Derivation of magnetic inertial effects from the classical mechanics of a circular current loop
Stefano Giordano, Pierre-Michel Déjardin

To cite this version:

HAL Id: hal-03278509
https://hal.archives-ouvertes.fr/hal-03278509
Submitted on 5 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Derivation of magnetic inertial effects from the classical mechanics of a circular current loop

Stefano Giordano*
Institute of Electronics, Microelectronics and Nanotechnology - UMR 8520, Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, LIA LICS/LEMAC, F-59000 Lille, France

Pierre-Michel Déjardin†
Laboratoire de Mathématiques et de Physiques, Université de Perpignan Via Domitia, 52 avenue Paul Alduy, F-66860 Perpignan, France

(Dated: November 19, 2020)

The dynamical equation of a single magnetic moment constituted by a rigid circular current loop is derived from the mechanical Lagrange equations of motion, introducing the Lorentz force and the damping process, described by a well defined dissipative mechanism. It is demonstrated that magnetic inertial effects arise naturally by simple mechanical considerations and superimpose onto Gilbert original dynamical equation. The comparison with models proposed in the recent literature is drawn and discussed.

I. INTRODUCTION

The so-called Landau-Lifshitz-Gilbert (LLG) equation describes the orientational dynamics of a single magnetic dipole or the magnetization distribution in a given ferromagnetic material [1-3]. The first version of this equation was proposed by Landau and Lifshitz in 1935 to study the magnetic permeability dispersion in ferromagnetic bodies [4]

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \wedge \vec{B} - \frac{\alpha}{\gamma} \vec{M} \wedge (\vec{M} \wedge \vec{B}).$$ \hspace{1cm} (1)

Here \vec{M} is the dipole moment, γ is the gyromagnetic ratio, α is the damping coefficient, and \vec{B} is the effective magnetic induction. This equation has been modified in 1955 by Gilbert to describe the behavior of materials with large damping [5, 6]

$$\frac{d\vec{M}}{dt} = \frac{\gamma}{1 + \alpha} \left[\vec{M} \wedge \vec{B} - \frac{\alpha}{\gamma} \vec{M} \wedge (\vec{M} \wedge \vec{B}) \right].$$ \hspace{1cm} (2)

While the two equations exhibit the same mathematical form, they have a slightly different behavior, especially for large enough values of α. However, this second-order difference cannot be appreciated with experimental measurements and the choice between the models must be made on the basis of theoretical arguments [7-12]. The problem is still the subject of debate and different opinions can be found in the literature. For instance, Ref. [11] is in favor of the Gilbert version since it corresponds to an isotropic damping action, while Ref. [12] opts for the Landau-Lifshitz equation being coherent with irreversible thermodynamics.

Today, the LLG equation is very important since describes the magnetization dynamics in several systems and devices of crucial technological importance [13, 14]. A classical application concerns the modeling of the switching state in memory elements based on ferromagnetic materials [15, 16]. More generally, magneto-electro-elastic structures [17-20], typically composed of piezoelectric and magnetelastic subsystems, are largely investigated being promising prototypes for the reduction of the energetic consumption in data storage and elaboration systems [21-23].

One of the most important feature of these systems is the stability of the stored information over long times. This means that thermal fluctuations must not alter the information recorded in the memory elements [24, 25]. To perform the analysis of this problem one can use the extension of the LLG equation with the additional term representing the thermal noise, as proposed by Brown in his pioneering works [26-29]. This generalization converts the LLG equation in a stochastic differential equation, or Langevin equation, which can be typically studied through the Fokker-Planck formalism [30, 31]. Several applications of this methodology can be found in the recent literature [32-36].

The theory of the magnetization dynamics is also of crucial importance to study the movement of a domain wall in ferromagnetic materials. The first important analytical result is given by the Walker solution describing, under simple assumptions, the one-dimensional steady state motion of a domain wall in a uniform magnetic field [37]. Because of the many advantages such as reliability, fast operation and low power consumption, devices based on domain walls are widely seen as promising tools for various applications, including data storage, sensing and logic [38-42]. Also in this context, the question of whether Landau-Lifshitz damping or Gilbert damping provides the more natural description of dissipative magnetization dynamics has been reopened [43]. It has been suggested that the Gilbert damping term is more adapted, showing the purely energy dissipative property also in the presence of nonconservative fields (e.g., with spin-transfer torques) [44].

This state of affairs motivates the present readressing of the magnetization dynamics. We propose here an original derivation of the corresponding equations based on the explicit consideration of the magnetic dipole structure as a charge distribution (first discrete and then continuous) rotating around a given axis with an intrinsic angular frequency (circular current loop). We firstly develop a model with a fixed angular velocity ω of charges. This hypothesis allows for the use of the Lagrange formalism for rheonomic systems, where the two-variables Lagrangian function explicitly depend on time (via the angular frequency ω). Then, in order to obtain a more symmetric formalism, we introduce a second model with an...
arbitrarily varying angular velocity of the charges. In this case the system is scleronymous, but with three generalized coordinates. In both cases, while the dipole structure is invariant during the dynamics, the dipole orientation changes in response to the external actions. Within these approaches, the Lorentz and the damping forces can be naturally introduced without the need to specify a scalar magnetic potential and a Rayleigh dissipation function. This direct method allows therefore to obtain the explicit Lorentz contribution due to the dipole reorientation (always neglected) and a precise description of the damping force, defined by an explicit dissipation mechanism. Moreover, the introduction of the realistic magnetic dipole structure naturally generates in the final equations the inertial terms, corresponding of the second derivatives of the orientation angles with respect to the time. It is important to remark that these inertial terms and the Lorentz terms due to the reorientation are both of the order of $1/\omega$ and therefore they are often neglected in practical applications. Nevertheless, the possible use of magnetic fields with extremely high frequencies (at pico- and femto-second time scales) has recently generated a wide interest for the generalization of the LLG equation with inertial effects [45–55]. In this context, our approach yields two generalized sets of second order differential equations for the magnetization dynamics, including the inertial effects and the Lorentz terms due to the reorientation. To get a simplified description, the concept of ideal dipole, corresponding to an infinitely small size, an infinitely large electric current, and a finite dipole moment, can be introduced through the limit $\omega \rightarrow \infty$. In this condition, our result reduces to a set of first order differential equations in perfect agreement with Eq.(2). This clearly explain why the LLG equation is a first order differential equation while the Lagrange equations are second order differential equations, coherently to the Newton law. Moreover, this analysis shows that the Gilbert form of the damping is more adapted than the Landau-Lifshitz form to describe dissipation in ferromagnetic materials.

It is interesting to underlying that, in constructing his equation, Gilbert himself reckoned that he could not conceive of a mechanical analogous system that undergoes his precessional equation, as the inertia tensor of such a system would have only one non-zero principal moment of inertia [5, 6]. As discussed below, this point is clarified by the models proposed here, where three positive moments of inertia can be identified. This problem was noticed in particular by Wegrowe and co-workers who, in a long series of papers [45, 47–50], following previous experiments regarding ultrafast magnetization switching [56], proposed to complete the Gilbert equation by including inertial terms in their derivation. To this aim, they introduced a true inertial tensor and constructed a Lagrangian which kinetic energy is that of a symmetric top with one point fixed and the potential energy consists of the ferromagnetic one. They further utilized the Rayleigh dissipation function proposed by Gilbert [5, 6] and supported by Brown [57, 58] in order to account for damped precession. In combining these concepts with the gyromagnetic relation linking the angular momentum of the top and the magnetic moment, they were able to demonstrate that Eq.(2) is complemented by extra terms the importance of which rises in times scales which are shorter than that of gyromagnetic precession by orders of magnitude. At last, very recently, experimental evidence of such (resonant) inertial effects were achieved [55], and were found to occur at a probing frequency in the terahertz region, involving characteristic time scales that cannot be described by the classical Gilbert equation. Now, the derivation of Wegrowe et al. [47], although strongly indicating a close analogy between a magnetic dipole and a precessing nutating symmetric top, does not allow to definitively conclude regarding this analogy, which is nevertheless extremely important for a qualitative understanding. Our analysis allows for a thorough explanation of this issue and better justifies the equation proposed by Wegrowe and co-workers.

To summarize, by means of our approach, we clarify the following points concerning the dynamic equation for the magnetization reorientation:

1. we prove that a purely classical mechanics model is able to reproduce the LLG behavior with three positive moments of inertia;
2. this model supports the Gilbert damping term against the Landau-Lifshitz counterpart;
3. we show that the effect of the externally applied magnetic field can be directly described by the general Lorentz force, without the necessity to introduce a scalar magnetic potential;
4. we are able to precisely define the damping mechanism without resting on the Rayleigh function, which is convenient to use but hides the real dissipative process;
5. the proposed models automatically yield the terms describing the Lorentz force due to the reorientation of the magnetic dipole, a phenomenon always neglected;
6. importantly, the models here developed naturally lead to the inertial terms that must be added to the classical LLG equation to describe the specific response at pico- and femto-second time scales;
7. in particular, the second model, when properly approximated, gives exactly the dynamic equation proposed by Wegrowe and co-workers [45, 47–50];
8. we provide evidence that the frequency response based on the two variants of our models and on the Wegrowe equation is exactly the same and show the classical ferromagnetic resonance together with the inertial or nutation resonance.

We believe that these points are important to give a clearer picture of the reorientation process of the magnetization vector and to get a better understanding of its underlying physics.

The paper is structured as follows. In Section II, we develop the model based on a circular current loop, where the electric charges rotate at constant angular velocity. Then, in Section III, we propose an alternative approach, with an arbitrarily varying angular velocity of the charges. This second approach shows a more elegant symmetry and allows to better explain the dynamic equation proposed by Wegrowe and
A magnetic dipole is typically considered as an elementary electric current flowing in a circular loop [59, 60]. Here, to follow this idea, we initially consider a very simple magnetic dipole structure characterized by a sequence of N equally spaced material points (having mass m_0 and charge q_0) rotating on a circular trajectory of radius R with angular frequency ω. The angular spacing between the points is given by $2\pi/N$ (see Fig.1a). The resulting dipole moment M can be obtained through the classical expression $M = IS$, where $I = \frac{Nq_0m_0}{2\pi} = \frac{q_0m_0}{2}$ is the effective electric current in the loop, $q = Nq_0$ is the total charge, and $S = \pi R^2$ is its surface. The dipole moment is therefore given by $M = \frac{1}{2}q_0\omega R^2$. Also, the total mass can be defined as $m = Nm_0$. In order to obtain a continuous system for the magnetic dipole, we will analyze the limiting case with $N \to \infty$, $q_0 \to 0$ and $m_0 \to 0$ while keeping a finite value of q and m. It is also important to define the classical gyromagnetic ratio $\gamma = \frac{q}{m}$, paying an important role in the dynamics of the dipole (according to the laws of classical physics, the ratio of the magnetic moment to the angular momentum). We suppose that the discrete structure of the dipole is invariant (i.e., q_0, m_0, N, R, and ω are fixed in our process) whereas the dipole plane is subject to arbitrary reorientations around the geometrical center of the system. From the point of view of the analytical mechanics, this is a rheonomic system since the mechanical constraint implicates the time as an explicit variable [61]. It means that the material points have a pre-existing orbital motion, independent on the dipole reorientation. It must be admitted that this is an operative assumption, which is difficult to be justified from an energetic point of view. Indeed, in our model, the origin of the power necessary to maintain the motion of the charges in the loop is not explained. Of course, the model we are going to present is useful to describe the dipole moment reorientation but is not able to discuss the origin of the spin behavior of magnetized matter. One of the difficulty comes from the fact that our model is based on classical physics whereas the origin of spin and of the magnetic dipole must be actually discussed within quantum physics. Indeed, the effective electric current in the loop corresponds, at least, to the electric current flowing in a circular loop $[59, 60]$. Here, q is the effective electric current in the loop, therefore given by $M = q_0\omega R^2$. Also, the total mass can be defined as $m = Nm_0$. In order to obtain a continuous system for the magnetic dipole, we will analyze the limiting case with $N \to \infty$, $q_0 \to 0$ and $m_0 \to 0$ while keeping a finite value of q and m. It is also important to define the classical gyromagnetic ratio $\gamma = \frac{q}{m}$, paying an important role in the dynamics of the dipole (according to the laws of classical physics, the ratio of the magnetic moment to the angular momentum). We suppose that the discrete structure of the dipole is invariant (i.e., q_0, m_0, N, R, and ω are fixed in our process) whereas the dipole plane is subject to arbitrary reorientations around the geometrical center of the system. From the point of view of the analytical mechanics, this is a rheonomic system since the mechanical constraint implicates the time as an explicit variable [61]. It means that the material points have a pre-existing orbital motion, independent on the dipole reorientation. It must be admitted that this is an operative assumption, which is difficult to be justified from an energetic point of view. Indeed, in our model, the origin of the power necessary to maintain the motion of the charges in the loop is not explained. Of course, the model we are going to present is useful to describe the dipole moment reorientation but is not able to discuss the origin of the spin behavior of magnetized matter. One of the difficulty comes from the fact that our model is based on classical physics whereas the origin of spin and of the magnetic dipole must be actually discussed within quantum physics. Indeed, the effective electric current in the loop corresponds, at least, to the electric current flowing in a circular loop $[59, 60]$. Here, q is the effective electric current in the loop, therefore given by $M = q_0\omega R^2$. Also, the total mass can be defined as $m = Nm_0$. In order to obtain a continuous system for the magnetic dipole, we will analyze the limiting case with $N \to \infty$, $q_0 \to 0$ and $m_0 \to 0$ while keeping a finite value of q and m. It is also important to define the classical gyromagnetic ratio $\gamma = \frac{q}{m}$, paying an important role in the dynamics of the dipole (according to the laws of classical physics, the ratio of the magnetic moment to the angular momentum). We suppose that the discrete structure of the dipole is invariant (i.e., q_0, m_0, N, R, and ω are fixed in our process) whereas the dipole plane is subject to arbitrary reorientations around the geometrical center of the system. From the point of view of the analytical mechanics, this is a rheonomic system since the mechanical constraint implicates the time as an explicit variable [61]. It means that the material points have a pre-existing orbital motion, independent on the dipole reorientation. It must be admitted that this is an operative assumption, which is difficult to be justified from an energetic point of view. Indeed, in our model, the origin of the power necessary to maintain the motion of the charges in the loop is not explained. Of course, the model we are going to present is useful to describe the dipole moment reorientation but is not able to discuss the origin of the spin behavior of magnetized matter. One of the difficulty comes from the fact that our model is based on classical physics whereas the origin of spin and of the magnetic dipole must be actually discussed within quantum physics. Indeed, the effective electric current in the loop corresponds, at least, to the electric current flowing in a circular loop $[59, 60]$. Here, q is the effective electric current in the loop, therefore given by $M = q_0\omega R^2$. Also, the total mass can be defined as $m = Nm_0$. In order to obtain a continuous system for the magnetic dipole, we will analyze the limiting case with $N \to \infty$, $q_0 \to 0$ and $m_0 \to 0$ while keeping a finite value of q and m. It is also important to define the classical gyromagnetic ratio $\gamma = \frac{q}{m}$, paying an important role in the dynamics of the dipole (according to the laws of classical physics, the ratio of the magnetic moment to the angular momentum). We suppose that the discrete structure of the dipole is invariant (i.e., q_0, m_0, N, R, and ω are fixed in our process) whereas the dipole plane is subject to arbitrary reorientations around the geometrical center of the system. From the point of view of the analytical mechanics, this is a rheonomic system since the mechanical constraint implicates the time as an explicit variable [61]. It means that the material points have a pre-existing orbital motion, independent on the dipole reorientation. It must be admitted that this is an operative assumption, which is difficult to be justified from an energetic point of view. Indeed, in our model, the origin of the power necessary to maintain the motion of the charges in the loop is not explained. Of course, the model we are going to present is useful to describe the dipole moment reorientation but is not able to discuss the origin of the spin behavior of magnetized matter. One of the difficulty comes from the fact that our model is based on classical physics whereas the origin of spin and of the magnetic dipole must be actually discussed within quantum physics. Indeed, the effective electric current in the loop corresponds, at least, to the electric current flowing in a circular loop $[59, 60]$. Here, q is the effective electric current in the loop, therefore given by $M = q_0\omega R^2$. Also, the total mass can be defined as $m = Nm_0$. In order to obtain a continuous system for the magnetic dipole, we will analyze the limiting case with $N \to \infty$, $q_0 \to 0$ and $m_0 \to 0$ while keeping a finite value of q and m. It is also important to define the classical gyromagnetic ratio $\gamma = \frac{q}{m}$, paying an important role in the dynamics of the dipole (according to the laws of classical physics, the ratio of the magnetic moment to the angular momentum). We suppose that the discrete structure of the dipole is invariant (i.e., q_0, m_0, N, R, and ω are fixed in our process) whereas the dipole plane is subject to arbitrary reorientations around the geometrical center of the system. From the point of view of the analytical mechanics, this is a rheonomic system since the mechanical constraint implicates the time as an explicit variable [61]. It means that the material points have a pre-existing orbital motion, independent on the dipole reorientation. It must be admitted that this is an operative assumption, which is difficult to be justified from an energetic point of view. Indeed, in our model, the origin of the power necessary to maintain the motion of the charges in the loop is not explained. Of course, the model we are going to present is useful to describe the dipole moment reorientation but is not able to discuss the
can be written as [61]
\[\frac{d}{dt} \frac{\partial T}{\partial \dot{\phi}} - \frac{\partial T}{\partial \phi} = Q_{\phi} \quad \text{with} \quad Q_{\phi} = \sum_{i=1}^{N} F_{i} \cdot \frac{\partial \vec{F}_{i}}{\partial \phi}, \]
(7)
\[\frac{d}{dt} \frac{\partial T}{\partial \dot{\theta}} - \frac{\partial T}{\partial \theta} = Q_{\theta} \quad \text{with} \quad Q_{\theta} = \sum_{i=1}^{N} F_{i} \cdot \frac{\partial \vec{F}_{i}}{\partial \theta}, \]
(8)
where \(T = \frac{1}{2} m_{0} \sum_{i=1}^{N} \vec{v}_{i} \cdot \vec{v}_{i} \) is the kinetic energy of the particles system, \(\vec{F}_{i} \) is the total force applied to the \(i \)-th particle, and \((Q_{\phi}, Q_{\theta}) \) are the so-called generalized forces [61]. We discuss below the physical contributions to \(\vec{F}_{i} \). We remark that Eqs. (7) and (8) represent the most general formulation of Lagrangian mechanics where both conservative and dissipative actions can be envisaged [61]. Now, to obtain the kinetic energy, we develop the kinetic energy vectors as follows
\[\vec{v}_{i}(t) = \vec{\lambda} R \cos(\omega t + p_{i}) - \vec{\lambda} a R \sin(\omega t + p_{i}) \]
\[+ \vec{\mu} R \sin(\omega t + 2p_{i}) + \vec{\mu} a R \cos(\omega t + p_{i}). \]
(9)
From the orthonormality properties \(\vec{\lambda} \cdot \vec{\lambda} = 0, \vec{\lambda} \cdot \vec{\mu} = 1, \vec{\mu} \cdot \vec{\mu} = 1 \), we get by differentiation \(\vec{\lambda} \cdot \dot{\vec{\lambda}} + \vec{\lambda} \cdot \ddot{\vec{\lambda}} = 0, \vec{\lambda} \cdot \dot{\vec{\mu}} = 0 \), and \(\vec{\mu} \cdot \dot{\vec{\mu}} = 0 \). Hence, we simply obtain
\[\dot{\vec{v}}_{i}(t) \cdot \dot{\vec{v}}_{i}(t) = \dot{\vec{\lambda}} \cdot \dot{\vec{\lambda}} R^{2} \cos^{2}(\omega t + p_{i}) + \ddot{\vec{\mu}} \cdot \dot{\vec{\lambda}} R^{2} \sin^{2}(\omega t + p_{i}) \]
\[+ \omega^{2} R^{2} + 2 \dot{\vec{\lambda}} \cdot \dot{\vec{\mu}} R^{2} \cos(\omega t + p_{i}) \]
\[- 2 \dot{\vec{\lambda}} \cdot \ddot{\vec{\mu}} R^{2}. \]
(10)
To further simplify this expression we can use the relationships
\[\dot{\vec{\lambda}} \cdot \ddot{\vec{\lambda}} = \dot{\vartheta}^{2} + \dot{\phi}^{2} \cos^{2} \vartheta, \]
(11)
\[\dot{\vec{\mu}} \cdot \ddot{\vec{\mu}} = \dot{\varphi}^{2}, \]
(12)
\[\dot{\vec{\lambda}} \cdot \dot{\vec{\mu}} = - \dot{\phi} \cos \vartheta, \]
(13)
\[\dot{\vec{\lambda}} \cdot \ddot{\vec{\mu}} = \dot{\phi} \sin \vartheta. \]
(14)
We eventually get the kinetic energy in the final form
\[T = \frac{1}{2} m_{0} R^{2} \sum_{i=1}^{N} \left[\dot{\vartheta}^{2} \cos^{2}(\omega t + p_{i}) + \dot{\phi}^{2} + \omega^{2} \right. \]
\[- \dot{\phi}^{2} \sin^{2} \vartheta \cos^{2}(\omega t + p_{i}) + 2 \omega \dot{\phi} \cos \vartheta \]
\[+ 2 \dot{\phi} \dot{\vartheta} \sin \vartheta \cos(\omega t + p_{i}) \sin(\omega t + p_{i}) \right] dp. \]
(15)
Now, we can apply the continuous limit to this result. To do this, we use the relation \(m = m_{0}/N \) and we transform the sum into an integral over \(p \) (i.e. over the distribution of charge and mass) by observing that \(dp \sim 2\pi / N \). Hence, we get
\[T = \frac{1}{2} m R^{2} \int_{0}^{2\pi} \int_{0}^{\pi} \left[\dot{\vartheta}^{2} \cos^{2}(\omega t + p) + \dot{\phi}^{2} + \omega^{2} \right. \]
\[- \dot{\phi}^{2} \sin^{2} \vartheta \cos^{2}(\omega t + p) + 2 \omega \dot{\phi} \cos \vartheta \]
\[+ 2 \dot{\phi} \dot{\vartheta} \sin \vartheta \cos(\omega t + p) \sin(\omega t + p) \right] dp. \]
(16)
A straightforward integration delivers
\[T = \frac{1}{2} m R^{2} \left(\frac{1}{2} \dot{\vartheta}^{2} + \dot{\phi}^{2} + \omega^{2} - \frac{1}{2} \dot{\phi}^{2} \sin^{2} \vartheta + 2 \omega \dot{\phi} \cos \vartheta \right) \]
\[= \frac{1}{4} m R^{2} \left(\dot{\vartheta}^{2} + \dot{\phi}^{2} \sin^{2} \vartheta \right) + \frac{1}{2} m R^{2} \left(\omega + \dot{\phi} \cos \vartheta \right)^{2}. \]
(17)
circle (see Fig.2). Indeed, while each particle velocity is tangent to the sphere \(\Sigma \) circumscribed to the dipole, it is not tangent to the dipole circle because it is in motion (\(\dot{\theta} \neq 0 \) and \(\phi \neq 0 \)). Now, since we want to describe the damping of the dipole motion and not of the particle motion, we apply a drag force opposite to the perpendicular component of each instantaneous particle velocity. Hence, we define the damping force \(\vec{F}_{\dot{\theta}, D} = -k_0 \vec{v}_i \cdot \vec{n} \vec{n} \), where \(\vec{n} \) is defined in Eq.(3). This is a phenomenological approach able to effectively represent all the microscopic processes responsible for the overall dipole damped motion. The two forces can be summed to give \(\vec{F}_i = \vec{F}_{\theta, L} + \vec{F}_{\dot{\theta}, D} \). In conclusion, we have to calculate the following contributions to the generalized forces

\[
\begin{align*}
Q_{\theta, L} & = q_0 \sum_{i=1}^{N} \vec{v}_i \wedge \vec{B} \cdot \frac{\partial \vec{r}_i}{\partial \theta}, \\
Q_{\phi, L} & = q_0 \sum_{i=1}^{N} \vec{v}_i \wedge \vec{B} \cdot \frac{\partial \vec{r}_i}{\partial \phi}, \\
Q_{\theta, D} & = -k_0 \sum_{i=1}^{N} (\vec{v}_i \cdot \vec{n}) \left(\vec{n} \cdot \frac{\partial \vec{r}_i}{\partial \theta} \right), \\
Q_{\phi, D} & = -k_0 \sum_{i=1}^{N} (\vec{v}_i \cdot \vec{n}) \left(\vec{n} \cdot \frac{\partial \vec{r}_i}{\partial \phi} \right),
\end{align*}
\]

which can be summed to give

\[
\begin{align*}
Q_{\theta} & = Q_{\theta, L} + Q_{\theta, D}, \\
Q_{\phi} & = Q_{\phi, L} + Q_{\phi, D}.
\end{align*}
\]

While the exact expressions of the quantities in Eqs.(20)-(23) are given in Appendix A, we perform here the continuous limit of these generalized forces by recalling that \(q_0 = q/N \) and that \(dp \simeq 2\pi/N \) in Eqs.(A1)-(A2), a straightforward integration, as before, yields the following results for the components related to the Lorentz force

\[
\begin{align*}
Q_{\theta, L} & = \frac{q \omega R^2}{2} \vec{\lambda} \cdot \vec{B} + \frac{q \Phi R^2}{2} \cos \theta \vec{\lambda} \cdot \vec{B}, \\
Q_{\phi, L} & = \frac{q \omega R^2}{2} \sin \theta \vec{\mu} \cdot \vec{B} - \frac{q \Phi R^2}{2} \cos \theta \vec{\lambda} \cdot \vec{B},
\end{align*}
\]

where we used the definitions of \(\vec{\lambda} \) and \(\vec{\mu} \) given in Eqs.(4) and (5), respectively. Concerning the damping terms given in Eqs.(A3)-(A4), we define \(k = NK_0 \) and we get the continuous limit as

\[
\begin{align*}
Q_{\theta, D} & = -\frac{1}{2} k R^2 \dot{\theta}, \\
Q_{\phi, D} & = -\frac{1}{2} k R^2 \phi \sin^2 \theta.
\end{align*}
\]

We have now all the explicit terms to write down the Lagrange equations for the dipole time evolution. The left hand sides are summarized in Eqs.(18) and (19) while the right hand sides are given in Eqs.(26)-(29), which can be summed as in Eqs.(24) and (25). Hence, Eqs.(7) and (8) can be finally written as

\[
\begin{align*}
& m \omega R^2 \left[\phi \sin \theta + \frac{1}{2\omega} \left(\dot{\theta} + \Phi^2 \sin \theta \cos \theta \right) \right] \\
& = \frac{q \omega R^2}{2} \left[\vec{\lambda} \cdot \vec{B} + \frac{\Phi}{\omega} \cos \theta \vec{\lambda} \cdot \vec{B} \right] - \frac{1}{2} k R^2 \dot{\theta},
\end{align*}
\]

\[
\begin{align*}
& m \omega R^2 \left[-\dot{\theta} \sin \theta + \frac{1}{2\omega} \left(2\dot{\Phi} - \Phi \sin^2 \theta - 2\Phi \sin \theta \cos \theta \right) \right] \\
& = \frac{q \omega R^2}{2} \left[\sin \theta \vec{\mu} \cdot \vec{B} - \frac{\Phi}{\omega} \cos \theta \vec{\lambda} \cdot \vec{B} \right] - \frac{1}{2} k R^2 \Phi \sin^2 \theta.
\end{align*}
\]

By straightforward simplifications, we get

\[
\begin{align*}
\phi \sin \theta & + \frac{1}{2\omega} \left(\dot{\Phi} + \Phi^2 \sin \theta \cos \theta \right) \\
& = \gamma \left[\vec{\lambda} \cdot \vec{B} + \frac{\Phi}{\omega} \cos \theta \vec{\lambda} \cdot \vec{B} \right] - \alpha \dot{\theta},
\end{align*}
\]

\[
\begin{align*}
-\dot{\theta} \sin \theta & + \frac{1}{2\omega} \left(2\dot{\Phi} - \Phi \sin^2 \theta - 2\Phi \sin \theta \cos \theta \right) \\
& = \gamma \left[\sin \theta \vec{\mu} \cdot \vec{B} - \frac{\Phi}{\omega} \cos \theta \vec{\lambda} \cdot \vec{B} \right] - \alpha \Phi \sin^2 \theta,
\end{align*}
\]

where we introduced the gyromagnetic ratio \(\gamma = \frac{m}{2\hbar} \) and the Gilbert damping coefficient \(\alpha = \frac{1}{2m} \). This is the main achievement of the present Section and represents the set of dynamical equations for the reorientation of the magnetic dipole subjected to external magnetic field and damping. These equations have been obtained without any form of approximation, starting from the basic assumptions reported above. We further observe that three parameters \(\gamma, \alpha \) and \(\omega \) completely control these dynamical process.

It is important to observe that the obtained equations contain some terms that are proportional to \(1/\omega \). These terms can be explained as follows. The terms proportional to \(1/\omega \) in the left hand side of Eqs.(32) and (33) are responsible for the inertial behavior of the magnetic dipole and are indeed related to the second derivatives of precession and nutation angles \(\phi \) and \(\theta \). On the other hand, the terms proportional to \(1/\omega \) in the right hand side of Eqs.(32) and (33) represent the Lorentz force generated by the reorientation of the dipole plane \(\Pi \). Indeed, such a reorientation produces a charge velocity not related to \(\omega \) but rather to \(\Phi \) and \(\dot{\dot{\theta}} \). All these kind of terms can be typically neglected for real microscopic dipole or, equivalently, for the so-called ideal dipole. An ideal magnetic dipole is indeed characterized by \(\omega \to \infty \) and \(R \to 0 \), but with a finite value of \(M = M_0 \). It means that we have a magnetic dipole with an infinitely small size and an infinitely large electric current, so that to have a finite dipole moment. In other words, to deal with an ideal dipole, we have to suppose that \(\omega \gg \dot{\theta} \) and \(\omega \gg \dot{\phi} \). Equivalently, the intrinsic rotation of the charged particles is much faster than the reorientation process of the dipole plane. Concerning the damping process, the ideal dipole is characterized by the limiting values \(k \to \infty \) and \(\omega \to \infty \), performed by taking a finite value for the damping coefficient \(\alpha = \frac{1}{2m\gamma} \).

The meaning of the ideal dipole approximation characterized by \(\omega \to \infty \) can be appreciated by considering the paradigmatic magnetic dipole constituted by a hydrogen Bohr atom.
with one electron and one proton. In this case, we have
\[q = e = 1.6 \times 10^{-19} \text{C}, \quad m = m_e = 9.1 \times 10^{-31} \text{Kg}, \]
and the dipole radius \(R \) coincides with the Bohr radius \(a_0 \) given by
\[a_0 = \frac{4\pi\varepsilon_0 h^2}{m_e e^4} \simeq 0.5 \times 10^{-18} \text{m}. \]
(34)

Moreover, the Bohr theory allows the determination of the electron orbital velocity as
\[v_e = \frac{e^2}{4\pi\varepsilon_0 h} \simeq 2.1 \times 10^6 \text{ms}^{-1}, \]
(35)
also corresponding to the fine-structure constant \((\sim 1/137)\) times the speed of light in vacuum \(c = 299792458 \text{m/s}. \) The Bohr radius and the electron velocity can be used to directly calculate the angular frequency as follows
\[\omega = \frac{v_e}{a_0} = \frac{m_e e^4}{(4\pi\varepsilon_0)^2 h^3} \simeq 4.2 \times 10^{16} \text{s}^{-1}. \]
(36)

Therefore, we observe that for this magnetic dipole, \(\omega \) assumes a very large value, confirming the validity of the ideal dipole hypothesis. To conclude, we can also determine the dipole moment of the electron rotation as
\[M = \frac{e v_e a_0}{2} = \frac{e\hbar}{2m_e} \simeq 9.2 \times 10^{-24} \text{Am}^2, \]
(37)
corresponding to the so-called Bohr magneton. We can state that for such a system, the ideal dipole approximation is valid if the frequency \(\omega \) of the applied magnetic induction \(B \) is much lower than \(\omega/(2\pi) \sim 10^{16} \text{s}^{-1}. \) Consequently, the inertial effect in the magnetization reorientation can be appreciated only with very large frequencies of the applied magnetic field. We remark that neglecting the terms of the order \(1/\omega \) in Eqs.(32) and (33) transforms the second order Lagrange equations in a set of first order differential equation. This is coherent with the classical forms of the LLG equation, as generally used in micromagnetism [26, 27]. As discussed in the Introduction, the problem of the inertial effect in the dynamics of magnetization has been investigated in recent literature [45–55]. In these works, an evolution equation for the magnetization has been proposed. However, it is not completely consistent with our Eqs.(32) and (33). Indeed, in the previously proposed equation, the terms corresponding to the Lorentz force generated by the reorientation dynamics [our \(1/\omega \) terms in the r.h.s. of Eqs.(32) and (33)] have been completely neglected and the purely inertial terms are similar but not coinciding with ours. The origin of the differences between our approach and previous works is due to the fact that in Refs.[45–55] the intrinsic rotational motion of the charge defining the magnetic dipole is not considered as a basic assumption and therefore the inertial and Lorentz forces are introduced in a different way. An alternative approach useful to better draw a comparison with the equation proposed by Wegrowe and co-workers is discussed in the next Section.

Anyway, if we neglect the terms of the order of \(1/\omega \) in Eqs.(32) and (33), we get the simplified relations
\[\phi \sin \vartheta = \gamma \vec{\lambda} \cdot \vec{B} - \alpha \vec{\vartheta}, \]
(38)
\[\vec{\vartheta} = -\gamma \vec{\mu} \cdot \vec{B} + \alpha \sin \vartheta \phi. \]
(39)

This is a first-order system of differential equations, which is not written in normal form. To obtain its normal form, we can substitute \(\dot{\vartheta} \) from Eq.(39) into Eq.(38) and, reciprocally, \(\phi \sin \vartheta \) from Eq.(38) into Eq.(39). This procedure eventually yields
\[\phi \sin \vartheta = \frac{\gamma}{1 + \alpha^2} \left(\vec{\lambda} \cdot \vec{B} + \alpha \vec{\vartheta} \cdot \vec{B} \right), \]
(40)
\[\dot{\vartheta} = \gamma \left(\alpha \vec{\lambda} \cdot \vec{B} - \vec{\vartheta} \cdot \vec{B} \right). \]
(41)

These polar forms of the equations for the magnetization dynamics have been largely used in different applications [62, 63]. To conclude, it is not difficult to prove that Eqs.(38) and (39) are equivalent to the first form (implicit) of the LLG equation
\[\frac{d\vec{M}}{dt} = \gamma \vec{M} \wedge \vec{B} - \frac{\alpha}{M} \vec{M} \wedge \frac{d\vec{M}}{dt}, \]
(42)
while Eqs.(40) and (41) are equivalent to the second form (explicit) of the LLG equation
\[\frac{d\vec{M}}{dt} = \gamma \left[\vec{M} \wedge \vec{B} - \frac{\alpha}{M} \vec{M} \wedge \left(\vec{M} \wedge \vec{B} \right) \right]. \]
(43)

To directly prove these equivalences, it is sufficient to consider that \(\vec{M} = \vec{M} \ddot{\vartheta} \) and use the definition of \(\ddot{\vartheta} \) given in Eq.(3). From this result we deduce that the Gilbert damping process appears to be more adapted to describe the magnetization dynamics than the Landau-Lifshitz counterpart since it has been obtained from a purely mechanical model. Notice that with the above formulation, it is difficult to close the equations of motion for \(\ddot{\vartheta} \) accounting for inertial effects when \(\omega \rightarrow \infty \), as all second order derivatives are, at first glance, wiped out by such a limiting process. Thus, the purpose of the next section is to demonstrate that, in the same limit \(\omega \rightarrow \infty \), a closed-form equation for \(\ddot{\vartheta} \) can be found that includes second-order derivatives, and therefore of magnetic inertia similar with those which have been experimentally evidenced recently [55].

III. MAGNETIC INERTIA CORRECTED GILBERT EQUATION FROM THE CIRCULAR LOOP MODEL

The main equations derived in the previous Section, namely Eqs.(32) and (33) are able to describe all effects produced by an external magnetic field on a magnetic dipole. However, as alluded to in the previous section their form is not symmetric and it is difficult, if not impossible, to obtain a dynamic equation written only in terms of the vector \(\vec{M} \) or \(\vec{B} \), as expected to get a generalization of the classical LLG equation. So, we describe here an alternative approach eventually yielding a more symmetric formalism and giving a rigorous justification of the Wegrowe equation.

As before, we consider the moving frame defined by \(\left(\vec{\vartheta}, \vec{\lambda}, \vec{\mu} \right) \), constituting a convenient basis which is rigidly bound with the rotating loop. Now, the rotational frequency
of the charges is arbitrarily varying and we can write their positions as
\[\vec{r}_i(t) = \vec{A} R \cos(\psi(t) + p_i) + \vec{B} R \sin(\psi(t) + p_i), \]
where \(\psi \) represents the arbitrary angular velocity of the charges. Notice that here, the constraints are holonomic and time-independent. However, this does not fundamentally change the basic analysis conducted in the previous section. The kinetic energy of the system in the form
\[T = \frac{mR^2}{4}(\dot{\theta}^2 + \phi^2 \sin^2 \theta) + \frac{mL^2}{2}(\gamma + \phi \cos \theta)^2, \]
which is consistent with Eq.(17) by replacing \(\psi \) by \(\omega \) in Eq.(45). Here again, we introduced \(\gamma \).

From Eq.(50), we may write
\[\dot{\theta} + \dot{\phi} \sin \theta (\phi \cos \theta + 2 \psi) = 2 \gamma \phi \dot{\lambda} \dot{\lambda} \cdot \vec{B} - \frac{k}{m} \phi \sin^2 \theta, \]
and this result can be substituted in the first Lagrange equation given in Eq.(48). After straightforward algebra we get
\[\phi \sin \theta + 2 \dot{\theta} \phi \cos \theta - 2 \Omega \dot{\theta} = - \frac{k}{m} \phi \sin \theta + 2 \gamma \Omega \dot{\mu} \cdot \vec{B}, \]
while we also have Eq.(50), viz.
\[\Omega = - \gamma \dot{\theta} \dot{\lambda} \cdot \vec{B} - \gamma \phi \sin \theta \dot{\mu} \cdot \vec{B}. \]

In order to handle the inertial terms, we consider now the vector \(\vec{J} \) defined by
\[\vec{J} = \vec{n} \cdot \frac{d^2 \vec{n}}{dt^2} + (\dot{\theta} - \phi^2 \sin \theta \cos \theta) \vec{u} - (\phi \sin \theta + 2 \dot{\theta} \phi \cos \theta) \vec{\lambda} = J_\mu \vec{u} + J_\lambda \vec{\lambda}. \]

Then, we may write Eqs.(53) and (54) as
\[-J_\lambda - 2 \Omega \dot{\theta} = - \frac{k}{m} \phi \sin \theta + 2 \gamma \Omega \dot{\mu} \cdot \vec{B}, \]
\[J_\mu + 2 \Omega \phi \sin \theta = - \frac{k}{m} \phi + 2 \gamma \Omega \dot{\lambda} \cdot \vec{B}. \]

This form exhibits a complete symmetry and can be further developed as follows
\[-J_\lambda - 2 \psi \left(1 + \frac{\phi \cos \theta}{\psi} \right) \dot{\theta} = - \frac{k}{m} \phi \sin \theta + 2 \gamma \psi \left(1 + \frac{\phi \cos \theta}{\psi} \right) \dot{\mu} \cdot \vec{B}, \]
\[J_\mu + 2 \psi \left(1 + \frac{\phi \cos \theta}{\psi} \right) \phi \sin \theta = - \frac{k}{m} \phi + 2 \gamma \psi \left(1 + \frac{\phi \cos \theta}{\psi} \right) \dot{\lambda} \cdot \vec{B}. \]

These equations must be combined with Eq.(50). Indeed, we remark that Eqs.(59) and (60) completely describe the motion of \(\vec{n} \), the unit normal to the loop, if the dynamics of \(\psi \) is known. However, for the description of the magnetic moment dynamics, we can consider the value of \(\psi \) large (with respect to \(\dot{\theta} \) and \(\phi \)) and constant since the modulus of the magnetic moment and the damping coefficient should be considered as constant parameters. This is accomplished if
\[\psi = \omega \]
where \(\omega \) is a constant (the same considered in the previous Section). This choice is actually legitimate since the damping force does not play any role in Eq.(50). With this hypothesis,
the motion of \(\vec{n} \) is governed by the couple of equations
\[
-J_\lambda - 2\omega \left(1 + \frac{\phi \cos \theta}{\omega} \right) \dot{\theta} = -\frac{k}{\omega} \phi \sin \theta + 2\gamma \omega \left(1 + \frac{\phi \cos \theta}{\omega} \right) \vec{u} \cdot \vec{B}, \quad (62)
\]
\[
J_\mu + 2\omega \left(1 + \frac{\phi \cos \theta}{\omega} \right) \phi \sin \theta = -\frac{k}{\omega} \dot{\theta} + 2\gamma \omega \left(1 + \frac{\phi \cos \theta}{\omega} \right) \vec{\lambda} \cdot \vec{B}, \quad (63)
\]
where \(\omega \) is a constant representing the angular frequency of the charges rotation (nutation frequency). The set of Eqs.(62) and (63) represents our second proposed model for the magnetization dynamics. Its form is more elegant and symmetric than the one given in Eqs.(32) and (33). Moreover, it allows to draw a comparison with the dynamic equation recently proposed by Wegrowe and co-workers.

Actually, a further simplification can be introduced by assuming that
\[
\phi \cos \theta \ll \omega \quad \text{or} \quad \phi \ll \omega. \quad (64)
\]
The last two equations become
\[
-J_\lambda - 2\omega \dot{\theta} = -\frac{k}{\omega} \phi \sin \theta + 2\gamma \omega \vec{u} \cdot \vec{B}, \quad (65)
\]
\[
J_\mu + 2\omega \phi \sin \theta = -\frac{k}{\omega} \dot{\theta} + 2\gamma \omega \vec{\lambda} \cdot \vec{B}. \quad (66)
\]
Finally, redefining the dimensionless damping constant
\[
\alpha = \frac{k}{2m\omega}, \quad (67)
\]
and introducing the time constant \(\tau \) by
\[
\tau = \frac{1}{2\omega}, \quad (68)
\]
we easily obtain
\[
-J_\lambda - \dot{\theta} = -\alpha \phi \sin \theta + \gamma \vec{u} \cdot \vec{B}, \quad (69)
\]
\[
J_\mu + \phi \sin \theta = -\alpha \dot{\theta} + \gamma \vec{\lambda} \cdot \vec{B}. \quad (70)
\]
or, equivalently, the equation for \(\vec{n} \) in the form
\[
\frac{d\vec{n}}{dt} = \gamma \vec{n} \wedge \vec{B} - \alpha \vec{n} \wedge \frac{d\vec{n}}{dt} - \tau \vec{n} \wedge \frac{d^2\vec{n}}{dt^2}, \quad (71)
\]
which is equivalent to Eqs.(65) and (66) and represents the equation of motion for the magnetic dipole proposed in recent literature by Wegrowe and co-workers [45–50]. Of course, in the noninertial limit defined by \(\omega \to \infty \) or \(\tau \to 0 \), we obtain again the simplified form
\[
\frac{d\vec{n}}{dt} = \gamma \vec{n} \wedge \vec{B} - \alpha \vec{n} \wedge \frac{d\vec{n}}{dt}, \quad (72)
\]
which is the Gilbert’s equation for the dynamics of the magnetization direction. As a conclusion, we can state that the equation of Wegrowe and co-workers can be obtained as an approximation (with \(\phi \ll \omega \)) of the exact equations of motion governing the dynamics of a circular current loop, in turn given by that of a symmetric top with one point fixed with well-identified moments of inertia.

IV. FREQUENCY RESPONSE

We investigate now the characteristic frequency response corresponding to the proposed models, since it is the feature typically investigated with standard experimental approaches. It means that we apply a uniform and constant bias field \(\vec{B}_0 \) to the magnetic dipole, with an additive time-varying small perturbation \(\delta \vec{B} \), and we observe the resulting dipole motion. To simplify the notation, we define the vector \(\vec{x} = (\phi, \theta) \), describing the magnetization orientation. In response to the applied field, we can observe a preferential fixed direction identified by \(\vec{x}_0 = (\phi_0, \theta_0) \), perturbed by a small time-varying quantity \(\delta \vec{x} \). In previous Sections, we discussed three different versions of the equations describing the noninertial dynamics of magnetization: (i) Eqs.(32) and (33), obtained by considering a uniformly rotating distribution of charge; (ii) Eqs.(62) and (63), obtained through a symmetric top with one point fixed; (iii) Eqs.(69) and (70), which represent a simplification of the second form for high values of \(\omega \) (coinciding with the equation proposed by Wegrowe and co-workers). These three sets of equations can be cast into the following general form
\[
f_1(\vec{x}, \dot{\vec{x}}, \dot{\vec{B}}) = 0, \quad (73)
\]
\[
f_2(\vec{x}, \dot{\vec{x}}, \dot{\vec{B}}) = 0, \quad (74)
\]
where \(f_1 \) and \(f_2 \) are suitable functions representing any of the three models above. We describe here an ad hoc procedure of linearization for this arbitrary system of differential equations. To begin, we can substitute the assumed hypotheses \(\vec{x} = \vec{x}_0 + \delta \vec{x} \) and \(\vec{B} = \vec{B}_0 + \delta \vec{B} \) in Eqs.(73) and (74), eventually obtaining
\[
f_1(\vec{x}_0 + \delta \vec{x}, \delta \vec{x}, \dot{\delta \vec{x}}, \dot{\vec{B}}_0 + \delta \vec{B}) = 0, \quad (75)
\]
\[
f_2(\vec{x}_0 + \delta \vec{x}, \delta \vec{x}, \dot{\delta \vec{x}}, \dot{\vec{B}}_0 + \delta \vec{B}) = 0. \quad (76)
\]
Since the applied perturbation \(\delta \vec{B} \) and the resulting perturbation \(\delta \vec{x} \) are supposed to be small with respect to \(\vec{B}_0 \) and \(\vec{x}_0 \), respectively, we can develop previous equations to the first order as follows
\[
f_1(\vec{x}_0, 0, 0, \vec{B}_0) + \frac{\partial f_1}{\partial \vec{x}} \cdot \delta \vec{x} + \frac{\partial f_1}{\partial \dot{\vec{x}}} \cdot \dot{\delta \vec{x}} \quad + \frac{\partial f_1}{\partial \vec{B}} \cdot \delta \vec{B} = 0, \quad (77)
\]
\[
f_2(\vec{x}_0, 0, 0, \vec{B}_0) + \frac{\partial f_2}{\partial \vec{x}} \cdot \delta \vec{x} + \frac{\partial f_2}{\partial \dot{\vec{x}}} \cdot \dot{\delta \vec{x}} \quad + \frac{\partial f_2}{\partial \vec{B}} \cdot \delta \vec{B} = 0, \quad (78)
\]
where the partial derivatives are calculated for \(\vec{x} = \vec{x}_0, \dot{\vec{x}} = 0, \vec{B} = \vec{B}_0 \). Now, we clearly have that \(f_1(\vec{x}_0, 0, 0, \vec{B}_0) = 0 \) and \(f_2(\vec{x}_0, 0, 0, \vec{B}_0) = 0 \), since \(\vec{x}_0 \) is the magnetization direction induced by \(\vec{B}_0 \) when the perturbations are not applied. To make this procedure more effective, we suppose that the perturbation of the applied magnetic induction is given by the sinusoidal oscillation
\[
\delta \vec{B} = \text{Re} \{ \vec{b} e^{i\omega_B t} \}, \quad (79)
\]
where \(\Omega_B \) is the angular frequency and \(\vec{b} \) is the corresponding complex amplitude (phasor). Here \(\text{Re} \{ z \} \) stands for the
real part of the complex number \(z \). Of course, also the angles perturbation follows a similar time evolution
\[
\delta \vec{x} = \text{Re} \left\{ \vec{a} e^{i \omega t} \right\},
\]
with the same angular frequency and where \(\vec{a} \) is its complex amplitude (phasor). It means that we are in a sinusoidal steady state regime. While the applied phasor \(\vec{b} = (b_x, b_y, b_z) \in \mathbb{C}^3 \) is known, the resulting phasor \(\vec{a} = (a_\phi, a_\theta) \in \mathbb{C}^2 \) is unknown and it can be determined as follows. By using Eqs.(79) and (80) in Eqs.(77) and (78), we easily obtain
\[
\left(\frac{\partial f_1}{\partial \vec{x}} + i \Omega_\beta \frac{\partial f_1}{\partial \vec{x}} - \Omega_\gamma^2 \frac{\partial f_1}{\partial \vec{x}} \right) \vec{a} + \frac{\partial f_1}{\partial \vec{B}} \vec{b} = 0,
\]
\[
\left(\frac{\partial f_2}{\partial \vec{x}} + i \Omega_\beta \frac{\partial f_2}{\partial \vec{x}} - \Omega_\gamma^2 \frac{\partial f_2}{\partial \vec{x}} \right) \vec{a} + \frac{\partial f_2}{\partial \vec{B}} \vec{b} = 0,
\]
which is a system of two linear equations in the two unknown components of the vector \(\vec{a} \). This vector \(\vec{a} \) can be simply obtained by calculating all the partial derivatives needed in Eqs.(81) and (82), starting from the mathematical expressions of \(f_1 \) and \(f_2 \), and by solving the linear system. To simplify the calculation, we fix \(\vec{B}_0 = (B, 0, 0) \), i.e. we suppose the the bias filed is applied to the x-direction of the reference frame. Of course, this assumption does not limit the generality of the following achievements. The interesting point is that we get exactly the same result for the three models proposed and discussed previously. It means that Eqs.(32) and (33), Eqs.(62) and (63), and Eqs.(69) and (70) yield the same vector \(\vec{a} \) given by
\[
a_\phi = \frac{2 \omega \gamma (2i \Omega_\beta \omega b_z - 2b_y \gamma B_\omega - 2ib_y \Omega_\beta \alpha \omega + b_z \Omega_\beta^2)}{\mathcal{D}},
\]
\[
a_\theta = \frac{2 \omega \gamma (2i \Omega_\beta \omega b_y + 2b_y \gamma B_\omega + 2ib_y \Omega_\beta \alpha \omega - b_z \Omega_\beta^2)}{\mathcal{D}},
\]
where
\[
\mathcal{D} = 4\Omega_\beta^2 \omega^2 - 4\gamma^2 B_\omega^2 - 8i\gamma B_\omega \omega^2 \Omega_\beta \alpha + 4\gamma B_\omega \Omega_\beta^2 + 4\Omega_\beta^2 \alpha^2 \omega^2 + 4i \omega \Omega_\beta^3 \alpha - \Omega_\beta^4,
\]
which is a fourth degree polynomial in the applied angular frequency \(\Omega_\beta \).

The quantities \(a_\phi \) and \(a_\theta \) are used as follows to obtain the fluctuations of the direction \(\vec{n} \). To begin, we can write \(\vec{n} = \vec{n}_0 + \delta \vec{n} \), where \(\vec{n}_0 \) is identified by \(\vec{x}_0 = (\phi_0, \theta_0) \). Concerning the perturbation we can assume that
\[
\delta \vec{n} = \text{Re} \left\{ \vec{v} e^{i \omega t} \right\},
\]
where \(\vec{v} \) is the complex amplitude associated to \(\delta \vec{n} \). Then, a simple use of Eq.(3) leads to the first order relations
\[
v_x = - \sin \phi_0 \sin \theta_0 a_\phi + \cos \phi_0 \cos \theta_0 a_\theta,
\]
\[
v_y = \cos \phi_0 \sin \theta_0 a_\phi + \sin \phi_0 \cos \theta_0 a_\theta,
\]
\[
v_z = - \sin \theta_0 a_\theta.
\]

Therefore, we obtain from Eqs.(83) and (84) the following simplified expressions based on the assumption \(\vec{B}_0 = (B, 0, 0) \)
\[
v_x = 0,
\]
\[
v_y = a_\phi,
\]
\[
v_z = -a_\theta.
\]
We study the behavior of \(\vec{v} \) when only \(b_y \neq 0 \) and when only
should be conducted in order to compare the complete time evolution of the magnetization for the three models with experimental data. We leave this point to further investigations.

V. CONCLUSIONS

In this work we readdressed the problem of mimicking the dynamics of a magnetic dipole subjected to a damping force and an external magnetic field from purely classical concepts. While the classical approaches are based on the Landau-Lifshitz equation and on its Gilbert refinement, recent experimental and theoretical investigations have shown the need to extend these theories to include inertial effects. To this aim, we propose here to consider a magnetic dipole as a circular current loop and we obtain its quantitative description through the Lagrangian mechanics.

It is important to place this dipole structure in the context of previous approaches. The idea of using the mechanical analogy between a magnetic dipole and a spinning top has been efficiently developed by Gilbert in order to derive the equation that bears his name [5, 6]. The corresponding dipole can be called Gilbert magnetic dipole in order to be distinguished from the Ampère magnetic dipole. This latter is defined by a loop in which the electric current is confined (see e.g. Ref.[50]). This dichotomy has been proposed by D. J. Griffiths [64], who proved that the two dipoles are equivalent in the sub-relativistic regime of the electromagnetism. The dipole structure proposed here is a sort of intermediate version of the two systems above. Indeed, we exploited the current loop of the Ampère dipole combined with the possibility to rotate its plane through external actions, as in the Gilbert case. In this sense, the electromagnetic and the mechanical behavior are coupled to eventually obtain the dynamic equation with the inertial effects. While the Ampère magnetic dipole is classically used to determine the magnetic field produced by a dipole (by defining the dipole moment $M = IS$), here we use the current loop to evaluate the forces applied from an external magnetic field to the dipole itself. Since our dipole is free to rotate, these forces produce the reorientation, whose dynamics can be studied by the classical mechanical laws. We can also remark that the idea of merging the Gilbert and Ampère visions can open new perspectives concerning the full electromagnetic and mechanical analysis of the problem (based on the Maxwell and Lagrange equations). As a matter of fact, the Lagrangian function for the system can be adopted in the sub-relativistic regime of the electromagnetism. The existence of the second resonance peak due to the inertial effects taken into consideration in our model has been experimentally confirmed in Ref.[55], where it has been observed in ferromagnetic thin films at a frequency of approximately 0.6 THz.

The existence of the second resonance peak due to the inertial effects taken into consideration in our model has been experimentally confirmed in Ref.[55], where it has been observed in ferromagnetic thin films at a frequency of approximately 0.6 THz.
the LLG dynamics of a magnetic dipole. and with three positive moments of inertia, is coherent with assumption than the Landau-Lifshitz counterpart. Finally, we the damping process is better represented by the Gilbert as-
dynamics of a magnetic dipole gives a strong indication that
low applied magnetic field frequency, the proposed models
experimentally only recently [55]. If we consider a sufficiently
11
onance (between 10
by inertial effects. It is important to note that this second res-
results of the recent literature. For this reason, we introduced
a refined treatment, with an arbitrary angular frequency, and
we obtained a more elegant and symmetric form for the dy-
namical equations. Moreover, its approximation, obtained for
a reasonably slow reorientation motion with respect to the ro-
tation of charges, is found to be coinciding with the equation
recently proposed by Wegrove and co-workers. Our analysis
represents therefore an independent derivation of this equa-
tion. The importance of the inertial effect can be appreciated
by taking into account the frequency response of the dipole
system. We provided evidence that both the first and sec-
ond model proposed, and also the Wegrove equation, lead
to exactly the same mathematical form of the frequency re-
sponse. On the one hand, this proves that the differences be-
tween the mathematical details of the three models have no
observable consequences on the physical response of the sys-
tem. On the other hand, the frequency response is character-
ized by two resonance phenomena: while the first represents
the classical ferromagnetic resonance, the second is induced
by inertial effects. It is important to note that this second re-
sonance (between 10
and 10
Hz) has been observed ex-
perimentally only recently [55]. If we consider a sufficiently
low applied magnetic field frequency, the proposed models
can be approximated by neglecting inertial effects and pro-
vide Gilbert’s equation as a result. Therefore, we can also
state that a purely mechanical approach to the problem of the
dynamics of a magnetic dipole gives a strong indication that
the damping process is better represented by the Gilbert as-
sumption than the Landau-Lifshitz counterpart. Finally, we
clarified that the motion of a symmetric top with a fixed point,
and with three positive moments of inertia, is coherent with
the LLG dynamics of a magnetic dipole.

Appendix A: Generalized forces

We show here the complete expressions of the generalized
forces defined in Eqs.(20)-(23), which can be summed as in
Eqs.(24) and (25). The results shown here concern the case of
a discrete distribution of charged within the loop. Concerning
the Lorentz force, a long but straightforward calculation leads
to the expressions

\[Q_{\theta,L} = q_0 \omega R^2 \sum_{i=1}^{N} \left[-B_i \sin \vartheta \cos^2(\omega t + p_i) + B_i \cos \vartheta \sin \varphi \cos^2(\omega t + p_i) + B_i \cos \vartheta \cos \varphi \cos^2(\omega t + p_i) - B_i \sin \varphi \sin(\omega t + p_i) \cos(\omega t + p_i) \right] + q_0 \sum_{i=1}^{N} \left[-B_i \sin \vartheta \cos \varphi \cos^2(\omega t + p_i) + B_i \cos \vartheta \sin \varphi \cos^2(\omega t + p_i) + B_i \cos \vartheta \cos \varphi \cos^2(\omega t + p_i) - B_i \sin \varphi \sin \varphi \sin(\omega t + p_i) \cos(\omega t + p_i) \right], \]

(A1)

\[Q_{\varphi,L} = q_0 \omega R^2 \sum_{i=1}^{N} \left[-B_i \sin^2 \vartheta \sin(\omega t + p_i) \cos(\omega t + p_i) + B_i \sin \vartheta \cos \varphi \sin(\omega t + p_i) \cos(\omega t + p_i) + B_i \cos \vartheta \sin \varphi \sin(\omega t + p_i) \cos(\omega t + p_i) - B_i \cos \vartheta \cos \varphi \sin(\omega t + p_i) \cos(\omega t + p_i) \right] + q_0 \sum_{i=1}^{N} \left[-B_i \sin^2 \vartheta \cos \varphi \cos^2(\omega t + p_i) + B_i \cos \vartheta \sin \varphi \cos^2(\omega t + p_i) + B_i \cos \vartheta \cos \varphi \cos^2(\omega t + p_i) + B_i \cos \vartheta \sin \varphi \sin(\omega t + p_i) \cos(\omega t + p_i) \right], \]

(A2)

where, as in the main text, we separated the terms proportional
to \(\omega \) from the others. On the other hand, the damping force
yields

\[Q_{\theta,D} = -k_0 R^2 \sum_{i=1}^{N} \left[\vartheta \cos^2(\omega t + p_i) + \varphi \sin \vartheta \sin(\omega t + p_i) \cos(\omega t + p_i) \right], \]

(A3)

\[Q_{\varphi,D} = -k_0 R^2 \sum_{i=1}^{N} \left[\vartheta \sin \vartheta \sin(\omega t + p_i) \cos(\omega t + p_i) + \varphi \sin^2 \vartheta \sin^2(\omega t + p_i) \right]. \]

(A4)

We remember that here, \(p_i = \frac{2\pi}{N}(i-1) \) with \(i = 1, \ldots, N \).