Tracking Charge Accumulation in a Functional Triazole‐Linked Ruthenium‐Rhenium Dyad Towards Photocatalytic Carbon Dioxide Reduction - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue ChemPhotoChem Année : 2021

Tracking Charge Accumulation in a Functional Triazole‐Linked Ruthenium‐Rhenium Dyad Towards Photocatalytic Carbon Dioxide Reduction

Résumé

The [Re(bpy)(CO)3Cl] catalyst pioneered by Lehn for the two-electron reduction of CO2 has constantly revealed unique facets in the mechanistic understanding of the selective transformation of CO2. A novel triazole-linked ruthenium photosensitizer and a rhenium catalyst dyad was synthesized and investigated for photo-induced charge accumulation using time-resolved absorption spectroscopy. The triazole bridging ligand promoted weak electronic communication between the two units, resulting in an anodic shift of the reduction potentials of the Re moiety. Upon excitation of the photosensitizer, the first reduction of the catalyst occurred with a fast apparent rate of >5×107 s−1. Using a double-excitation nanosecond pump-pump-probe setup to track the second electron accumulation on the catalytic unit was not conclusive as no observable absorption changes occurred upon the second excitation, suggesting a pathway for an efficient intramolecular reverse electron transfer preventing the two-electron accumulation at the catalyst under our experimental conditions. Nevertheless, under continuous irradiation and with the use of sacrificial electron donors, photocatalytic CO2 reduction assays showed good turnover numbers, hinting at the non-innocent role of byproducts in solution.
Fichier principal
Vignette du fichier
RucTRe dyad_MS_draft 2.pdf (1.3 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03279658 , version 1 (06-07-2021)

Identifiants

Citer

Philipp Gotico, Thu‐trang Tran, Aurelie Baron, Boris Vauzeilles, Christophe Lefumeux, et al.. Tracking Charge Accumulation in a Functional Triazole‐Linked Ruthenium‐Rhenium Dyad Towards Photocatalytic Carbon Dioxide Reduction. ChemPhotoChem, In press, ⟨10.1002/cptc.202100010⟩. ⟨hal-03279658⟩
84 Consultations
111 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More