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Multi-objective Trajectory Optimization to Improve
Ergonomics in Human Motion

Waldez Gomes1, Pauline Maurice1, Eloı̈se Dalin1, Jean-Baptiste Mouret1, Serena Ivaldi1

Abstract—Work-related musculoskeletal disorders are a major
health issue often caused by awkward postures. Identifying
and recommending more ergonomic body postures requires
optimizing the worker’s motion with respect to ergonomics
criteria based on the human kinematic/kinetic state. However,
many ergonomics scores assess different risks at different places
of the human body, and therefore, optimizing for only one
score might lead to postures that are either inefficient or that
transfer the risk to a different location. We verified, in two work
activities, that optimizing for a single ergonomics score may
lead to motions that degrade scores other than the optimized
one. To address this problem, we propose a multi-objective
optimization approach that can find better Pareto-optimal trade-
off motions that simultaneously optimize multiple scores. Our
simulation-based framework is also user-specific and can be used
to recommend ergonomic postures to workers with different
body morphologies. Additionally, it can be used to generate
ergonomic reference trajectories for robot controllers in human-
robot collaboration.

I. INTRODUCTION

Work-related musculoskeletal disorders (WMSDs) are
among the first causes of occupational diseases worldwide,
representing a major health issue, with important costs for
companies and society. They develop when biomechanical
demands repeatedly exceed the workers’ physical capacities,
and, along with force exertion, awkward postures represent one
of their major risk factors [1]. In many situations, workers
are able to choose among a variety of postural strategies
to execute a task. Yet, their natural choice does not always
match the best strategy with respect to long-term health. For
instance, several studies reported that novice workers can
adopt strategies that result in higher biomechanical loading in
comparison to experienced workers [2]. Recommending better
ergonomic postures for specific tasks is, therefore, a promising
avenue to help to reduce WMSDs among workers.

Posture recommendation requires a prior identification of
the best postural strategy for each task –taking into account
workplace constraints– adapted to the specific individual. The
best strategy usually depends on individual factors, such as
body morphology, or joint capacities. The question of iden-
tifying ergonomic postural strategies is also pushed forward
by the growing interest in collaborative robotic assistance. In
addition to the direct physical assistance they can provide, e.g.,
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Fig. 1: Ergonomics human motion optimization framework.
The entire motion is encoded into motion primitives that can
be readily optimized with respect to a single, or multiple,
ergonomics scores using a user-specific Digital Human Model
(DHM) Simulation for motion evaluation.

through weight compensation, collaborative robots can be used
to guide workers toward a more ergonomic posture via the
positioning of their end-effector [3]–[6]. But such assistance
also requires the knowledge of the user’s optimal posture.

State-of-the-art human-robot applications that improve the
human partner’s ergonomics usually take in consideration only
one ergonomics score [4]–[7]. However, single-objective opti-
mization may not be sufficient to obtain “good” whole-body
motions, since optimizing for only one criterion often produces
motions that are less ergonomic in other body regions; e.g.,
minimizing only the back flexion ignores the leg motion or
efforts at the shoulder joints.

To address this problem, in this paper we propose to
use multi-objective optimization to generate several Pareto-
optimal motions that simultaneously optimize several dif-
ferent ergonomics scores. We propose a simulation-based
optimization framework to generate ergonomic whole-body
motions for different body morphologies and activities (Fig.
1). Initial demonstrations from motion capture are used as
feasible motions to warm-start the optimization process. The
motions are parametrized by probabilistic movement primi-
tives (ProMPs), that can encode several task demonstrations.
A user-specific Digital Human Model (DHM) simulates the
whole-body motion in a physics engine, and the simulation’s
output is used to estimate several ergonomics scores based
not only on the body’s posture, but also on its joint torques.
A multi-objective optimization algorithm (NSGA-II) is used
to generate several possible Pareto-optimal solutions (i.e.,



whole-body motions) that represents trade-offs among the
different ergonomics criteria. This approach is user and task
specific, and generates a variety of different movements that
promotes the different ergonomics criteria, producing more
“ergonomically reasonable” motions of the DHM.

After describing the method in detail (section III), we
empirically show that: 1) ergonomics optimization must be
user-specific (experiment 1 in section IV-V); 2) optimizing
for one single criteria may lead to non-ergonomic motions for
other criteria, which means ergonomics criteria can conflict
(experiment 2 in section IV-V); 3) optimizing simultaneously
for several criteria using multi-objective optimization leads to
a rich set of trade-offs motions that are more reasonable in
terms of ergonomics and realistic for a DHM.

II. RELATED WORK

Prior work used human models to automate whole-body
motion analysis for a given activity [8], [9]. There is a recent
trend in the human-robot interaction community to use them
to improve the human posture with respect to ergonomics
scores during physical interactions. For instance, Marin et
al. optimized a shared object’s position in order to minimize
the maximum muscle activation signal taken from a fast-to-
compute musculoskeletal surrogate model [5]. Van der Spaa et
al. optimized a discrete sequential plan of poses for a shared
object during its transportation by both human and robot, with
respect to the Rapid Entire Body Assessment (REBA) score,
a standard whole-body ergonomics score [10].

Other work continuously evaluated the human kinemat-
ics/kinetics to try to influence the human posture with different
robot actions. Shafti. et al. used wearable sensors to compute
the Rapid Upper-Limb Assessment (RULA) score and adapt
the robot’s end-effector accordingly until the ergonomics eval-
uation is considered satisfactory [6]. Kim et al. minimized
the human joint torque due to an external load [4]. Similar
optimization techniques were used to improve human operator
ergonomics during teleoperation [11], [12].

The examples above consider single ergonomics scores,
however, given the multi-factorial causes of WMSDs, optimiz-
ing the movement for one ergonomics score could deteriorate
other possible antagonistic scores. For this matter, there are
some examples of multi-objective ergonomics optimization
in the literature. For instance, Xiang et al optimized a hu-
man’s posture w.r.t. ergonomics and stability scores [13], and
Iriondo et al optimized a workstation setup parameter w.r.t
RULA, and the human’s upper-arm elevation angle [14]. In a
physical human-robot application, Maurice et al optimized a
robot’s design parameters to simultaneously improve several
ergonomics scores [15]. Figueredo et al combined muscle
activation predictions and the REBA score to calculate a
comfortability index that can be used in a physical human-
robot interaction to guide the human partner towards postures
that minimize both types of scores [16].

Here, we propose a framework to optimize human- and
activity-specific whole-body motions w.r.t. several ergonomics
scores. We also show that the resulting optimal motions are

Fig. 2: Digital Human Model (DHM) joints description. The
axes are X=Red, Y=Green, Z=Blue.

sensitive to different body morphologies, and ergonomics
scores.

III. METHODS

A. Digital Human Model Simulation

The DHM used in this work (Fig. 2) consists of 19 rigid
bodies linked together by 18 compound joints, for a total of
43 DoFs (11 for the back and neck, 9 for each arm including
the sternoclavicular joint, and 7 for each leg), plus 6 DoFs for
the free-floating base. Each DoF is a revolute joint controlled
by a single actuator. Different human morphologies are easily
generated from a desired body mass and height, by scaling
the geometric and inertial parameters of the human model
according to average anthropometric coefficients [17], [18].

The DHM is simulated in a physics engine (DART [19])
and controlled by a multi-task quadratic programming (QP)
controller [20] that generates the motion that will be evaluated.
The QP controller takes reference Cartesian trajectories of
activity-defining body segments as input, and outputs desired
joint velocities for the DHM. The QP is set to minimize the
tracking error of these references while handling task priorities
defined by the user. The priorities are defined by hierarchical
levels, and tasks within the same level are further prioritized
by their task weights. At the first priority level of the QP
controller, there is a fixed Cartesian task for both feet that
keeps the DHM in double support, and a task for the DHM’s
center of mass, to balance the DHM. At the second priority,
there are Cartesian tasks for the hands, pelvis, and head, as
well as a task that defines reference body postures. Here, the
weights of all tasks are defined according to the work activity.

B. Ergonomics Evaluation

To obtain ergonomic motions from the optimization, we
need to define ergonomics scores as objective functions to
our formulation. There are many possible ergonomics scores
typically representing different physiological phenomena that
could increase the risk of developing WMSDs [21]. However,
there is no strict consensus on a single score to use for motion
optimization. Moreover, they might be antagonistic among
themselves, e.g. the same movement could produce “good”
results for a score, and “bad” results for another.



TABLE I: Ergonomic Evaluation Scores. εobj(t) is the instan-
taneous score.

Description Score εobj(t)
RULA-C Regression of RULA [22] εrc

Normalized
whole-body Effort 1

njoints

∑
i∈joints

(
τit

τimax

)2

εnwe

Torques Shoulder ‖τshoulder‖ εtsh
Torques Lumbar ‖τlumbar‖ εtlb

Back Flexion
∥∥θYL5S1

∥∥ εback

For this reason, instead of using an aggregated score, that is
often task-specific, we consider several scores, εobj , separately
(table I). In order to obtain an evaluation of the entire trajectory
execution, we use a cost proportional to the squared RMS
value of εobj for each score, for the entire activity duration:

Jobj =
∑

t∈[0...T ]

ε2obj(t) (1)

where T ∈ R is the final simulation instant. Below, we
describe each of the selected scores εobj .

RULA-C or RULA Continuous: The Rapid Upper Limb
Assessment tool [22] is often used by ergonomists to evaluate
work activities involving upper-body motion. It consists of
a score ranging from 1 to 7, calculated based on the joint
positions (posture), the force/load applied at the worker’s arm,
and how many times the activity is repeated. RULA time evo-
lution during a work activity is likely to have discontinuities,
and plateaus that make its domain exploration less efficient
for many optimizers. To alleviate this problem, we propose a
continuous version of RULA instead: RULA-C, εrc ∈ R+. To
compute RULA-C, we fit second-degree polynomial functions
to calculate intermediate scores for the RULA joints. The joint
scores for each limb are combined with weighted sums whose
weights are computed from linear regressions of the standard
RULA tables. Moreover, differently from RULA, RULA-C
only takes into account the body posture.

Normalized whole-body Effort: The torques at every joint
are summed to quantify the whole-body effort (table I), where
all joint torques are normalized w.r.t. average maximum human
capacity [17] in order to handle the joint torque capabilities.

Local measurements: WMSDs at the shoulder and lumbar
areas are among the most common in the population [1],
therefore, we chose scores that target them. For the shoulder
joint, we monitor its absolute torque values, εtsh, and for the
lumbar joint, we monitor not its absolute torque values, εtlb,
and the back flexion angle, εback.

C. Whole-body Trajectory Parameterization

The reference trajectories to the QP controller define the
whole-body movement, from which, a few of them are selected
to be optimized, and for this reason, parameterized by Prob-
abilistic Movement Primitives (ProMPs), which can represent
a set of movement demonstrations as Gaussian distributions
[23]. The mean of those distributions are represented as a
weighted sum of basis functions, φt, defined at the learning

of the ProMP. Therefore, a ProMP mean trajectory, ytrajt , can
be modulated by its weight vector, wtraj :

ytrajt = φ>t wtraj (2)

Similarly to [24], all ProMP trajectories can be stacked into
a single weight vector, that finally defines our parameters to
be optimized: w = [w1 . . .wntrajs ].

The initial ProMP trajectories are a result of estimating the
weights, w, according to the initial movement demonstrations
captured using a whole-body motion capture system.

D. Trajectory Optimization

We optimize a selection of the DHM body segment tra-
jectories, y(w), through its optimizable parameters, w, w.r.t.
one of the ergonomic scores in table I with a single-objective
optimizer, or with several scores, simultaneously, with a multi-
objective optimizer. Given an episode k in the optimization
loop (Fig. 1), the point wk is considered feasible if, and only
if, the executions of the whole-body trajectories y(wk) respect
some nonlinear constraints.

Trajectory Constraints: The DHM limbs and reference tra-
jectories should always be within the environment workspace.
That is, each ProMP weight is constrained to box boundaries
that correspond to the DHM’s reach in the workspace. Ad-
ditionally, during the trajectories’ execution, the DHM must
never fall, and its hand(s) must reach all (activity-dependent)
points of interest that are relevant for the activity. In order
for the trajectory execution scores (1) to be comparable, the
duration of every trajectory execution is always fixed for every
episode. This trajectory optimization is, therefore, a derivative-
free problem with black-box non-linear constraints.

Single-Objective Trajectory Optimization (SOTO): We
bootstrap the optimization with the initial ProMP weights
learned from the demonstration set. To optimize each one
of the scores separately, we use single-objective optimization
with the optimizer COBYLA (Constrained Optimization BY
Linear Approximation) [25], a deterministic local optimizer
that directly takes black-box constraints as inputs alongside
any of the ergonomics scores accumulated by (1), and has al-
ready been used for constrained motion optimization problems
[24]. The COBYLA implementation is taken from NLopt [26].

Multi-Objective Trajectory Optimization (MOTO): To
optimize for multiple scores at the same time, we advocate
for multi-objective optimization. The goal becomes not to find
one single optimal solution, but rather, a set of Pareto-optimal
solutions that provide trade-off trajectories for conflicting
ergonomics scores, i.e a Pareto front. By definition [27], within
the Pareto front, all solutions are said to be dominant: given
solutions w1 and w2, w1 is said to dominate w2 if and only
if w1 provides better results for all objective functions; if one
or more of w2’s objectives is better than in w1, then, both are
dominant solutions with a trade-off between each other. We
used the Non-dominated Sorting Genetic Algorithm II (NSGA
II), a multi-objective evolutionary optimizer [27] implemented
in the C++ library Sferesv2 [28].



Objective Function Penalties: Differently from COBYLA,
NSGA-II’s implementation does not handle specifying fea-
sible/unfeasible points directly, so we modify the objective
function (1) to penalize the unfeasible points. Each ergonomics
score is penalized in case the DHM falls or it does not reach
the activity’s points of interest:

Jobj = TfallPfall
obj + Pvia

obj +
∑

t∈[0...T ]

ε2obj(t) (3)

where Tfall ∈ R+ is the period of time in which the DHM
has been fallen, Pfall

obj ∈ R+ is the fall penalty for a given
score, and Pvia

obj ∈ R+ is the point-of-interest penalty for a
given score. Each score is associated with a different penalty
value for they have different orders of magnitude.

Bootstrapping Initial Demonstrations: NSGA-II’s does
not allow defining initial trajectories directly. Hence, we
modify the initial population sampling in order to bootstrap
the initial human demonstrations. The i-th variable, wi, of
each initial individual is sampled using the initial ProMP i-th
variable, winitial

i using a Gaussian distribution:

wi = N (winitial
i , δiβ) (4)

where δi is the largest distance between winitial
i and any of

its box boundaries, and β ∈ R is a constant that modulates
how much of the boundaries we want to sample initially.
For instance, if β = 1

3 , then p(wi = boundaryi) ≤ 0.3%,
that is, we would sample the entire workspace with very
low probabilities at each variable boundary. Here, we chose
β = 1

12 , a low value, to keep the initial sample close to the
initial demonstrations.

IV. EXPERIMENTS

The proposed framework is used to optimize whole-body
motions under a variety of body morphologies, ergonomics
scores, and work activities. Two work activities commonly
related to movements that are risky in terms of ergonomics
were analyzed, A and B (Fig. 3), which are described hereafter.

Activity A - Pick and Place Object from a Shelf: In this
activity, a human has to reach an object located on a shelf with
its right hand, take the object, and move it laterally toward the
right side to another point on the same shelf. If the worker’s
shoulder level is below the shelf, this activity requires overhead
work that could overload the worker’s right shoulder.

To execute this activity, the DHM QP controller includes an
additional task that commands the head to always face the right
hand position. The task weights in the QP controller are set
as: 1.0 for the feet position (X,Y,Z), CoM position (X,Y), and
hand position(X,Y,Z); 0.5 for the hand orientation (roll, pitch,
yaw); 0.1 for Pelvis position (Z), and Head orientation; 0.05
for a reference body posture task; and 0.005 for a reference
back lateral bending joint position task.

Activity B - Lift Box from the Floor: In this activity, a
human has to reach a box situated on the ground, in front
of her/him, and with both hands, lift it to the waist level
height. This activity commonly requires a great amount of

A B
Fig. 3: Demonstrations for work activities A and B captured
with the motion capture suit XSens MVN. A: Pick and place
a weight on a high shelf. B: Lift a box from the floor.

effort surrounding the human’s lumbar back area, which could
be overloaded in the case of excessive back flexion, and/or
excessive manipulated weights.

To execute this activity, the weights in the QP controller
are set as: 1.0 for the feet position (X,Y,Z), CoM position
(X,Y), hand position and orientation (X,Y,Z, roll, pitch and
yaw); 0.05 for the pelvis position and orientation (Z, pitch),
and reference body posture task; and 0.05 for reference joint
positions at the ankles, knees, and back internal rotation and
abduction joint positions.

A. Experiment 1 - Effect of Varying Morphology

The goal of this experiment is to show that optimal er-
gonomic motions are user-dependent. We generated 9 different
DHM morphologies with 3 different body heights, and 3
different body mass indexes corresponding to underweight,
average weight, and overweight morphologies (Tab. II). In this
experiment, the right hand vertical position and the center of
mass (CoM) ground projection trajectories were optimized for
an Activity A type of motion, in which the shelf is located at
1.5 m high and the start and end points for the hand are 30 cm
apart. The initial hand trajectory was artificially generated as
the minimum jerk trajectory between the start and end points.
The hand trajectory was defined by a ProMP with 15 weights,
and the CoM trajectory by a ProMP with 5 weights for each
coordinate, X and Y, therefore, w ∈ R25.

For each morphology, we ran single-objective optimizations
with 2 relevant ergonomics scores for the shoulder: the RULA-
C score (standard score to evaluate upper-body motions), and
the shoulder torque score. The optimizer was set so that
the optimization stopped after 1000 rollouts or when the
improvement in cost function between successive rollouts was
below 10−5.

B. Experiment 2 - Effect of Ergonomics Scores

The goal of this experiment is to show that SOTO with
different ergonomics scores generates different optimal trajec-
tories with possible negative impact on the overall ergonomics
due to conflicting criteria. We optimize the motion for both
types of activities, A and B, and for each activity we run one
SOTO for each ergonomics score listed in Table I. Differently
from experiment 1, here, the initial motion is captured from
real human demonstrations (Fig. 3). In activity A, the shelf is
located at 1.7 m high, and the start and end points are 0.64



m apart. The human demonstrator, as well as his DHM, are
1.85 m high, with 93 kg, therefore, here, activity A required
overshoulder work. For both activities, we instructed the hu-
man demonstrator to perfom a non-ergonomic demonstration
(keeping hand above shoulder level in activity A and bending
the back and not the knees in activity B), so that there was
always a path for improvement in the optimization process.
Additionally, weights of 1kg were used for both activities
to limit the risk of injuries. In the simulation, however, we
used a 5kg object (act. A) and a 10kg box (act. B) to assess
demanding tasks where the choice of postural strategies might
have a larger impact on ergonomics scores.

In activity A, the CoM, hand, and Pelvis QP reference
trajectories are optimized with 10, 30, and 10 ProMP weights
respectively, totaling 50 parameters to be optimized. In activity
B, the CoM, and Pelvis QP reference trajectories are optimized
with 10, 20 ProMP weights respectively, totaling 30 param-
eters to be optimized. For each parametrized trajectory, the
initial values of the ProMP weights are learned from 5 human
demonstrations. In both activities, the optimizer was set so
that the optimization stopped after 1500 rollouts or when the
improvement in cost function between successive rollouts was
below 10−5.

C. Experiment 3 - Multi-Objective Optimization

In this experiment, our goal is to show that MOTO generates
motions with better trade-offs between several ergonomics
scores than SOTO. We ran the MOTO on the same activities as
in Exp.2, including the same constraints and parameters for the
DHM QP controller. Instead of including all the ergonomics
scores in the optimization, we selected the scores that are most
relevant for each activity. Activity A demands a significant
motion from the right shoulder, and it is predominantly an
upper-body work activity, so we chose to optimize the motion
w.r.t torques shoulder, normalized whole-body effort, and
RULA-C scores. For activity B, both the shoulder and the
lumbar joints are well demanded during the box lifting, so
we chose to optimize the motion w.r.t. torques shoulder, and
torques lumbar scores.

NSGA-II hyper-parameters are set as follows: cross rate =
0.5; population size = 100; number of generations = 600
(totalling 62000 rollouts per optimization execution). The
mutation rates are set to 0.2, and 0.4 for activities A and
B respectively, to take into account the different number of
optimization parameters between activities. Since NSGA-II is
a stochastic algorithm, we ran the optimization, in parallel, 20
times.

V. RESULTS AND DISCUSSION

A. Experiment 1

The optimization generated motions with improved trajec-
tory ergonomics scores for each one of the morphologies with
a median improvement of 10.5% and IQR of 24.0% regarding
the RULA-C score, as well as a median improvement of 41.1%
and IQR of 35.0% for the torque shoulder score (table II).
For the tall morphologies, m1,m2,m3, and for both evaluated

TABLE II: Improvement of the ergonomics score from the
initial movement after SOTO for different morphologies.

mi Height (m) B.M.I. Weight (kg) Jrc Jtsh
1 2.0 18 72 10.5% 27.1%
2 2.0 22 88 9.4% 42.3%
3 2.0 30 120 10.2% 30.2%
4 1.8 18 58 7.9% 37.8%
5 1.8 22 71 7.6% 24.1%
6 1.8 30 97 20.1% 74.8%
7 1.6 18 46 30.6% 58.2%
8 1.6 22 56 38.4% 41.1%
9 1.6 30 77 34.7% 69.1%
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Fig. 4: Optimized hand trajectories w.r.t. torques shoulder and
RULA-C scores for the 9 morphologies mi|i ∈ [1 . . . 9] in
table II in exp. 1.

scores, the hand vertical trajectories did not vary much from
the initial hand vertical trajectory in comparison with the short
morphologies, m7,m8,m9 (Fig. 4). This was likely because
the initial hand vertical trajectory, set at 1.5 m high, was
already well below the tall morphologies shoulder level, which
is likely to characterize a local minima for both RULA-C
and torque shoulder scores. The short morphologies, on the
other hand, lowered their right hand as much as possible to
avoid raising the arm to the shoulder level. These results
confirm that each individual needs to have a custom motion
optimization for his/her body morphology.

B. Experiment 2

Each optimization improved the initial motion according to
its ergonomics score (Fig. 5). In Activity A, each optimization
improved : back flexion by 99.37%, RULA-C by 4.52%,
normalized whole-body efforts by 12.92%, torques shoulder
by 60.36%, and torques lumbar by 77.24%. In Activity B, each
optimization improved : back flexion by 93.42%, RULA-C by
30.02%, normalized whole-body efforts by 87.67%, torques
shoulder by 64.97%, and torques lumbar by 67.32%.

Each one of the ergonomics scores have had a unique
influence on the whole-body posture and efforts. For instance,
the DHM’s right elbow is more flexed during the optimal
motion w.r.t. the torques shoulder score in comparison to the
other motions during Activity A (Fig. 6). This is likely due



to the fact that flexing the elbow brings the arm closer to the
torso, hence, decreasing the torques caused by gravity on the
shoulder. During activity B, the initial motion has excessively
high lumbar torques (Fig. 5) due to the large back flexion
(Fig. 6). This motion strategy was penalized by all ergonomics
scores, which in turn favored motions that reduce the back
torque decreasing the DHM’s back flexion, and increasing
the DHM’s knee flexion instead. Interestingly, this is the case
even for the torque shoulder optimal motion, where the lumbar
torque is not directly penalized, although with a lesser amount
of knee flexion than the others.

The results confirm that solutions optimized for a given
score may degrade other scores (Fig. 5). In activity A,
minimizing the torque shoulder score increases the whole-
body effort and back flexion, while in activity B, minimizing
back flexion increases the torque shoulder score. Additionally,
conflicting ergonomics scores could happen when optimizing
for scores that do not evaluate the activity’s main load require-
ments. For instance, in activity A, whose main load is at the
shoulder, optimizing for back flexion highly increased torques
at the shoulder, while optimizing for lumbar torques increased
the whole-body efforts in comparison to the initial motion.

According to these results, optimizing for a single
ergonomics score may not be advisable, and a more holistic
approach concerning different ergonomics criteria must be
sought for motion optimization.

C. Experiment 3

The Pareto front for both activities was computed for 20
MOTO replicates per activity (Fig. 7, and Fig. 8). The resulting
Pareto fronts presented much starker score diversity between
the Pareto-optimal solutions than the motions from the SOTO
in Exp. 2 (Fig. 5). This likely happened because NSGA-II
is a global optimizer, therefore, it explores the optimization
space more efficiently than local optimizers. This diversity
gives more options, and flexibility for the user to choose a
Pareto-optimal solution according to given criteria.

To illustrate the advantage of using the MOTO approach,
we visually selected some motions from each Pareto front of
each activity with reasonable trade-offs between the scores
(Fig. 7, Fig. 8), and compared them to the single objective
solutions of the same scores (Table III). For activity A, w?

A3

had similar elbow flexion trajectory to the SOTO w.r.t. torque
shoulder score, as a matter of fact, this is a good solution if the
user does not care about the generalized increase in the whole-
body torques (indicated by Jnwe). On the other hand, if both
the whole-body torques and the torques at the shoulder are
important for the user, w?

A4 could be a more interesting choice.
Similarly for activity B, w?

B2 is a movement that optimizes
both shoulder and lumbar torques simultaneously, but if the
user would prefer the minimum shoulder torques from the
pareto front, then w?

B1, with less knee flexion, would be a
better choice. Note that w?

B1, also has a greater reduction on
the lumbar torques than the SOTO solution for the shoulder
torques. Additionally, most solutions from the Pareto fronts
have improved their ergonomics scores, even for scores that

TABLE III: Improvement of the ergonomics scores w.r.t. the
initial motion after SOTO and MOTO. The multi-objective
solutions are indicated in the Pareto fronts (Figs. 7 and 8).

(a) Activity A

Motion Jtsh Jnwe Jrc
Initial 100% 100% 100%

Single Obj. Jtsh 39.4% 146.2% 105.7%
Single Obj. Jnwe 99.1% 80.2% 102.4%
Single Obj. Jrc 77.6% 90.8% 95.5%
Multi-Obj. w?A1 83.9% 115.9% 93.4%
Multi-Obj. w?A2 72.9% 41.2% 102.7%
Multi-Obj. w?A3 50.1% 198.0% 100.5%
Multi-Obj. w?A4 35.8% 53.4% 97.0%

(b) Activity B

Motion Jtsh Jtlb
Initial 100% 100%

Single Obj. Jtsh 33.6% 70.6%
Single Obj. Jtlb 78.8% 32.8%
Multi-Obj. w?B1 16.0% 36.9%
Multi-Obj. w?B2 22.4% 26.0%
Multi-Obj. w?B3 73.4% 24.4%

were not being optimized (Fig. 6). This is likely due to those
scores not being in conflict with the optimized ones.

Video: To show that Pareto-optimal solutions obtained by
MOTO are better ergonomics trade-offs than those obtained
by SOTO, we refer the reader to the video attachment where
we compare the different whole-body movements executed
by our DHM. Clearly, optimizing for a single criteria easily
produces unrealistic movements that one could actually refer
to as “non ergonomic”: for example, we point out the solution
in activity A that minimizes only the lumbar torques with
a very awkward non-ergonomic motion from other points of
view. Movements generated by our MOTO approach are more
feasible and ergonomically reasonable.

In conclusion, generating whole-body motion with
MOTO provides better trade-offs among several er-
gonomics criteria; and because many solutions are gen-
erated, we obtain a tool that enables a user (i.e., an
ergonomist) to choose from a set of ergonomic motions
that are often better than the ones generated with SOTO.

VI. CONCLUSIONS

We proposed a simulation-based MOTO framework to gen-
erate user- and task-specific ergonomic whole-body motions
that simultaneously optimize several ergonomics criteria.

We showed that single-objective optimization may not be
sufficient to obtain “good” ergonomic motions, since opti-
mizing for only one criterion often produces motions that
are less ergonomic in other body regions. In our approach,
instead, we generate a set of Pareto-optimal motions that trade-
offs ergonomics scores. Our framework can be used to select
trajectories from the Pareto front, to recommend better motions
to workers, or even input them as a reference to a human-
robot interaction controller to assist or influence the human
motion behavior. In the future, we plan to collaborate with
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Fig. 5: Experiment 2 (SOTO) and Experiment 3 (MOTO) - The median of the ergonomics scores during the execution of the
initial and optimal motions. Lines of the same color represent one motion, and each axis represents one of the ergonomics
scores. The motions in experiment 2 are taken from 5 independent single-objective optimizations for each activity. The motions
in experiment 3 are taken from the respective Pareto fronts for each activity (Fig. 7 and 8).
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optimized motions: elbow flexion for activity A (Reaching); knee flexion for activity B (Lifting).



Fig. 7: Experiment 3 - Activity A - Pareto front. The er-
gonomics scores values are normalized by those of the initial
motion. The bottom image is a 2D projection of the 3D Pareto
front, the third objective is represented by a color scale on each
point.

Fig. 8: Experiment 3 - Activity B - Pareto front. The er-
gonomics scores values are normalized by those of the initial
motion.

ergonomics experts to validate the use of our tool for occupa-
tional ergonomics and ergonomic human-robot collaboration.

REFERENCES

[1] L. Punnett and D. H. Wegman, “Work-related musculoskeletal disorders:
the epidemiologic evidence and the debate,” Journal of electromyogra-
phy and kinesiology, vol. 14, no. 1, pp. 13–23, 2004.

[2] K. K. Lett and S. M. McGill, “Pushing and pulling: personal mechanics
influence spine loads,” Ergonomics, vol. 49, no. 9, pp. 895–908, 2006.

[3] B. Busch, G. Maeda, Y. Mollard, M. Demangeat, and M. Lopes,
“Postural optimization for an ergonomic human-robot interaction,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 2778–2785.

[4] W. Kim, J. Lee, L. Peternel, N. Tsagarakis, and A. Ajoudani, “Anticipa-
tory robot assistance for the prevention of human static joint overloading
in human–robot collaboration,” IEEE robotics and automation letters,
2018.

[5] A. G. Marin, M. S. Shourijeh, P. E. Galibarov, M. Damsgaard,
L. Fritzsch, and F. Stulp, “Optimizing contextual ergonomics models in

human-robot interaction,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[6] A. Shafti, A. Ataka, B. U. Lazpita, A. Shiva, H. A. Wurdemann, and
K. Althoefer, “Real-time robot-assisted ergonomics,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2019.

[7] B. Busch, M. Toussaint, and M. Lopes, “Planning ergonomic sequences
of actions in human-robot interaction,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 1916–1923.

[8] P. Maurice, V. Padois, Y. Measson, and P. Bidaud, “Assessing and
improving human movements using sensitivity analysis and digital
human simulation,” International Journal of Computer Integrated Man-
ufacturing, pp. 1–13, 2019.

[9] S. Scataglini and G. Paul, DHM and Posturography. Elsevier Science,
2019.

[10] L. v. der Spaa, M. Gienger, T. Bates, and J. Kober, “Predicting and
optimizing ergonomics in physical human-robot cooperation tasks,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 1799–1805.

[11] R. Rahal, G. Matarese, M. Gabiccini, A. Artoni, D. Prattichizzo, P. R.
Giordano, and C. Pacchierotti, “Caring about the human operator: Haptic
shared control for enhanced user comfort in robotic telemanipulation,”
IEEE Transactions on Haptics, vol. 13, no. 1, pp. 197–203, 2020.

[12] A. Yazdani and R. S. Novin, “Posture estimation and optimization in er-
gonomically intelligent teleoperation systems,” International Conference
on Human-Robot Interaction, 2021.

[13] Y. Xiang, J. S. Arora, S. Rahmatalla, T. Marler, R. Bhatt, and K. Abdel-
Malek, “Human lifting simulation using a multi-objective optimization
approach,” Multibody System Dynamics, 2010.
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