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Abstract

Protein enrichment at specific membrane locations in cells is crucial for many cellular 
functions. It is well-recognized that the ability of the proteins to sense membrane curvature 
contributes partly to their enrichment in highly curved cellular membranes. In the past, different 
theoretical models have been developed to reveal the physical mechanisms underlying curvature-
driven protein sorting. This review aims to provide a detailed discussion of the two continuous 
models that are based on the Helfrich elasticity energy, (1) the spontaneous curvature model and 
(2) the curvature mismatch model. These two models are commonly applied to describe 
experimental observations of protein sorting. We discuss how they can be used to explain the 
curvature-induced sorting data of two BAR proteins, amphiphysin and centaurin. We further 
discuss how membrane rigidity, consequently the membrane curvature generated by BAR proteins, 
could influence protein organization on the curved membranes. Finally, we address future 
directions in extending these models to describe some cellular phenomena involving protein 
sorting. 
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1. Introduction 

The basic structure of cellular membranes is a sheet-like, 3-5 nm thick lipid bilayer formed 
by self-assembled amphipathic phospholipids 1. In cells, a large amount of proteins are bound on 
or embedded in the membranes. Many cellular functions depend on the ability of cells to robustly 
and dynamically reshape cellular membranes 2. A prominent example is the generation of transport 
vesicles in endocytosis and intracellular trafficking that allow cells to intake and transport cargos 
among different organelles. During these processes, cellular membranes undergo significant shape 
change, resulting in the generation of high membrane curvature. For instance, in clathrin-mediated 
endocytosis, the plasma membrane is deformed into vesicular buds with a diameter of 50-200 nm; 
and the buds are connected to the donor membrane via a thin neck, with a width of 25-150 nm and 
variable length, either very short and catenoid-like, or longer, on the order of 100 nm 3. Emerging 
evidence has shown that lipids and membrane proteins both contribute substantially to the 
generation of cellular membrane curvature. Conversely, membrane curvature can influence how 
lipids are distributed, and how proteins bind and assemble on membranes. Over the past decades, 
several mechanisms of membrane curvature generation have been revealed (please refer to other 
reviews 4-11. In this review, we focus our discussion on curvature-dependent protein 
distribution/sorting. For curvature-dependent lipid distribution/sorting, readers are referred to 
other reviews 6, 12, 13.

Lipid bilayers are complex soft matter systems with fluid in-plane and elastic out-of-plane 
behaviors. Within the bilayer, lipids and proteins can diffuse freely; thus, the bilayer is fluidic-like 
14-16. Considering the bilayer as a whole, it behaves as a continuous elastic sheet that can be bent 
and resists to stretching limited to a few percent of its area. Based on the fluid mosaic model 
described by Singer and Nicolson, and the framework established by Helfrich and many others, 
continuous physical descriptions of lipid bilayers based on curvature elasticity have quantitatively 
explained large-scale behaviors of membrane at equilibrium 17-22. Their work has provided the 
basic foundation for interpreting experimental observations 6, 10, 23-28. The so-called Helfrich 
curvature-elasticity energy relates the free energy of a lipid bilayer to its curvature and tension 18, 

𝐹Helfrich =  ∫[1
2𝜅(𝑐1 + 𝑐2 ― 𝑐0)2 + 𝜅𝐺𝑐1𝑐2 + 𝜎]𝑑𝐴 (1)

where  is the total membrane area. It is constructed based on the two principal curvatures of the 𝐴
bilayer,  and , the spontaneous curvature of the bilayer , together with two elastic coefficients: 𝑐1 𝑐2 𝑐0
the bending modulus and the elastic modulus of the Gaussian curvature,  and , respectively, 𝜅 𝜅𝐺
and the membrane tension . The bending modulus and the modulus of the Gaussian curvature of 𝜎
a typical bilayer is around 20  and 50 , respectively 29, 30. Membrane curvature is kBT kBT
characterized by its absolute value as well as its sign, which requires to distinguish the two sides 
of the membrane surface 5. Different conventions can be chosen for the curvature sign. In keeping 
with BAR domain literature, we define the sign of membrane curvature to be positive when the 
membrane curves toward the bound protein and negative when it bends away (Fig. 1). Importantly, 
if an asymmetry of the two leaflets exists, which could result from different lipid numbers or 
compositions, from different bulk compositions on each side of the bilayer, and from protein 
binding or inserting into the leaflets in an asymmetric fashion, the bilayer spontaneously bends 
towards one direction. To account for this phenomenon, a phenomenological term called 
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"spontaneous curvature"  was introduced to describe that, in the absence of external stresses, i.e. 𝑐0
in the relaxed state, the membrane is “spontaneously” curved. When first introduced by Helfrich, 
it was assumed that the asymmetry of the membranes is due to different lipid compositions in the 
two constituent monolayers or due to different aqueous environments of the two monolayers 22. It 
has to be noted that the Equation (1) is valid only when  is much larger than the thickness of 1/𝑐0
the bilayer . In the case where , the Helfrich curvature-elastic energy expression has to 𝑑 |𝑐0|𝑑 ≥ 1
include higher order terms 31. The spontaneous curvature is related to the residual torque in a flat 
membrane, and the cross term - , where , is the work done against this torque in 𝜅 𝐶𝑐0 𝐶 = 𝑐1 + 𝑐2
going from the flat reference state to a state with curvature C. Note that this term reflects broken 
up-down symmetry in the bilayer 32. It is important to note that the spontaneous curvature  is 𝑐0
different from the intrinsic curvature , which is a geometrical parameter describing the shape of 𝑐𝑖
a relaxed membrane32. Also, for a pure lipid membrane, i.e. in the absence of proteins, any 
inhomogeneity in the spontaneous curvature, for instance due to local in-plane density differences 
of the lipids, should relax quickly because the two constituent monolayers are free to slide over 
each other. Thus, for a pure lipid membrane,  is constant over the entire membrane 22. To account 𝑐0
for the presence of membrane proteins, several models based on the Helfrich curvature-elastic 
theory have been developed 5, 11, 33. These models aim to explain how the local concentrations of 
proteins are coupled to and can influence the curvature and the stiffness of the membrane, and 
conversely how membrane curvature can influence protein localization, meaning proteins have a 
preferred affinity to be on membranes with a specific curvature. This phenomenon when proteins 
bind to curved membranes at a higher affinity than to flat membranes is called “curvature-induced 
protein sorting”.

Figure 1. Schematics of positive and negative membrane curvature.

In cells, a plethora of membrane proteins have been identified as being capable of reshaping 
cellular membranes 4-6, 9, 13, 34, 35. Here, we focus our discussion on the proteins from the Bin-
Amphiphysin-Rvs167 (BAR) domain superfamily 36, 37. BAR domains form antiparallel 
homodimers that are intrinsically curved and have anisotropic crescent shapes. Based on their 
crystal structures, BAR domains can be classified into three major subfamilies: the classical BAR, 
the longer and less curved Fes/CIP4 homology-BAR (F-BAR) and the inverse-BAR (I-BAR) 
domains. Some classical BAR domains contain an N-terminal amphipathic helix, named N-BAR 
domains. The most prominent function of BAR domain is its ability to sense and generate 
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membrane curvature, which have significant impact on their biological functions 37-41. The 
classical BAR and F-BAR domains interact with membranes via their concave surface, while I-
BAR domain interacts with membranes via its convex surface. Indeed, it has been shown that the 
classical BAR domains prefer to associate with membranes with a positive curvature 42-45, while 
I-BAR domain prefers to bind to membranes with a negative curvature 46. Emerging cell biology 
studies have shown that the curvature sensing ability of BAR proteins contributes to their cellular 
localization and consequently their cellular functions 47-50. To reveal physical mechanisms by 
which BAR proteins sense membrane curvature, computer simulations, theoretical modeling and 
in vitro reconstitution systems have been developed 6, 10, 50. These studies have revealed parameters 
that determine how BAR proteins bind on membranes, and concomitantly their curvature sensing 
activities. For instance, BAR-membrane interactions depend not only on the structures of the 
proteins, but also on membrane shape and tension, as well as protein densities on the membranes 
10, 51. 

In this review article, we begin by describing two continuous models based on the Helfrich free-
energy for describing curvature-dependent protein sorting, (1) the spontaneous curvature model 
and (2) the curvature mismatch model. We then focus our discussion on one of the in vitro 
experimental approaches, membrane nanotube pulling, designed to assess curvature-dependent 
protein sorting. We further revisit experimental data of BAR protein amphiphysin and centaurin, 
and we discuss how the current models deepen our knowledge on their curvature sensing. Finally, 
using cryo-EM, we observed two different organizations of BAR domains on tubes of different 
radii. We close this review with suggestions for future work.

2. Modified curvature-elastic models of protein-bound membranes

It had been predicted by Helfrich, Leibler, Markin and many others that membrane 
impurities or proteins can modify the spontaneous curvature of the protein-bound membrane due 
to the asymmetrical distribution of the peripheral membrane proteins on the two leaflets or the 
asymmetrical shapes of transmembrane proteins 18, 22, 52, 53. This notion has been demonstrated 
experimentally, for instance by membrane nanotube pulling assay as discussed below. To take this 
effect into account, theoretical models have been proposed based on the Helfrich curvature-elastic 
theory 43, 44, 46, 54-57.

In the following, we discuss two models that have been widely used to explain 
experimental results on how proteins modulate membrane elastic energy, and how the membrane 
association of proteins is affected by membrane curvature. Note that both models below assume a 
lipid bilayer with a symmetric lipid composition and aqueous environment, and with a single type 
of proteins binding on the membrane. Also, direct protein-protein interactions are neglected in 
order to highlight the specific effects of membrane curvature coupling to local protein 
concentration, which in our theoretical analysis is quantified as the protein areal density (in 

), or alternatively as the areal fraction (in %). proteins/𝜇𝑚2

2.1. Spontaneous curvature model
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The spontaneous curvature model was originally introduced to describe the coupling 
between curvature and asymmetry of the membrane due to constituents’ shapes or unequal 
distribution of constituents across the bilayer 6, 52, 53, 58. It was next implemented to describe the 
membrane curvature-dependent sorting of BAR protein amphiphysin 43 and membrane reshaping 
by lipopolysaccharide 59. In the simplest form of this model, it is assumed that the protein-induced 
spontaneous curvature is coupled to the local protein concentration. Notably, it is assumed that the 
proteins do not necessarily influence the bending rigidity of the membrane. The general expression 
of the elastic energy of the system can be written as

𝐹spontaneous =  ∫1
2𝜅

(𝐶 ― 𝐶0(𝜙))2𝑑𝐴 =∫(1
2𝜅𝐶

2 ― 𝜅𝐶𝐶0𝜙 +
1
2𝜅𝐶0

2𝜙
2)𝑑𝐴 (2)

where  is the bending modulus of the protein-bound membrane,  is the protein areal fraction on 𝜅  𝜙
the membrane (in ), and  is the spontaneous curvature of a protein-bound membrane patch % 𝐶0(𝜙)
that depends on protein areal fraction. The expression in Equation (2) is the leading term in 
curvature deviations away from the reference state with  One might object to 𝐶 = 𝐶0(𝜙).  
considering a reference state that depends on  in cases where it is not uniform on the membrane. 𝜙
We note that one can always write the free energy on a region of uniform curvature and uniform 
protein density (such as a large membrane reservoir), and then perform a Taylor expansion to 
obtain the energy on nearby regions with different values of  and . Spatial non-uniformities 𝐶 𝜙
could be treated by including gradient-squared contributions in , and should only be important 𝜙
when membrane curvature changes abruptly, such as at the GUV-tube neck region in the 
membrane nanotube pulling assay (see Section 3.1). Because the nanotube pulling experiments 
usually involve spatial averages over membranes, these regions are not specifically considered. At 
low protein areal fractions and assuming that the proteins bind to the membrane independently of 
each other, the spontaneous curvature term is assumed to depend linearly on  60. It can be written 𝜙
as

𝐶0(𝜙) =  𝐶0𝜙 (3)

where  is a parameter that reflects the intrinsic curvature of the part of the protein that interacts 𝐶0

with the membrane. Thus,  does not correspond directly to the shape of the protein; it is 𝐶0

determined by the interplay between the protein and the membrane. In this model, the first term 
1
2𝜅

describes the elastic energy of the membrane in the absence of the proteins. Through the second 𝐶2

term , the membrane curvature is coupled to the protein area fraction. The third term 𝜅𝐶𝐶0𝜙
1
2𝜅

 could be considered as an effective repulsion between the proteins, which is related to the 𝐶0
2𝜙

2

spontaneous tension introduced by R. Lipowsky 27, 54. More general two-body protein-protein 
interactions could be included by adding a generic energy term varying like . These terms have 𝜙2

been considered by 44, 46, 51, 52.

2.2. Curvature mismatch model

The curvature mismatch model was first developed by Kralj-Iglic et al. to describe the 
protein distribution coupled to cell shape 61, and later to account for other experimental 
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observations of curvature-dependent protein sorting in reconstituted systems and in living cells 46, 

50, 62. At the molecular scale, protein-membrane binding involves either the deformation of the 
protein-bound membrane due to the intrinsic curvature of the bound proteins or the deformation 
of the bound-protein due to the membrane curvature, or a combination of both. According to this 
model, at low enough protein density (i.e. low areal fraction), such that proteins bind independently 
of one another, the elastic energy of protein-membrane binding should be proportional to the local 
protein areal fraction and to the protein-membrane binding energy, which is expected to depend 
on the local membrane curvature. This binding energy should be maximal for a certain curvature, 
and the simplest model is to assume that it is proportional to the square of the difference between 
the mean membrane curvature C and this optimal curvature, which we refer to as . The 𝐶𝑝
corresponding elastic energy of the system can be written as 46, 63

𝐹mismatch =∫[1
2𝜅𝐶

2 +
1
2𝜅𝜙(𝐶 ― 𝐶𝑝)2] 𝑑𝐴 (4)

where  is a phenomenological coefficient related to the protein’s intrinsic curvature, and  is an 𝐶𝑝 𝜅
elastic constant reflecting the energy penalty for the mismatch of , thus describing the 𝐶 and 𝐶𝑝
strength of the curvature mismatch.

We note that for the curvature mismatch model, it is possible to define a reference curvature 
for a given φ value. From Equation (4), we can show readily that

𝜅
2𝐶

2 +
𝜅
2𝜙 (𝐶 ― 𝐶𝑝)2 =

𝜅 + 𝜅𝜙
2 (𝐶 ―

𝜅 𝐶𝑝𝜙 
𝜅 + 𝜅𝜙)

2

+ 𝑔(𝜙)
(5)

In the above, g is a function of φ,  and the spontaneous curvature is the second term in the squared 
bracketed term. Of course, this is not in the same form as in the spontaneous curvature model. 
Implicit in this model is that the curvatures C and  are small and that the squared-bracketed term 𝐶𝑝
above is also small. The above equation also shows that proteins modify the membrane bending 
stiffness, in a linear fashion with . Compared to the spontaneous curvature model, there is no 𝜙
effective repulsion between the proteins, i.e., a  term, which is reasonable for the low protein 𝜙2

density regime considered here. Similar to the spontaneous curvature model, the  term 𝜅𝜙𝐶𝐶𝑝
relates the local protein area fraction to membrane curvature. For detailed analysis on the effect of 
protein anisotropy, readers are referred to the study of S. Svetina 63. 

2.3. Other contributions to the free energy of the system: mixing entropy term

Given that the system has two components, the membrane-bound proteins and the lipids, 
an inhomogeneous distribution of either components is entropically unfavourable. The entropic 
energy of mixing in the two components system, here the membrane-bound proteins and the lipids, 
is given by the Flory-Huggins form, 

𝐹𝑚𝑖𝑥 =  ∫𝑘𝐵𝑇𝜌[𝜙ln 𝜙 + (1 ― 𝜙)ln (1 ― 𝜙)]𝑑𝐴 (6)
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where  is Boltzmann’s constant and  is the inverse of the membrane area occupied by the bound 𝑘𝐵 𝜌
protein. This term has been included in the models (see below), but becomes less important when 
the protein size increases (i.e.  decreases).𝜌

2.4. Neglected aspects of the two models and their limitations 

The above-mentioned models have nevertheless neglected some aspects such as membrane 
area differences between the leaflets, potentially multiple protein-membrane binding modes, and 
direct protein-protein interactions, such as protein oligomerization. For instance, Cryo-EM studies 
have shown that protein-protein interactions among N-BAR domains or F-BAR domains induce 
highly ordered helical coats of the domains on tubular membranes, resulting from directional 
protein-protein interactions 64-66. Also, both models assume that membrane-bound proteins are in 
an isotropic fluid state, i.e., the proteins can freely diffuse and rotate on the membrane. However, 
since some proteins have anisotropic shape, at a relatively high protein density on the membrane 
and facilitated by the enrichment related to curvature coupling, these proteins could undergo an 
isotropic-nematic phase transition, resulting in ordered organization on the membrane 54. 

2.5. Similarities and differences between the two models

The spontaneous curvature model and the curvature mismatch model both couple the 
membrane curvature  and the local protein areal fraction  in order to describe how proteins 𝐶 𝜙
sense and thus consequently preferentially bind to membrane locations with given membrane 
curvatures. In the spontaneous curvature model, it corresponds to the term , while in the (𝜅𝑐0)𝜙𝐶
curvature mismatch model to . Notably, a similar term,  was introduced by Leibler (𝜅𝑝𝑐𝑝)𝜙𝐶 Λ𝜙𝐶,
with a coupling parameter  53. Also, in both models, information considering the organization of Λ
proteins on curved membranes is not required. 

In the spontaneous curvature model as written, we have not considered an explicit 
dependence of the membrane bending rigidity  on protein density. In the simplest model, 𝜅
including this dependence would add a term varying as  in the free energy. We note that more 𝜙𝐶2

sophisticated versions of this model have indeed included such a dependence 52, 58. It should be 
noted that this  is completely different from the renormalized one predicted by Leibler 53, in which 𝜅
an effective rigidity arises from the  term in the free energy upon integrating over protein 𝜙𝐶
concentration degrees of freedom, and thereby writing an effective free energy that depends only 
on curvature 53, 67. In the curvature mismatch model, bound proteins modify the energy term in ; 𝐶2

this may be interpreted as a protein modification to  that is linear in . The inclusion, or not, of 𝜅 𝜙
protein modification to  gives rise to different predictions on how proteins enrich on membranes 𝜅
as a function of membrane curvature (namely, protein sorting). The spontaneous curvature model, 
without a protein effect on , predicts a monotonic increase of protein sorting, while the curvature  𝜅
mismatch model yields a non-monotonic protein sorting. Another difference between the two 
models is that in the spontaneous curvature model, there is an extra term , which depends 

1
2𝜅(𝐶0𝜙)

2

on  and suggests protein repulsion. A hybrid model can be constructed in which the bending 𝜙2

stiffness and spontaneous curvature both depend linearly on , as well as having the effective 𝜙
protein repulsive term. This approach has been used to describe the membrane curvature sorting 
of an integral membrane protein potassium channel KvAP 63, 68. 
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Interestingly, the curvature mismatch model predicts protein phase separation on curved 
membranes 46. It originates from the coupling between protein density and membrane curvature, 
which is non-linear in  in the curvature mismatch model. The curvature mismatch model has 𝜙
been used to predict phase separation of dynamin and of FtsZ on membrane tubes 69, 70.  Curvature-
induced phase separation was also theorized using the spontaneous curvature model. In the model 
of Zhu et al., explicit protein-protein interactions were included using van der Waals type model, 
and these are required to account for phase separation 44. These predictions were confirmed by 
experimental data in which phase separation of the IRSp53 I-BAR domain on membrane tubes 
pulled from giant unilamellar vesicles (GUVs) was observed 46. Such phase separation might play 
roles in cellular processes such as endocytosis and filopodial initiation. The strong coupling of 
protein local density and membrane curvature could give rise to protein-driven membrane 
deformation as well as clustering of signaling lipids such as PI(4,5)P2 at the membrane deformation 
sites that are both essential for the cellular processes 71, 72. Indeed, live cell imaging has revealed 
that filopodia formation is often preceded by the formation of a cluster of I-BAR domain protein 
IRSp53 on the membrane 46, 73. 

To the best of our knowledge, there is no definite guideline when determining which model 
to use for fitting experimental data. The main difference between the spontaneous curvature and 
curvature mismatch models is that the latter includes a term that varies as  whereas the former 𝜙 𝐶2

does not. Both models contain a “spontaneous curvature” term . The ratio of the two terms is ~𝜙 𝐶
a parameter that sets a curvature scale. If this curvature scale is large compared with the membrane 
curvature C, then one can argue that the  term can be ignored, otherwise it cannot. Thus, in 𝜙 𝐶2

the case of (shallow) I-BAR proteins, where the curvature scale is expected to be small, the  𝜙 𝐶2

must be included46. In the case of amphiphysin, which contains a BAR backbone and amphipathic 
insertions, the curvature scale could be expected to be higher. Therefore, in principle, the 
spontaneous curvature model can be justified to fit the sorting data of amphiphysin43.

A recent study suggested that if proteins have negligible contributions on membrane 
stiffness, such as the insertion of amphipathic helices (AH), the spontaneous curvature model may 
be more appropriate to describe protein-membrane binding, and if proteins form scaffolds on 
membranes, such as BAR proteins, the curvature mismatch model may be more suitable 57. 
However, this assumption may not be valid for all AH insertions. For example, while it was shown 
that binding and helix insertion of the epsin N-terminal homology (ENTH) domain can soften 
membranes 74, amphipathic peptides were shown to stiffen the membrane 75. Moreover, in 
physiological conditions, AH insertion and scaffolding are usually entangled, such as in the case 
of N-BAR protein amphiphysin. Obviously, if protein sorting plotted as a function of membrane 
curvature has a clear peak value (see for instance 46), one should use the curvature mismatch model. 
A priori, we expect that proteins of the same family should be described by the same model. 
Moreover, due to their simplicity, both models neglect some aspects as discussed above. 
Especially, at high protein density, neither of the models would fully describe the observed 
phenomena since direct protein-protein interactions are neglected. 

In Section 4, we used the spontaneous curvature and curvature mismatch models to fit the 
sorting data of the full-length amphiphysin, i.e. BAR domain followed by a disordered domain and 
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a SH3 domain. We further performed statistical tests to compare the fitting results of the two 
models, and we discussed these results in details.

3. Testing these models experimentally

3.1. Membrane nanotube pulling assay

Emerging results obtained by the membrane nanotube pulling approach have demonstrated 
curvature-controlled protein polymerization, such as for dynamin 76, and protein sorting, such as 
for amphipathic lipid packing sensor (ALPS) 77, BAR proteins 42-44, 46, 51, 78-81, and α-synuclein 
motifs 6. The nanotube pulling assay has been extensively used for quantitatively assessing 
curvature sensing and generation abilities of proteins. In this assay, a small amount of biotinylated 
lipids (around 0.2 mol%) is incorporated in the GUV membrane to establish its binding to 
micrometer-size streptavidin-coated beads. A membrane nanotube is generated by first 
establishing binding between the GUV held by a micropipette on a micromanipulator and the bead 
trapped with optical tweezers, followed by moving the GUV away from the bead 82. By tuning the 
aspiration pressure in the micropipette, one can control the GUV membrane tension, consequently 
the tube radius (in the absence of proteins, the tube radius ). The nanotubes have a typical 𝑅 =  

𝜅
2𝜎

radius ranging from 7 nm to a few hundreds of nanometers, comparable to biologically-relevant 
membrane curvatures 2. Depending on the proteins of interest and the corresponding signs of 
membrane curvature to be assessed, one can either micro-perfuse the proteins adjacent to the 
membrane nanotube to test protein positive curvature-sensing, or one can encapsulate the proteins 
inside GUVs prior to pulling tubes to probe negative curvature-sensing. Eventually, the protein 
enrichment on tubes is quantified by the sorting ratio  using fluorescent lipids and proteins, and 𝑆

confocal microscopy:  is given by the relative fluorescence intensity of the proteins 𝑆 =  
𝐼𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑡𝑢𝑏𝑒 /𝐼𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝐺𝑈𝑉

𝐼𝑙𝑖𝑝𝑖𝑑𝑡𝑢𝑏𝑒/𝐼𝑙𝑖𝑝𝑖𝑑𝐺𝑈𝑉

on the tube ( ) and on the GUV membrane ( ), normalized by the relative fluorescence 𝐼𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑡𝑢𝑏𝑒 𝐼𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝐺𝑈𝑉
intensity of lipid probes on the tube ( ) and on the GUV membrane ( . One can quite 𝐼𝑙𝑖𝑝𝑖𝑑𝑡𝑢𝑏𝑒 𝐼𝑙𝑖𝑝𝑖𝑑𝐺𝑈𝑉)
generally measure protein enrichment on the tube as compared with the nearly flat GUV 6. As we 
discuss below, the sorting ratio depends on the protein density  on the GUV and, of course, on Φ𝑣
the type of protein. Furthermore, at low values of  proteins generally sense tube curvature, but Φ𝑣
do not significantly alter the tube radius – often referred to as “curvature sensing”. In contrast, at 
higher densities the protein are both enriched and feedback on the tube curvature – referred to as 
curvature generation 10. 

3.2 Sorting ratios corresponding to the 2 models 

3.2.1. Spontaneous curvature model
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To describe the sorting data of amphiphysin obtained by the nanotube pulling assay by 
Sorre et al., the spontaneous curvature model was modified to incorporate the protein mixing 
entropy and protein–protein interactions 43. For small differences between protein areal fractions 
on the tube  and on the GUV , after second-order Taylor expansion the free energy can be 𝜙𝑡 𝜙𝑣
approximated as 

𝐹𝑡𝑢𝑏𝑒
𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 = 2𝜋𝑅𝐿[𝜅2( 1

𝑅2 ―
2𝐶0𝜙𝑡

𝑅 ) +
1
2𝜒Δ𝜙

2 + 𝜎] ― 𝑓𝐿
(7)

where ,  is the effective osmotic susceptibility, f is the pulling Δ𝜙 =  𝜙𝑡 ― 𝜙𝑣 𝜒 =
𝑘𝐵𝑇𝜌

𝜙𝑣(1 ― 𝜙𝑣) +𝜅𝐶0
2

force and L the tube length. In the limit of vanishing protein density on the GUV, , we have 𝜙𝑣 ≈ 0

. The sorting ratio is given by 𝜒 ≈
𝑘𝐵𝑇𝜌
𝜙𝑣

+𝜅𝐶0
2

𝑆 = 1 +
Δ𝜙
𝜙𝑣

= 1 +
𝜅𝐶0

𝑅𝜒𝜙𝑣

(8)

In a very dilute situation, for instance where the protein density , or conversely the Φ𝑣 < 50 μm―2

areal fraction  (for , the sorting ratio can be written as𝜙𝑣 = Φ𝑣 ×
1
𝜌 < 0.25%  𝜌 = 1

50 𝑛𝑚2)

𝑆 = 1 +
𝜅𝐶0

𝑘𝐵𝑇𝜌
1
𝑅

(9)

In this regime, the sorting ratio increases linearly with  and is independent of . By fitting 1/𝑅 𝜙𝑣

experimental sorting data with Equation (9), one can obtain . We note that Equations (8) and (9) 𝐶0
can only be applied to low protein density regime. With increasing protein density, the Taylor-
expansion of the mixing free energy up to quadratic order becomes less valid. In this case, the 
entropic part of the effective susceptibility can be neglected. The sorting ratio still depends linearly 
on the curvature  but also on : 1/𝑅 𝜙𝑣

𝑆 = 1 +
1

𝐶0𝜙𝑣

1
𝑅

(10)

3.2.2. Curvature mismatch model

The curvature mismatch model was also modified to include energies related to protein-
membrane interaction, protein-protein interaction and protein/lipid mixing entropy 46. The free 
energy of the system can be written as 

 𝐹𝑡𝑢𝑏𝑒
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 2𝜋𝑅𝐿[ 𝜅

2𝑅2 +
𝜅
2𝜙𝑡(1

𝑅 ― 𝐶𝑝)2
+ 𝑓𝑠 + 𝑓𝑚] (11)

where  and  are the energy densities of membrane stretching and protein mixing entropy on 𝑓𝑠 𝑓𝑚
membranes. , where  is compression/dilation modulus,  is the 𝑓𝑠 =

1
2𝑘𝑠(𝑛𝑙𝑎𝑙 + 𝑛𝑝𝑎𝑝 ― 1)2 𝑘𝑠 𝑛𝑙

number of the lipids per unit area,  is the number of the membrane bound proteins per unit area, 𝑛𝑝
and  and  are the membrane areas occupied by a membrane bound protein and a lipid, 𝑎𝑝 𝑎𝑙
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respectively. We note that the membrane tension is related to the stretching energy, that is 𝜎 = 𝑘𝑠
and the tube pulling force is given by  46.(1 ― 𝑛𝑙𝑎𝑙 ― 𝑛𝑝𝑎𝑝) 𝑓𝑝𝑢𝑙𝑙 = 2𝜋𝑅( 𝜅

2𝑅2 + 𝜎)
At equilibrium the chemical potentials of the lipids and proteins on the GUV and on the tube are 
equal, thus an implicit dependence of  on the tube curvature can be written as 𝜙𝑣

𝜙𝑡

𝜙𝑣(1 ― 𝜙𝑣

1 ― 𝜙𝑡)
𝑎𝑝/𝑎𝑙

= exp[𝜅𝑎𝑝𝑘𝐵𝑇(𝐶𝑝

𝑅 ―
1

2𝑅2)] (12)

At low protein density regime, both  and  , thus the relation between the sorting ratio  𝜙𝑣 𝜙𝑡 ≪ 1 𝑆
and the tube curvature  is a Gaussian distribution, with a maximum at  as observed 𝐶 = 1/𝑅 𝐶 = 𝐶𝑝
e.g. for the I-BAR domain of IRSp53 46.We note that Equation (12) can be applied to different 
protein density regimes and predicts that the sorting ratio ( ) decreases with increasing protein 𝑆
areal fraction on GUVs ( ), consistent with the experimental data of Prevost et al. 46. This is 𝜙𝑣
because when the protein density on a GUV increases, the protein density on the corresponding 
tube ultimately saturates, resulting in a decrease in the (relative) sorting ratio. By fitting 
experimental sorting data with Equation (12), one can obtain  and .𝜅 𝐶𝑝

4. Comparing the two models on experimental sorting data on two BAR domain proteins

 4.1 N-BAR Amphiphysin 1

Here, we have revisited our previous analysis of curvature-induced sorting measurements 
for human amphiphysin 1 43. Amphiphysin 1 has an N-terminal N-BAR domain, followed by a 
central clathrin and AP-2 interacting domain, and finally a C-terminal SH3 domain. The 
measurements were performed using the nanotube pulling approach where the full length human 
amphiphysin 1 (labelled with Alexa 488, referred to as amphiphysin hereafter) was injected 
adjacent to membrane tubes pulled from GUVs 43. The GUVs were composed of DOPC, DOPE, 
and DOPS (in 1:1:1 molar ratio). At protein surface densities  it was shown that Φ𝑣 > 1000 μm―2

amphiphysin has a mechanical effect on the membrane, where the tube radius is no longer 
dependent on the membrane tension but instead is controlled by the amphiphysin scaffold formed 
on the tube, leading to a 7±2 nm tube radius. At lower densities, , amphiphysin Φ𝑣 < 1000 μm―2

can sense positive membrane curvature without significantly altering the tube, resulting in the 
enrichment of amphiphysin on the tubes. To explain the observed curvature sorting of 
amphiphysin, the spontaneous curvature model (Equation (9)) was used to fit the sorting results at 
very low protein density (  ), obtaining nm 43. At moderate density Φ𝑣 < 50 𝜇m ―2 1/𝐶0 = 0.8 ± 0.4 
(280 ± 100 μm−2), by using Equation (10), one obtained nm 43. Note that the 1/𝐶0 = 1.9 ±  0.4 
values of  are quite low, far from the scaffold radius, although it is comparable with the 1/𝐶0
predicted value for amphipathic helix insertion in the membranes 60. The large discrepancy 
between  deduced from the sorting experiments and the structural data on amphiphysin BAR 1/𝐶0
domain (see below) or our measurements of the scaffold size was puzzling.

Since the curvature mismatch model should be valid for a large range of protein densities 
as shown previously in 46, we used it to fit the sorting data of amphiphysin obtained at both low (

 < 50 ) and higher protein densities (  > 50 ). As shown in Fig. 2A, we note that 𝛷𝑣 𝜇m ―2 𝛷𝑣 𝜇m ―2

the sorting ratio decreases when the protein density on vesicles increases, as expected 46. For 
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protein densities  < 50  and , we obtained nm and 𝛷𝑣 𝜇m ―2 50 𝜇m ―2 < Φ𝑣 < 120 𝜇m ―2 1/𝐶𝑝 = 9 
nm, respectively (green and magenta lines in Fig. 2B, and Table 1). We also fitted these two 13.5 

datasets with the spontaneous curvature model using Equation (9), and we found  that does 1/𝐶𝑝
not agree with the crystal structure and scaffolding tube radius (cyan lines in Fig. 2B, and Table 
1). To compare the fitting results of the two models for these two data sets, we performed an F test 
and the AIC (Akaike Information Criterion) test. Based on the results of the two tests, the curvature 
mismatch model gives a better fit to our data than the spontaneous curvature model does (see Table 
4 in the Appendix). 

We also measured amphiphysin sorting at higher values of , which is shown in Fig. 2C. Φ𝑣
There are two interesting points to note about these data. First, one readily notes that sorting data 
correspond to only a narrow range of tube curvatures, centered at around 0.1 nm-1. This shows that 
in this protein density regime the proteins modify the tube curvature. Thus, at higher protein 
densities, both curvature sensing and generation are observed (see also Fig. 4C of 43). Second, 
although a significant sorting ratio is measured, the data are noisier and do not reach the same 
levels as at lower protein densities. Based on these observations, the high protein density data are 
not amenable to the model fit as presented at lower densities.
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Figure 2. Sorting ratio S of amphiphysin as a function of tube curvature 1/R. Green circles   𝛷𝑣

< 50 , Magenta circles, 50  < 120 , Orange circles 120  < 500 𝜇𝑚―2 𝜇𝑚―2 < 𝛷𝑣 𝜇𝑚―2 𝜇𝑚―2 < 𝛷𝑣
, and Cyan circles  > 500 . In (B), solid green and solid magenta lines are the fits 𝜇𝑚―2 𝛷𝑣 𝜇𝑚―2

to the corresponding data set using Equation (12) (Curvature mismatch model). Solid cyan and 
dashed cyan curves are the fits using Equation (9) (Spontaneous curvature model) to data sets of 

 < 50  and 50  < 120 , respectively. (C) is an enlargement of (A) 𝛷𝑣 𝜇𝑚―2 𝜇𝑚―2 < 𝛷𝑣 𝜇𝑚―2

showing sorting data at 120  < 500  (orange circles), and  > 500  (cyan 𝜇𝑚―2 < 𝛷𝑣 𝜇𝑚―2 𝛷𝑣 𝜇𝑚―2

circles). Note that part of the data is from 43.

Protein density Φ𝑣 Protein areal 
fraction 𝜙𝑣

𝜅 𝐶𝑝 1/𝐶𝑝 1/𝐶0

 Φ𝑣 < 50 𝜇m ―2 0.25 %𝜙𝑣 <  14.7 ± 1.7 kBT  0.111 ± 0.008
nm-1

9.0 nm 1.0 nm

50 𝜇m ―2 < Φ𝑣 < 120 𝜇m ―2 0.25 % < 𝜙𝑣
0.6 %<  

26.8 ± 2.2 𝑘𝐵𝑇  0.074 ± 0.003
nm-1

13.5 
nm

1.8 nm

Table 1. Fitting parameters for amphiphysin sorting data shown in Fig. 2B using Equation (12) 
of the curvature mismatch model,  and , and using Equation (9) of the spontaneous curvature 𝜅 𝐶𝑝

model, . The membrane area occupied by the protein is 50 nm2.𝐶0

Although one cannot directly compare the  values obtained from tube pulling 1/𝐶𝑝
experiments either to the crystal structures of N-BAR domain nor to the diameters of the N-BAR 
domain decorated tubes (which also depends on membrane composition through κ and  46), the 𝜅
value of  reflects to a certain extent, how curved the N-BAR domain is. Notably, the obtained 1/𝐶𝑝

 (averaged by the two  values obtained here, as shown in Table 1) is very close 1/𝐶𝑝 ≈ 11 nm 𝐶𝑝
to the curvature of the concave surface of the crystal structure of Drosophila amphiphysin N-BAR 
domain, ~ 1/11 nm 83. Also, it is close to the radius of N-BAR domain deformed membrane tubes 
observed by Cryo-EM, ~12.4 nm for Drosophila amphiphysin N-BAR domain 66, and ~11 nm for 
human amphiphysin 2 N-BAR domain 84. Another study of Drosophila amphiphysin N-BAR 
domain using the tube pulling approach from GUVs reported an effective spontaneous curvature 𝐶𝑠

, i.e.  in Equation (2), to be around 0.1 nm-1, which is comparable with  𝐶0(𝜙) 1/𝐶𝑝 ≈ 11 nm
obtained here 42. Eventually, the value is also close to that deduced from our scaffolded tubes. Note 
that the scaffold radius measured either by fluorescence or from the tube force corresponds to the 
mid-plane of the membrane of the tube. To compare with the curvature of the BAR domain 
obtained by crystallography or electron microscopy, a half-bilayer thickness should be added, 
resulting in a tube radius of the order of 10-11 nm, and a little bit higher if we consider the protein 
thickness on the tubes. Notably, the disordered domains of amphiphysin can also influence the 
tube radius due to steric interactions between the disordered domains 85. 

In conclusion, we find that the curvature mismatch model is better suited to model 
amphiphysin curvature sorting than the spontaneous curvature model. 

4.2.  centaurin𝛽2
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Although  centaurin and amphiphysin both contain BAR domains, their structures differ in three 𝛽2
main ways. First, the BAR domain of  centaurin has an intrinsic radius of curvature of ~ 40 nm, 𝛽2
which is flatter than the BAR domain of amphiphysin (~ 11 nm) 83, 86. Second, the BAR domain 
of  centaurin does not contain amphipathic helices unlike amphiphysin. Third,  centaurin 𝛽2 𝛽2
contains a pleckstrin homology domain (PH domain) that contributes to the binding of centaurin 
to membranes 71. Here, we assessed the curvature sensing ability of  centaurin by performing 𝛽2
the tube pulling assay. In the experiments, we used a truncated version of human  centaurin, the 𝛽2
BAR domain followed by the PH domain, and GUVs composed of a total lipid brain extract 
supplemented with 5 mol% PI(4,5)P2 79. As shown in Fig. 3, we noticed that the sorting data of 
centaurin is noisier as compared to those of amphiphysin. This could be due to the presence of the 
PH domain of centaurin, which could contribute to membrane curvature generation as centaurin’s 
BAR domain 86. Also, the PH domain may influence centaurin’s organization on membrane tubes, 
for instance trapping the organization in a metastable state. Nevertheless, we performed data fitting 
to assess how the spontaneous curvature and curvature mismatch models could account for the 
sorting of centaurin (Fig. 3). Table 2 summarizes the fitting parameters. Based on the statistical 
tests (see Table 4 in Appendix) and by comparing the values of  and  (see Table 2), the 1/𝐶𝑝 1/𝐶0
fit of the curvature mismatch model appears to be better than that of the spontaneous curvature 
model. However, the  value is ~ 2 times smaller than the reported radius of the tube scaffolded 1/𝐶𝑝
by this truncated centaurin (~ 40 nm) 76 and the intrinsic radius of curvature (~ 40 nm) based on 
the crystal structure of the BAR-PH domain of centaurin79, 86. Thus, further work is absolutely 
required to modify the curvature mismatch model for explaining centaurin curvature sorting, such 
as to include protein-protein interaction and the contribution of the PH domain in membrane 
binding. 

Figure 3. Sorting ratio S of centaurin as a function of tube curvature 1/R. Green circles  <  𝛷𝑣

100 , Magenta circles, 150  < 400 . Solid green and magenta curves are 𝜇𝑚―2 𝜇𝑚―2 < 𝛷𝑣 𝜇𝑚―2
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the fits to the corresponding data set using Equation (12) (Curvature mismatch model). Solid cyan 
and dashed cyan curves are the fits using Equation (9) (Spontaneous curvature model) to  < 𝛷𝑣
100  and 150  < 400 , respectively.𝜇𝑚―2 𝜇𝑚―2 < 𝛷𝑣 𝜇𝑚―2

Protein density Φ𝑣 Protein areal 
fraction 𝜙𝑣

𝜅 𝐶𝑝 1/𝐶𝑝 1/𝐶0

 Φ𝑣 < 100 𝜇m ―2 0.5 %𝜙𝑣 <  79.8 ± 17.0 kBT  0.049 ± 0.006
nm-1

20.2 
nm

0.4 nm

150 𝜇m ―2 < Φ𝑣 < 400 𝜇m ―2 0.75 % < 𝜙𝑣
%<  2 

53.8 ± 13.9 kBT  0.059 ± 0.009
nm-1

16.8 
nm

0.8 nm

Table 2. Fitting parameters for centaurin sorting data shown in Fig. 3 using Equation (12) of the 
curvature mismatch model,  and , and using Equation (9) of the spontaneous curvature model, 𝜅 𝐶𝑝

. The membrane area occupied by the protein is 50 nm2.𝐶0

5. Effect of membrane composition on the membrane spontaneous curvature and on the 
organization of BAR proteins

With the above experiments, we could modulate the tube radius by changing the 
micropipette aspiration pressure, and measure the protein density on the tube from the analysis of 
the protein and lipid fluorescence. But we could not have access to the protein organization on the 
tubes since this would require high-resolution methods such as Cryo-EM, which is not compatible 
with the tube pulling assay. To circumvent this issue, we took advantage of the membrane 
curvature generation ability of BAR-domain proteins, in which at high protein areal fraction, the 
BAR-domain proteins spontaneously induce membrane tubulation of GUVs by forming a scaffold 
when the membrane tension is below some threshold 51, 81. BAR-domain proteins organization on 
these tubules could then be investigated by Cryo-EM 84. Since the radius of this tubular scaffold is 
expected to depend on membrane bending rigidity and thus on its lipid composition 46, we formed 
large unilamellar vesicles with 2 different compositions, corresponding to membranes of different 
stiffnesses to study the organization of the IRSp53 I-BAR domain on tubes: (1) stiffer membranes 
composed of total brain extract supplemented with 5 mol% PI(4,5)P2, named TBX vesicles with a 
bending rigidity  79 and (2) softer membranes made of eggPC supplemented with 8 mol% ~50 kBT
PI(4,5)P2, 10 mol%  DOPS, 10 mol% DOPE and 15 mol% cholesterol, named eggPC vesicles, 
with a rigidity  46. These vesicles were incubated with the I-BAR domain proteins, ~12.5 kBT
followed by Cryo-EM imaging (for experimental details, see the Appendix). For both vesicle 
groups, we found membrane tubes generated by the I-BAR domain, in which the I-BAR domains 
decorate the inner surface of the tubes (Figs. 4A and 4D), in agreement with previous studies 38, 46. 
Besides, we observed that TBX-based tubes have diameters ranging from 80 nm to 100 nm, wider 
than eggPC tubes, with diameters between 25 nm and 55 nm similarly to those previously observed 
with PC and PI(4,5)P2 38 and consistently with the respective membrane stiffness. On the wide 
TBX tubes, I-BAR domains assemble on the inner surface of the tubes and align perpendicularly 
to the longitudinal axis of the tubes (Fig. 4B and 4C). By performing Fourier transform on these 
tubes, we obtained a Bragg peak corresponding to a regular spacing between I-BAR domains of 
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3.15 nm, likely reflecting the width of the I-BAR domains. The observed perpendicular alignment 
of the I-BAR domains is similar to what has been reported for F-BAR and N-BAR domains on 
tubular membranes, although with an opposite membrane curvature 64-66, 84. Strikingly different 
from the TBX tubes, in the thinner eggPC membrane tubes, the I-BAR domains align along the 
longitudinal axis of the tubes (Fig. 4E). A similar alignment has been recently observed in 
molecular dynamics simulations 87-89. It should be noted that in the computer simulation, the tubes 
are preformed while allowing I-BAR domains to self-organize inside the tubes; in our Cryo-EM 
experiments, the tubes were generated by the I-BAR domains. Taken together, the observed 
difference of I-BAR domain’s organizations on membrane tubes composed of different lipid 
composition clearly indicates that lipids, as well as membrane curvature, can influence protein 
organization, which likely have an important role in proteins’ cellular functions. 

Figure 4. Representative Cryo-EM images of IRSp53 I-BAR domain driven membrane tubes. 
(A) - (C) TBX based vesicles. (D) and (E) eggPC based vesicles. In (B), the inset is the Fourier 
transform result, Bragg peak 3.15 nm. (C) Zoom corresponding to the white rectangular box in 
(B). In (E), cyan arrows indicate the presence of the I-BAR domain aligned along the longitudinal 
axis of the tube. Scale bars: (A) and (B) 100 nm, (D) 50 nm, and (E) 20 nm.

6. Concluding remarks

Recent theoretical and experimental works have provided insights in the mechanisms of 
protein sorting and organization on curved membranes, and how protein binding affects the 
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mechanical properties of the membranes 6, 7, 10, 37, 90. Table 3 summarizes some measurements of 
the spontaneous curvature  of protein-bound membranes and the intrinsic curvature  of 𝐶0 𝐶𝑝
membrane-bound proteins, for some BAR-domain proteins. Yet, many issues remained to be 
addressed. For instance, although recent EM studies provided rich information on how BAR 
domains organized on cylindrical membranes, most of the studies were performed at high protein 
density. It would be informative to visualize how BAR proteins are organized on cylindrical 
membranes at low protein density, in which the proteins diffuse and rotate freely. This would 
deepen our knowledge on how these proteins organize in cellular membranes where the protein 
density may be lower than those in test tubes. Also, given that there are usually multiple BAR 
proteins involved in the generation of curved cellular membranes such as in endocytosis, how 
different BAR proteins organize on curved membranes remains to be solved. Finally, BAR 
proteins work synergistically with the actin machinery in many cellular processes such as 
endocytosis, and the formation of filopodia and lamellipodia 41, 91, 92. To advance our understanding 
of these cellular processes, it would be essential to decipher the underlying mechanisms of how 
the BAR protein-actin machinery operates in these processes 92-94. 

Protein Measured spontaneous/intrinsic curvature Reference

IRSp53 I-BAR domain |𝐶𝑝| ―1 =  18 nm 46

Amphiphysin 1
Dilute limit (  𝜙𝑣 < 50

)𝜇m ―2
𝐶𝑝

―1 =  9.0 nm
Current study; part 
of the experimental 
data from 43

MIM/IMD I-BAR 
domain

|𝐶0| ―1 =  3.7 ± 0.62 nm 81

Endophilin A1 N-BAR 
domain 𝐶0

―1 =  5.1 ± 0.7 nm 51

Endophilin A1 full-
length protein 𝐶0

―1 =  6.1 ± 1.1 nm 51

Amphiphysin N-BAR 
domain , on the order of 10 nm𝐶𝑠

―1 42

Amphiphysin 1
Dilute limit (  𝜙𝑣 < 50

)𝜇m ―2
𝐶0

―1 =  0.8 ± 0.4 nm 43

Endophilin A1 N-BAR 
domain, high protein 
density (bulk 
concentration 1 µM)

𝐶0
―1 =  7.1  nm 44

Endophilin A1 N-BAR 
domain, low protein 
density (bulk 
concentration 40 nM)

𝐶0
―1 =  53 nm 44

Table 3. Spontaneous curvature of protein-bound membranes and the intrinsic curvature of the 
membrane-bound proteins. : intrinsic protein curvature; : spontaneous membrane curvature; 𝐶𝑝 𝐶0

: effective spontaneous membrane curvature; : effective protein spontaneous curvature.𝐶𝑠 𝐶0
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Appendix

Comparing the fits of the spontaneous curvature and the curvature mismatch model

To compare the fits of the two models, we performed two statistical tests. 

(1) F test. The null hypothesis is that the curvature mismatch (CM) model does not provide 
a significantly better fit than the spontaneous curvature (SC) model. Given the 5% level of 
significant, if the p value associated with the F test is less than 0.05, we can reject the null 
hypothesis, and conclude that the fit of the CM model is significantly better than that of the SC 
model. 

(2) AIC (Akaike Information Criterion), a likelihood‐based goodness-of-fit measure. 
, where k is the number of estimated parameters and  is the maximum value AIC = 2𝑘 ― 2 ln (𝐿) 𝐿

of the likelihood function of the model. A lower AIC value indicates less information lost by a 
given model, i.e. superior goodness-of-fit. To compare models, one has to compute the relative 
AIC using exp((AICmin − AICi)/2), in which AICmin is the minimum of AIC among the models and 
AICi is the AIC value of the ith model. The relative AIC provides a relative (comparing to AICmin) 
probability that the ith model minimizes the information lost.

Table 4 presents the results of the two statistical test.

Protein areal 
fraction (%)

AIC p value of F test

Fig. 2B 0.25 %𝜙𝑣 <  SC model: 276.768

CM model: 263.489

Relative AIC: 0.00130809

0.000173691

Fig. 2B 0.25 % < 𝜙𝑣
0.6 %<  

SC model: 132.492

CM model: 115.132

Relative AIC: 0.000169969

0.0000467467

Fig. 3 0.5 %𝜙𝑣 <  SC model: 338.46

CM model: 332.032

Relative AIC: 0.0401913

0.0050931

Fig. 3 0.75 % < 𝜙𝑣
%<  2 

SC model: 270.671

CM model: 268.006

Relative AIC: 0.263788

0.0378176

Table 4. Relative AIC measurements and p values of the F test. CM: curvature mismatch 
model; SC: spontaneous curvature model.
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Experiments

Reagents

All lipids, including total brain lipid extract (TBX, 131101P) and brain L-α-
phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2, 840046P), were purchased from Avanti Polar 
Lipids. Alexa Fluor 488 C5-Maleimide (Alexa 488) were purchased from Invitrogen. All the other 
reagents were purchased from Sigma-Aldrich.

Cryo-EM experiments

Vesicle preparation

The salt buffer outside vesicles was 60 mM NaCl and 20 mM Tris pH 7.5. The salt buffer 
inside vesicles was 50 mM NaCl, 20 mM sucrose and 20 mM Tris pH 7.5.

Briefly, a lipid mixture of TBX supplemented with 5 mole% PI(4,5)P2 was dried with 
argon gas and placed under vacuum for at least 3hrs. The dried lipid film was resuspended in a salt 
buffer (50 mM NaCl, 20 mM sucrose and 20 mM Tris pH 7.5) at a concentration of 1 g.L-1.

Protein purification and labeling

Recombinant mouse IRSp53 I-BAR domain was purified and labeled with AX488 dyes as 
previously described.95 

Cryo-EM sample preparation and observation

After incubating the liposomes at 0.1 mg.mL-1 with the BAR domain at 80 nM for 30 
minutes, 4 µL of the sample was plunge frozen on a lacey carbon copper electron microscopy grid 
in liquid ethane. The Cryo-EM grid was thereafter imaged using a 200kV Lab6 TecnaiG2 
microscope equipped with a F-416 TVIPS camera.

centaurin experiments𝛽2 

GUV preparation

GUVs were prepared by the electroformation method on platinum (Pt) wires. Briefly, 4 µl 
of a lipid mixture dissolved in chloroform was deposited on Pt-wires, followed by drying under 
vacuum for 30 – 60 min and then by hydrating in a solution of 70 mM NaCl, 100 mM sucrose, and 
10 mM Tris, at pH 7.4. A sine AC current was then applied on the Pt-wires at 500 Hz and 280 mV. 
The GUVs were grown overnight at 4 °C. 

For the tube pulling experiments, GUVs were diluted in a salt buffer composed of 100 mM 
NaCl and 40 mM glucose (buffered with Tris to pH 7.4). 

Protein purification and labeling

The purification and fluorescent labelling of centaurin were performed followed by the 
procedures described in 79.
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