can actually help improve parameter identifiability (Schaub & Lebreton 398 

2004; Schaub & Pradel 2004). Future studies should conduct thorough analyses of parameter 399 

identifiability to determine the types of CR HMMs and link functions that can and cannot be fit to cause-400 

specific mortality data (Gimenez et al. 2003; Table 1). In conclusion, the methods presented here 401 

provide a baseline for enhancing methodological developments and advancing the analysis of 402 

mechanisms that drive the large variation in ageing observed across the tree of life (Jones et al. 2014).   403 
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Table 1. Simulated logit-linear coefficients for age effects on mortality probabilities in a CR HMM with 643 

one alive state, a partially observable state for mortality cause X, an unobservable state for other (O) 644 

causes of mortality, and an absorbing state for those already dead (++ = 0.5 increase in mortality with 645 

age on the real scale, + = 0.25 increase, and 0 no increase; implemented using a continuous age variable 646 

on the logit scale with value 0 for age 0, 0.1 for age 1, 0.2 for age 2 and so on). Provided in A) are the 647 

estimated coefficients relative to simulated values (95% CI provided within brackets), as well as the 648 

estimated age effects for mortality when states X and O are collapsed (conflated) into a single state. 649 

Simulations involved the release of newborns in a fashion that maintained 10,000 individuals in the 650 

simulated sample at all time steps, p
X
 = 0.3, p

O
 = 0.3, and a common mortality intercept (-1.50). 651 

Simulations in B) were similar but included unique parameters for the mortality intercepts of cause X 652 

and O (each simulated with a value of -1.50). Differences between simulated and estimated coefficients 653 

indicate problems with either partial or complete non-identifiability of model parameters. Interestingly, 654 

estimation with a constrained identity link function (not shown) corrected these problems.  655 

Simulated Estimated Conflated 
X

age  O

age  ˆ X

age  ˆO

age  
int

ˆ X  
int

ˆO  ˆ conflated

age  

A)  ++ + 0.50 

[0.36, 0.65] 

0.18 

[-0.01, 0.36] 

-1.48 

[-1.50, -1.47] 

0.48           

[0.40, 0.56] 

+ ++ 0.17 

[0.02, 0.31] 

0.61 

[0.46, 0.76] 

-1.50 

[-1.52, -1.49) 

0.51           

[0.43, 0.58] 

++ 0 0.46 

[0.32, 0.59] 

-0.04 

[-0.22, 0.14] 

-1.50 

[-1.51, -1.48] 

0.32           

[0.25, 0.40] 

0 ++ 0.07 

[-0.07, 0.21] 

0.48 

[0.33, 0.62] 

-1.50 

[-1.51, -1.48] 

0.35           

[0.28, 0.42] 

B)  ++ + 0.44 

[0.30, 0.58] 

0.34 

[0.15, 0.53] 

-2.35 

[-3.80, -0.91] 

-0.93 

[-1.49, -0.37] 

− 

+ ++ 0.13 

[0, 0.26] 

0.54 

[0.45, 0.63] 

-2.70 

[-3.16, -2.23] 

-0.85 

[-0.98, -0.72] 

− 

++ 0 0.45 

[0.10, 0.80] 

-0.01 

[-1.5,1.5] 

-1.57 

[-5.5, 2.41] 

-1.42 

[-5.0, 2.18] 

− 

0 ++ 0.07 

[-0.09, 0.23] 

0.47 

[-0.22, 1.16] 

-1.54 

[-5.45, 2.36] 

-1.45 

[-5.13, 2.22] 

− 
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 656 

Box 1. The role of cause-specific mortality in evolutionary theories of senescence. 

George C. Williams (1957) predicted that according to either Medawar’s (1952) Mutation 

Accumulation (MA) theory or his own Antagonistic Pleiotropy (AP) theory, greater 

environmentally-driven adult mortality should lead to more rapid senescence. The reasoning being 

that a reduced chance of making it to old age should either reduce selection on mortality at old age, 

allowing mutations to accumulate (MA), or reduce the selective advantage of living long relative to 

investing more in early-life reproduction (AP and the Disposable Soma theory launched by 

Kirkwood in 1977); thereby allowing more rapid senescence to evolve (Hamilton 1966). Moreover, 

both Hamilton and Williams’ models predicted that senescence should be more apparent in 

populations exposed to higher levels of mortality (e.g. wild vs. captive populations, harvested vs. 

protected; see Fig. 1a for a graphical example).  

 Although not unanimous (Vaupel et al. 2004; Ricklefs 2008), a large number of experimental 

and comparative studies have shown that more rapid senescence tends to occur in populations that 

are thought to experience higher adult mortality (e.g. Austad 1993; Ricklefs 1998, 2000; Ricklefs & 

Scheuerlein 2001, 2002; Bryant & Reznick 2004, Reznick et al. 2004). However, Abrams (1993) 

and Caswell (2007) clearly showed that all else being equal, exposure to additional age-independent 

adult mortality does not affect the strength of selection on age-specific mortality, and therefore 

cannot affect the evolution of senescence (see Fig 1b and Shokhirev & Johnson (2014) for 

theoretical evidence that higher predation can lead to both slower or faster life histories depending 

on the context). That said, if traditionally dichotomized environmental and physiological processes 

interact (e.g. Williams & Day 2003; Williams et al. 2006) to alter age-dependent mortality (e.g. 

starvation or predation; see Garrott et al. 2002; Loe et al. 2003; Smith et al. 2004; Festa-Bianchet et 

al. 2006; Wright et al. 2006; Carlson et al. 2007), then the strength of selection acting on age-

specific mortality will change (Caswell 2007; see Fig. 1c) and may even allow for the evolution of 

decreased mortality with age (Vaupel et al. 2004; Baudisch 2005). Furthermore, ‘all else is rarely 

equal’ in nature; if exposure to additional age-independent adult mortality drives increased 

allocation to earlier reproduction in order to compensate for increased mortality (as was shown in 

guppies; Bryant & Reznick 2004; Reznick et al. 2004), the strength of selection against actuarial 

senescence will weaken (Hamilton 1966; see Fig. 1d) and affect the evolutionarily optimal level of 

allowable senescence (Kirkwood 1977; Wensink et al. 2012). 
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 657 

Box 1, Figure 1. A graphical example of how exposing a population to additional mortality (left panels) 658 

affects the pressure of selection on age-specific mortality hazards (right panels; sensu Hamilton 1966). 659 

The left side of panel ‘a’ depicts the original prediction that exposing a population already experiencing 660 

senescence (dashed line) to additional age-independent mortality (resulting solid line) will lead to a 661 

decrease in selection pressure on age-specific mortality (right side), which has since been shown to be 662 

false (denoted by the X). Rather, there is no effect on the selection pressure (panel b, lines on the right 663 

side overlap). If a population is instead exposed to additional ‘age-dependent’ mortality, the selection 664 

pressure on age-specific mortality will indeed decline (panel c), allowing for more rapid senescence to 665 

evolve. Interestingly, if a population that is exposed to additional age-independent mortality responds by 666 

allocating more to early-life reproduction (solid circles) than it had before (open circles) and maintain 667 

the original level of fitness, the selection pressure on age-specific mortality will decline (panel d). 668 
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 669 

 670 

Figure 2. The observable (solid lines) demographic transitions of remaining alive (A), dying from cause 671 

B or C, and the unobservable (dashed line) transition of dying from other causes (O); where ,
k
i t  denotes 672 

the cause-specific probability of mortality per time step (subscripts are as described in the text). 673 

 674 

 675 

 676 
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 677 

Figure 3. Trajectories of age-specific mortality probability according to hunting (solid line) and non-678 

hunting (dashed line) causes for female lesser snow geese at La Pérouse Bay, Canada from 1969 to 679 

2010. Shaded polygons represent 95% confidence bounds. The closed circles represent total mortality 680 

(i.e. the addition of the two causes), and the open circles represent estimates of overall mortality from a 681 

multistate CR analysis where cause was not specified.  682 

 683 

 684 

 685 
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 686 

Figure 4. Trajectories of age-specific mortality probability for human-related (solid line) and natural 687 

(dashed line) causes in female roe deer at Trois-Fontaines, France, from 1985 to 2013. Shaded polygons 688 

represent 95% confidence bounds. The closed circles represent total mortality (i.e. the addition of the 689 

two causes), and the open circles represent estimates of overall mortality from a multistate CR analysis 690 

where cause was not specified. 691 

 692 
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Appendix 1A. Estimation of age-specific profiles of hunting and non-hunting mortality in lesser snow 

geese. 

 For the lesser snow goose analysis we used the RMark package (Laake & Rexstad 2012), which 

calls program MARK from R (Cooch & White 2012), in part because of complications with the data that 

sometimes occurred over the many years of study. Specifically, banding did not take place in 1996, 

1997, and 2009 (and thus recaptures could not occur), and in 2002 and 2004, the gosling cohort was not 

marked and released (because of either reproductive failure or the goslings being too small to hold bands 

at the time of marking; see Aubry et al. 2013). Given our desire to fit models that accounted for sources 

of age-class and time variation in the detection probabilities that were known to be important (see Cooch 

et al. 2001; Koons et al. 2014), as well as age- and cause-specific mortality, we needed to fix detection 

and mortality probabilities to 0 for specific age, time, and state combinations. These complications are 

relatively straightforward to deal with in a programming language like R (see below). We use Courier 

font like this to indicate annotated RMark code for analyzing live and dead encounters with a CR 

HMM (comments in R code follow a # sign).  

 For RMark to recognize the unobservable NH state, the following two-part trick was needed when 

importing the data into the RMark environment.  

# Bring in the .inp file and convert it to the RMark format: 

MSdata <- convert.inp("MS_LD_knagefemale_19692011.inp", covariates =    

  c("x1","x2","x3","x4","x5")) 

 

# Part 1 of trick for incorporating the unobservable NH state 3 by     

# temporarily changing the first observed capture history:  

MSdata$ch[1] <- '1000000000000000000000000000000000000000003' 

 

# An initial age is defined as 0 since all birds in the sample were    

# marked as nearly fledged goslings:  

MS.process <- process.data(MSdata,model="Multistrata",begin.time=1969, 

  age.var=1,initial.age=0) 

# Part 2 of trick for the unobservable NH state by changing the first     

# capture history back to the original observation: 

MS.process$data$ch[1] <- '1000000000000000000000000000000000000000000'  

MS.ddl <- make.design.data(MS.process) 
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Once the data are read into RMark, the user can create additional explanatory covariates and factors not 

already attached to the imported data. This can be especially useful when wanting to create dynamic 

age-class variables or customized temporal covariates (see Laake & Rexstad 2012 for details). As an 

example, we show how we built a dynamic 5 age-class variable for live recapture probabilities (age 1, 2, 

3, 4, and 5+),  

MS.ddl$p$a1=0 

MS.ddl$p$a1[MS.ddl$p$age==1 & MS.ddl$p$stratum==1]=1 

MS.ddl$p$a2=0 

MS.ddl$p$a2[MS.ddl$p$age==2 & MS.ddl$p$stratum==1]=1 

MS.ddl$p$a3=0 

MS.ddl$p$a3[MS.ddl$p$age==3 & MS.ddl$p$stratum==1]=1 

MS.ddl$p$a4=0 

MS.ddl$p$a4[MS.ddl$p$age==4 & MS.ddl$p$stratum==1]=1 

MS.ddl$p$a5=0 

MS.ddl$p$a5[MS.ddl$p$Age>=5 & MS.ddl$p$stratum==1]=1 

 

and a variable for activating a parametric aging function at a specified age of onset (here age 14). 
 

MS.ddl$Psi$M14Age=0 

for (i in 14:30){ 

  MS.ddl$Psi$M14Age[MS.ddl$Psi$Age==i&MS.ddl$Psi$stratum==1]=i-13 

} 

MS.ddl$Psi$M14Age[MS.ddl$Psi$Age>=30&MS.ddl$Psi$stratum==1]=30-13 

As the first important step in analysis, we fixed the survival probabilities for individuals in states A, H, 

and NH (denoted in the code as strata 1, 2, and 3) to 1, 0, and 0 respectively. 

S1=as.numeric(row.names(MS.ddl$S[MS.ddl$S$stratum==1,])) 

S2=as.numeric(row.names(MS.ddl$S[MS.ddl$S$stratum==2,])) 

S3=as.numeric(row.names(MS.ddl$S[MS.ddl$S$stratum==3,])) 

S1val=rep(1,length(S1)) 

S2val=rep(0,length(S2)) 

S3val=rep(0,length(S3)) 

Next, we fixed the probabilities of transitioning ‘from’ states H and NH to any other state to 0, and 

therefore the probabilities of ‘remaining’ in states H and NH to 1 (i.e. the dead states were defined as 

absorbing states). By fixing these parameters, the remaining transition probabilities from state A to H 

and from state A to NH become the ,
k
i t  (Fig. 1 in main text). In theory, the dead states should be split 

into ‘newly dead’ and ‘already dead’ states because an individual can only be recovered during the 
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particular time step that it dies. However, given our parameterizations in RMark, the addition of an 

‘already dead’ state is not needed (Gauthier & Lebreton 2008). 

Psi2=as.numeric(row.names(MS.ddl$Psi[MS.ddl$Psi$stratum==2,])) 

Psi3=as.numeric(row.names(MS.ddl$Psi[MS.ddl$Psi$stratum==3,])) 

Psi2val=rep(0,length(Psi2)) 

Psi3val=rep(0,length(Psi3)) 

 

Shown below are examples of how we fixed a few of the detection probabilities to 0, a key one being 

that for the NH state (denoted as r3 in the code). 

pa1=as.numeric(row.names(MS.ddl$p[MS.ddl$p$a1==1 &   

  MS.ddl$p$stratum==1,])) 

p2004.y=as.numeric(row.names(MS.ddl$p[MS.ddl$p$time==2004 &  

  MS.ddl$p$stratum==1 & MS.ddl$p$cohort==2002,])) 

pa1val=rep(0,length(pa1)) 

p2004.yval=rep(0,length(p2004.y)) 

 

r3=as.numeric(row.names(MS.ddl$p[MS.ddl$p$stratum==3,])) 

r3val=rep(0,length(r3)) 

 

We then show how these specifications (and others not shown here) were implemented into the required 

or most-supported model structures for survival, transition probabilities (i.e. the cause-specific mortality 

probabilities), and detection probabilities, with details provided in the commented text. 

# Survival model specification with S fixed to 1 for state 1 and 0 for  

# dead states 2 and 3 as specified above. 

Sfix <- list(formula = ~stratum, fixed = list(index = c(S1,S2,S3),     

  value = c(S1val,S2val,S3val))) 

 

# Gompertz age trajectory of adult NH mortality from age 14 onward, and age-

# class differences in H mortality. The variables to2 and to3 denote  

# mortality transitions to states H and NH respectively; from2 and from3 are 

# specified so that they can be fixed to 0 later in the statement; hy and  

# ahy denote age classes for the first year of life and thereafter; the  

# M14Age variable specifies the onset of Gompertz senescence as shown above; 

# the variables ending in tscr account for temporal variation in the age- 

# class and cause-specific mortality probabilities; and the loglog link was 

# used to implement Gompertz senescence.   

PsigomNH14p <- list(formula = ~ -1 + to2:hy + to2:ahy + to2:hy:hyhtscr  

  + to2:ahy:ahyhtscr + to3:hy + to3:ahy + to3:hy:hynhtscr +    

  to3:ahy:ahynhtscr + to3:a14p:M14Age + from2 + from3, 

  fixed = list(index = c(Psi2,Psi3,Psi1996.g,Psi1997.g,Psi2002.g,  

  Psi2004.g,Psi2009.g), value = c(Psi2val,Psi3val,Psi1996.gval,  

  Psi1997.gval,Psi2002.gval,Psi2004.gval,Psi2009.gval)), link =  

  "loglog") 
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# Age-class and time variation in the state-specific detection  

# probabilities. The variables str1, str2, and str3 denote strata A,H, and  

# NH respectively, with required fixes specified later in the model  

# statement; the a1 through a5 age-class variables were defined above; and  

# the time variables are described below. 

p5spl30rspl35 <- list(formula = ~ -1 + str1:a1 + str1:a2 + str1:a3 +  

  str1:a4 + str1:a5 + str1:bs(Time,df=3,degree=3) + str2 +     

  str2:bs(Time,df=8,degree=3) + str3, fixed = list(index=c(pa1,p1996,  

  p1997,p1998.y,p1999.y,p2004.y,p2006.y,p2009,p2011.y,r3,r1997.g,  

  r1998.g,r2003.g,r2005.g,r2010.g),value=c(pa1val,p1996val,p1997val,  

  p1998.yval,p1999.yval,p2004.yval,p2006.yval,p2009val,p2011.yval, 

  r3val, r1997.gval,r1998.gval,r2003.gval,r2005.gval,r2010.gval)),   

  link="logit") 

 

These model specifications were then run in RMark using the mark function and the simulated 

annealing algorithm to maximize the potentially multi-modal likelihood: 

PsigomNH14p <- mark(MS.process,MS.ddl,model.parameters=list(S=Sfix, 

  p=p5spl30rspl35,Psi=PsigomNH14p),options="SIMANNEAL") 

 

In the model for detection probabilities presented above in the annotated code, we interfaced RMark 

with the ‘splines’ package in R (see posts on www.phidot.org for details) to implement polynomial B-

spline functions for temporal variation, where degree specifies the order of the polynomial function and 

the difference between df and degree specifies the numbers of inner knots (Hastie 1992). Methods for 

automatically selecting the amount of smoothing (e.g. Gimenez et al. 2006) are not currently available 

for use in RMark. We additionally fit B-spline functions for age-specific mortality according to cause, 

but the fit was quite poor, with large confidence intervals.  

Appendix 1B. Estimation of age-specific profiles of human-related and natural mortality in roe deer. 

All individuals included in the analyses were first captured as fawns (i.e. known-age individuals). Some 

of them were recaptured alive, some were reported from dying of anthropogenic causes, and others were 

not detected. A capture history could thus take the following form: 10112, meaning that the individual 

was first captured and marked, not seen the second year, recaptured the 3
rd

 and the 4
th

 years, and finally 

killed by a hunter or vehicle and reported in the 5
th

 year. These records were denoted as ‘events’: 0, not 

seen; 1, captured for the first time or recaptured; 2, killed by human activities and reported. The 
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corresponding individual states that we considered were: A, alive; H, individual just died from human 

causes; NH, individual just died from a natural (non-human) cause; D, individual already dead. 

 We then built CR HMM models in several stages using program E-SURGE (Choquet et al. 2009). 

Below, the sum of a row = 1. Consequently, one cell of each row in a parameter matrix will be 

calculated as the complement of the sum of the others, denoted with a ‘*’ symbol. Cells equal to 0 are 

denoted with a ‘-’ symbol. An active cell containing a parameter to be estimated receives an arbitrary 

letter. Note that the same letter in two cells does not mean that the two values are equal (these 

constraints are made later). The primary symbols for parameters are: μ, mortality probability, and p, 

detection (or event) probability. 

The Gepat interface: 

Initial state probabilities 

A H NH 

* - - 

 

Transition probabilities: Survival & Cause-Specific Mortality 

In the transition probabilities matrix below, the probabilities of an individual transitioning from (rows) 

being alive at time t (A t) to (columns) either being dead due to human (H t+1) or natural (NH t+1) causes 

by time t+1 are denoted with a ‘μ’ symbol. Individuals dead at time t or ‘already dead’ at time t remain 

in the state D with a probability of 1. Note that this latter state was not explicitly included in the RMark 

analysis for lesser snow geese above.  
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 A t+1
-
 H t+1

-
 NH t+1

-
 D 

A t * μ μ - 

H t - - - * 

NH t - - - * 

D t - - - * 

 

Event probabilities: Live Recapture & Dead Recovery 

The matrix for event probabilities shown below denotes both live recapture and dead recovery 

probabilities with a ‘p’ symbol (modelled difference in p between the states are designated below). At 

occasion t, individual states are shown in rows and encounter observations in columns. For example, in 

the first row individuals not seen (0) but alive (A) are not recaptured (*), whereas individuals alive (A) 

and seen (1) are recaptured with probability p. In the second row, individuals dead from human causes 

(H) and not seen (0) are not recovered (*), whereas individuals dead from human-related causes and 

recovered have a probability p of being observed as such. Individuals dead from natural causes (NH) are 

never seen (0), and thus the corresponding detection probability was fixed to 0, as was also done for 

individuals that were already dead (D, which was specified as an absorbing state): 
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 0 1 2 

At * p - 

H t * - p 

NH t * - - 

D t * - - 

 

The Gemaco interface: 

Phrase for initial state: There is no active parameter, just use the keyword ‘i’. 

Phrase for transition probabilities: Given our specifications in the ‘Gepat’ step above, this step 

corresponds to specifying individual variation in cause-specific mortality probabilities (human-related 

and natural). For instance, in the best model retained for females we considered a parameter specifying a 

separate human-related mortality probability for age 1, and another for individuals older than 1 year of 

age. We made similar specifications for natural mortality probability, but additionally specified a 

generalized logit-linear increase in natural mortality probability from 2 years of age onwards, using the 

external variable x(1) and the following text in the Gemaco interface (note that age 1 in E-SURGE 

relates to biological age 0): 

‘from(1).to(2).[a(1)+a(2:18)]+from(1).to(3).[a(1)+a(2)+[a(3)&a(4)&a(5)&a(6)&a(7)&a(8)&a(9)&a(10)

&a(11)&a(12)&a(13)&a(14)&a(15)&a(16)&a(17)&a(18)]+[a(3)+a(4)+a(5)+a(6)+a(7)+a(8)+a(9)+a(10)

+a(11)+a(12)+a(13)+a(14)+a(15)+a(16)+a(17)+a(18)]*x(1)]’. 

Phrase for event probabilities: The last step corresponds to specifying the variation in live recapture and 

dead recovery probabilities. We considered interactive time-dependence in recapture probabilities for 

the first age class and that for individuals older than 1 year of age, and a constant dead recovery 
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probability using the following text in the Gemaco interface (where ‘from’ refers to the row, and ‘to’ 

refers to the column in the event probabilities matrix above): 

‘from(1).to(2).[a(1)+a(2:18)].t+from(2).to(3)’.  
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