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Abstract

Topic models provide a useful tool to organize and understand the structure of large corpora
of text documents, in particular, to discover hidden thematic structure. Clustering documents
from big unstructured corpora into topics is an important task in various areas, such as image
analysis, e-commerce, social networks, population genetics. A common approach to topic
modeling is to associate each topic with a probability distribution on the dictionary of words
and to consider each document as a mixture of topics. Since the number of topics is typically
substantially smaller than the size of the corpus and of the dictionary, the methods of topic
modeling can lead to a dramatic dimension reduction. In this paper, we study the problem of
estimating topics distribution for each document in the given corpus, that is, we focus on the
clustering aspect of the problem. We introduce an algorithm that we call Successive Projection
Overlapping Clustering (SPOC) inspired by the Successive Projection Algorithm for separable
matrix factorization. This algorithm is simple to implement and computationally fast. We
establish theoretical guarantees on the performance of the SPOC algorithm, in particular, near
matching minimax upper and lower bounds on its estimation risk. We also propose a new
method that estimates the number of topics. We complement our theoretical results with a
numerical study on synthetic and semi-synthetic data to analyze the performance of this new
algorithm in practice. One of the conclusions is that the error of the algorithm grows at most
logarithmically with the size of the dictionary, in contrast to what one observes for Latent
Dirichlet Allocation.

Keywords— Topic model, latent variable model, nonnegative matrix factorization, adaptive estimation

1 Introduction
Assigning topics to documents is an important task in several applications. For example, press agencies
need to identify articles of interest to readers based on the topics of articles that they have read in the past.
Analogous goals are pursued by many other text-mining applications such as, for example, recommending
blogs from among the millions of blogs available. A popular approach to the problem of estimating hidden
thematic structures in a corpus of documents is based on topic modeling. Topic models have attracted
a great deal of attention in the past two decades. Beyond text mining, they were used in areas, such as
population genetics [7, 38], social networks [14, 30], image analysis [26, 48], e-commerce [33, 46].
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In this paper, we adopt the probabilistic Latent Semantic Indexing (pLSI) model introduced in [21]. The
pLSI model deals with three types of variables, namely, documents, topics and words. Topics are latent
variables, while the observed variables are words and documents. Assume that we have a dictionary of
p words and a collection of n documents. Documents are sequences of words from the dictionary. The
number of topics is denoted by K. Usually, K � min(p, n). Throughout this paper, we assume that
2 ≤ K ≤ min(p, n). The pLSI model assumes that the probability of occurrence of word j in a document
discussing topic k is independent of the document. Therefore, by the total probability formula,

P(word j|document i) =
K∑
k=1

P(topic k|document i)P(word j|topic k).

Introducing the notation Πij := P(word j|document i), Wik := P(topic k|document i) andAkj := P(word j|topic k)
we may write Πij = WT

i Aj , where Wi = (Wi1, . . . ,WiK)T ∈ [0, 1]K is the topic probability vector for docu-
ment i and Aj = (A1j , . . . , AKj)T ∈ [0, 1]K is the vector of word j probabilities under topics k = 1, . . . ,K.
In matrix form,

Π = W A, (1)

where Π is the document-word matrix of size n×p with entries Πij , W := (W1, . . . ,Wn)T is the document-
topic matrix of size n×K and A := (A1, . . . , Ap) is the topic-word matrix of size K × p. The rows of these
matrices are probability vectors,

K∑
m=1

Wim = 1,
p∑
j=1

Akj = 1,
p∑
j=1

Πij = 1 for any i = 1, . . . , n, k = 1, . . .K. (2)

Unless otherwise stated, we will assume throughout the paper that Π,W ,A are matrices with non-negative
entries satisfying (2).

The value Πij is the probability of occurrence of word j in document i. It is not available but we have
access to the corresponding empirical frequency Xij . Thus, we have a document-word matrix X = (Xij)
of size n × p such that for each document i in 1, . . . , n, and each word j in 1, . . . , p, the entry Xij is the
observed frequency of word j in document i. Let Ni denote the (non-random) number of sampled words
in document i. In what follows, we assume that, for each document-word vector Xi = (Xi1, . . . , Xip)T,
the corresponding vector of cumulative counts NiXi follows a Multinomialp(Ni,Πi) distribution, where
Πi := E(Xi) = (Πi1, . . . ,Πip)T. We also assume that X1, . . . , Xn are independent random vectors. We will
denote by PΠ the probability measure corresponding to the distribution of X.

We can write the observation model in a “signal + noise” form:

X = Π + Z = W A + Z, (3)

where Z := X −Π is a zero mean noise. The objective in topic modeling is to estimate matrices A and
W based on the observed frequency matrix X and on the known N1, . . . , Nn. The recovery of A and the
recovery of W address different purposes. An estimator of matrix A identifies the topic distribution on the
dictionary. An estimator of W indicates the topics associated to each document.

Estimation of W has multiple applications and has been extensively discussed in the literature, mainly
in the Bayesian perspective. The focus was on Latent Dirichlet Allocation (LDA) and related techniques
(see Section 5 for more details and references). These methods are computationally slow and, to the best
of our knowledge, no theoretical guarantees on their performance are available.

On the other hand, estimation of matrix A is well-studied in the theory. Several papers provide bounds
on the performance of different estimators of A. We give a more detailed account on this work in Section 5.
Most of the results use the anchor word assumption postulating that for every topic there is at least one
word, which occurs only in this topic, see [4, 8, 22]. At first sight, it seems that results on estimation of
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Table 1: The first ten rows of the estimated matrix W for the Associated Press data set.

Document Finance Politics
1 0.248 0.752
2 0.362 0.638
3 0.527 0.473
4 0.357 0.643
5 0.181 0.819
6 0.001 0.999
7 0.773 0.227
8 0.004 0.996
9 0.967 0.033
10 0.147 0.953

matrix A can be applied to estimation of W by simply taking the transpose of (2) and inverting the roles
of these two matrices. However, such an argument is not valid since the resulting models are different.
Indeed, the rows of matrix XT are not independent and the rows of matrices ΠT,AT,W T do not sum up
to 1, which leads to a different statistical analysis.

In the present paper, we change the framework compared to [4, 8, 22] by focusing on estimation of
matrix W rather than A. We introduce the following assumption.

Assumption 1 (Anchor document assumption). For each topic k = 1, . . . ,K, there exists at least one
document i (called an anchor document) such that Wik = 1 and Wil = 0 for all l 6= k.

Both anchor word and anchor document assumptions are very relevant in real word applications. Since
each document is identified with a mixture of K topics, anchor document assumption means that, for each
topic, there is a document devoted solely to this topic. To illustrate the anchor document assumption,
consider the Associated Press data set [20], which is a collection of 2246 articles published by this press
agency mostly around 1988. An application of the pLSI model fitted via the LDA method with K = 2 leads
to two well-shaped topics “finance” and “politics”. We refer to [41, Section 6] for the details of the analysis.
The first 10 rows of the estimator of matrix W are presented in Table 1. Notice that documents 6 and 8
in Table 1 can be considered as anchor documents. For example, document 6 has the weight of the second
topic estimated as 0.999. A closer look at the most frequent words in this document (Noriega, Panama,
Jackson, Powell, administration, economic, general) tells us that, indeed, this article corresponds solely to
the topic “politics” – it is about the relationship between the American government and the Panamanian
leader Manuel Noriega.

Our approach to estimation of matrix W that we call Successive Projection Overlapping Clustering
(SPOC) is inspired by the Successive Projection Algorithm (SPA) initially proposed for non-negative matrix
factorization [3] and further used by [17, 29, 34] in the context of mixed membership stochastic block models.
The idea of such methods is to start with the singular value decomposition (SVD) of matrix X, and launch
an iterative procedure that, at each step, chooses the maximum norm row of the matrix composed of
singular vectors and then projects on the linear subspace orthogonal to the selected row. From a geometric
perspective, the rows of the matrix composed of singular vectors of Π belong to a simplex in RK . The
documents can be identified with some points in this simplex and the anchor documents with its vertices.
Our algorithm iteratively finds estimators of the vertices, based on which we finally estimate W .

Note that the idea of exploiting simplex structures for estimation of matrix A rather than W was
previously developed in, for example, [4, 15, 22], among others. For example, the method to estimate A
suggested in [22] is based on an exhaustive search over all size K subsets of {1, . . . , p}. Its goal is to select K
vertices of a p-dimensional simplex and its computational cost is at least of the order pK . Our algorithm for
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estimating W recovers the vertices of much less complex object, which is a K-dimensional simplex (recall
that K � p), and its computational cost is of the order max(p, n)K + nK2. Here, max(p, n)K and nK2

are the costs of performing a truncated singular value decomposition and the SPA algorithm, respectively.
Another important point is that existing simplex-based methods for estimation of matrix A require the
number K of topics to be known. In the present paper, we propose a procedure that is adaptive to unknown
K.

Our theoretical results deal only with the problem of estimating the topic-document matrix W , for
which the theory was not developed in prior work. But in practice, our method can be used for estimation
of matrix A as well. Based on the SPOC estimator of W , we immediately obtain an estimator of matrix A
by a computationally fast procedure (see Section 3). Our simulation studies (see Section A of the Appendix)
indicate that this estimator exhibits a behavior similar to LDA on average while being more stable.

In this paper, we prove that the SPOC estimator of W converges in the Frobenius norm and in the
`1-norm with the rates

√
n/N and n/

√
N (up to a weak factor1), respectively, assuming that Ni = N

for i = 1, . . . , n. We also prove lower bounds of the order
√
n/N and n/

√
N , respectively, implying near

optimality of the proposed method. One of the conclusions, both from the theory and the numerical
experiments, is that the error of the SPOC algorithm does not grow significantly with the size of the
dictionary p, in contrast to what one observes for Latent Dirichlet Allocation. We also introduce an
estimator for the number K of topics, which is usually unknown in practice. We show that SPOC algorithm
using the estimator of K preserves its optimal properties in this more challenging setting.

The rest of the paper is organized as follows. In Section 3, we introduce the SPOC algorithm. Section 4
contains the main results on the convergence rate of the algorithm and the minimax lower bound for
estimation of W . Section 5 is devoted to discussion of the prior work. In Section 6, we present numerical
experiments for synthetic and real-world data in order to illustrate our theoretical findings. Finally, in
Section 7 we summarize the outcomes of the study. The proofs are given in the Appendix.

2 Notation
For any matrix M = (Mij) ∈ Rn×k, we denote by ‖M‖ its spectral norm, i.e., its maximal singular
value, by ‖M‖F its Frobenius norm, and by ‖M‖1 =

∑k

i=n

∑k

j=1 |Mij | its `1-norm. We also consider the
maximum `1-norm of its rows ‖M‖1,∞ = max

1≤i≤n

∑k

j=1 |Mij |. We denote by λj(M) the jth singular value
and by λmin(M) the smallest singular value of M . Assuming that matrix M has rank K we consider its
singular values λ1(M) ≥ λ2(M) ≥ · · · ≥ λK(M) > 0 and its condition number κ(M) = λ1(M)/λK(M).
If J is a non-empty subset of rows of matrix M the notation MJ is used for a matrix in R|J|×k obtained
from M by keeping only the rows in J . We denote by IK the K ×K identity matrix, and by (e1, . . . , en)
the canonical basis of Rn. For any vector u ∈ Rd, we denote by ‖u‖2 its Euclidean norm. Throughout the
paper, we use the notation O for orthogonal matrices and P for permutation matrices. We denote by P
the set of all permutation matrices in RK×K . We denote by c, C positive constants than may vary from
line to line

3 Successive Projection Overlapping Clustering
In this section, we introduce the Successive Projection Overlapping Clustering (SPOC) algorithm for esti-
mation of matrix W . It is an analog, in the context of topic models, of the algorithm proposed in [34] for
the problem of parameter estimation in Mixed Membership Stochastic Block Model.

1In what follows, we mean by weak factor a small power of K multiplied by a term logarithmic in the parameters
of the problem. We will ignore weak factors when discussing the convergence rates.
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In order to explain the main idea of the algorithm, we start with considering the singular value decom-
position (SVD) of matrix Π:

Π = ULVT, (4)

where U = [U1, . . . , UK ] ∈ Rn×K and V = [V1, . . . , VK ] ∈ Rp×K are the matrices of left and right singular
vectors and L ∈ RK×K is a diagonal matrix of the corresponding singular values. We have used here the
fact that the rank of matrix Π is at most K. Recall that we assume K ≤ min(p, n). A key observation is
that, if λK(Π) > 0 and Assumption 1 is satisfied, then matrix U can be represented as

U = W H, (5)

where H ∈ RK×K is a full rank matrix (cf. Lemma 6 in the Appendix). Thus, the rows of matrix U belong
to a simplex in RK with vertices given by the rows of matrix H.

The empirical counterparts of U,L,V are obtained from the SVD of the observed matrix X:

X = ÛL̂V̂T + Û1L̂1V̂T
1 , (6)

where Û = [Û1, . . . , ÛK ] and V̂ = [V̂1, . . . , V̂K ] are, respectively, the matrices of left and right singular
vectors of X corresponding to its K leading singular values λ̂1 ≥ · · · ≥ λ̂K ; L̂ = diag{λ̂1, . . . , λ̂K}, and
Û1L̂1V̂T

1 is the singular value decomposition of X − ÛL̂V̂T. Due to matrix perturbation results (see
Appendix A.1), there exists an orthogonal matrix O such that Û is a good approximation for UO. We can
write

Û = UO + N = W HO + N, (7)

where N is a ”small enough” noise matrix. Having obtained Û from the SVD of X, we then apply the
Successive Projection Algorithm (SPA) [3, 17] to estimate the matrix HO in model (7).

Algorithm 1 SPA
Input: Matrix M ∈ Rn×K and integer r ≤ n.
Output: Set of indices J ⊆ {1, . . . , n}.

1: Initialize: S0 = MT, J0 = ∅.
2: For t = 1, . . . , r do:

– Find i(t) = arg maxi=1,...,n ‖si‖2, where si’s are the column vectors of St−1.

– Set St =
(

IK −
si(t)sT

i(t)
‖si(t)‖2

2

)
St−1, Jt = Jt−1 ∪ {i(t)}.

3: Set J = Jr.

Applied to matrix M = Û and r = K this algorithm finds the rows of matrix Û with the maximum
Euclidean norm and then projects on the subspace orthogonal to these rows and repeats the procedure until
K rows are selected. The main idea underlying the SPA is that the maximum of the Euclidean norm of a
vector on a simplex is attained at one of its vertices.

In the noiseless case when N = 0, it can be shown that if Assumption 1 holds then ÛJ = HO, where J
is the set of K rows of Û selected after K steps of SPA. In the noisy case, we need additional assumptions
on the noise level to ensure that SPA extracts documents close to anchor ones, which leads to an accurate
enough estimator Ĥ of HO (see Appendix A.2 for the precise statement). Once we have such an Ĥ, the
final step is to define the following estimator of matrix W :

Ŵ = ÛĤ−1.
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This definition is valid only if matrix Ĥ is non-degenerate, which is true with high probability under suitable
assumptions (cf. Section 4).

An additional potentially useful step is to apply preconditioning to matrix Û, which leads to improved
bounds on the performance of the algorithm in the presence of noise, see [18, 32]. Preconditioned SPA is
defined as follows. Let r = K and let a1, . . . ,an be the column vectors of matrix MT. Let L∗ ∈ RK×K be
the solution of the minimization problem

min
L�0: maxi aT

i
Lai≤1

− log det L. (8)

Matrix L∗ defines the minimum volume ellipsoid centered at the origin that contains a1, . . . ,an. The
preconditioned SPA is defined by Algorithm 1 initialized with S0 = (L∗)1/2MT rather than with S0 = MT.

The SPOC algorithm for topic modeling is summarized in Algorithm 2.

Algorithm 2 SPOC (respectively, preconditioned SPOC)
Input: Observed matrix X and number of topics K.
Output: Estimated document-topic matrix Ŵ .

1: Get the rank K SVD of X : ÛL̂V̂T.
2: Run SPA (respectively, preconditioned SPA) with input (Û,K), which outputs a set of indices
J with cardinality K.

3: Set Ĥ := ÛJ .
4: Set Ŵ := ÛĤ−1.

Based on the SPOC estimator Ŵ of matrix W , it is possible to construct an estimator for matrix A in
a straightforward way. Indeed, given the decompositions (4) and (5), we can use the definition Π = W A
and deduce that A = HLVT. A direct sample-based estimator of A is then given by

Â = ĤL̂V̂T. (9)

In order to illustrate the usefulness of this estimator, we have performed its experimental comparison with
LDA, see Section A of the Appendix.

4 Main results
In this section, we provide bounds on the performance of SPOC algorithm. We first prove deterministic
bounds assuming that X is some fixed matrix close enough to Π in the spectral norm. Next, we combine
these results with a concentration inequality for ‖X −Π‖ when X is distributed according to PΠ in order
to obtain a bound on the estimation error with high probability under our statistical model.

4.1 Deterministic bounds
A key step in analyzing the performance of SPOC algorithm is to show that Û is close to an orthogonal
transformation UO of the population matrix U. The next lemma gives a bound on the maximal `2-distance
between the rows of Û and UO for some orthogonal matrix O, which will allow us to deduce an upper bound
on the error of SPA from the results of [18, 32] (see Appendix A.2 for the details). We state this lemma as
a deterministic result where X is some fixed matrix close enough to Π in the spectral norm. Recall that
λ1(W ) is the maximum singular value of matrix W , λK(Π) is the Kth singular value of matrix Π, and
κ(W ), κ(Π) are the condition numbers of matrices W and Π, respectively. Assuming that λK(Π) > 0
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(that is, Π is a rank K matrix) we define the values

βi(X,Π) = K1/2κ2(Π) ‖e
T
i X‖2‖X −Π‖

λ2
K(Π) + ‖e

T
i (X −Π)‖2

λK(Π) , i = 1, . . . , n,

where (e1, . . . , en) is the canonical basis of Rn.

Lemma 1. Assume that Π ∈ Rn×p is a rank K matrix, and X ∈ Rn×p is any matrix such that ‖X−Π‖ ≤
1
2λK(Π). Let Û,U be the n×K matrices of left singular vectors corresponding to the top K singular values
of X and Π, respectively. Then, there exist an orthogonal matrix O and a constant C > 0 such that, for
any i = 1, . . . , n,

‖eT
i (Û−UO)‖2 ≤ Cβi(X,Π).

Define now

β(X,Π) = max
i=1,...,n

βi(X,Π).

We will need the following condition.

Assumption 2. For a constant C̄ > 0 we have

β(X,Π) ≤ C̄

λ1(W )κ(W )K
√
K
.

Assumption 2 is satisfied with high probability for X ∼ PΠ when the sample size N is large enough
(see Appendix B.3). Under Assumption 2, we can derive from Lemma 1 the following deterministic bound
on the error of estimating the topic-document matrix by the SPOC algorithm.

Lemma 2. Let Assumptions 1 and 2 be satisfied with constant C̄ small enough. Assume that Π ∈ Rn×p

is a rank K matrix, and X ∈ Rn×p is any matrix such that ‖X − Π‖ ≤ 1
2λK(Π). Then, matrix Ĥ is

non-degenerate and the preconditioned SPOC algorithm outputs matrix Ŵ such that

min
P∈P

‖Ŵ −W P‖F ≤ CK1/2
{
λ2

max(W )κ(W )β(X,Π) + κ(Π)λ1(W )‖X −Π‖
λK(Π)

}
,

where P denotes the set of all permutation matrices.

Inspection of the proof shows that, for this lemma to hold, it is enough to choose the constant C̄ ≤
min(C∗, C−1

0 ) where C∗, C0 are the constants from Theorem 4 and Corollary 5.

4.2 Bounds with high probability
Lemma 2 combined with a concentration inequality for ‖X −Π‖ (cf. Lemma 4 in the Appendix) allows
us to derive a bound for the estimation error that holds with high probability when X is sampled from
distribution PΠ. Introduce the value

∆(W ,Π) =
(
λ1(W )
λK(Π)

)2

κ(W )κ2(Π).

The main result is summarized in the next theorem.
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Theorem 1. Let Assumption 1 hold, and Ni = N for i = 1, . . . , n. Assume that N ≥ log(n+ p) and

λK(Π) ≥
√

10
C̄
K

(
n log(n+ p)

N

)1/4

κ(Π)
√
λ1(W )κ(W ). (10)

Then, with probability at least 1−2(n+p)−1, matrix Ĥ is non-degenerate and the output Ŵ of preconditioned
SPOC algorithm satisfies, for some constant C1 > 0,

min
P∈P

∥∥Ŵ −W P
∥∥
F
≤ C1K

√
n log(n+ p)

N
∆(W ,Π),

where P denotes the set of all permutation matrices.

Condition (10) in Theorem 1 guarantees that Assumption 2 is satisfied. This condition holds if N is
large enough and it quantifies the separation of the spectrum of matrix Π from zero.

The bound of Theorem 1 depends on the singular values of matrices W and Π. We now further detail
this bound for the balanced case where matrices W and Π are well conditioned and the smallest non-zero
singular value of Π is of the same order as the largest singular value of W . It follows from Lemma 7 in the
Appendix that in this case both λK(Π) and λ1(W ) are of the order of

√
n/K. This is coherent with the

behavior of the singular values of Π and W that we observed in the simulation study (see Section B). The
balanced case is formally described by the following assumption.

Assumption 3. There exist two constants C > 1 and c > 0 such that

λK(Π) ≥ Cλ1(W ) and max {κ(Π), κ(W )} ≤ c.

The second condition in Assumption 3 is quite standard and just states that matrices Π and W are well-
conditioned. The first condition is more restrictive. It holds, in particular, if matrix A is well-conditioned
with large enough singular value λK(A). For example, it will be the case if A satisfies the anchor word
assumption (see Section 1) with the probabilities of anchor words uniformly above the probabilities of other
words. This is detailed in Lemma 9 of the Appendix. Noteworthy, the lower bound of Theorem 3 below is
attained with such choice of matrix A, see the proof of Theorem 3 in Appendix B.5. We can interpret it as
the fact that, in a minimax sense, such matrices A are associated with the least favorable models.

The following corollary quantifies the behavior of SPOC estimator in the balanced case.

Corollary 1 (Upper bound in the balanced case). Let Assumptions 1 and 3 hold, and Ni = N for i =
1, . . . , n. Let also

N ≥ CK5 log(n+ p) (11)

for some C > 0 large enough. Then, with probability at least 1 − 2(n + p)−1, matrix Ĥ is non-degenerate
and the output Ŵ of preconditioned SPOC algorithm satisfies, for some constant C2 > 0,

min
P∈P

∥∥Ŵ −W P
∥∥
F
≤ C2K

√
n log(n+ p)

N
,

where P denotes the set of all permutation matrices.

To prove Corollary 1, it is enough to notice that under Assumption 3 we have ∆(W ,Π) ≤ C′ for some
constant C′ > 0, and condition (10) follows from (11), Assumption 3 and the inequality λ1(W ) ≥

√
n/K

(see Lemma 7 in the Appendix).
Note that from Theorem 1 and Corollary 1 we can derive bounds in other norms. Thus, using the

inequalities
∥∥Ŵ −W P

∥∥
1
≤
√
Kn
∥∥Ŵ −W P

∥∥
F

and
∥∥Ŵ −W P

∥∥
1,∞
≤
√
K
∥∥Ŵ −W P

∥∥
F

, we obtain the
following corollary:
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Corollary 2. If the assumptions of Theorem 1 are satisfied then, with probability at least 1− 2(n+ p)−1,
matrix Ĥ is non-degenerate and the output Ŵ of preconditioned SPOC algorithm satisfies

min
P∈P

∥∥Ŵ −W P
∥∥

1,∞
≤ C1K

3/2

√
n log(n+ p)

N
∆(W ,Π) and

min
P∈P

∥∥Ŵ −W P
∥∥

1
≤ C1K

3/2n

√
log(n+ p)

N
∆(W ,Π).

If the assumptions of Corollary 1 are satisfied then, with probability at least 1 − 2(n + p)−1, matrix Ĥ is
non-degenerate and the output Ŵ of preconditioned SPOC algorithm satisfies

min
P∈P

∥∥Ŵ −W P
∥∥

1,∞
≤ C2K

3/2

√
n log(n+ p)

N
and min

P∈P

∥∥Ŵ −W P
∥∥

1
≤ C2K

3/2n

√
log(n+ p)

N

It follows from Corollaries 1 and 2 that, for all the considered norms, the rate of estimating W (to
within a weak factor) is determined by two parameters, which are the number of documents n and the
sample size N . The dependency on the size of the dictionary p is weak. This is confirmed by the numerical
experiments, see Section 6.

4.3 Adaptive procedure when K is unknown.
We now propose an adaptive variant of the SPOC algorithm when the number of topics K is unknown. It
is obtained by replacing K in Algorithm 2 by the estimator

K̂ = max
{
j : λj(X) > 4

√
n log(n+ p)

N

}
.

In the sequel, the resulting procedure will be called the adaptive (preconditioned) SPOC algorithm. The
following analogs of Theorem 1 and Corollary 1 hold.

Theorem 2. Let the assumptions of Theorem 1 be satisfied and

λ1(W ) > 32C̄
5K2

√
n log(n+ p)

N
. (12)

Then, with probability at least 1 − 2(n + p)−1, matrix Ĥ is non-degenerate, K̂ = K, and the output Ŵ of
the adaptive preconditioned SPOC algorithm satisfies

min
P∈P

∥∥Ŵ −W P
∥∥
F
≤ C1K

√
n log(n+ p)

N
∆(W ,Π).

Corollary 3. Let the assumptions of Corollary 1 and (12) be satisfied. Then, with probability at least
1 − 2(n + p)−1, matrix Ĥ is non-degenerate, K̂ = K, and the output Ŵ of the adaptive preconditioned
SPOC algorithm satisfies

min
P∈P

∥∥Ŵ −W P
∥∥
F
≤ C2K

√
n log(n+ p)

N
.

Note that condition (12) introduced in Theorem 2 and Corollary 3 additionally to the conditions of
Theorem 1 and Corollary 1 is rather mild. Indeed, due to inequality (42) proved in the Appendix we have
λ1(W ) ≥

√
n/K. Therefore, it is sufficient that N > C log(n+p)

K3 to grant (12).
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4.4 Minimax lower bound
The following lower bound shows that the rate obtained in Corollary 1 is near minimax optimal. Denote
by M the class of all matrices Π satisfying the assumptions stated in the Section 1 and Assumption 3.

Theorem 3 (Lower bound). Assume that Ni = N for i = 1, . . . , n and 2 ≤ K ≤ min(p/4, N/2, n/2).
Then, there exist two constants C > 0 and c ∈ (0, 1) such that, for any estimator and W of W we have

sup
Π∈M

PΠ

{
min
P∈P

‖W −W P‖F ≥ C
√

n

N

}
≥ c, (13)

and

sup
Π∈M

PΠ

{
min
P∈P

‖W −W P‖1 ≥ Cn

√
K

N

}
≥ c, (14)

where P denotes the set of all permutation matrices.

Combining Corollary 1 and (13) we find that, to within a weak factor, the minimax optimal rate of
estimation of W on the class M in the Frobenius norm scales as

√
n/N . On the other hand, (14) and

Corollary 2 imply that, again to within a weak factor, the minimax optimal rate of estimation of W in the
l1-norm on M scales as n/

√
N .

Remark 1. Inspection of the proof of Theorem 3 shows that the lower bound is in fact established for a
subset of M composed of matrices satisfying both anchor word and anchor document assumptions.

Remark 2. It is proved in [8, 22] that, under the same model of observations and anchor word assumption,
the minimax optimal rate for estimation of matrix A in the `1-norm scales as

√
p
nN

(to within weak factors).
Note that this rate is determined by all the three main parameters of the problem - the size of the dictionary
p, the number of documents n and the sample size N . This is quite different from the minimax `1-rate n/

√
N

of estimation W , which remains valid under anchor word assumption, cf. Remark 1 and the remark after
Assumption 3. It shows that there is a significant difference between the problems of estimating matrices A
and W in topic models.

5 Related Work
There exists an extensive literature on topic modeling and several algorithms have been proposed for
estimation of matrices A and W . As the problem of recovering these two matrices when there is no noise is
an instance of non-negative matrix factorisation several papers propose algorithms based on minimization
of a regularized cost function, see, e.g., [13, 16, 24, 40]. Such methods result in non-convex optimization
and often fail when many words do not appear in a single document, that is when N � p.

Another approach is to use Bayesian methods such as the popular Latent Dirichlet Allocation (LDA)
introduced in [11]. LDA proceeds by imposing a Dirichlet prior on A and then computing an estimator of
W by a variational EM-algorithm. The original paper [11] and the subsequent line of work do not provide
statistical guarantee on the recovery of W . In [11], the authors argue that LDA avoids two issues of the
pLSI that are the risk of overfitting and the difficulty of classifying a new document outside the corpus.
Yet, LDA is computationally slow and makes the assumption that topics are uncorrelated, which may be
not realistic [10, 27]. This last issue has been addressed in [23] by introducing Correlated topic models.
LDA has been extended to relax some assumptions such as the bag-of-words hypothesis (“order of words
does not matter”) [45], the exchangeability of documents (“topics do not vary in time”) [9], the assumption
that the number of topics is known [42]. Also, to recover W in the LDA setting, some papers used Gibbs-
sampling [37, 39] or variational Bayes techniques [12, 47] rather than the EM-algorithm. However, these
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works do not provide statistical guarantees on the estimation of W and the associated algorithms are
computationally slow.

For the problem of estimation of matrix A, papers [1, 2, 4–6, 8, 15, 22], to mention but a few, provided
algorithms with provable statistical guarantees under anchor word assumption. They proposed various
techniques based, for example, on analyzing co-occurrence matrices, tensors, or on recovering vertices of a
simplex using SVD. Most of these papers, except for [8, 22], do not work under the same statistical model
as ours (cf. Section 1). Thus, [4, 5, 15] assume that topic-document matrix W is randomly generated from
some prior distribution. For a setting with no randomness, [31] proposes ellipsoidal rounding algorithm
with application to topic models. Paper [28] develops a generalized method to bind overlapping clustering
models, including topic models. Moreover, for some classes of matrices, papers [8, 22] proposed minimax
optimal algorithms of estimating A. Both [8, 22] impose anchor word assumption but their estimators are
different. Thus, [22] performs SVD on properly normalized matrix X followed by an exhaustive search
over a p-dimensional simplex, while [8] proceeds by first recovering the anchor words and then deriving
estimators of A from a scaled version of matrix XXT.

6 Simulations
6.1 Synthetic Data
We first present the results of experiments on synthetic data. We have performed simulations with different
values of the parameters n, p,N and the number of topics K. Our objective was to observe the effect of
each parameter on the Frobenius error between W and its estimator Ŵ obtained by the SPOC algorithm.
We report the results for the SPOC algorithm without preconditioning step as it had a negligible impact on
the performance of the method while being computationally demanding. As a benchmark, we use the LDA
algorithm [11]. For the experiments we use the Python implementation of SPOC2 and an implementation
of the LDA algorithm available in Sklearn [35].

Figures 1-4 present an example of results that we have typically obtained in simulations. In Figures 1-3
we take K = 3 and the matrix W has the following structure: K rows of W are canonical basis vectors,
each of the remaining n−K rows is generated independently using the Dirichlet distribution with parameter
α = (0.1, 0.15, 0.2). In Figure 4, where K must vary, we define W in a different way. Namely, for the n−K
rows that are not canonical basis vectors, each element Wkj is generated from the uniform distribution on
[0, 1] and then each row of the matrix is normalized so as to have

∑K

k=1 Wik = 1. For the matrix A, we take
K columns proportional to canonical basis vectors. The elements Akj of matrix A in the remaining p−K
columns are obtained by generating numbers from the uniform distribution on [0, 1] and then normalizing
each row of the matrix to have

∑p

j=1 Akj = 1. For given W and A, the data matrix X is generated
according to the pLSI model defined in Section 1. For each value on the x-axes of the figures, we present
the averaged result over 10 simulations.

We clearly retrieve the patterns indicated in Theorem 1, Corollary 1 and (13). Thus, the plots have a
near

√
n behaviour in Figure 1 and a near 1/

√
N behaviour in Figure 2. Figure 3 shows weak dependence

of the error of the SPOC algorithm on the size of the dictionary p, which agrees with the bound obtained
in Corollary 1. This can be interpreted as one of the advantages of our method over LDA. Indeed, for LDA
we observe that the error increases significantly as p grows. Finally, we notice the linear dependence of the
error on K as predicted by Corollary 1. In all the experiments we observe that SPOC algorithm is very
competitive with LDA while being much more stable.

2The code of SPOC algorithm is available at https://github.com/stat-ml/SPOC
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Figure 1: The n-dependency of minP∈P ‖W − Ŵ P‖F using SPOC and LDA algorithms. Total
number of words p = 5000, number of sampled words in each document N = 200.

Figure 2: The N -dependency of minP∈P ‖W − Ŵ P‖F using SPOC and LDA algorithms. Total
number of words p = 5000, number of documents n = 1000.
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Figure 3: The p-dependency of minP∈P ‖W − Ŵ P‖F using SPOC and LDA algorithms. Number
of documents n = 1000, number of sampled words in each document N = 200.

Figure 4: The K-dependency of minP∈P ‖W − Ŵ P‖F using SPOC and LDA algorithms. Total
number of words p = 5000, number of sampled words in each document N = 5000.

A numerical study of the SPOC estimator Â of matrix A is deferred to Section A of the Appendix. It
shows that Â behaves similarly to the corresponding LDA estimator while being more stable.

6.2 Corpus of NIPS abstracts
We now illustrate the performance of our algorithm applying it to the data set of full texts of NIPS
papers3 [36]. This data set contains the distribution of words in the full text of the NIPS conference papers

3The link to the dataset: https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
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published from 1987 to 2015. The data set has the form of a 11463×5811 matrix of word counts containing
11463 words and 5811 NIPS conference papers. Each column contains the number of times each word
appears in the corresponding document.

We start by pre-processing the data. We first remove all the documents with less than 150 words.
Then we remove from the resulting dictionary the stop words and the words that appear in less that 150
documents. This results in a database of 5801 documents with a dictionary of 6380 words. Note that
we do not actually have access to the true topics of each document. We also do not have access to the
true number of topics. In order to compare our method to LDA, we proceeded as follows. For each value
of K = 3, . . . , 10, we first computed the LDA estimator W̃ of the document-topic matrix and the LDA
estimator Ã of the topic-word matrix. Next, with the underlying matrix Π̃ = W̃ Ã, for each value of K
we simulated 10 matrices X̃ with N = 200 sampled words according to pLSI model. For each matrix X̃,
we estimated W̃ using both LDA and SPOC algorithms. Finally, for each K we computed the mean error
over 10 simulations. The resulting comparison as function of K is presented in Figure 5. We can observe
that SPOC systematically outperforms the LDA algorithm, except for K = 2.

Figure 5: The K-dependency of minP∈P ‖W − Ŵ P‖F using SPOC and LDA algorithms on semi-
synthetic data. Matrix W̃ is the LDA estimator on the NIPS data set (n = 5081 documents,
p = 6380 words), and Ŵ is the LDA or SPOC estimator on data simulated from Π̃.

Next, we investigate whether our estimator of matrix W helps to well classify the documents in the
NIPS corpus. We apply the simplest possible classifier based on the obtained SPOC estimator Ŵ , namely,
we classify article i to the topic that has the maximum value of Ŵik for k = 1, . . . ,K. We consider the
number of topics K = 3. While apparently for NIPS papers some words (such as “learning” or “model”)
are more frequent than others in the full corpus, other words can be more frequent for particular topics.
Therefore, for each topic we present the words that have the highest difference between their frequency
for this topic and their maximum frequency in other topics. We clearly see that the obtained topics are
semantically well separated, cf. Table 2.
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Table 2: Top 10 words, which have the highest difference in frequency for each topic compared to
other topics. The three topics were identified by SPOC method.

“Neural networks” “Statistical learning” “Algorithms and theory”
1 network model algorithm
2 input data learning
3 neural image function
4 neurons distribution problem
5 units inference set
6 output likelihood theorem
7 layer latent bound
8 neuron prior matrix
9 system Gaussian loss
10 synaptic parameters error

7 Conclusion
In the present paper, we proposed the SPOC algorithm, which is a computationally efficient procedure to
estimate the document-topic matrix in topic models with known or unknown number of topics K. It is
based on the Successive Projection Algorithm used to recover the vertices of a K-dimensional simplex in the
context of separable matrix factorization. We developed the statistical analysis of SPOC algorithm under
the anchor document assumption requiring that, for each topic, there is a document devoted solely to this
topic. We proved that the proposed method is near minimax optimal for estimation of the document-topic
matrix under the Frobenius norm and the `1-norm. As an element of our analysis, we derived a bound on
concentration of matrices with independent multinomial columns that may be of independent interest. The
theoretical results are supported by empirical evidence demonstrating a good performance of the SPOC
algorithm and its advantages compared to LDA.

Acknowledgement. The research of Suzanne Sigalla and Alexandre B. Tsybakov is supported by
the grant of French National Research Agency (ANR) ”Investissements d’Avenir” LabEx Ecodec/ANR-11-
LABX-0047.

A Tools
A.1 Matrix Perturbation Bounds
In this section, we provide some facts about matrix perturbation that will be used in the proofs. We start
with the following lemma, which is a variant of Davis-Kahan theorem.

Proposition 1 (Lemma 5.1 in [25]). Let M ∈ Rn×n be a rank K symmetric matrix with smallest nonzero
eigenvalue λK(M), and let M̂ ∈ Rn×n be any symmetric matrix. Let Û(M̂) ∈ Rn×K and U(M) ∈ Rn×K

be the matrices of K leading eigenvectors of M̂ and M, respectively. Then there exists a K ×K orthogonal
matrix O such that

‖Û(M̂)−U(M)O‖F ≤
2
√

2K‖M̂−M‖
λK(M) .
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Corollary 4. Let Π and X be matrices with singular value decompositions given by (4) and (6). Then
there exist K ×K orthogonal matrices O and Õ such that

‖Û−UO‖F ≤
2
√

2K(‖X‖+ ‖Π‖)‖X −Π‖
λ2
K(Π) (15)

and

‖V̂−VÕ‖F ≤
2
√

2K(‖X‖+ ‖Π‖)‖X −Π‖
λ2
K(Π) . (16)

Furthermore, if ‖X −Π‖ ≤ 1
2λK(Π) then

max
(
‖Û−UO‖F , ‖V̂−VÕ‖F

)
≤ 5
√

2Kκ(Π)‖X −Π‖
λK(Π) . (17)

Proof. Applying Proposition 1 to matrices ΠΠT and XXT we get

‖Û−UO‖F ≤
2
√

2K‖ΠΠT −XXT‖
λK(ΠΠT)

≤ 2
√

2K(‖X‖+ ‖Π‖)‖X −Π‖
λ2
K(Π) .

Similarly, inequality (16) is obtained by applying Proposition 1 to matrices ΠTΠ and XTX. Next, if
‖X − Π‖ ≤ 1

2λK(Π) then due to the triangle inequality we have ‖X‖ ≤ ‖Π‖ + 1
2λK(Π) ≤ 3

2‖Π‖.
Combining this fact with (15) and (16) we obtain (17).

We will also need the following bounds for matrices of singular values L̂ and L.

Lemma 3. Let the assumptions of Corollary 4 hold. Let L̂ and L be diagonal K×K-matrices of K largest
singular values of X and Π, respectively, cf. (4) and (6). If ‖X −Π‖ ≤ 1

2λK(Π) then

‖L̂−OTLÕ‖ ≤ Cκ2(Π)
√
K ‖X −Π‖

and

‖L̂−1 − ÕTL−1O‖ ≤ Cκ2(Π)
√
K
‖X −Π‖
λ2
K(Π) ,

where the orthogonal matrices O, Õ are the same as in Corollary 4.

Proof. Applying Weyl’s inequality [19, Theorem C.6] we get

‖ÛL̂V̂T −ULVT‖ ≤ 2‖Π−X‖

and further

‖ÛL̂V̂T −ULVT‖ ≥ ‖UO(L̂−OTLÕ)V̂T‖

−‖(Û−UO)L̂V̂T‖ − ‖ULÕ(V̂−VÕ)T‖.
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Therefore

‖L̂−OTLÕ‖ ≤ ‖X −Π‖+ ‖(Û−UO)L̂V̂T‖+ ‖ULÕ(V̂−VÕ)T‖

≤ ‖X −Π‖+ ‖X‖‖Û−UO‖+ ‖Π‖‖V̂−VÕ‖

≤
(

2
√

2K(‖X‖+ ‖Π‖)2

λ2
K(Π) + 1

)
‖X −Π‖,

where the last inequality is due to Corollary 4. Next,

‖L̂−1 − ÕTL−1O‖ = ‖L̂−1(OTLÕ− L̂)ÕTL−1O‖

≤ ‖L̂−1‖ ‖L̂−OTLÕ‖ ‖L−1‖

≤
(

2
√

2K(‖X‖+ ‖Π‖)2

λ2
K(Π) + 1

)
‖X −Π‖

λK(X)λK(Π) ,

where λK(X) is the K-th largest singular value of matrix X. Due to Weyl’s inequality and the fact that
‖X −Π‖ ≤ 1

2λK(Π) we have λK(X) ≥ 1
2λK(Π) and ‖X‖ ≤ ‖Π‖ + 1

2λK(Π) ≤ 3
2‖Π‖. Plugging these

inequalities in the last two displays we obtain the lemma.

A.2 Noisy Separable Matrix Factorization
In this section, we give a bound on the error of preconditioned SPA in Noisy Separable Matrix Factorization
model. Assume that we observe

G̃ = G + N = W Q + N,

where N ∈ Rn×K is a perturbation (noise) matrix, and

G = W Q,

where W ∈ Rn×K+ and Q ∈ RK×K . If we assume that W satisfies Assumption 1 then we obtain the setting
usually referred to as Noisy Separable Matrix Factorization (NSMF).

The following theorem holds for preconditioned SPA in the NSMF model, see [18, 32].

Theorem 4. Let K ≥ 2 and let Assumption 1 hold. Assume that matrix Q is non-degenerate and the
entries Wim of matrix W satisfy the condition

∑K

m=1 Wim ≤ 1 for i = 1, . . . , n. Moreover, assume that for
any i = 1, . . . , n, the norms of the rows of matrix N satisfy ‖eT

i N‖2 ≤ ε with

ε ≤ C∗
λmin(Q)
K
√
K

for some constant C∗ > 0 small enough. Let J be the set of indices returned by the preconditioned SPA with
input (G̃,K). Then, there exist a constant C0 > 0 and a permutation π such that, for all j ∈ J ,

‖g̃j − qπ(j)‖2 ≤ C0κ(Q)ε,

where g̃k and qk are the k-th rows of matrices G̃ and Q, respectively.
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Note that this error bound depends on the upper bound on the individual errors ‖eT
i N‖2. From the

statistical point of view, one might expect that there should be an algorithm, which improves upon this
error bound if there are many nearly “pure” rows in matrix G, so that the value of the error is diminished
by averaging. However, to the best of our knowledge, no such algorithm complemented with a performance
analysis can be found in the literature.

We now consider a specific instance of NSMF model given by (7). In this case, G̃ = Û and Q = HO
for an orthogonal matrix O. Specifically, O is the orthogonal matrix, for which (15) holds (it is the same
matrix O, for which the bound of Lemma 1 is valid). Combining Theorem 4 with Lemma 1 we get the
following corollary.

Corollary 5. Let Assumptions 1 and 2 be satisfied with constant C̄ ≤ C∗. Consider the matrices Π, X,
H, Û as in (4) – (6) such that λK(Π) > 0 and ‖X −Π‖ ≤ 1

2λK(Π). Let O be the orthogonal matrix, for
which (15) holds. Let J be the set of indices returned by the preconditioned SPA with input (Û,K), and let
Ĥ = ÛJ . Then, there exist a constant C0 > 0 and a permutation π such that, for all j = 1, . . . ,K,∥∥ĥj − qπ(j)

∥∥
2
≤ C0κ(H)β(X,Π), (18)

where ĥk and qk are the k-th rows of matrices Ĥ and HO, respectively. Furthermore,∥∥Ĥ− P̃HO
∥∥
F
≤ C0K

1/2κ(W )β(X,Π), (19)

where P̃ is a permutation matrix corresponding to the permutation π.

Proof. Taking into account equations (4) – (7) we apply Theorem 4 with Q = HO, N = Û −UO. By
Lemma 1,

‖eT
i N‖2 = ‖eT

i (Û−UO)‖2 ≤ ε, i = 1, . . . , n,
where ε = β(X,Π). Therefore, using Assumption 3, (39), and the fact that C̄ ≤ C∗ we have

ε ≤ C̄

λ1(W )K
√
K

= C̄λmin(H)
K
√
K

≤ C∗λmin(HO)
K
√
K

.

Thus, the assumptions of Theorem 4 are satisfied and we deduce from Theorem 4 that∥∥ĥj − qπ(j)
∥∥

2
≤ C0κ(HO)ε = C0κ(H)β(X,Π),

where ĥk and qk are the k-th rows of matrices Ĥ and HO, respectively. Thus, (18) follows. Inequality (19)
is an immediate consequence of (18) and of the equality κ(H) = κ(W ) (cf. (40)).

A.3 Concentration Bounds for Multinomial Matrices
In this section, we provide a bound with high probability on the spectral norm of matrix X −Π. Recall
that, by definition, XT = [X1, . . . , Xn] is such that NXi ∈ Rp are independent random vectors distributed
according to p-dimensional multinomial distribution with parameters (N,Πi). We will use matrix Bernstein
inequality in the following form (cf. Theorem 6.1.1 in [43]).

Proposition 2 (Matrix Bernstein inequality). Let Z1, . . . ,ZN be independent zero-mean n × p random
matrices such that ‖Zm‖ ≤ L for m = 1, . . . , N . Then, for all t > 0 we have

P

(∥∥∥∥∥ 1
N

N∑
m=1

Zm

∥∥∥∥∥ ≥ t
)
≤ (n+ p) exp

(
− t2N2

2(σ2 + LtN/3)

)
,

where

σ2 = max

{∥∥∥∥∥
N∑
m=1

E
(
ZmZT

m

)∥∥∥∥∥ ,
∥∥∥∥∥

N∑
m=1

E
(

Z
T
mZm

)∥∥∥∥∥
}
.
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Applying Proposition 2 to our setting we obtain the following result.

Proposition 3. Let XT = [X1, . . . , Xn] be such that NXi ∈ Rp are independent random vectors distributed
according to p-dimensional multinomial distribution with parameters (N,Πi). Then, for all t > 0 we have

P (‖X −Π‖ ≥ t) ≤ (n+ p) exp
(
− t2N

2
√

2(n+ t
√
n/3)

)
. (20)

Proof. We prove (20) for XT − ΠT rather than X − Π, which is equivalent. Matrix ZT = XT − ΠT

has the form ZT = [Z1, . . . , Zn] with independent column vectors Zi = 1
N

∑N

m=1(Tim − E(Tim)), where
vectors Tim are distributed according to p-dimensional multinomial distribution with parameters (1,Πi)
and independent over m for any fixed i. Here, we have used the fact that Multinomialp(N,Πi) is a sum of
N independent Multinomialp(1,Πi) vectors. We also have ΠT = [Π1, . . . ,Πn]. Thus, we can write

ZT = 1
N

N∑
m=1

(Tm − E(Tm)) = 1
N

N∑
m=1

Zm, (21)

where Tm = [T1m, . . . , Tnm] and Zm = Tm − E(Tm) are independent zero-mean random matrices.
We apply Proposition 2 to the sum (21). The first step is to evaluate

∥∥∑N

m=1 E
(
ZmZT

m

)∥∥. Let Tim(k)
denote the k-th component of Tim, k = 1, . . . , p. We have E(Tim(k)) = Πik, Var(Tim(k)) = Πik(1 − Πik),
Cov(Tim(k), Tim(j)) = −ΠikΠij for i 6= j. Therefore,

E
(
ZmZT

m

)
= E

(
TmT T

m

)
− E (Tm) E

(
T T
m

)
= E

n∑
i=1

TimT
T
im −ΠΠT =

n∑
i=1

Y i,

where
Y i = diag(Πi1, . . . ,Πip)−ΠiΠT

i .

The spectral norm of Y i satisfies

‖Y i‖2 ≤ ‖Y i‖2
F =

p∑
k=1

Π2
ik +

( p∑
k=1

Π2
ik

)2
− 2

p∑
k=1

Π3
ik ≤ 2,

where we have used the fact that
∑p

k=1 Π2
ik ≤

∑p

k=1 Πik = 1. Thus,
∥∥E
(
ZmZT

m

)∥∥ ≤ √2n and∥∥∥∥∥
N∑
m=1

E
(
ZmZT

m

)∥∥∥∥∥ ≤ √2Nn. (22)

Next, we derive an upper bound on
∥∥∑N

m=1 E
(
ZT
mZm

)∥∥. Note that E(T T
mTm) is a matrix with diagonal

entries E(TT
imTim) =

∑p

k=1 Πik = 1 while its off-diagonal entries are E(TT
imTjm) = [E(Tim)]T E(Tjm) =

ΠT
i Πj due to independence between Tim and Tjm for i 6= j. Also, E(T T

m) E(Tm) = ΠTΠ is a matrix with
entries ΠT

i Πj . Hence,

E
(
ZT
mZm

)
= E(T T

mTm)− E(T T
m) E(Tm) = diag

(
1− ‖Π1‖2

2, . . . , 1− ‖Πn‖2
2

)
. (23)

It follows that
∥∥E
(
ZT
mZm

)∥∥ ≤ 1, and thus
∥∥∑N

m=1 E
(
ZT
mZm

)∥∥ ≤ N . Combining this inequality with (22)
we obtain that σ2 defined in Proposition 2 satisfies σ2 ≤

√
2Nn.
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Finally, we specify the constant L that gives an upper bound on ‖Zm‖. Let u ∈ Sp−1 be an element
of the unit sphere in Rp. Since for any i vector Tim has only one component equal to 1 and all other
components 0 we have ‖Tim − E(Tim)‖2

2 = ‖Tim −Πi‖2
2 ≤ 2 and thus∣∣uT(Tim − E(Tim))

∣∣ ≤ √2.

It follows that

‖Tm − E(Tm)‖2 = sup
u∈Sp−1

∥∥uT(Tm − E(Tm))
∥∥2

2

= sup
u∈Sp−1

n∑
i=1

∣∣uT(Tim − E(Tim))
∣∣2 ≤ 2n

and we get ‖Zm‖ ≤
√

2n =: L for any m = 1, . . . , n. The desired result now follows by applying Proposi-
tion 2 with σ2 ≤

√
2Nn and L =

√
2n.

The next lemma is a corollary of Proposition 3:

Lemma 4. Let the assumptions of Proposition 3 be satisfied. Assume that N ≥ log(n+p) and min(n, p) ≥ 2.
Then

P

(
‖X −Π‖ ≥ 4

√
n log(n+ p)

N

)
≤ (n+ p)−1. (24)

Furthermore,

P

(
max

1≤i≤n
‖eT
i (X −Π)‖2 ≥ 5

√
log(n+ p)

N

)
≤ (n+ p)−1. (25)

Proof. Inequality (24) follows easily from Proposition 3 by setting t = 4
√

n log(n+p)
N

and using the assump-

tions N ≥ log(n+p). In order to prove (25), we bound each probability P

(
‖eT
i (X −Π)‖2 ≥ 5

√
log(n+p)

N

)
via Proposition 3 with n = 1 (that is, we apply Proposition 3 to 1× p matrices eT

i X, eT
i Π) and then use

the union bound. This yields

P

(
max

1≤i≤n
‖eT
i (X −Π)‖2 ≥ 5

√
log(n+ p)

N

)
≤ n(p+ 1) exp

(
−75 log(n+ p)

16
√

2

)
.

The right hand side of this inequality does not exceed (n+ p)−1.

B Proofs of the Main Results
B.1 Proof of Lemma 1
Using the fact that V̂T

1 V̂T = 0 we obtain

‖eT
i (Û−UO)‖2 = ‖eT

i (XV̂L̂−1 −ΠVL−1O)‖2

= ‖eT
i XV̂(L̂−1 − ÕTL−1O) + eT

i X(V̂−VÕ)ÕTL−1O + eT
i (X −Π)VL−1O‖2

≤ ‖eT
i XV̂(L̂−1 − ÕTL−1O)‖2 + ‖eT

i X(V̂−VÕ)ÕTL−1O‖2 + ‖eT
i (X −Π)VL−1O‖2

= G1 +G2 +G3.
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We now bound the values G1, G2 and G3 separately. We have

G1 = ‖eT
i XV̂(L̂−1 − ÕTL−1O)‖2 ≤ ‖eT

i X‖2 ‖V̂‖ ‖L̂−1 − ÕTL−1O‖

≤ CK1/2κ2(Π) ‖e
T
i X‖2 ‖X −Π‖

λ2
K(Π) ,

where the last inequality is due to Lemma 3. The values G2 and G3 can be controlled using the bounds for
the norm of matrix product and Corollary 4:

G2 = ‖eT
i X(V̂−VÕ)ÕTL−1O‖2 ≤ ‖eT

i X‖2 ‖V̂−VÕ‖ ‖L−1‖

= ‖eT
i X‖2 ‖V̂−VÕ‖

λK(Π) ≤ 5
√

2κ(Π)‖e
T
i X‖2 ‖X −Π‖

λ2
K(Π)

G3 = ‖eT
i (X −Π)VL−1O‖2 ≤ ‖eT

i (X −Π)‖2 ‖V‖ ‖L−1‖ = ‖e
T
i (X −Π)‖2

λK(Π) .

Combining these bounds proves the lemma.

B.2 Proof of Lemma 2
We first prove that matrix Ĥ is non-degenerate. In this proof, we denote by O the orthogonal matrix,
for which (15) holds, and by P̃ the permutation matrix, for which the bound of Corollary 5 holds. Using
Weyl’s inequality [19, Theorem C.6] and Corollary 5 we obtain

λmin(Ĥ) ≥ λmin(P̃HO)− ‖Ĥ− P̃HO‖

≥ λmin(H)− C0K
1/2κ(W )β(X,Π).

Using this inequality, Assumption 2 with C̄ ≤ C−1
0 , and equations (39), (40) we find

λmin(Ĥ) ≥ λmin(H)− 1
2λ1(W ) = 1

2λ1(W ) , (26)

which proves that Ĥ is invertible. Then, for the estimator Ŵ = ÛĤ−1 and the permutation matrix
P = P̃−1 we have

‖Ŵ −W P‖F = ‖ÛĤ−1 −UH−1P‖F
≤ ‖Û(Ĥ−1 −OTH−1P)‖F + ‖(Û−UO)[P−1HO]−1‖F
= I1 + I2.

We now bound separately I1 and I2. Due to (26) and (39) we have

‖Ĥ−1‖ = 1
λmin(Ĥ)

≤ 2λ1(W ), ‖H−1‖ = λ1(W ). (27)

Using the fact that ‖A−1 − B−1‖F ≤ ‖A−1‖ ‖B−1‖ ‖A − B‖F with A = Ĥ, B = P−1HO = P̃HO,
inequality (27) and Corollary 5 we find

I1 = ‖Û(Ĥ−1 −OTH−1P)‖F ≤ ‖Ĥ−1 −OTH−1P‖F
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≤ ‖Ĥ−1‖ ‖OTH−1P‖ ‖Ĥ− P̃HO‖F
≤ 2C0K

1/2λ2
1(W )κ(W )β(X,Π).

On the other hand,

I2 = ‖(Û−UO)[P−1HO]−1‖F ≤ ‖Û−UO‖F ‖H−1‖

≤ 5
√

2Kκ(Π)‖X −Π‖
λK(Π) ‖H−1‖,

where the last inequality follows from Corollary 4. Combining the above bounds we get

‖Ŵ −W P‖F ≤ CK1/2λ1(W )
{
λ1(W )κ(W )β(X,Π) + κ(Π)‖X −Π‖

λK (Π)

}
.

B.3 Proof of Theorem 1
We apply Lemma 2 combined with the concentration inequalities of Lemma 4. First, we check that As-
sumption 2 holds with probability at least 1 − 2(n + p)−1. For N ≥ log(n + p) we get from Lemma 4
that

‖X −Π‖ ≤ 4
√
n log(n+ p)

N

with probability at least 1− 1/(n+ p), and

max
1≤i≤n

‖eT
i (X −Π)‖2 ≤ 5

√
log(n+ p)

N

with probability at least 1−1/(n+p). Notice also that maxi ‖eT
i X‖2 = maxi

√∑p

j=1 X
2
ij ≤ maxi

√∑p

j=1 Xij =
1. Putting together the above remarks we deduce that, with probability at least 1− 2(n+ p)−1,

β(X,Π) ≤ 5
{
κ2(Π)

√
Kn+ λK(Π)

} √log(n+ p)
λ2
K(Π)

√
N

≤ 10κ2(Π)
√
Kn

√
log(n+ p)

λ2
K(Π)

√
N

where we have used the inequality λK(Π) ≤
√
n/K proved in Lemma 7. Since λK(Π) is chosen to

satisfy (10) we get that, with probability at least 1− 2(n+ p)−1,

β(X,Π) ≤ C̄

λ1(W )κ(W )K
√
K
.

Thus, on an event that has probability at least 1− 2(n+ p)−1, Assumption 2 is satisfied and we can apply
Lemma 2. This yields that, with probability at least 1− 2(n+ p)−1,

min
P∈P

∥∥Ŵ −W P
∥∥
F
≤ CK1/2λ1(W )

{
λ1(W )κ(W )β(X,Π) + κ(Π)‖X −Π‖

λK(Π)

}
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≤ C
λ1(W )

√
nK log(n+ p)

√
NλK(Π)

{
λ1(W )κ(W )K

1/2κ2(Π)
λK(Π) + κ(Π)

}
≤ CK

√
n log(n+ p)

N

(
λ1(W )
λK(Π)

)2

κ(W )κ2(Π),

where we have used the inequalities λK(Π) ≤
√
n/K and λ1(Π) ≤

√
Kλ1(W ) (see Lemma 7).

B.4 Proof of Theorem 2 and Corollary 3
We will use the following lemma.

Lemma 5. Let Π ∈ Rn×p be a rank K matrix with smallest non-zero singular value λK(Π), and X ∈ Rn×p

be a matrix such that ‖X −Π‖ ≤ τ for some τ > 0. Let K̂ = max{j : λj(X) > τ}. If λK(Π) > 2τ then
K̂ = K.

Proof. By Weyl’s inequality, we have |λj(X) − λj(Π)| ≤ τ for all j. Since λj(Π) = 0 for j ≥ K + 1
we deduce that K̂ ≤ K. On the other hand, K̂ ≥ K. Indeed, condition λK(Π) > 2τ implies that
λK(X) ≥ λK(Π)− |λj(X)− λj(Π)| > τ .

Theorem 2 is obtained by combining Theorem 1 with Lemma 5. Indeed, notice that the bound of
Theorem 1 is proved on the event A :=

{
‖X −Π‖ ≤ 4

√
n log(n+p)

N

}
. Set τ = 4

√
n log(n+p)

N
. It follows

from Lemma 5 that if

λK(Π) > 8
√
n log(n+ p)

N
(28)

then on the event A we have K̂ = K. But condition (28) is implied by (10) and (12). Therefore, the proof
of Theorem 1 goes through verbatim if we replace K by K̂. This yields Theorem 2. Corollary 3 is deduced
from Theorem 2 in the same way as Corollary 1 was deduced from Theorem 1.

B.5 Proof of Theorem 3
We use the techniques of proving minimax lower bounds based on a reduction to the problem of testing
multiple hypotheses [44, Chapter 2]. The hypotheses correspond to probability measures PΠ(j) , where
Π(j) = W (j)A with carefully chosen matrix A and matrices W (j), j = 0, 1, . . . , T . The construction of
these matrices borrows some elements from the proofs of the lower bounds in [8, 22]. An additional subtlety
is related to the fact that we need to grant Assumption 3 on the singular values. Without loss of generality
we assume that n is a multiple of K and that K is even.

1. Construction of the set of matrices W (j).
We first introduce the basic matrix W (0) and then define matrices W (j), j = 1, . . . , T as slightly perturbed
versions of W (0).

Let D1 be a n×K matrix composed of n/K blocks, each of which is the identity matrix IK of size K:

DT
1 =

[
IK IK IK

]
.

We have that DT
1 D1 = (n/K)IK and σ(D1) = {

√
n/K, 0}, where σ(D1) denotes the set of singular values

of D1. Set
γ1 = 1

4K
and define the n×K matrix D2 by the relation

DT
2 = γ1

[
0K,K 1K,(n−K)

]
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where we denote by 1n,p (respectively, 0n,p) the n × p matrix with all entries 1 (respectively, 0). Then,
DT

2 D2 = (n − K)γ2
11K,K and σ(D2) = {γ1

√
K(n−K), 0}. We will further consider the matrix D3 =

D1 + D2 given by the relation

DT
3 =


1 · · · 0 (1 + γ1) γ1 . . . γ1 . . . . . . (1 + γ1) γ1 . . . γ1
...

... γ1 (1 + γ1) . . . γ1 . . . . . . γ1 (1 + γ1) . . . γ1
...

...
...

... . . . . . .
...

...
0 · · · 1 γ1 γ1 . . . (1 + γ1) . . . . . . γ1 γ1 . . . (1 + γ1)


=
[

IK IK + γ11K,K . . . IK + γ11K,K .
]
.

Applying Weyl’s inequality [19, Theorem C.6], we get{
λ1(D3) ≤

√
n/K + 1

4

√
(n−K)/K ≤ 5

4

√
n/K,

λK(D3) ≥
√
n/K − 1

4

√
(n−K)/K ≥ 3

4

√
n/K.

Finally, the basic matrix W (0) is defined by the relation

(W (0))T = DT
3 −

[
0K,K Kγ1IK . . . Kγ1IK

]
=
[

IK (1−Kγ1)IK + γ11K,K . . . (1−Kγ1)IK + γ11K,K
]
.

Clearly, W (0) satisfies Assumption 1, all entries of W (0) are non-negative and its rows sum up to 1. Applying
Weyl’s inequality to matrix W (0) yields{

λ1(W (0)) ≤ 5
4

√
n/K +Kγ1(

√
n/K − 1) ≤ 3

2

√
n/K,

λK(W (0)) ≥ 3
4

√
n/K −Kγ1(

√
n/K − 1) ≥ 1

2

√
n/K,

(29)

implying that κ(W (0)) ≤ 3.
Our next step is to define the matrices W (j), j = 1, . . . , T . Consider the set of binary sequences

M = {0, 1}K(n−K)/2.

Applying the Varshamov-Gilbert bound [44, Lemma 2.9] we get that there exist w(j) ∈ M , j = 1, . . . , T ,
such that:

‖w(i) − w(j)‖1 = ‖w(i) − w(j)‖2
2 ≥

K(n−K)
16 , for any 0 ≤ i 6= j ≤ T, (30)

with w(0) = 0 and

log T ≥ log 2
16 K(n−K). (31)

We divide each w(j) into (n−K) chunks as w(j) = (w(j)
1 , w

(j)
2 , . . . , w

(j)
n−K) with w

(j)
i ∈ {0, 1}K/2. Next, for

each w
(j)
i , we introduce its augmented counterpart defined as w̃(j)

i = (w(j)
i ,−w(j)

i ) ∈ {−1, 0, 1}K . In what
follows, we set

γ = c∗

√
N

K(N −K)2 ,
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where c∗ > 0 is a small enough absolute constant. For 1 ≤ j ≤ T , define the (n−K)×K matrix Ω(j) and
the n×K matrix ∆(j) as follows:

Ω(j) = γ


w̃

(j)
1

w̃
(j)
2
...

w̃
(j)
n−K

 and ∆(j) =
[

0K,K
Ω(j)

]
.

Note that all the entries of (∆(j))T∆(j) are bounded in absolute value by γ2(n−K), which yields

‖∆(j)‖ =
√
‖(∆(j))T∆(j)‖ ≤

√
‖(∆(j))T∆(j)‖F ≤ γ

√
(n−K)K.

Thus, choosing c∗ small enough and using the assumption that N ≥ 2K we obtain

‖∆(j)‖ ≤ 1
4
√
n/K.

Now, for 1 ≤ j ≤ T , we define W (j) as

W (j) = W (0) + ∆(j). (32)

It is easy to check that, for each 1 ≤ j ≤ T , the rows of W (j) are probability vectors if c∗ is chosen small
enough, and W (j) satisfies Assumption 1. Moreover, using (29) and applying Weyl’s inequality once again,
we obtain {

λ1(W (j)) ≤ 7
4

√
n/K,

λK(W (j)) ≥ 1
4

√
n/K,

(33)

so that κ(W (j)) ≤ 7.
2. Constructing matrix A and checking the fact that Π(j) ∈M , j = 0, 1, . . . , T .

Assume that p is a multiple of K (if it is not the case the definition of A should be modified by adding a
block of zeros of the size of the residual). Define the following block matrix:

A0 = {e1, 0K , . . . , 0K︸ ︷︷ ︸
p/K

, e2, 0K , . . . , 0K︸ ︷︷ ︸
p/K

, . . . , eK , 0K , . . . , 0K︸ ︷︷ ︸
p/K

} ∈ RK×p,

where (e1, . . . , eK) is the canonical basis of RK and 0K ∈ RK is the vector with all entries 0. Define

A := N −K
N

A0 + K

pN
1K,p.

All entries of A are non-negative and the rows of A sum up to 1. We have that σ
(
N−K
N

A0) =
{
N−K
N

, 0
}

and σ
(
K
pN

1K,p
)

=
{
K3/2
√
pN

, 0
}

. Using the assumption that K ≤ p/4 and Weyl’s inequality we get{
λ1(A) ≤ N−K

N
+ K3/2
√
pN
≤ 1,

λK(A) ≥ N−K
N
− K3/2
√
pN
≥ 1/4,

(34)

which implies that κ(A) ≤ 4.
For 0 ≤ j ≤ T , define Π(j) = W (j)A. Using Lemma 8, (29), (33) and (34) we obtain

λK(Π(j)) = λK(W (j)A) ≥ λK(W (j))λK(A) ≥ 1
16
√
n/K. (35)
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It follows from (29), (33) and (35) that the first inequality in Assumption 3 is satisfied for W = W (j)

and Π = Π(j) = W (j)A, j = 0, 1, . . . , T . Next, using the first inequality in (35) and the fact that
λ1(W (j)A) ≤ λ1(W (j))λ1(A) yields

κ(W (j)A) ≤ κ(W (j))κ(A) ≤ C. (36)

Thus, Assumption 3 is satisfied for W = W (j) and Π = Π(j) = W (j)A, j = 0, 1, . . . , T . In conclusion, we
have proved that Π(j) ∈M , j = 0, 1, . . . , T .

To prove Theorem 3, we now use Theorem 2.5 in [44], according to which the lower bounds (13) and
(14) hold if the following conditions are satisfied:

(a) KL(PΠ(j) ,PΠ(0) ) ≤ logT
16 , for each j = 1, . . . , T , where KL(P,Q) denotes the Kullback-Leibler diver-

gence between the probability measures P and Q.
(b) For 0 ≤ j < ` ≤ T we have minP∈P ‖W (`) −W (j)P‖F ≥ c

√
n
N

and minP∈P ‖W (j) −W (`)P‖1 ≥
c n
√

K
N
. where P is the set of all permutation matrices and c is a positive constant.

(c) The maps (M1,M2) 7→ minP∈P ‖M1 −M2P‖F and (M1,M2) 7→ minP∈P ‖M1 −M2P‖1 are
semi-distances.

The rest of the proof is devoted to checking that these conditions (a) – (c) are indeed satisfied.

3. Proof of (a).
Our aim now is to derive an upper bound on the Kullback-Leibler divergence between PΠ(j) and PΠ(0) ,
where

Π(j) = W (j)A and Π(0) = W (0)A.

To shorten the notation, we set

α := N −K
N

+ K

pN
, β := K

pN
.

For any 1 ≤ i ≤ n, 1 ≤ ` ≤ p, we have Π(0)
i` =

∑K

k=1 W
(0)
ik Ak`. If i ≥ K + 1, for the entries in the ith row

of matrix Π(0) the following holds.
• For the columns ` such that (`− 1) is a multiple of p/K:

– Π(0)
i` takes once the value α+ (K − 1)γ1(β − α),

– Π(0)
i` takes K − 1 times the value β + γ1(α− β).

• For all other columns: Π(0)
i` ∈ {α, β}.

On the other hand, for any 1 ≤ j ≤ T , by the definition of W (j) in (32) we have

Π(j) = Π(0) + ∆(j)

= Π(0) +
[

0K,p
Ω(j)A

]
.

Therefore, for any 1 ≤ ` ≤ p, if i ≤ K, Π(j)
i` = Π(0)

i` , and if i ≥ K + 1, Π(j)
i` = Π(0)

i` + ∆(j)
i` , where

∆(j)
i` = γ

K/2∑
k=1

w
(j)
i−K(k)Ak` −

K∑
k=K/2+1

w
(j)
i−K(k −K/2)Ak`

 .

If i ≥ K + 1, for the entries in the ith row of matrix ∆(j) the following holds.
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• For the columns ` such that (`− 1) is a multiple of p/K:

– ∆(j)
i` is K/2 times equal to γ(α− β),

– ∆(j)
i` is K/2 times equal to −γ(α− β).

• For all other `: ∆(j)
i` = 0.

We are now ready to bound the Kullback-Leibler divergence between PΠ(j) and PΠ(0) . Denote by
Mp(N, q) the multinomial distribution with parameters (N, q) where q is a probability vector in Rp. We
recall that the Kullback-Leibler divergence between two multinomial distributions Mp(N, q1) and Mp(N, q2)
is equal to N

∑p

`=1 q1` log (q1`/q2`). Hence, we have

KL (PΠ(j) ,PΠ(0) ) = N

n∑
i=1

p∑
`=1

Π(j)
i` log

(
Π(j)
i`

Π(0)
i`

)

= N

n∑
i=K+1

p∑
`=1

Π(j)
i` log

(
Π(j)
i`

Π(0)
i`

)

= N

n∑
i=K+1

p∑
`=1

(
Π(0)
i` + ∆(j)

i`

)
log
(

1 + ∆(j)
i`

Π(0)
i`

)

≤ N
n∑

i=K+1

p∑
`=1

(
∆(j)
i` + (∆(j)

i` )2

Π(0)
i`

)
.

Note that, by construction,
∑p

`=1 ∆(j)
i` = 0. Therefore,

KL (PΠ(j) ,PΠ(0) ) ≤ N
n∑

i=K+1

p∑
`=1

(∆(j)
i` )2

Π(0)
i`

= N

n∑
i=K+1

∑
(`−1) multiple of p/K

(∆(j)
i` )2

Π(0)
i`

≤ N
n∑

i=K+1

∑
(`−1) multiple of p/K

γ2(α− β)2

Π(0)
i`

≤ 4c∗
K

n∑
i=K+1

∑
(`−1) multiple of p/K

(N −K)2

N2 Π(0)
i`

≤ 4c∗
K

n∑
i=K+1

[
3N

N −K + 2(K − 1)KN
N −K

]
≤ c

K
(n−K) K2N

N −K
≤ cK(n−K)

≤ log T
16 ,

where we have used (31) and we have chosen c∗ small enough, such that the constant c in the penultimate
line does not exceed (log 2)/256.
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4. Proof of (b).
Note that for any 0 ≤ j < ` ≤ T we have minP∈P ‖W (`) −W (j)P‖F = ‖W (`) −W (j)‖F since the first K
rows are the same for matrices W (`) and W (j). Then,

‖W (j) −W (`)‖2
F = ‖Ω(j) − Ω(`)‖2

F =
n−K∑
i=1

‖Ω(j)
i· − Ω(`)

i· ‖
2
2

= 2γ2
n−K∑
i=1

‖w(j)
i − w

(`)
i ‖

2
2 = 2γ2‖w(j) − w(`)‖2

2

≥ γ2

8 K(n−K) (using (30))

= c2
∗

8
N(n−K)
(N −K)2 ≥ c

n

N
(since K ≤ n/2), (37)

which proves (b) for the Frobenius norm. Quite analogously, for the `1-norm we get

‖W (j) −W (`)‖1 = ‖Ω(j) − Ω(`)‖1 =
n−K∑
i=1

‖Ω(j)
i· − Ω(`)

i· ‖1

≥ 2γ‖w(j) − w(`)‖1

≥ c n

√
K

N
.

5. Proof of (c).
We now prove that the map (M1,M2) 7→ minP∈P ‖M1 −M2P‖F satisfies the triangle inequality. For
any matrices M1,M2,M3, we have

min
P∈P

‖M1 −M2P‖F = min
P,P′∈P

‖M1P′ −M2P‖F

≤ min
P,P′∈P

(
‖M1P′ −M3‖F + ‖M3 −M2P‖F

)
= min

P′∈P
‖M1P′ −M3‖F + min

P∈P
‖M3 −M2P‖F

= min
P′∈P

‖M1 −M3P′‖F + min
P∈P

‖M3 −M2P‖F .

The same calculation holds with the `1-norm in place of the Frobenius norm. This completes the proof of
Theorem 3.

C Auxiliary lemmas
Lemma 6. Let Assumption 1 be satisfied. Then,

λK(W ) ≥ 1. (38)

If, in addition, λK(Π) > 0 then the matrix U of left singular vectors of Π can be represented in the form (5),
where H is a rank K matrix with singular values

λ1(H) = 1
λK(W ) , λmin(H) = λK(H) = 1

λ1(W ) , (39)

and the condition number satisfying

κ(H) = κ(W ). (40)
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Proof. Let J∗ ⊆ {1, . . . , n} be the set of K row indices of W corresponding to anchor documents. By
Assumption 1 we have W J∗ = IK . Hence,

λK(W ) = min
‖a‖2=1

‖Wa‖2 ≥ min
‖a‖2=1

‖W J∗a‖2 = 1,

which proves (38). Next, if λK(Π) > 0 then matrix L is positive definite and we define H := AVL−1.
In view of (4) we have W H = ΠVL−1 = U, which yields (5). We now prove that H is non-degenerate.
Indeed, (38) implies that matrix W TW ∈ RK×K is positive definite, so that H = (W TW )−1W TU. Then
for the minimal singular value λmin(H) of matrix H we have

λmin(H) = min
‖a‖2=1

‖(W TW )−1W TUa‖2

≥ min
x∈Rn:‖x‖2=1

‖(W TW )−1W Tx‖2 = 1
λ1(W ) > 0.

Thus, H is non-degenerate and we can write W = UH−1 implying (39). Equality (40) is an immediate
consequence of (39).

Lemma 7. Let W ,A and Π = W A be matrices with non-negative entries satisfying (2). Then the singular
values of matrices W and Π satisfy the inequalities

λK(Π) ≤
√
n/K, (41)√

n/K ≤ λ1(W ) ≤
√
n, (42)

λ1(Π) ≤
√
Kλ1(W ). (43)

Proof. Inequality (41) follows from the fact that

Kλ2
K(Π) ≤ λ2

1(Π) + · · ·+ λ2
K(Π) = ‖Π‖2

F ≤ n.

Next, using (2) we obtain

λ1(W ) ≤ ‖W ‖F =

√√√√ n∑
i=1

K∑
k=1

W 2
ik ≤

√√√√ n∑
i=1

K∑
k=1

Wik =
√
n. (44)

On the other hand, for a = (1/
√
K, . . . , 1/

√
K)T ∈ RK we have

λ1(W ) ≥ ‖Wa‖2 =

√√√√ n∑
i=1

1
K

(
K∑
k=1

Wik

)2

=
√

n

K
.

Quite similarly to (44), using (2) we get ‖A‖ = λ1(A) ≤ ‖A‖F ≤
√
K, which implies (43):

‖Π‖ = ‖W A‖ ≤ ‖W ‖‖A‖ ≤
√
Kλ1(W ).

Lemma 8. Let K ≤ min(n, p). For any two matrices W ∈ Rn×K and A ∈ RK×p we have

λK(W A) ≥ λK(W )λK(A). (45)
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Proof. We consider only the case λK(A) > 0 since otherwise (45) is trivial. By Courant-Fischer min-max
formula (see, e.g., [19, Theorem C.3]) we have

λK(W A) = max
S:dim(S)=K

min
y∈S\{0}

‖W Ay‖2

‖y‖2
,

where the maximum is taken over all linear spans S of K vectors in Rp. Since λK(A) > 0 and Ay ∈ RK

we can write

λK(W A) = max
S:dim(S)=K

min
y∈S\{0}

‖W Ay‖2

‖Ay‖2

‖Ay‖2

‖y‖2

≥ min
x∈RK\{0}

‖Wx‖2

‖x‖2
max

S:dim(S)=K
min

y∈S\{0}

‖Ay‖2

‖y‖2

= λK(W )λK(A).

Lemma 9. Let A0 be a matrix with the following block structure:

A0 =
[
α1e1, . . . , αKeK , 0K , . . . , 0K︸ ︷︷ ︸

p−K

]
∈ RK×p,

where (e1, . . . , eK) is the canonical basis of RK , αi ∈ (0, 1) and 0K ∈ RK is the vector with all entries 0.
Let

A = P1(A0 + A1)P2 and Π = W A

where P1,P2 are permutation matrices, ‖A1‖ ≤ β, and W ∈ Rn×K . If min
1≤i≤K

αi − β ≥ C then λK(Π) ≥
CλK(W ).

Proof. Matrix A0 has K top non-zero singular values α1, . . . , αK . Using Weyl’s inequality (see, e.g., [19,
Theorem C.6]) we get

λK(A) = λK(A0 + A1) ≥ min
1≤i≤K

αi − β ≥ C.

Combining this inequality with (45) yields the result.
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Appendix A Additional Experiments: Estimation of topic-
word matrix

In this section, we investigate the SPOC estimator of topic-word matrix A using the sequence of experiments
on synthetic data similar to those of Section 6. Figures 6-9 below present the results of simulations with
different values of parameters n, p,N and the number of topics K. The generation of matrices W and A
was performed in the same way as in Section 6. For each value on the x-axes of the figures, we present the
averaged result over 10 simulations.

Our objective was to assess the effect of each of parameters n, p,N,K on the Frobenius error between A
and the estimator Â derived from SPOC algorithm via (9). For comparison, we provide the same simulation
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Figure 6: The n-dependency of the Frobenius error of Â using SPOC and LDA algorithms. Total
number of words p = 5000, number of sampled words in each document N = 200.

study for the LDA estimator of A. The experiments show that the SPOC estimator is very competitive
with LDA while being more stable. One may also notice that the Frobenius error of both SPOC and LDA
estimators has a behavior similar to the optimal rates for estimation of matrix A under `1-error derived
in [8, 22]. Indeed, the estimation error is decreasing as function of n and N and it is increasing as function
of p and K.

Figure 7: The N -dependency of the Frobenius error of Â using SPOC and LDA algorithms. Total
number of words p = 5000, number of documents n = 1000.

34



Figure 8: The p-dependency of the Frobenius error of Â using SPOC and LDA algorithms. Total
number of words n = 1000, number of sampled words in each document N = 200.

Figure 9: The K-dependency of the Frobenius error of Â using SPOC and LDA algorithms. Total
number of words p = 5000, number of sampled words in each document N = 5000, number of
documents n = 1000.
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Appendix B Additional Experiments: Empirical study of
singular values of word-document and topic-
document matrices

Most conditions and assumptions used throughout the paper are satisfied for fairly general choices of
parameters. However, Assumption 3 enforces certain bounds on matrices W and Π which might seem
restrictive. The goal of this section is to experimentally show that singular values and quotients appearing
in Assumption 3 admit reasonably small upper bounds.

We consider matrices W ,Π and A generated in the following way. In most experiments we take
K = 3 and the matrix W has the following structure: K rows of W are canonical basis vectors, each
of the remaining n − K rows is generated independently using the Dirichlet distribution with parameter
α = (0.1, 0.15, 0.2). In the experiments where K must vary, we define W in a different way. Namely,
for the n −K rows that are not canonical basis vectors, each element Wkj is generated from the uniform
distribution on [0, 1] and then each row of the matrix is normalized to have

∑K

k=1 Wik = 1. For the matrix
A, we take K columns proportional to canonical basis vectors with coefficients equal to random variables
Uk, k = 1, . . . ,K uniformly distributed on [0, 1]. The elements Akj of matrix A in the remaining p − K
columns are obtained by generating numbers from the uniform distribution on [0, 1] and then normalizing
each row of the matrix to have

∑p

j=K+1 Akj = 1−Uk, k = 1, . . . ,K. The resulting matrix A has normalized
rows such that

∑p

j=1 Akj = 1.
We essentially use the same parameters as in the experiments reported in Section 6. The dependencies

of the condition numbers κ(Π) and κ(W ) on parameters n, p and K are presented on Figures 10 and 11.
All the condition numbers have small to moderate values for a quite wide range of parameters n and p,
while the dependence on K is stronger. Additionally, we study the ratio λ1(W )/λK(Π) also appearing in
Assumption 3. As presented on Figure 12 it shows the tendencies similar to the condition numbers.
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Figure 10: The dependency of κ(Π) on parameters n, p and K.
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Figure 11: The dependency of κ(W ) on parameters n and K.
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Figure 12: The dependency of λ1(W )/λK(Π) on parameters n, p and K.
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