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Abstract
The classification of irregularly sampled Satellite image time-series (SITS)
is investigated in this paper. A multivariate Gaussian process mixture model
is proposed to address the irregular sampling, the multivariate nature of the
time-series and the scalability to large data-sets. The spectral and temporal
correlation is handled using a Kronecker structure on the covariance opera-
tor of the Gaussian process. The multivariate Gaussian process mixture model
allows both for the classification of time-series and the imputation of miss-
ing values. Experimental results on simulated and real SITS data illustrate
the importance of taking into account the spectral correlation to ensure a
good behavior in terms of classification accuracy and reconstruction errors.

Keywords: Multivariate Gaussian processes, Classification, Multivariate imputation of
missing data, Irregular sampling, Satellite image time-series (SITS), Remote sensing
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Fig. 1 True color Sentinel-2 satellite image time-series. Data were acquired in 2018 at different time
steps over the area of Toulouse, France (images were downloaded from Theia Land Data Center: http:
//www.theia-land.fr/en/presentation/products).

1 Introduction
Satellite images availability has exponentially grown in the last decade. Thanks to
free data access policy, optical satellite image time-series (SITS) such as Landsat or
Sentinel-2, offer an unique opportunity to monitor the state and evolution of our living
planet. Therefore, SITS have found many applications in ecological monitoring [1,
2], meteorology [3, 4] or agricultural system mapping [5–7], among others.

SITS are characterized by their spatial and spectral resolutions, and their revisit
cycle. The spatial resolution corresponds to the size of a pixel on the ground, e.g., a
square of 10 meters while the spectral resolution is related to the number of wave-
lengths collected by the sensor, ranging typically in the visible and near infra-red part
of the spectrum [8]. The revisit cycle stands for the time between two acquisitions
over the same location: SITS have constant and short (e.g. few days) revisit time.
Hence, for a given temporal period, a pixel is the collection of spectral measurements
made at different times over the same location.

These properties lead to an unprecedented amount of numerical data, for which
statistical methods are used to extract meaningful information such as land cover,
crops yields . . . For a pixel-wise based analysis, the predictor variables are multivari-
ate time-series and the output variables represent the information to be extracted. In
the pixel-wise classification setting, spatial independence is often assumed [9] since
it drastically reduces the computational load. As an alternative, one can use geostatis-
tics tools (including conditional auto-regressive Gaussian models [10]) to tackle the
potential spatial dependence. Temporal and spectral correlations can also be taken
into account using various statistical models [11].

However, external random meteorological factors interfere with the availability of
the acquired data at the pixel scale. Indeed, as displayed in Fig. 1, shadows and clouds
result in missing data in the time-series. Furthermore, orbital trajectory generates an
irregular temporal sampling: Even though the acquisition scheme is regular, acquisi-
tion days are different for pixels located at different places [12]. As such, each pixel
of the SITS has its own size in the temporal domain: Fig. 2 illustrates the irregular
temporal sampling on the data under consideration in this paper.

Specific models are thus required to properly analyze such time-series, as
described in Section 2. Conventional approaches usually start by resampling the data

http://www.theia-land.fr/en/presentation/products
http://www.theia-land.fr/en/presentation/products
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Fig. 2 Illustration of the irregular temporal sampling for the SITS used in this work. Three time-series
at different locations for one spectral band are reported: A black dot indicates that the pixel is clear (no
shadow or cloud) at the considered time, and a light-gray dot indicates that the pixel has been tagged as
clouds or shadows by the data provider.

onto a common temporal grid. In this work, we aim at analyzing irregularly sampled
multidimensional SITS without any temporal resampling. In particular, the super-
vised pixel classification task is considered, i.e. the assignment of each pixel of the
time-series to a predefined class.

To this end, a mixture of multivariate Gaussian Processes is proposed. A linear
dependence model is assumed between the spectral variables leading to a separable
covariance function in time and spectral domains. The resulting model provides sta-
tistical information on the underlying process for each class (mean and covariance
functions) and scales linearly w.r.t. the number of samples. It allows to classify irreg-
ularly sampled signals without any temporal resampling and enables, as a by product,
to impute missing data.

Section 2 reviews the state-of-the-art on classification with missing data and
Gaussian processes. The statistical model is introduced in Section 3 while inference
aspects are discussed in Section 4 including the estimation of the model parameters,
the supervised classification, and the imputation of missing values. These statistical
procedures are validated on simulated data in Section 5. Section 6 is dedicated to
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the application of our methodology to the classification of SITS from a Sentinel-2
data-set. Section 7 concludes with a discussion on possible extensions of this work.

2 Related Work
This section briefly reviews state-of-the-art methods for model-based classification,
classification dealing with missing values and classification with Gaussian processes.

2.1 Supervised model-based classification
Supervised model-based classification (also referred to as model-based discriminant
analysis) starts from a training set of n independent and identically distributed real-
izations from a random pair (Y,Z) ∈ E × {1, . . . ,C} and assumes that the conditional
distribution of Y|Z = c belongs to some parametric family: p(y|Z = c) = pc(y; θc),
for all c ∈ {1, . . . ,C} and y ∈ E, where E is an arbitrary space and θc a set of param-
eters. Letting πc = P(Z = c), the marginal distribution of Y is written as a finite
mixture

p(y) =
C∑

c=1

πc pc(y; θc),

whose parameters can be estimated by the maximum likelihood principle. A non-
labeled observation can then be classified thanks to the Maximum a posteriori (MAP)
criteria:

ĉ = arg max
c∈{1,...,C}

p(Z = c|y) = arg max
c∈{1,...,C}

πc pc(y; θc),

thanks to Bayes’ rule. When E = Rq, the multivariate Gaussian distribution is
often adopted for pc(y; θc) and gives rise to the well-known Quadratic discrim-
inant analysis (QDA) method. We refer to [13, Section 4.3] for a discussion on
the advantages and drawbacks of QDA and for possible extensions. Recent stud-
ies extend the model-based classification framework to non-Gaussian distributions
such as the skew-normal distribution [14, 15] to deal with asymmetric data, or t-
distributions [16, 17] to deal with outliers. We refer to [18, Chapter 9] for an in-depth
review. The case E = Rq also encompasses the situation of discretized time-series
on a common grid. Specific models can be then defined, as in [19] for temporal
signatures.

If E is discrete, including for example the case of categorical data, extensions
focus on the multinomial [20] or the Dirichlet [21] distributions. In the case of
ordinal data, other extensions are proposed using a dedicated model of the process
generating the data [22]. Finally, when E is more complex, e.g. infinite dimen-
sional, non-parametric techniques are used. Kernel methods are probably the most
popular non-parametric techniques in this situation [23]. Recall that a kernel is a
positive definite function that corresponds to a dot product in a feature space. It
allows for the construction of non-linear and non-parametric classifiers on E with-
out computing explicitly the feature space. Kernels can be defined, for instance, on
strings [24], graphs [25], vector-valued functions [26, 27], or combinations of several
data types [28].
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2.2 Classification with missing data
When dealing with remote sensing data, i.e. spatial-spectro temporal data such as
SITS, handling missing values [29] is a recurrent problem. Classification dealing
with missing data occurs when some inputs in the training set are incomplete, i.e. the
number of available coordinates in y can be different from one sample to another,
see [30–32] for reviews.

Three main approaches can be found in the literature. A first solution is to impute
missing values before the classification itself. The pre-processing gives rise to a train-
ing set with observations re-sampled on a common grid that can be considered as
vectors in a finite space E = Rq, opening the door to classical model-based classifica-
tion methods. We refer to [33] for a review on imputation techniques. Such two-stage
approaches are used on Sentinel-2 SITS where a linear interpolation is applied before
performing the classification with a Random Forests classifier [12]. Yet, by applying
imputation techniques without any connection to the actual processing, propagated
errors from the interpolation may degrade the results.

Alternative solutions are based on functional data analysis [34]. Each observation
is interpreted as a sample from a random function. As such, it can be approximated
by an expansion on some basis functions. The statistical analysis is then performed
on the random vectors of coefficients, see [35] for an application to clustering.
Nonparametric smoothing techniques may also adopted, see [36, Chapter 8] for an
overview.

Finally, purely non-parametric methods can also be implemented by defining an
appropriate dissimilarity measure between samples of varying size. In the context
of time-series, Dynamic time warping (DTW) [37] is one of the most popular algo-
rithms. It computes an optimal match between two vectors with different lengths.
This map defines a dissimilarity that can be used for comparison in order to cluster
samples into multiple groups.

2.3 Classification with Gaussian processes
A recent approach for supervised classification is based on the use of Gaussian
processes (GPs) in a Bayesian framework. More specifically, Gaussian processes
are used as prior distributions on the regression function linking the label Z to the
explanatory variable X. In the binary classification case, the conditional Bernoulli
distribution of Z is defined through a logit transformation: logit(p(Z = 1|X = x)) =:
f (x) where f (x) is a centered Gaussian process. The considered prior Gaussian pro-
cess is, most of the time, one-dimensional. Extensions to the multi-dimensional case
include the so-called multi-tasks or multi-outputs GP models, see [26, 38]. Finally,
some recent works focus on non Gaussian processes such as Student-t processes
which have gain attention over the past years [39, 40].

The discrete nature of Z makes the exact inference of model parameters infeasi-
ble. To overcome this difficulty, several techniques have been proposed, including the
Laplace approximation [41], or through the expectation-propagation algorithm [42].
Such approaches rely on the inversion of a n × n covariance matrix and thus scale
in O(n3) which makes the inference computationally demanding for large data sets.
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Scalable GPs were proposed to overcome this vexing effect, using for instance vari-
ational inference as in [43] or the Vecchia approximations [44, 45]. We refer to [46]
for a review on this topic. In the next Section, we define a mixture of multivariate
Gaussian processes which can be used for classification or imputation tasks without
resort to approximate inference techniques.

3 Mixture of Multivariate Gaussian processes
The mixture of multivariate Gaussian processes model is introduced in Paragraph 3.1,
some associated properties are derived in Paragraph 3.2 and Paragraph 3.3 discusses
the link with existing works.

3.1 Model
Let T be a compact subset of R, we denote by GP1(0,K) a continuous univariate
centered Gaussian process on T with covariance function K : T 2 → R. Recall that,
by definition, W ∼ GP1(0,K) implies that, for all (t1, . . . , tq) ∈ T q, the random vector
(W(t1), . . . ,W(tq))⊤ follows a multivariate centered Gaussian distribution Nq(0,Σ)
such that Σi, j = K(ti, t j), see for instance [47].

For all p > 0, let us similarly denote by IGPp(0,K) a p− dimensional, indepen-
dent, centered Gaussian process defined as W = (W1, . . . ,Wp)⊤ ∼ IGPp(0,K) if and
only if Wb ∼ GP1(0,K), ∀b ∈ {1, . . . , p},

Wb y Wb′ , ∀b , b′ ∈ {1, . . . , p}2,
where y stands for independence. The above defined multivariate Gaussian pro-
cesses are the building blocks to define more general multivariate Gaussian processes
denoted byMGPp(m,K,A) where m : T → Rp is the mean function, K : T 2 → R
is the covariance operator and A a non-singular p × p matrix: Y ∼ MGPp(m,K,A)
if and only if

Y = AW +m with W ∼ IGPp(0,K). (1)
Let us remark that model (1) is not identifiable without additional constraints. Indeed,
MGPp(m,K,A) and MGPp(m, λK,A/

√
λ) yield the same process for all λ > 0.

This issue is discussed in further details in Section 4, see also the next paragraph for
some basic properties of multivariate Gaussian processes defined in (1).

The mixture of multivariate Gaussian processes (M2GP) is defined by: Condi-
tionally to Z = c,

Y ∼ MGPp(mc,Kc,Ac), (2)
where mc : T → Rp, Kc : T 2 → R and Ac is a non-singular p × p matrix, for all
c ∈ {1, . . . ,C}. In the context of SITS classification, Y represents the (unobserved)
multidimensional process and p denotes the number of spectral bands. The particular
case Ac = Ip yields a mixture of independent Gaussian processes (MIGP) whose
applications to classification have been investigated in [48].
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3.2 First properties
Let C and D be two matrices of size m × n and p × q respectively. Recall that the
Kronecker product C ⊗ D is the mp × nq matrix such that

C ⊗ D =


c11D . . . cn1D
...
. . .

...
cm1D . . . cmnD


and vec(C) ∈ Rmn is the vector obtained by stacking the n columns of C:

vec(C) = (c11, . . . , cm1, c12, . . . , cm2, . . . , c1n, . . . , cmn)⊤.

The matrix-variate normal distributionMN p,q [49, 50] is defined for all p×q random
matrix Y⋆ as: Y⋆ ∼ MN p,q(M,Σ,Λ) if and only if

vec(Y⋆) ∼ Npq(vec(M),Σ ⊗ Λ), (3)

where M is a p × q matrix, Σ and Λ are symmetric positive definite matrices of size
q × q and p × p respectively. We refer to [49] for an early definition of the matrix-
variate normal distribution (as well as some of its derivatives) and to [51] for a general
account on matrix-variate distributions. The associated density function is defined for
all p × q matrix y by

p(y) = (2π)−pq/2 det(Σ)−p/2 det(Λ)−q/2

× exp
(
−

1
2

tr
[
Λ−1(y −M)Σ−1(y −M)⊤

])
, (4)

where tr(·) denotes the trace operator. The next Proposition establishes that the finite
sized marginals of the multivariate Gaussian process (1) can be interpreted as random
matrices from a matrix-variate normal distribution.

Proposition 1 Let Y ∼ MGPp(m,K,A) and introduce Y⋆ the p × q random matrix defined
as Y⋆ = (Y(t1), . . . ,Y(tq)) where (t1, . . . , tq) ∈ T q. Then,

Y⋆ ∼ MN p,q(M,Σ,AA⊤), (5)

where M = (m(t1), . . . ,m(tq)) and Σ is the covariance matrix defined by Σk,ℓ = K(tk, tℓ) for all
(k, ℓ) ∈ {1, . . . , q}2. Equivalently,

vec(Y⋆) ∼ Npq(µ,Σ ⊗ AA⊤),

with µ = vec(M).

In the SITS framework, Y⋆ represents the observed q−dimensional SITS which
is a discretized version of Y at q timestamps. An illustration is provided in Fig. 3
where T = [0, 1] and p = q = 10. Only the first two coordinates are presented. Let
⟨·, ·⟩ denote the Euclidean scalar product on Rp and ∥ · ∥ be the associated norm. For
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all non zero vectors (u, v) ∈ Rp × Rp, we also introduce cos(u, v) = ⟨u, v⟩/(∥u∥ ∥v∥).
As a direct consequence of the covariance structure in (5), the correlation ρ between
the elements of the random matrix Y⋆ can be derived:

Corollary 1. Suppose the assumptions of Proposition 1 hold.

(i) For all (b, b′) ∈ {1, . . . , p}2 and j ∈ {1, . . . , q}, one has

ρ(Y⋆b, j,Y
⋆
b′, j) = cos (ab, ab′),

(with ab the bth line of A) and is thus independent of j ∈ {1, . . . , q}.
(ii) For all ( j, j′) ∈ {1, . . . , q}2 and b ∈ {1, . . . , p}, one has

ρ(Y⋆b, j,Y
⋆
b, j′) = Σ j, j′

/√
Σ j, jΣ j′, j′ , (6)

and is thus independent of b ∈ {1, . . . , p}.

It appears that A tunes the dependence between the lines of Y⋆ (i.e. the spectral
bands in the SITS context) while Σ drives the dependence between the columns (i.e.
the acquisition times of the SITS).

3.3 Links with existing works
Multivariate Gaussian processes have already been used in the machine learning
community without formal definition. In [38], the authors introduced a so-called
multi-task Gaussian process where, in our context, each task represents one column
from Y⋆. In [40, 52] the authors provided a multivariate Gaussian process for regres-
sion. More complex techniques with prior distribution on the mean can be found
in [53]. In the latter one, missing values are handled using a matrix which selects the
observed timestamps from a larger vector. In contrast, M2GP does not require the
introduction of a larger vector to represent all potential timestamps.

The Linear Model of Coregionalization (LMC) is commonly used in geostatistics
to construct processes to tackle multi-output regression problems [54, 55]. We also
refer to [26] for submodels and to [56] for a Bayesian perspective. The LMC can be
written similarly to (1) as Y = AW + m with two differences: A is a p × P matrix
with P ≥ p (not necessarily squared) and the components of W are not necessarily
identically distributed: W j ∼ GP(0,K j), j = 1, . . . , P. It is thus clear that a M2GP can
be interpreted as a LMC with additional constraints. The latter permits to simplify the
covariance structure using a Kronecker product, thus leading to simplified estimation
procedures, as discussed in the next section.

Besides, the matrix-variate Gaussian distribution (3) has been widely studied for
real-valued vector with fixed length. Applications of matrix-variate normal distri-
bution can be found in different contexts such as electro-encephalography [57] or
remote sensing [58]. Let us also mention that, in [59], the same Kronecker product
model is used to regularize the estimation of the covariance matrix in high dimension
and in [60] to impute missing data.
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Finally, a likelihood ratio test is introduced in [61] to check whether the separa-
bility of the covariance (5) is adapted to the data in hand. However, this test has not
been extended to irregularly sampled time-series.

4 Inference
This section addresses several inference aspects associated with the M2GP model.
Consider {(Y1,Z1), . . . , (Yn,Zn)} a set of n random pairs identically distributed from
the M2GP model. Clearly, πc can be estimated by its empirical counterpart π̂c = nc/n
where nc =

∑n
i=1 I{Zi = c} is the number of samples in class c (and I{·} is the indicator

function). Besides, from (2), Yi ∼ MGPp(mc,Kc,Ac) conditionally to Zi = c, for all
i ∈ {1, . . . , n}. The unknown quantities to be estimated are mc : T → Rp, Kc : T 2 →

R and the matrix Ac. The use of parametric models for mean and covariance functions
is discussed in Subsection 4.1 and the Maximum likelihood estimation (MLE) of
all resulting parameters is presented in Subsection 4.2. The associated classification
method based on the MAP rule and the imputation of missing values are described in
Subsection 4.3 and Subsection 4.4 respectively.

4.1 Parametric mean and covariance functions
Let J > 0 and introduce {φ1, . . . , φJ} a subset of J basis functions of L2(T ). For all
b ∈ {1, . . . , p}, the bth coordinate (mc(t))b of mc(t) is expanded as

(mc(t))b =

J∑
j=1

αc,b, j φ j(t), (7)

with t ∈ T , and where ac,b, j is the projection coefficient of (mc(·))b on φ j(·). Denoting
by αc the p × J matrix defined by:

αc =


αc,1,1 αc,1,2 . . . αc,1,J

αc,2,1
. . . . . . αc,2,J

...
...
. . . . . .

αc,p,1 . . . . . . αc,p,J


and letting b : t ∈ T 7→ (φ1(t), . . . , φJ(t))⊤ ∈ RJ , then (7) can rewritten matricially as
mc(t) = αcb(t).

The covariance operator Kc is assumed to belong to a family of symmetric
positive-definite kernels [47, Chapter 4]. A typical kernel is the squared exponen-
tial kernel (also known as Gaussian or RBF kernel) with an additive white noise
covariance function:

Kc(t, t′|θc) = γ2
c exp

(
−

(t − t′)2

2h2
c

)
+ σ2

cI{t = t′}, (8)
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where (t, t′) ∈ T 2.The parameters are collected in θc with, in this case, θc =

{γc, hc, σc}.

4.2 Maximum likelihood estimation
Assume each multivariate Gaussian process Yi is observed on its own finite grid of
distinct qi timestamps (ti

1, . . . , t
i
qi

) ∈ Rqi and note Yi,⋆ = (Yi(ti
1), . . . ,Yi(ti

qi
))⊤ the

associated p × qi random matrix. Let us stress that this formalism naturally allows
to deal with irregularly sampled SITS since the size of Yi,⋆ may depend on i. From
Proposition 1, one has that, conditionally to Zi = c,

Yi,⋆ ∼ MN p,qi (αcBi,Σc,i(θc),AcA⊤c ), (9)

where the covariance matrix Σc,i(θc) is defined for all ( j, j′) ∈ {1, . . . , qi}
2 by

Σc,i(θc) j, j′ = Kc(ti
j, t

i
j′ |θc) and Bi = (b(ti

1), . . . ,b(ti
qi

)) is a J × qi design matrix.
Parameters {αc, θc,Ac} are estimated by minimizing the negative log-likelihood given
hereafter.

Lemma 1. The negative log-likelihood associated with (9) can be expanded as

L =
1
2

C∑
c=1

ℓc(αc, θc,AcA⊤c ),

(up to an additive constant) where ℓc(αc, θc,AcA⊤c ) =

Qc log det(AcA⊤c ) + p
∑
i|Zi=c

log detΣc,i(θc)+

tr

∑
i|Zi=c

(Yi,⋆−αcBi){Σc,i(θc)}−1(Yi,⋆−αcBi)⊤{AcA⊤c }
−1

 ,
with Qc =

∑
i|Zi=c qi , for all c ∈ {1, . . . ,C}.

It appears that the likelihood only involves the product of matrices AcA⊤c and
not the matrix Ac itself. This is a direct consequence of (5): The matrix-variate nor-
mal distribution of the sampled process Y⋆ only depends on the above product. The
parameters of interest are thus αc, θc and AcA⊤c and the MLE is obtained by solving
C independent optimization problems:

(α̂c, θ̂c, ÂcA⊤c ) = arg min
αc,θc,AcA⊤c

ℓc(αc, θc,AcA⊤c ), (10)

for all c ∈ {1, . . . ,C}. The solution is partially explicit as explained in the next
Proposition.
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Proposition 2 Let c ∈ {1, . . . ,C}.
(i) Solutions of (10) satisfy the following two properties. Given θ̂c, one has:

α̂c =

 ∑
i|Zi=c

Yi,⋆{Σc,i(θ̂c)}−1(Bi)⊤

 ∑
i|Zi=c

Bi{Σc,i(θ̂c)}−1(Bi)⊤

−1

(11)

ÂcA⊤c =
1

Qc

∑
i|Zi=c

(Yi,⋆ − α̂cBi){Σc,i(θ̂c)}−1(Yi,⋆ − α̂cBi)⊤. (12)

(ii) The partial derivative of the negative log-likelihood (see Lemma 1) w.r.t. the kth coordinate
of θc is given by:

∂ℓc(αc, θc,AcA⊤c )
∂(θc)k

=∑
i|Zi=c

tr
([

p{Σc,i(θc)}−1 − ∆c,i(αc, θc,AcA⊤c )
] ∂Σc,i

∂(θc)k
(θc)

)
, (13)

where

∆c,i(αc, θc,AcA⊤c ) = βc,i(αc, θc)⊤{AcA⊤c }
−1βc,i(αc, θc),

with βc,i(αc, θc) = (Yi,⋆ − αcBi){Σc,i(θc)}−1.

In practice, the computation of the MLE is achieved thanks to an iterative proce-
dure based on (11)–(13), described in Algorithm 1 and discussed in Paragraph 4.5.

4.3 Supervised classification
The objective is to assign a label c̃ ∈ {1, . . . ,C} to a new p × q random matrix Ỹ⋆ =
(Y(t̃1), . . . ,Y(t̃q))⊤. We focus on the MAP rule which consists in maximizing w.r.t. c
the posterior probability

P(Z = c|Ỹ⋆) ∝ πc p(Ỹ⋆|Z = c),

where p(Ỹ⋆|Z = c) is matrix-variate normal density defined as

− log p(Ỹ⋆|Z = c) =
pq
2

log(2π) +
p
2

log det
(
Σ̃

c(θc)
)

+
q
2

log det
(
AcA⊤c

)
+

1
2

tr
[
{AcA⊤c }

−1(Ỹ⋆ − αcB̃)Σ̃c(θc)−1(Ỹ⋆ − αcB̃)⊤
]
, (14)

see the proof of Lemma 1. Here, the covariance matrix Σ̃c(θc) is defined for all
( j, j′) ∈ {1, . . . , q}2 by Σ̃c(θc) j, j′ = Kc(t̃ j, t̃ j′ |θc) and B̃ = (b(t̃1), . . . ,b(t̃q)) is a J × q
design matrix. In practice, all parameters are replaced using their MLE counterparts
and c̃ is selected by minimizing the negative log posterior probability, that is:

c̃ = arg min
c

{
p log det

(
Σ̃

c(θ̂c)
)
+ q log det

(
ÂcA⊤c

)
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− 2 log(nc/n)

+ tr
[{

ÂcA⊤c
}−1

(Ỹ⋆−α̂cB̃)Σ̃c(θ̂c)−1(Ỹ⋆−α̂cB̃)⊤
] }
.

In the SITS framework, the above formula provides a natural way to classify a new
multivariate time-series even though it is not observed at the same timestamps as the
examples from the training set.

4.4 Imputation of missing values
The next result provides the distribution of the MGP process at time t† conditionally
to its label and to observations at times t1, . . . , tq.

Proposition 3 Assume that, conditionally to Z = c, Y ∼ MGPp(αcb,Kc,Ac) and introduce
Y⋆ the p × q random matrix defined as Y⋆ = (Y(t1), . . . ,Y(tq)) where (t1, . . . , tq) ∈ T q. Let
t† ∈ T such that t† , tk for all k ∈ {1, . . . , q}. Then, conditionally to Z = c and Y⋆ = y⋆,

Y(t†) ∼ Np
(
µc(t†, y⋆), Λc(t†)

)
,

with
µc(t†, y⋆) = αcb(t†) + (y⋆ − αcB){Σc(θc)}−1kc(t†),

Λc(t†) =
[
Kc(t†, t†|θc) − kc(t†)⊤Σc(θc)−1kc(t†)

]
⊗ AcA⊤c ,

and where kc(t†) = (Kc(t†, t1|θc), . . . ,Kc(t†, tq|θc))⊤. Recall that the covariance matrix Σc(θc)
is defined for all ( j, j′) ∈ {1, . . . , q}2 by Σc(θc) j, j′ = Kc(t j, t j′ |θc) and B = (b(t1), . . . ,b(tq)) is a
J × q design matrix.

As a consequence, when Y(t†) is not observed (but its label is known to be c), this
missing value can be imputed by the conditional expectation given in Proposition 3,
where the unknown parameters are replaced by their associated MLE:

Ŷc(t†) = α̂cb(t†) + (Y⋆ − α̂cB){Σc(θ̂c)}−1k̂c(t†). (15)

This allows for the reconstruction of SITS values at unobserved times. If the label
of Y⋆ is unknown, the distribution of the MGP process at time t† conditionally to
observations at times t1, . . . , tq can still be derived from Proposition 3: conditionally
to Y⋆ = y⋆,

Y(t†) ∼
C∑

c=1

τc(y⋆)Np

(
µc(t†, y⋆), Λc(t†)

)
,

with τc(y⋆) = P(Z = c|Y⋆ = y⋆), leading to

µ(t†, y⋆) =
C∑

c=1

τc(y⋆)µc(t†, y⋆),

Λ(t†) =
C∑

c=1

τc(y⋆)
(
Λc(t†) + µc(t†, y⋆)⊤µc(t†, y⋆)

)
−µ(t†, y⋆)⊤µ(t†, y⋆).
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Thus, when both Y(t†) and its label are not observed, Y(t†) can be imputed by

Ŷ(t†) =
C∑

c=1

τ̂c(Y⋆)Ŷc(t†), (16)

where Ŷc(t†) is given in (15), Y⋆ = (Y(t1), . . . ,Y(tq)) and

τ̂c(Y⋆) = π̂c p̂(Y⋆|Z = c)
/ C∑

k=1

π̂k p̂(Y⋆|Z = k) ,

with p̂(Y⋆|Z = k) the estimated matrix-variate density defined similarly to (14).

4.5 Numerical implementation
The computation of the MLE is implemented as detailed in Algorithm 1 using the
results of Proposition 2. To deal with the idenfiability issue mentioned in Para-
graph 3.1, AcA⊤c is normalised by ηc such that ∥AcA⊤c ∥F = 1 (where ∥ · ∥F denotes the
Frobenius norm) and each covariance matrix Σc,i(θc) is modified accordingly so that
the likelihood remains unaffected (step (d) of Algorithm 1). The gradient step (e) is
performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, see [62].
More specifically, the L-BFGS-B version is used which allows for box and positiv-
ity constraints. As described in [62], the gradient step is obtained by line search and
the algorithm stops when either: the objective function (i.e. the likelihood) does not
change significantly, the (infinite) norm of the projected gradient is sufficiently small
or when the maximum number of iterations is reached. Since the objective function is
not convex, the optimization process is sensitive to the initialization. In practice, mul-
tiple random starts are used and the best solution in terms of negative log-likelihood
is retained. Let us highlight that, in practice, steps (a)-(e) are computed for all classes
in parallel since the model parameters are decoupled w.r.t. the classes.
The numerical complexity of one iteration for all classes of Algorithm 1
is O(n(q3

∞ + p3 + J3)) where n is the sample size and q∞ = max{qi, i = 1, . . . , n}. The
computation of the MLE thus scales linearly w.r.t. n. In constrast, the cost associated
with standard classfication methods based on Gaussian processes is O((C+1)n3) [47,
Algorithm 3.3]. Here, the computation of the MLE only relies on the inversion of
p × p and qi × qi matrices whose sizes do not depend on the sample size.

Let us note that Algorithm 1 can be interpreted as an extension of the so-called
Flip-flop method introduced independently by [63, 64]. This latter method is an itera-
tive way to compute the MLE associated with the matrix-variate normal distribution.
As such, it is limited to the situation where q1 = q2 = · · · = qn which only occurs
when all Gaussian processes are observed on a common grid. Identifiability issues
are discussed in [50] and the method is extended to higher order tensor distributions
in [65].

Finally, all the above estimation procedures have been implemented in Python
using the Scikit-Lean API, see [66]. The Fourier basis {φ1, . . . , φJ} was chosen to
estimate the mean function (see [48] for other bases), while the family of symmetric
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Algorithm 1 Computation of MLE of model parameters.
Require:

1: Sample
{
(Yi,⋆,Zi) ∈ Rp×qi × {1, . . . ,C}, i = 1, . . . , n

}
2: Initialization (θ1, . . . , θC).

Ensure:
3: MLE

(
α̂c, ÂcA⊤c , θ̂c

)
, c = 1, . . . ,C.

4: for c = 1→ C do
5: while ℓc(αc,AcA⊤c , θc) has converged do
6: (a) Update αc using (11)
7: (b) Update AcA⊤c using (12)
8: (c) Compute ηc ← ∥AcA⊤c ∥F
9: (d) Update AcA⊤c ← AcA⊤c /ηc and

10: Σc,i(θc)← ηcΣ
c,i(θc), i = 1, . . . , n

11: (e) Update θc with a gradient step
12: using (13)
13: end while
14: end for

positive-definite kernels was selected among the Kernels class in the Scikit-Learn
library.

5 Validation on simulated data
The performance of the inference procedure associated with the M2GP model is illus-
trated on simulated data.1 The simulated model is described in Paragraph 5.1. First,
the influence of the dependence between coordinates as well as the influence of the
number of observation times are investigated in Paragraph 5.2. Second, consequences
on the classification and imputation accuracy are discussed in Paragraph 5.3.

5.1 Experimental design
A binary classification problem is considered. Two classes are simulated from a 10-
dimensional M2GP model (2) on T = [0, 1] with 1, 000 samples per class leading
to n = 2, 000 and p = 10. Let us recall that a class c is completely described by its
associated set of parameters {αc, θc,Ac}. Mean functions are generated following (7)
with a Fourier basis of size J = 11. Coefficients αc,b, j are simulated independently
from aN1(0, 0.02) distribution, c ∈ {1, 2}, b ∈ {1, . . . , 10} and j ∈ {1, . . . , 11}, yielding
different mean functions m1 and m2. The covariance operator is identical for both
classes: K1(·, ·) = K2(·, ·). It is defined following (8) as the sum of a RBF kernel and
a white noise covariance function. The associated parameters are θ1 = {γ1, h1, σ1} =

1The code and a notebook are available at https://gitlab.inria.fr/aconstan/mixture-of-multivariate-gaussian-processes-
for-classification-of-irregularly-sampled-satellite-image-time-series

https://gitlab.inria.fr/aconstan/mixture-of-multivariate-gaussian-processes-for-classification-of-irregularly-sampled-satellite-image-time-series
https://gitlab.inria.fr/aconstan/mixture-of-multivariate-gaussian-processes-for-classification-of-irregularly-sampled-satellite-image-time-series
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{1.5, 150, 0.05} = θ2. We also set equal covariance matrices, i.e. A1 = A2, with

A1A⊤1 =


1 β · · · β

β 1 · · ·
...

...
...
. . . β

β · · · β 1

 , (17)

so that β tunes the pairwise correlation between the 10 coordinates of the Gaussian
processes. In the following, we shall consider β ∈ {0, 1/4, 1/2}. In practice, M2GP
processes are simulated on random grids of varying size q ∈ {10, 20, . . . , 100}, see
Fig. 3 for an illustration in the case q = 10 and β = 0.

−2.0

−1.0

0.0

1.0

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.0

−1.0

0.0

1.0

2.0

Fig. 3 Two simulated M2GP processes (transparent lines) in dimension p = 10 observed at q = 10 times-
tamps (dots), from two classes (c = 1: blue, c = 2: red). The mean functions are depicted as continuous
opaque lines. Top panel: first coordinates, bottom panel: second coordinates (only the first two coordinates
p1 and p2 are represented).

5.2 Estimation results
All estimation procedures are evaluated on 100 replications of the above described
simulation model. First, for all c ∈ {1, 2}, the quality of the reconstructed mean M̂c =

α̂cB is measured by the normalized Mean Squared Error (nMSE) defined as:

nMSE(M̂c,Mc) =
∥Mc − M̂c∥

2
F

∥Mc −Mc∥
2
F

, (18)

where Mc is the empirical mean of the processes in class c. The lower this score is,
the better the estimation. An example of reconstructed mean is presented on Fig. 4,
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for one replication. Second, the quality of the estimation of the covariance structure
AcA⊤c (see 17) by ÂcA⊤c is assessed by the cosine score defined as:

C(ÂcA⊤c ,AcA⊤c ) = 1 −
⟨ÂcA⊤c ,AcA⊤c ⟩F
∥ÂcA⊤c ∥F∥AcA⊤c ∥F

. (19)

Let us note that C(ÂcA⊤c ,AcA⊤c ) ∈ [0, 2] with C(ÂcA⊤c ,AcA⊤c ) = 0 when ÂcA⊤c and
AcA⊤c are proportional. Finally, turning to the estimation of the kernel part (8) of
the dependence structure, we focus on the estimation accuracy of the length-scale by
computing the absolute difference between the true length-scale h1 = h2 = 150 and
its estimated counterpart. The results are averaged over the 100 independent replica-
tions and are reported on Fig. 5 for the first class. Similar results are obtained for the
second one. It appears that, unsurprisingly, the quality of the estimates increases with
the number q of discretization times. At the opposite, the dependence parameter β
does not seem to influence significantly the accuracy of the estimation. One can nev-
ertheless note that, as expected, the variability of the estimators increases with β, as
the information carried by correlated coordinates decreases. Besides, the estimated
length-scales do not depend on β, this may be explained by the separability property
exhibited in Corollary 1.

5.3 Classification and imputation results
Here, we focus on the comparison between results associated with M2GP and MIGP
models. To assess the classification and imputation performances, 4, 000 samples are
generated following the model described in Paragraph 5.1 and then split into two
disjoint balanced sets. The first one is used as a training set (of size n = 2, 000) to
estimate model parameters. The second one is used as a test set where the accuracy
of the classification and imputation steps associated with the two above methods are
compared. The classification performance is assessed thanks to the Overall Accuracy
(OA), that is the ratio of the number correctly classified test observations and the
total number of test observations, while the nMSE is used for the imputation task.
Similarly to (18), we let

nMSE(Ŷ⋆,Y⋆) =
∥Ŷ⋆ − Y⋆∥2F
∥Y⋆ − Y⋆∥2F

, (20)

where Ŷ⋆ is the imputed discretized process when the class is unknown thanks
to (16), given the observed discretized process on q points. Y⋆ is the empirical mean
of discretized processes in the test set. The above Frobenius norms are computed on
a fixed regular grid of T defined as {tℓ = ℓ/100, ℓ = 1, . . . , 100}. The results are
reported in Fig. 6.

It appears that the classification scores associated with M2GP increase with the
dependence coefficient β and the number q of discretization times. On the opposite,
MIGP scores are decreasing with β, due to the independence assumption. When there
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Fig. 4 Estimation of mean functions by M2GP on simulated data for all coordinates b ∈ {1, . . . , 10},
classes c ∈ {1, 2} and β = 0 on one replication. The dashed line is the true mean, the red line is the estimated
GP mean from a discretization on a grid of size q = 10.
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Fig. 5 Estimation of M2GP parameters on simulated data as a function of the number q of discretization
times on class c = 1. From left to right: normalized mean squared error (18), cosine score (19) and absolute
difference of length-scales. From top to bottom: β = 0, β = 1/4 and β = 1/2.

is no dependence between coordinates (β = 0), both methods provide similar classi-
fication scores. Unsurprisingly, M2GP outperforms MIGP as soon as a dependence
occurs.

In terms of reconstruction, both methods feature similar performances, increas-
ing with q. The dependence strength only impacts the variance of the reconstructed
processes: The larger β is, the larger the variability.

6 Time-series classification: Application to satellite data
This section is devoted to multivariate SITS classification using the M2GP model.
The data were acquired by the Sentinel-2 satellite, and are presented in Paragraph 6.1,
with a focus on the irregular temporal sampling. The estimated M2GP parameters
are interpreted and discussed in Paragraph 6.2. Finally Paragraph 6.3 concludes this
section with classification results and comparisons to state-of-the-art methods.
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Fig. 6 Classification overall accuracy (OA, left panel) and reconstruction normalized mean-squared error
(nMSE, right panel in log scale) boxplots computed on simulated data. Comparison between M2GP (blue)
and MIGP (red) results as functions of the number q of discretization times. From top to bottom: β = 0,
β = 1/4 and β = 1/2.

6.1 Sentinel-2 satellite image time-series
Since 2016, the Sentinel-2 mission [67] produces massive multispectral images,2

around 1.6TBytes a day, with a spatial resolution of 10 m/pixel and 13 spectral bands
(only 10 bands are used for the analysis). The frequency of revisit is 5 days and
clouds as well as shadows are present in the data, at random locations. Most of the

2https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products.

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
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Fig. 7 The study area is located in the south of France (right bottom image). The left bottom image
corresponds to the entire area (100 km×100 km) and the upper image is a zoom over the red rectangle (11
km×5 km).

clouds and shadows positions are automatically extracted by the data provider. Yet,
thin clouds may remain in the data. The selected images cover the area of Toulouse,
France (Fig. 7) and all available acquisitions for the year 2018 were used. The image
is of spatial size 10,000×10,000 pixels (10,000 km2). Each extracted time-series i has
a dimension of p = 10 channels (or bands) and its own number of timestamps qi. The
distribution of the qis is represented in Fig. 8 for this area in 2018.

Fourteen classes were extracted from national data-bases and 10 pairs of training
and validation data-sets are generated independently for the experiments by randomly
selecting samples for the training and testing sets. Training and testing sets were
carefully constructed to avoid spatial dependence between pixels.

Table 1 shows the number of extracted samples for each training and valida-
tion set. The number of samples per class is unbalanced but represents the actual
proportion of land cover classes in the region.



Springer Nature 2021 LATEX template

Mixture of Multivariate Gaussian Processes 21

10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

qi

Fig. 8 Normalized histogram of the qis within the SITS data-set.

Table 1 Land cover classes and number of extracted samples nc per class for each training and
validation set.

Class nc

Summer crops 40,000
Winter crops 30,000
Broad-leaved forest 10,000
Continuous urban fabric 10,000
Discontinuous urban fabric 10,000
Industrial or commercial units 10,000
Meadow 10,000
Orchards 10,000
Road surfaces 10,000
Vines 10,000
Water bodies 10,000
Woody moorlands 9,972
Coniferous forest 9,957
Natural grasslands 9,939

Total 189,868

6.2 Parameters estimation
M2GP is fitted to the satellite image time-series using the estimators described in
Section 4. A Fourier basis is adopted for estimating the means using J = 19 functions
while the time dependence structure is modeled by a RBF kernel combined with an
additive white noise. The influence of the basis and the selection of the dimension J
are discussed in the MIGP framework by [48, Fig. 8, and Fig. 1 in the supp. mat.].

Regarding the influence of the hyperparameters initial values, it has been
observed in practice good convergence to similar local minima. Yet, some initial con-
figurations might yield poor local minima, in particular for which the level of the
noise parameter is higher than the level of the RBF kernel (i.e., σ2

c ≫

γ2
c

in (8)). In order

to prevent such pathological situations, exclusive box constraints for these parameters
were used during the optimization (with the L-BFGS-B algorithm).

Estimated mean functions are reported in Fig. 9 for four selected channels: blue,
green, red and near infrared (nIR) and four selected classes: continuous urban fabric,
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summer crops, broad-leaved forest and water bodies. In the context of remote sensing
data, nIR is often correlated with the presence or absence of vegetation: Large values
of nIR associated with small values of red, indicate that the vegetation is abundant.
This behavior is observed in agricultural classes such as summer crops or broad-
leaved forest during spring and summer.

The estimated covariance matrices between all 10 channels ÂcA⊤c are reported in
Fig. 10 for the same classes. Similar covariance matrices have already been observed
on mono-temporal Sentinel-2 data, we refer to [68, Fig. 8] for similar results on crops
classes.

Finally, the time covariance structure is illustrated on Fig. 11. The estimated RBF
kernel on the same four classes is drawn when centered at day 180. The temporal
correlation associated with natural elements, such as summer crops or broad-leaved
forest, is short since their reflectance evolves along the year (e.g. because of the
vegetation cycle, or anthropic events). In contrast, man-made materials, such as con-
tinuous urban fabrics, exhibit longer temporal correlation because their reflectance
does not evolve along time.3

6.3 Classification results
In this section, the classification performances of M2GP are compared to state-of-the-
art methods. Four competitors are considered: Random forests (RF) [69], Quadratic
discriminant analysis (QDA) and High Dimensional Data Analysis (HDDA) [70]
which are based on a finite-dimensional Gaussian model, linear Support vector
machine (SVM) classifier fitted with a Stochastic Gradient Descent [71], and, finally,
Mixture of independent Gaussian processes (MIGP) [48].

The time-series have been resampled on a common temporal grid of size 73
(every 5 days of year 2018) using a linear interpolation for RF, QDA, HDDA and
SVM methods since they require a fix vectorial representation of the sample. All the
spectral bands have been stacked together to obtain a vector of dimension 73 dates ×
10 spectral bands = 730 features. This strategy was used to produce the first land use
and land cover maps in France [12] and is now commonly used at large scale. Yet, for
other applications, e.g., changes detection, the interpolation algorithm choice may be
more critical than for pixel-wise classification [72].

RF is trained with 100 trees of depth 25, HDDA uses the best model selected by
cross-validation among eight possibilities [73] (corresponding to different assump-
tions on the covariance structure), and QDA is used with a regularized covariance
matrix [74], Σ̃ = (1−ϵ)Σ̂+ϵI, where ϵ = 10−2 is selected by cross-validation. Finally,
it has been observed on several random starts that the results of Table 2 where not
sensitive to the initialization, once proper box constraints were enforced, as discussed
in Section 6.2.

The F1-score is computed to assess numerically the classification accuracy. The
F1 is defined as the harmonic mean of the precision and recall scores [75]. Classifi-
cation maps are also presented in order to qualitatively evaluate the spatial coherency

3This is true when the period of observation is not too long, few years, otherwise the material property might be altered
and its reflectance could vary.



Springer Nature 2021 LATEX template

Mixture of Multivariate Gaussian Processes 23

0.0

0.2

0.4

Continuous urban fabric

0.0

0.2

0.4

Summer crops

0.0

0.2

0.4

Broad-leaved forest

60 80 100 120 140 160 180 200 220 240 260 280 300 320
0.0

0.2

0.4

Days of the year

Water bodies

Blue Green
Red Near Infra-Red

Fig. 9 Estimated means for four channels and four classes (continuous urban fabric, summer crops, broad-
leaved forest and water bodies). The horizontal axis represents the days of the year and the vertical axis
represents the reflectance value.
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Fig. 10 Estimated covariance matrices AcA⊤c on four land-cover classes.
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Fig. 11 Normalized RBF kernels (8) centered at day 180: K(t, 180) = exp(−0.5(t − 180)2/h2
c ) computed

on four classes.
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of the results (despite a spatial pixel-wise independence assumption made by all
considered methods).

Table 2 Mean F1 score (mean(%) ± standard deviation) on the 10 independent data-sets.

Non-parametric Model-based
RF SVM QDA HDDA MIGP M2GP

Summer crops 96.8 ± 0.45 95.6 ± 0.81 96.5 ± 0.27 89.0 ± 3.98 90.0 ± 0.83 95.9 ± 0.44
Winter crops 94.0 ± 0.77 93.9 ± 0.66 91.6 ± 0.48 85.2 ± 2.74 80.2 ± 0.83 92.2 ± 0.64

Broad-leaved forest 86.2 ± 2.35 85.3 ± 2.63 77.4 ± 3.91 65.7 ± 10.82 75.7 ± 5.03 81.5 ± 3.10
Cont. urban fabric 58.0 ± 1.55 55.9 ± 2.49 39.8 ± 6.18 12.5 ± 12.78 21.4 ± 3.49 30.9 ± 5.51

Discont. urban fabric 57.3 ± 3.44 40.2 ± 12.61 58.5 ± 1.39 47.2 ± 4.04 42.5 ± 3.17 54.5 ± 0.80
Ind. or commercial units 60.3 ± 1.35 48.3 ± 4.05 31.3 ± 2.14 31.5 ± 8.32 27.4 ± 0.92 38.4 ± 2.34

Meadow 64.8 ± 2.94 63.0 ± 3.17 58.3 ± 4.14 47.6 ± 6.91 43.3 ± 3.80 55.0 ± 4.19
Orchards 81.0 ± 2.64 76.4 ± 3.11 72.9 ± 4.05 62.0 ± 5.48 51.9 ± 5.46 77.6 ± 3.58

Road surfaces 87.1 ± 1.87 78.7 ± 2.79 73.1 ± 1.92 52.1 ± 20.77 54.2 ± 5.79 75.0 ± 2.06
Vines 78.9 ± 6.86 78.5 ± 6.57 71.1 ± 4.35 64.4 ± 10.34 60.9 ± 7.61 71.7 ± 5.18

Water bodies 99.4 ± 0.08 99.3 ± 0.10 98.7 ± 0.35 95.0 ± 2.95 84.9 ± 5.38 96.8 ± 0.84
Woody moorlands 56.6 ± 3.50 56.1 ± 3.85 23.9 ± 7.70 41.6 ± 4.76 14.1 ± 5.52 10.6 ± 12.00
Coniferous forest 86.9 ± 2.76 87.0 ± 2.56 76.6 ± 7.24 74.6 ± 6.13 61.2 ± 5.41 82.4 ± 6.61
Natural grasslands 30.7 ± 16.90 19.4 ± 14.68 29.8 ± 12.88 9.9 ± 10.48 15.4 ± 7.86 20.6 ± 8.46

Average F1 score 74.2 ± 1.78 69.4 ± 1.78 64.2 ± 1.36 55.6 ± 2.70 51.7 ± 1.63 63.1 ± 1.15

Means F1 scores and their standard deviations computed on 10 independent sets
are reported in Table 2 for each class as well as the “average F1 score” computed
on all classes. Non-parametric methods (RF and SVM) provide the best classifica-
tion results in terms of F1-score. Interestingly, the covariance structure assumption
of HDDA results in worse results in terms of classification accuracy than QDA. The
Kronecker structure and the irregular sampling of M2GP lead to an accuracy simi-
lar to QDA but lower than non-parametric techniques. Finally, the MIGP yields the
lowest accuracy, highlighting the spectral dependency on Sentinel-2 SITS.

The obtained classification maps are reported in Fig. 12 for three different sites.
Large differences are observed in these scenes. For the first column, corresponding
to the airport zone, most of the inner vegetations are wrongly classified to natural
grasslands with QDA, while RF, SVM and M2GP classify correctly them as meadow.
Runway are mostly confused with industrial/commercial units using RF while run-
ways are almost recovered by M2GP. Overall, strong differences between thematic
maps are observed, but visual assessment from a mono-date color image is difficult.
Yet, without taking into account the spatial dependence, M2GP recovers most of the
spatial structure of the image, and the salt and pepper classification noise is limited,
as for RF and SVM.

7 Discussion
A multivariate Gaussian process model has been introduced for the classification
of irregularly sampling satellite image time-series. The multivariate model involves
a specific structure of the covariance operator that exploits the data features and
also reduces the number of parameters to estimate. Furthermore, the proposed
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Fig. 12 Three extracts of the classification maps obtained by M2GP and the best methods among model-
based and non-parametric families, QDA and RF respectively.

formulation scales linearly w.r.t. the number of samples. Experimental results on sim-
ulated and real data sets with irregular sampling show the importance of modeling
the dependence between coordinates of the process, in particular for classification
accuracy.

Because of the high dimensionality of SITS data, all model-based classifiers
investigated in the previous section include some regularization: ridge regularization
(QDA) and parsimonious covariance structures (M2GP and HDDA). In the QDA
case, the regularization acts as a shrinkage of the eigenvalues associated with the full
spectro-temporal covariance matrix (of size 730 in the experiments) and thus robus-
tifies the computation of the inverse. In the M2GP case, the Kronecker structure of
the covariance matrix simplifies the processing by inverting two matrices Σ and AA⊤
of much smaller sizes (less than 50 for the first one and 10 for the second one in
our experiments). Interestingly, while QDA and M2GP impose different covariance
structures for each class, they reach a similar classification accuracy, significantly
higher than the HDDA one. We thus believe that the M2GP covariance structure is
well suited to deal with irregularly sampled SITS while the HDDA one is not sup-
ported by such data. Yet, in terms of classification accuracy, the M2GP model is not
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flexible enough to reach the performance of non-parametric methods, this is the price
to pay for interpretability. The Gaussian (and thus unimodal) assumption for the class
conditional density might be too limiting. The multi-modality of Sentinel-2 SITS can
be addressed thanks to an unsupervised use of M2GP at the price of an increased
computational cost. M2GP could be also extended to non-Gaussian processes, e.g.
Student-t as in [40, 76], or by including mixed effect to account for spatial depen-
dencies [77, 78] with a particular focus on scalability. Extension to non-Gaussian
processes would not preserve the LMC framework unless the processes are stable
under linear combination, leading to an increased complexity.

Finally, another extension of the proposed model would consist in considering
time-series with both irregular temporal and spectral samplings. This would allow
for the use of two satellite sources. Indeed, Sentinel-2 satellites are complemented
with Sentinel-1 ones which acquire radar data, with a different physical content not
affected by clouds.
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Proofs
Proof of Proposition 1
Let Y ∼ MGPp(m,K,A) and introduce Y⋆ the p×q random matrix defined as Y⋆ =
(Y(t1), . . . ,Y(tq)) where (t1, . . . , tq) ∈ T q. From (1), we have Y = AW+m with W ∼

IGPp(0,K). Let W⋆ = (W(t1), . . . ,W(tq)) be the associated p × q random matrix.
Our first goal is to prove that W⋆ ∼ MN p,q(0,Σ, Ip) or, equivalently, from (3), to
prove that vec(W⋆) ∼ Npq(0,Σ⊗ Ip). To this end, let us consider the random variable

S =
p∑

b=1

q∑
j=1

λb, jW⋆
b, j,

and let us prove that S is a Gaussian random variable pour all λb, j ∈ R. Clear, one
also has

S =
p∑

b=1

S b, with S b :=
q∑

j=1

λb, jW⋆
b, j =

q∑
j=1

λb, jWb(t j),
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where S 1, . . . , S p are independent centered Gaussian random variables with variance

var(S b) =
q∑

j=1

q∑
j′=1

λb, jλb, j′Σ j, j′ .

As a consequence, S is a centered Gaussian random variable with variance

var(S ) =
p∑

b=1

var(S b)

=

p∑
b=1

p∑
b′=1

q∑
j=1

q∑
j′=1

λb, jλb, j′Σ j, j′(Ip)b,b′ .

As a conclusion, vec(W⋆) ∼ Npq(0,Σ⊗ Ip) and thus W⋆ ∼ MN p,q(0,Σ, Ip). Finally,
Y⋆ = AW⋆ +M ∼ MN p,q(M,Σ,AA⊤), see [49, Example 1].

Proof of Lemma 1
Combining (4) and (9) yields that the density of Yi,⋆ conditionally to Zi = c is given
for all i = 1, . . . , n by

− log pi,c(y) =
pqi

2
log(2π) +

p
2

log det(Σc,i(θc))

+
qi

2
log det(AcA⊤c )

+
1
2

tr
[
(AcA⊤c )−1(y − αcBi)(Σc,i(θc))−1(y − αcBi)⊤

]
.

The negative log-likelihood can be written as

L = −

C∑
c=1

∑
i|Zi=c

log pi,c(Yi,⋆)

:=
1
2

C∑
c=1

ℓc(αc, θc,AcA⊤c ) +
p log(2π)

2

C∑
c=1

∑
i|Zi=c

qi,

with, for all c = 1, . . . ,C,

ℓc(αc, θc,AcA⊤c ) = p
∑
i|Zi=c

log det(Σc,i(θc))+∑
i|Zi=c

qi log det(AcA⊤c )+∑
i|Zi=c

tr
[
(AcA⊤c )−1(Yi,⋆−αcBi)(Σc,i(θc))−1(Yi,⋆−αcBi)⊤

]
.

The conclusion follows.
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Proof of Proposition 2
(i) Let βc,i(αc, θc) = (Yi,⋆ − αcBi){Σc,i(θc)}−1 and consider the differential of
ℓc(αc, θc,AcA⊤c ) w.r.t. αc:

dℓc(αc)

= −
∑
i|Zi=c

tr
(
{AcA⊤c }

−1(dαc)Bi{Σc,i(θc)}−1βc,i(αc, θc)⊤
)

−
∑
i|Zi=c

tr
(
{AcA⊤c }

−1βc,i(αc, θc)(Bi)⊤(dαc)⊤
)

= − 2
∑
i|Zi=c

tr
(
{AcA⊤c }

−1βc,i(αc, θc)(Bi)⊤(dαc)⊤
)
,

by remarking that both terms are equal in view of the properties of the trace operator.
Moreover, from Kronecker product properties [79, Theorem 8.12], one has

−
1
2

dℓc(αc)

=
∑
i|Zi=c

vec(dαc)⊤
(
Bi{Σc,i(θc)}−1 ⊗ {AcA⊤c }

−1
)

× vec(Yi,⋆ − αcBi)

=(dvec(αc))⊤vec

{AcA⊤c }
−1

∑
i|Zi=c

βc,i(αc, θc)(Bi)⊤
 .

Interpreting the above result as a scalar product and using the ”broad” definition of
matrix derivative defined in [80], if follows:

∂ℓc(αc, θc,AcA⊤c )
∂αc

=

− 2vec

{AcA⊤c }
−1

∑
i|Zi=c

βc,i(αc, θc)(Bi)⊤
 .

Setting this partial derivative to zero yields∑
i|Zi=c

(Yi,⋆ − αcBi){Σc,i(θc)}−1(Bi)⊤ = 0,

or equivalently, αc =∑
i|Zi=c

Yi,⋆{Σc,i(θc)}−1(Bi)⊤

∑

i|Zi=c

Bi{Σc,i(θc)}−1(Bi)⊤
−1

,
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which is the desired result. Second, let us consider the differential of ℓc(αc, θc,AcA⊤c )
w.r.t. AcA⊤c :

dℓc(AcA⊤c ) = Qcd log det(AcA⊤c ) + dtr
(
N(θc){AcA⊤c }

−1
)
,

where
N(θc) =

∑
i|Zi=c

(Yi,⋆ − αcBi){Σc,i(θc)}−1(Yi,⋆ − αcBi)⊤.

From [79, Example 9.6], the associated partial derivative vanishes for

AcA⊤c =
N(θc)

Qc

=
1

Qc

∑
i|Zi=c

(Yi,⋆−αcBi){Σc,i(θc)}−1(Yi,⋆−αcBi)⊤,

and the result is proved.

(ii) Consider the kth coordinate of the gradient of ℓc(αc, θc,AcA⊤c ) w.r.t. θ:

∂ℓc(αc, θc,AcA⊤c )
∂θk

= p
∑
i|Zi=c

∂

∂θk
log det(Σc,i(θc)) +

∂

∂θk
tr

(
N(θc){AcA⊤c }

−1
)

= p
∑
i|Zi=c

tr
(
{Σc,i(θc)}−1 ∂Σ

c,i(θc)
∂θk

)

−
∑
i|Zi=c

tr
(
βc,i(αc, θc)⊤{AcA⊤c }

−1βc,i(αc, θc)
∂Σc,i(θ)
∂θk

)

=
∑
i|Zi=c

tr
([

p{Σc,i(θc)}−1 − ∆c,i(αc, θc,AcA⊤c )
] ∂Σc,i

∂θk
(θc)

)
.

The result is proved.

Proof of Proposition 3
Let Y⋆ = (Y(t1), . . . ,Y(tq)) be a p × q random matrix where, conditionally to
Z = c, Y ∼ MGPc(αcb,Kc,Ac). Recall that Proposition 1 yields vec(Y⋆) ∼
Npq(vec(αcB),Σc(θc) ⊗ AcA⊤c ), where Σc(θc) is defined for all ( j, j′) ∈ {1, . . . , q}2

by Σc(θc) j, j′ = Kc(t j, t j′ |θc) and B = (b(t1), . . . ,b(tq)) is a J × q design matrix.
Let t† ∈ T be an unobserved time, i.e. t† , tk, for all k ∈ {1, . . . , q}, and
kc(t†) = (Kc(t†, t1|θc), . . . ,Kc(t†, tq|θc))⊤. Then, classical properties on conditional
Gaussian random vectors (see for instance [81, p. 63]) entail that, conditionally to
Z = c and vec(Y⋆) = vec(y⋆), Y(t†) follows the p-variate Gaussian distribution
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Np(µc(t†, y⋆),Λc(t†)) with, on the one hand

µc(t†, y⋆) − αcb(t†)

= [kc(t†)⊤ ⊗ AcA⊤c ]{Σc(θc) ⊗ AcA⊤c }
−1vec(y⋆−αcB)

= [kc(t†)⊤ ⊗ AcA⊤c ]{Σc(θc)−1 ⊗ (AcA⊤c )−1}vec(y⋆−αcB)

=
[
{kc(t†)⊤Σc(θc)−1} ⊗ {(AcA⊤c )(AcA⊤c )−1}

]
vec(y⋆−αcB)

=
[
{kc(t†)⊤Σc(θc)−1} ⊗ Ip

]
vec(y⋆−αcB)

= vec
(
Ip(y⋆ − α̂cB){kc(t†)⊤Σc(θc)−1}⊤

)
= (y⋆ − αcB)Σc(θc)−1kc(t†),

and on the other hand,

Λc(t†) − Kc(t†, t†|θc) ⊗ AcA⊤c

= −[kc(t†)⊤ ⊗ AcA⊤c ]
{
Σc ⊗ AcA⊤c (θc)

}−1
[kc(t†) ⊗ AcA⊤c ]

= −
[
(kc(t†)⊤Σc(θc)−1) ⊗ Ip

]
[kc(t†) ⊗ AcA⊤c ]

= −
(
kc(t†)⊤Σc(θc)−1kc(t†)

)
⊗ (IpAcA⊤c ).

Finally,
Λc(t†) =

[
Kc(t†, t†|θc) − kc(t†)⊤Σc(θc)−1kc(t†)

]
⊗ AcA⊤c

and the result is proved.
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