
HAL Id: hal-03278370
https://hal.science/hal-03278370

Submitted on 24 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Unifying Framework for Deciding Synchronizability
Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Etienne

Lozes, Amrita Suresh

To cite this version:
Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Etienne Lozes, et al.. A Unify-
ing Framework for Deciding Synchronizability. CONCUR 2021 - 32nd International Conference on
Concurrency Theory, Aug 2021, Paris, France. pp.1-33. �hal-03278370�

https://hal.science/hal-03278370
https://hal.archives-ouvertes.fr

A Unifying Framework for Deciding
Synchronizability
Benedikt Bollig ! �

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, France

Cinzia Di Giusto ! �

Université Côte d’Azur, CNRS, I3S, France

Alain Finkel !�

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, France
Institut Universitaire de France

Laetitia Laversa !�

Université Côte d’Azur, CNRS, I3S, France

Etienne Lozes ! �

Université Côte d’Azur, CNRS, I3S, France

Amrita Suresh !�

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, France

Abstract
Several notions of synchronizability of a message-passing system have been introduced in the
literature. Roughly, a system is called synchronizable if every execution can be rescheduled so that
it meets certain criteria, e.g., a channel bound. We provide a framework, based on MSO logic and
(special) tree-width, that unifies existing definitions, explains their good properties, and allows one
to easily derive other, more general definitions and decidability results for synchronizability.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases communicating finite-state machines, message sequence charts, synchroniz-
ability, MSO logic, special tree-width

1 Introduction

Communication systems. The model of concurrent processes communicating asynchronously
through FIFO channels is used since the 1960s in applications such as communication
protocols [28], hardware design, MPI programs, and more recently for designing and verifying
session types [23], web contracts, choreographies, concurrent programs, Erlang, Rust, etc.
Since communication systems use FIFO channels, it is well known that all non-trivial
properties (e.g., are all channels bounded?) are undecidable [9], essentially because a FIFO
channel may simulate the tape of Turing machines and the counters of Minsky machines.
However, there are many subclasses of communication systems for which the control-state
reachability problem becomes decidable: e.g., synchronizable systems and existentially
bounded systems (executions can be reorganized or decomposed into a finite number of
sequences in which all channels are bounded), flat FIFO machines [15,17] (the graph of the
machine does not contain nested loops), channel-recognizable systems [4], unreliable (lossy,
insertion, duplication) FIFO systems [11], input-bounded FIFO machines [5], and half-duplex
systems [10].

On the boundedness problem. We focus on the boundedness problem, which is known to be
undecidable. We could limit our analysis to decide whether for a given integer k ≥ 0, known
in advance, the FIFO channels are k-bounded, and this property is generally decidable in

mailto:bollig@lsv.ens-cachan.fr
https://orcid.org/0000-0003-0985-6115
mailto:cinzia.di-giusto@univ-cotedazur.fr
https://orcid.org/0000-0003-1563-6581
mailto:finkel@lsv.fr
https://orcid.org/0000-0003-0702-3232
mailto:laetitia.laversa@univ-cotedazur.fr
https://orcid.org/0000-0003-3775-6496
mailto:etienne.lozes@univ-cotedazur.fr
https://orcid.org/0000-0001-8505-585X
mailto:amrita.suresh@ens-paris-saclay.fr
https://orcid.org/0000-0001-6819-9093

2 A Unifying Framework for Deciding Synchronizability

PSPACE. Unfortunately, the k-boundedness property is too binding since we could want
to design an unbounded system that is able, for example, to make unbounded iterations of
sending and receiving messages. Hence, to cope with this limitation, one can find variants of
the boundedness property that essentially reduce to say that every unbounded execution
of a system (i.e., channels are unbounded along the execution) is equivalent (for instance,
causally equivalent) to another bounded execution.

About synchronizability. To mention some examples, Lohrey and Muscholl introduced exist-
entially k-bounded systems [25] (see also [18,19,24]) where all accepting executions leading
to a stable (with empty channels) final configuration can be re-ordered into a k-bounded
execution. This property is undecidable, even for a given k [18]. A more general definition,
still called existentially bounded, is given in 2014 where the considered executions are not
supposed to be final or stable [22]. In [21,25], the notion of universally k-bounded (all possible
schedulings of an execution are k-bounded) is also discussed and the authors show that the
property is undecidable in general. In 2011, Basu and Bultan introduced synchronizable
systems [3], for which every execution is equivalent (for the projection on sending messages)
to one of the same system but communicating by rendezvous; to avoid ambiguity, we call such
systems send-synchronizable. In 2018, Bouajjani et al., called a system S k-synchronizable [8]
(to avoid confusion we call such systems weakly k-synchronizable) if every MSC of S admits a
linearization (which is not necessarily an execution) that can be divided into blocks of at most
k messages. After each block, a message is either read, or will never be read. This constraint
seems to imply that buffers are bounded to k messages. However, as the linearization need
not be an execution, this implies that a weakly k-synchronizable execution, even with the
more efficient reschedule, can need unbounded channels to be run by the system.

Communication architecture and variants. A key difference between these works is that they
consider different communication architectures. Existentially bounded systems have been
studied for p2p (with one queue per pair of processes), whereas k-synchronizability has
been studied for mailbox communication, for which each process merges all its incoming
messages in a unique queue. The decidability results for k-synchronizability have been
extended to p2p communications [14], but it is unknown whether the decidability results
for existentially bounded systems extend to mailbox communication. Moreover, variants of
those definitions can be obtained depending on if we consider messages that are sent but
never read, called unmatched messages. Indeed the challenges that arise in [8] are due to
mailbox communication and unmatched messages blocking a channel so that all messages
sent afterwards will never be read. To clarify and overcome this issue, we propose strong
k-synchronizability, a new definition that is suitable for mailbox communication: an execution
is called strongly k-synchronizable if it can be rescheduled into another k-bounded execution
such that there are at most k messages in the channels before emptying them.

Contributions. Our contributions can be summarized as follows:

In order to unify the notions of synchronizability, we introduce a general framework based
on monadic second-order (MSO) logic and (special) tree-width that captures most existing
definitions of systems that may work with bounded channels. Moreover, reachability and
model checking are shown decidable in this framework.
We show that existentially bounded systems can be expressed in our framework and, as a
consequence, the existentially k-bounded property is decidable by using the generic proof.

B. Bollig et al. 3

We generalize the existing notion of (weak) k-synchronizability in [8] and we introduce
three new classes of synchronizable systems: weakly synchronizable (which are more gen-
eral than weakly k-synchronizable), strongly synchronizable and strongly k-synchronizable
(which are particular cases of weakly synchronizable). We then prove that these properties
all fit in our framework and are all shown decidable using the generic proof.
We then deduce that reachability and model checking are decidable for these classes
(only control-state reachability was shown to be decidable for weakly k-synchronizable
in [8] and it is clearly also decidable for existentially/universally bounded systems but
reachability properties are generally not studied for these classes of systems).
In order to obtain better complexity results for some classes (strongly and weakly
synchronizable systems), we also use the fragment of propositional dynamic logic with
loop and converse (LCPDL) instead of MSO logic in our framework.
We provide a comparison between synchronizable classes both for p2p and mailbox
semantics (see Fig. 8 for p2p systems and Fig. 9 for mailbox systems). In particular,
we clarify the link between weakly synchronizable and existentially bounded systems for
both p2p and mailbox systems, which was left open in [8] and solved only for p2p systems
in [23, Theorem 7] where weakly synchronizable systems are shown to be included into
existentially bounded ones when considering executions (and not MSCs as in our case).

Outline. Section 2 defines some preliminary notions such as p2p/mailbox message sequence
charts (MSCs), and communicating systems. Section 3 presents the unifying MSO framework
and two general theorems on k-synchronizability and model checking. In Section 4, we apply
the MSO framework to different existing definitions of synchronizability, and we introduce
a new decidable one. Section 5 studies the relations between the classes. In Section 6, we
conclude with some final remarks. Missing proofs are given in the appendix.

2 Preliminaries

2.1 Message Sequence Charts

Assume a finite set of processes P and a finite set of messages M. The set of (p2p) channels
is C = {(p, q) ∈ P × P | p ≠ q}. A send action is of the form send(p, q, m) where (p, q) ∈ C
and m ∈ M. It is executed by p and sends message m to q. The corresponding receive action,
executed by q, is rec(p, q, m). For (p, q) ∈ C, let Send(p, q,) = {send(p, q, m) | m ∈ M}
and Rec(p, q,) = {rec(p, q, m) | m ∈ M}. For p ∈ P, we set Send(p, ,) = {send(p, q, m) |
q ∈ P \ {p} and m ∈ M}, etc. Moreover, Σp = Send(p, ,) ∪ Rec(, p,) will denote the
set of all actions that are executed by p. Finally, Σ =

⋃
p∈P Σp is the set of all the actions.

Peer-to-peer MSCs. A p2p MSC (or simply MSC) over P and M is a tuple M = (E , →,◁, λ)
where E is a finite (possibly empty) set of events and λ : E → Σ is a labeling function. For
p ∈ P, let Ep = {e ∈ E | λ(e) ∈ Σp} be the set of events that are executed by p. We require
that → (the process relation) is the disjoint union

⋃
p∈P →p of relations →p ⊆ Ep × Ep such

that →p is the direct successor relation of a total order on Ep. For an event e ∈ E , a set of
actions A ⊆ Σ, and a relation R ⊆ E × E , let #A(R, e) = |{f ∈ E | (f, e) ∈ R and λ(f) ∈ A}|.
We require that ◁ ⊆ E × E (the message relation) satisfies the following:

(1) for every pair (e, f) ∈ ◁, there is a send action send(p, q, m) ∈ Σ such that λ(e) =
send(p, q, m), λ(f) = rec(p, q, m), and #Send(p,q,)(→+, e) = #Rec(p,q,)(→+, f),

(2) for all f ∈ E such that λ(f) is a receive action, there is e ∈ E such that e◁ f .

4 A Unifying Framework for Deciding Synchronizability

Finally, letting ≤M = (→ ∪◁)∗, we require that ≤M is a partial order.

Condition (1) above ensures that every (p2p) channel (p, q) behaves in a FIFO manner.
By Condition (2), every receive event has a matching send event. Note that, however, there
may be unmatched send events in an MSC. We let SendEv(M) = {e ∈ E | λ(e) is a send
action}, RecEv(M) = {e ∈ E | λ(e) is a receive action}, Matched(M) = {e ∈ E | there is
f ∈ E such that e◁ f}, and Unm(M) = {e ∈ E | λ(e) is a send action and there is no f ∈ E
such that e ◁ f}. We do not distinguish isomorphic MSCs and let MSC be the set of all
MSCs over the given sets P and M.

▶ Example 1. For a set of processes P = {p, q, r} and a set of messages
M = {m1, m2, m3, m4}, M1 = (E , →,◁, λ) is an MSC where, for
example, e2 ◁ e′

2 and e′
3 → e4. The dashed arrow means that the

send event e1 does not have a matching receive, so e1 ∈ Unm(M1).
Moreover, e2 ≤M1 e4, but e1 ̸≤M1 e4. We can find a total order
⇝ ⊇ ≤M1 such that e1 ⇝ e2 ⇝ e′

2 ⇝ e3 ⇝ e′
3 ⇝ e4 ⇝ e′

4. We call ⇝
a linearization, which is formally defined below.

e1

e2e′
2

e3 e′
3

e4e′
4

p q r
m1

m2

m3

m4

Figure 1 MSC M1

Mailbox MSCs. For an MSC M = (E , →,◁, λ), we define an additional binary relation
that represents a constraint under the mailbox semantics, where each process has only one
incoming channel. Let ⊏M ⊆ E × E be defined by: e1 ⊏M e2 if there is q ∈ P such that
λ(e1) ∈ Send(, q,), λ(e2) ∈ Send(, q,), and one of the following holds:

e1 ∈ Matched(M) and e2 ∈ Unm(M), or
e1 ◁ f1 and e2 ◁ f2 for some f1, f2 ∈ Eq such that f1 →+ f2.

We let ⪯M = (→ ∪ ◁ ∪ ⊏M)∗. Note that ≤M ⊆ ⪯M . We call M ∈ MSC a mailbox
MSC if ⪯M is a partial order. Intuitively, this means that events can be scheduled in a
way that corresponds to the mailbox semantics, i.e., with one incoming channel per process.
Following the terminology in [8], we also say that a mailbox MSC satisfies causal delivery.
The set of mailbox MSCs M ∈ MSC is denoted by MSCmb.

▶ Example 2. MSC M1 is a mailbox MSC. Indeed, even though the order ⇝ defined in
Example 1 does not respect all mailbox constraints, particularly the fact that e4 ⊏M1 e1,
there is a total order ⇝ ⊇ ⪯M1 such that e2 ⇝ e3 ⇝ e′

3 ⇝ e4 ⇝ e1 ⇝ e′
2 ⇝ e′

4. We call ⇝ a
mailbox linearization, which is formally defined below.

Linearizations, Prefixes, and Concatenation. Consider M = (E , →,◁, λ) ∈ MSC. A p2p
linearization (or simply linearization) of M is a (reflexive) total order ⇝ ⊆ E × E such that
≤M ⊆ ⇝. Similarly, a mailbox linearization of M is a total order ⇝ ⊆ E × E such that
⪯M ⊆⇝. That is, every mailbox linearization is a p2p linearization, but the converse is not
necessarily true (Example 2). Note that an MSC is a mailbox MSC iff it has at least one
mailbox linearization.

Let M = (E , →,◁, λ) ∈ MSC and consider E ⊆ E such that E is ≤M -downward-
closed, i.e, for all (e, f) ∈ ≤M such that f ∈ E, we also have e ∈ E. Then, the MSC
(E, → ∩ (E × E),◁ ∩ (E × E), λ′), where λ′ is the restriction of E to E, is called a prefix of
M . In particular, the empty MSC is a prefix of M . We denote the set of prefixes of M by
Pref (M). This is extended to sets L ⊆ MSC as expected, letting Pref (L) =

⋃
M∈L Pref (M).

▶ Lemma 3. Every prefix of a mailbox MSC is a mailbox MSC.

B. Bollig et al. 5

Let M1 = (E1, →1,◁1, λ1) and M2 = (E2, →2,◁2, λ2) be two MSCs. Their concatenation
M1 · M2 = (E , →,◁, λ) is defined if, for all (p, q) ∈ C, e1 ∈ Unm(M1), and e2 ∈ E2 such
that λ(e1) ∈ Send(p, q,) and λ(e2) ∈ Send(p, q,), we have e2 ∈ Unm(M2). As expected,
E is the disjoint union of E1 and E2, ◁ = ◁1 ∪ ◁2, λ is the “union” of λ1 and λ2, and
→ = →1 ∪ →2 ∪ R. Here, R contains, for all p ∈ P such that (E1)p and (E2)p are non-empty,
the pair (e1, e2) where e1 is the maximal p-event in M1 and e2 is the minimal p-event in M2.
Note that M1 · M2 is indeed an MSC and that concatenation is associative.

2.2 Communicating Systems

We now recall the definition of communicating systems (aka communicating finite-state
machines or message-passing automata), which consist of finite-state machines Ap (one for
every process p ∈ P) that can communicate through the FIFO channels from C.

▶ Definition 4. A communicating system over P and M is a tuple S = (Ap)p∈P. For each
p ∈ P, Ap = (Locp, δp, ℓ0

p) is a finite transition system where Locp is a finite set of local
(control) states, δp ⊆ Locp × Σp × Locp is the transition relation, and ℓ0

p ∈ Locp is the initial
state.

Given p ∈ P and a transition t = (ℓ, a, ℓ′) ∈ δp, we let source(t) = ℓ, target(t) = ℓ′,
action(t) = a, and msg(t) = m if a ∈ Send(, , m) ∪ Rec(, , m).

There are in general two ways to define the semantics of a communicating system. Most
often it is defined as a global infinite transition system that keeps track of the various local
control states and all (unbounded) channel contents. As, in this paper, our arguments are
based on a graph view of MSCs, we will define the language of S directly as a set of MSCs.
These two semantic views are essentially equivalent, but they have different advantages
depending on the context. We refer to [1] for a thorough discussion.

Let M = (E , →,◁, λ) be an MSC. A run of S on M is a mapping ρ : E →
⋃

p∈P δp that
assigns to every event e the transition ρ(e) that is executed at e. Thus, we require that (i) for
all e ∈ E , we have action(ρ(e)) = λ(e), (ii) for all (e, f) ∈ →, target(ρ(e)) = source(ρ(f)),
(iii) for all (e, f) ∈ ◁, msg(ρ(e)) = msg(ρ(f)), and (iv) for all p ∈ P and e ∈ Ep such that
there is no f ∈ E with f → e, we have source(ρ(e)) = ℓ0

p.
Letting run S directly on MSCs is actually very convenient. This allows us to associate

with S its p2p language and mailbox language in one go. The p2p language of S is Lp2p(S) =
{M ∈ MSC | there is a run of S on M}. The mailbox language of S is Lmb(S) = {M ∈ MSCmb |
there is a run of S on M}.

Note that, following [8, 14], we do not consider final states or final configurations, as our
purpose is to reason about all possible traces that can be generated by S. The next lemma
is obvious for the p2p semantics and follows from Lemma 3 for the mailbox semantics.

▶ Lemma 5. For all com ∈ {p2p, mb}, Lcom(S) is prefix-closed: Pref (Lcom(S)) ⊆ Lcom(S).

▶ Example 6. Fig. 2 depicts S1 = (Ap, Aq, Ar) such that MSC M1 in Fig. 1 belongs to
Lp2p(S1) and to Lmb(S1). There is a unique run ρ of S1 on M1. We can see that (e′

3, e4) ∈ →
and target(ρ(e′

3)) = source(ρ(e4)) = ℓ1
r, (e2, e′

2) ∈ ◁M1 , and msg(ρ(e2)) = msg(ρ(e′
2)) = m2.

2.3 Conflict Graph

We now recall the notion of a conflict graph associated to an MSC defined in [8]. This graph
is used to depict the causal dependencies between message exchanges. Intuitively, we have

6 A Unifying Framework for Deciding Synchronizability

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) rec(q, p, m2)
Ap ℓ0

q ℓ1
q

ℓ2
qℓ3

q

send(q, p, m2)

send(q, r, m3)
rec(r, q, m4)

Aq

ℓ0
r ℓ1

r ℓ2
r

rec(q, r, m3) send(r, q, m4)
Ar

Figure 2 System S1

a dependency whenever two messages have a process in common. For instance, an SS−−→
dependency between message exchanges v and v′ expresses the fact that v′ has been sent after
v, by the same process. This notion is of interest because it was seen in [8] that the notion of
synchronizability in MSCs (which is studied in this paper) can be graphically characterized
by the nature of the associated conflict graph. It is defined in terms of linearizations in [14],
but we equivalently express it directly in terms of MSCs.

For an MSC M = (E , →,◁, λ) and e ∈ E , we define the type τ(e) ∈ {S, R} of e by
τ(e) = S if e ∈ SendEv(M) and τ(e) = R if e ∈ RecEv(M). Moreover, for e ∈ Unm(M), we
let µ(e) = e, and for (e, e′) ∈ ◁, we let µ(e) = µ(e′) = (e, e′).

▶ Definition 7 (Conflict graph). The conflict graph CG(M) of an MSC M = (E , →,◁, λ)
is the labeled graph (Nodes, Edges), with Edges ⊆ Nodes × {S, R}2 × Nodes, defined by
Nodes = ◁ ∪ Unm(M) and Edges = {(µ(e), τ(e)τ(f), µ(f)) | (e, f) ∈ →+}. In particular, a
node of CG(M) is either a single unmatched send event or a message pair (e, e′) ∈ ◁.

3 Model Checking and Synchronizability

In this section, we survey two classical decision problems for communicating systems. The
first problem is the model-checking problem, in which one checks whether a given system
satisfies a given specification. A canonical specification language for MSCs is monadic
second-order (MSO) logic. However, model checking in full generality is undecidable. A
common approach is, therefore, to restrict the behavior of the given system to MSCs of
bounded (special) tree-width. Next, we introduce MSO logic and special tree-width.

3.1 Logic and Special Tree-Width

Monadic Second-Order Logic. The set of MSO formulas over MSCs (over P and M) is given
by the grammar φ ::= x → y | x ◁ y | λ(x) = a | x = y | x ∈ X | ∃x.φ | ∃X.φ | φ ∨ φ | ¬φ,
where a ∈ Σ, x and y are first-order variables, interpreted as events of an MSC, and X is a
second-order variable, interpreted as a set of events. We assume that we have an infinite
supply of variables, and we use common abbreviations such as ∧, ∀, etc. The satisfaction
relation is defined in the standard way and self-explanatory. For example, the formula
¬∃x.(

∨
a∈Send(, ,) λ(x) = a ∧ ¬matched(x)) with matched(x) = ∃y.x◁ y says that there

are no unmatched send events. It is not satisfied by MSC M1 of Fig. 1, as message m1 is not
received, but by M4 from Fig. 6.

Given a sentence φ, i.e., a formula without free variables, we let L(φ) denote the set of
(p2p) MSCs that satisfy φ. It is worth mentioning that the (reflexive) transitive closure of a
binary relation defined by an MSO formula with free variables x and y, such as x → y, is
MSO-definable so that the logic can freely use formulas of the form x →+ y or x ≤ y (where
≤ is interpreted as ≤M for the given MSC M). Therefore, the definition of a mailbox MSC
can be readily translated into the formula φmb = ¬∃x.∃y.(¬(x = y) ∧ x ⪯ y ∧ y ⪯ x) so that

B. Bollig et al. 7

M |= Eσ if JσKM ̸= ∅ J→KM := → and J◁KM := ◁
JaKM := {e ∈ E | λ(e) = a} Jtest(σ)KM := {(e, e) | e ∈ JσKM }
J⟨π⟩σKM := {e ∈ E | ∃f ∈ JσKM : (e, f) ∈ JπKM } JjumpKM := E × E
JLoop⟨π⟩KM := {e ∈ E | (e, e) ∈ JπKM } Jπ1 + π2KM := Jπ1KM ∪ Jπ2KM

Jπ−1KM := {(e, f) ∈ E × E | (f, e) ∈ JπKM } Jπ∗KM :=
⋃

n∈NJπKn
M

Jπ1 · π2KM := {(e, f) ∈ E × E | ∃g ∈ E : (e, g) ∈ Jπ1KM and (g, f) ∈ Jπ2KM }

Figure 3 Semantics of LCPDL

we have L(φmb) = MSCmb. Here, x ⪯ y is obtained as the MSO-definable reflexive transitive
closure of the union of the MSO-definable relations →, ◁, and ⊏. In particular, we may
define x ⊏ y by

x ⊏ y =
∨
q∈P

a,b∈Send(,q,)

λ(x) = a ∧ λ(y) = b∧

(
matched(x) ∧ ¬matched(y)

∨ ∃x′.∃y′.(x◁ x′ ∧ y ◁ y′ ∧ x′ →+ y′)

)
.

Propositional Dynamic Logic (PDL). For better complexity, we also consider PDL with Loop
and Converse, henceforth called LCPDL (cf. [6, 7, 27] for more details). Its syntax is:

Φ ::= Eσ | Φ ∨ Φ | ¬Φ (sentence)
σ ::= a | σ ∨ σ | ¬σ | ⟨π⟩σ | Loop⟨π⟩ (event formula)
π ::= → | ◁ | test(σ) | jump | π + π | π · π | π∗ | π−1 (path formula)

where a ∈ Σ. We use the symbol ⊤ to denote a tautology event formula (such as a ∨ ¬a).
We describe the semantics for the logic in Fig. 3 (apart from the obvious cases). A sentence
Φ is evaluated wrt. an MSC M = (E , →,◁, λ). An event formula σ is evaluated wrt. M and
an event e ∈ E so that it defines a unary relation JσKM ⊆ E . Finally, a path formula π is
evaluated over two events, and so it defines a binary relation JπKM ⊆ E × E . Finally, we let
L(Φ) = {M ∈ MSC | M |= Φ}. Note that every LCPDL-definable property is MSO-definable.

It can be seen below that the mailbox semantics can be readily translated into the LCPDL
formula Φmb = ¬E (Loop⟨(◁+ → +⊏)+⟩) such that L(Φmb) = MSCmb. Hereby, we let

⊏ = ◁ · →+ ·◁−1 +
∑
q∈P

a,b∈Send(,q,)

test(a) ·◁ · jump · test(b ∧ ¬⟨◁⟩⊤) .

Special Tree-Width. Special tree-width [12], is a graph measure that indicates how close a
graph is to a tree (we may also use classical tree-width instead). This or similar measures are
commonly employed in verification. For instance, tree-width and split-width have been used
in [26] and, respectively, [2, 13] to reason about graph behaviors generated by pushdown and
queue systems. There are several ways to define the special tree-width of an MSC. We adopt
the following game-based definition from [7].

Adam and Eve play a two-player turn based “decomposition game” whose positions are
MSCs with some pebbles placed on some events. More precisely, Eve’s positions are marked
MSC fragments (M, U), where M = (E , →,◁, λ) is an MSC fragment (an MSC with possibly
some edges from ◁ or → removed) and U ⊆ E is the subset of marked events. Adam’s
positions are pairs of marked MSC fragments. A move by Eve consists in the following steps:

8 A Unifying Framework for Deciding Synchronizability

1. marking some events of the MSC resulting in (M, U ′) with U ⊆ U ′ ⊆ E ,
2. removing (process and/or message) edges whose endpoints are marked,
3. dividing (M, U) in (M1, U1) and (M2, U2) such that M is the disjoint (unconnected)

union of M1 and M2 and marked nodes are inherited.

When it is Adam’s turn, he simply chooses one of the two marked MSC fragments. The
initial position is (M, ∅) where M is the (complete) MSC at hand. A terminal position is
any position belonging to Eve such that all events are marked. For k ∈ N, we say that the
game is k-winning for Eve if she has a (positional) strategy that allows her, starting in the
initial position and independently of Adam’s moves, to reach a terminal position such that,
in every single position visited along the play, there are at most k + 1 marked events.

▶ Fact 1 ([7]). The special tree-width of an MSC is the least k such that the associated game
is k-winning for Eve.

The set of MSCs whose special tree-width is at most k is denoted by MSCk-stw.

3.2 Model Checking

In general, even simple verification problems, such as control-state reachability, are unde-
cidable for communicating systems [9]. However, they are decidable when we restrict to
behaviors of bounded special tree-width, which motivates the following definition of a generic
bounded model-checking problem for com ∈ {p2p, mb}:
Input: Two finite sets P and M, a communicating system S, an MSO sentence φ, and k ∈ N
(given in unary).
Question: Do we have Lcom(S) ∩ MSCk-stw ⊆ L(φ)?

▶ Fact 2 ([7]). The bounded model-checking problem for com = p2p is decidable. When the
formulas φ are from LCPDL, then the problem is solvable in exponential time.

Note that [7] does not employ the LCPDL modality jump, but it can be integrated easily.
Using φmb or Φmb, we obtain the corresponding result for mailbox systems as a corollary:

▶ Theorem 8. The bounded model-checking problem for com = mb is decidable. When the
formulas φ are from LCPDL, then the problem is solvable in exponential time.

3.3 Synchronizability

The above model-checking approach is incomplete in the sense that a positive answer does
not imply correctness of the whole system. The system may still produce behaviors of special
tree-width greater than k that violate the given property. However, if we know that a system
only generates behaviors from a class whose special tree-width is bounded by k, we can still
conclude that the system is correct.

This motivates the synchronizability problem. Several notions of synchronizability have
been introduced in the literature. However, they all amount to asking whether all behaviors
generated by a given communicating system have a particular shape, i.e., whether they are
all included in a fixed (or given) set of MSCs C. Thus, the synchronizability problem is
essentially an inclusion problem, namely Lp2p(S) ⊆ C or Lmb(S) ⊆ C. We show that, for
decidability, it is enough to have that C is MSO-definable and special-tree-width-bounded
(STW-bounded): We call C ⊆ MSC (i) MSO-definable if there is an MSO-formula φ such
that L(φ) = C, (ii) LCPDL-definable if there is an an LCPDL-formula Φ such that L(Φ) = C,
(iii) STW-bounded if there is k ∈ N such that C ⊆ MSCk-stw.

B. Bollig et al. 9

Table 1 Summary of the decidability of the synchronizability problem in various classes

Peer-to-Peer Mailbox
Weakly synchronous Undecidable [Thm. 20] EXPTIME [Thm. 19]
Weakly k-synchronous Decidable [8, 14] and [Thm. 27]
Strongly k-synchronous — Decidable [Thm. 33]
Existentially k-p2p-bounded Decidable [18, Prop. 5.5]
Existentially k-mailbox-bounded — Decidable [Prop. 38]

An important component of the decidability proof is the following lemma, which shows
that we can reduce synchronizability wrt. an STW-bounded class to bounded model-checking.

▶ Lemma 9. Let S be a communicating system, com ∈ {p2p, mb}, k ∈ N, and C ⊆ MSCk-stw.
Then, Lcom(S) ⊆ C iff Lcom(S) ∩ MSC(k+2)-stw ⊆ C.

The result follows from the following lemma. Note that a similar property was shown
in [18, Proposition 5.4] for the specific class of existentially k-bounded MSCs.

▶ Lemma 10. Let k ∈ N and C ⊆ MSCk-stw. For all M ∈ MSC \ C, we have (Pref (M) ∩
MSC(k+2)-stw) \ C ̸= ∅.

We now have all ingredients to state a generic decidability result for synchronizability:

▶ Theorem 11. Fix finite sets P and M. Suppose com ∈ {p2p, mb} and let C ⊆ MSC be an
MSO-definable and STW-bounded class (over P and M). The following problem is decidable:
Given a communicating system S, do we have Lcom(S) ⊆ C?

Proof. Consider the MSO-formula φ such that L(φ) = C, and let k ∈ N such that C ⊆
MSCk-stw. We have Lcom(S) ⊆ C Lemma 9⇐⇒ Lcom(S) ∩ MSC(k+2)-stw ⊆ C ⇐⇒ Lcom(S) ∩
MSC(k+2)-stw ⊆ L(φ). The latter can be solved thanks to Fact 2 and Theorem 8. ◀

▶ Remark 12. Note that, in some cases (cf. Section 4), P and M are part of the input and the
concrete class C may be parameterized by a natural number so that it is part of the input,
too. Then, we need to be able to compute the MSO formula characterizing the class as well
as the bound on the special tree-width.

4 Application to Concrete Classes of Synchronizability

In this section, we instantiate our general framework by specific classes. Table 1 gives a
summary of the results.

4.1 A New General Class: Weakly Synchronous MSCs

We first introduce the class of weakly synchronous MSCs. This is a generalization of
synchronous MSCs studied earlier, in [8,14], which we shall discuss later. We say an MSC
is weakly synchronous if it is breakable into exchanges where an exchange is an MSC that
allows one to schedule all sends before all receives. Let us define this formally:

▶ Definition 13 (exchange). Let M = (E , →,◁, λ) be an MSC. We say that M is an exchange
if SendEv(M) is a ≤M -downward-closed set.

▶ Definition 14 (weakly synchronous). We say that M ∈ MSC is weakly synchronous if it is
of the form M = M1 · . . . · Mn such that every Mi is an exchange.

10 A Unifying Framework for Deciding Synchronizability

We use the term weakly to distinguish from variants introduced later.

▶ Example 15. Consider the MSC M2 in Fig. 4. It is is weakly synchron-
ous. Indeed, m1, m2, and m5 are independent and can be put alone in an
exchange. Repetitions of m3 and m4 are interlaced, but they constitute
an exchange, as we can do all sends and then all receptions.

An easy adaptation of a characterization from [14] yields the following
result for weakly synchronous MSCs:

q rp
m1
m2

m
3

m
3

m4

m4

m5

Figure 4 MSC M2

▶ Proposition 16. Let M be an MSC. Then, M is weakly synchronous iff no RS edge occurs
on any cyclic path in the conflict graph CG(M).

It is easily seen that the characterization from Proposition 16 is LCPDL-definable:

▶ Corollary 17. The sets of weakly synchronous MSCs and weakly synchronous mailbox
MSCs are LCPDL-definable. Both formulas have polynomial size.

Moreover, under the mailbox semantics, we can show:

▶ Proposition 18. The set of weakly synchronous mailbox MSCs is STW-bounded (in fact,
it is included in MSC4|P|-stw).

Proof. Let M be fixed, and let us sketch Eve’s winning strategy. Let n = |P|.
The first step for Eve is to split M in exchanges. She first disconnects the first exchange

from the rest of the graph (2n pebbles are needed), then she disconnects the second exchange
from the rest of the graph (2n pebbles needed, plus n pebbles remaining from the first round),
and so on for each exchange.

So we are left with designing a winning strategy for Eve with 4n + 1 pebbles on the graph
of an exchange M0, where initially there are (at most) n pebbles placed on the first event
of each process and also (at most) n pebbles placed on the last event of each process. Eve
also places (at most) n pebbles on the last send event of each process and also (at most)
n pebbles on the first receive event of each process. Eve erases the (at most) n →-edges
between the last send event and the first receive event.

We are now in a configuration that will be our invariant.
Let us fix a mailbox linearization of M0 and let e be the first send event in this linearization.

if e is an unmatched send of process p, Eve places her last pebble on the next send event
of p (if it exists), let us call it e′. Then Eve erases the →-edge (e, e′), and now e is
completely disconnected, so it can be removed and the pebble can be taken back.
if e ◁ e′, with e′ a receive event of process q, then due to the mailbox semantics e′ is
the first receive event of q, so it has a pebble placed on it. Eve removes the ◁-edge
between e and e′, then using the extra pebble she disconnects e and places a pebble on
the →-successor of e, then she also disconnects e′ and places a pebble on the →-successor
of e′.

After that, we are back to our invariant, so we can repeat the same strategy with the second
send event of the linearization, and so on until all edges have been erased. ◀

We obtain the following result as a corollary. Note that it assumes the mailbox semantics.

▶ Theorem 19. The following problem is decidable in exponential time: Given P, M, and a
communicating system S (over P and M), is every MSC in Lmb(S) weakly synchronous?

B. Bollig et al. 11

Proof. According to Corollary 17, we determine the LCPDL formula Φwsmb such that
L(Φwsmb) is the set of weakly synchronous mailbox MSCs. Moreover, recall from Proposi-
tion 18 that the special tree-width of all weakly synchronous mailbox MSCs is bounded by
4|P|. By Lemma 9, Lmb(S) ⊆ L(Φwsmb) iff Lmb(S) ∩ MSC(4|P|+2)-stw ⊆ L(Φwsmb). The latter
is an instance of the bounded model-checking problem. As the length of Φwsmb is polynomial
in |P|, we obtain that the original problem is decidable in exponential time by Theorem 8. ◀

For the same reasons, the model-checking problem for “weakly synchronous” systems
is decidable. Interestingly, a reduction from Post’s correspondence problem shows that
decidability fails when adopting the p2p semantics:

▶ Theorem 20. The following problem is undecidable: Given finite sets P and M as well as
a communicating system S, is every MSC in Lp2p(S) weakly synchronous?

4.2 Weakly k-Synchronous MSCs

This negative result for the p2p semantics motivates the study of other classes. In fact, our
framework captures several classes introduced in the literature.

▶ Definition 21 (k-exchange). Let M = (E , →,◁, λ) be an MSC and k ∈ N. We call M a
k-exchange if M is an exchange and |SendEv(M)| ≤ k.

Let us now recall the definition from [8,14], but (equivalently) expressed directly in terms
of MSCs rather than via executions. It differs from the weakly synchronous MSCs in that
here, we insist on constraining the number of messages sent per exchange to be at most k.

▶ Definition 22 (weakly k-synchronous). Let k ∈ N. We say that M ∈ MSC is weakly
k-synchronous if it is of the form M = M1 · . . . · Mn such that every Mi is a k-exchange.

▶ Example 23. MSC M3 in Fig. 5 is weakly 1-synchronous, as it can
be decomposed into three 1-exchanges (the decomposition is depicted
by the horizontal dashed lines). We remark that M3 ∈ MSCmb. Note
that there is a p2p linearization that respects the decomposition. On
the other hand, a mailbox linearization needs to reorganize actions
from different MSCs: the sending of m3 needs to be done before the
sending of m1. Note that M1 in Fig. 1 is also weakly 1-synchronous.

p q r

m1

m2

m3

Figure 5 MSC M3

▶ Proposition 24. Let k ∈ N. The set of weakly k-synchronous p2p (mailbox, respectively)
MSCs is effectively MSO-definable.

In fact, MSO-definability essentially follows from the following known theorem:

▶ Theorem 25 ([14]). Let M be an MSC. Then, M is weakly k-synchronous iff every SCC
in its conflict graph CG(M) is of size at most k and no RS edge occurs on any cyclic path.

This property is similar to the graphical characterization of weakly synchronous MSCs,
except for the condition that every SCC in the conflict graph is of size at most k. Furthermore,
it is easy to establish a bound on the special tree-width:

▶ Proposition 26. Let k ∈ N. The set of MSCs that are weakly k-synchronous have special
tree-width bounded by 2k + |P|.

12 A Unifying Framework for Deciding Synchronizability

Hence, we can conclude that the class of weakly k-synchronous MSCs is MSO-definable
and STW-bounded. As a corollary, we get the following (known) decidability result, but via
an alternative proof:

▶ Theorem 27 ([8, 14]). For com ∈ {p2p, mb}, the following problem is decidable: Given
finite sets P and M, a communicating system S, and k ∈ N, is every MSC in Lcom(S) weakly
k-synchronous?

Proof. We proceed similarly to the proof of Theorem 19. For the given P, M, and k, we
first determine, using Proposition 24, the MSO formula φk such that L(φk) is the set of
weakly k-synchronous p2p/mailbox MSCs. From Proposition 26, we know that the special
tree-width of all weakly k-synchronous MSCs is bounded by 2k + |P|. By Lemma 9, we have
Lcom(S) ⊆ L(φk) iff Lcom(S) ∩ MSC(2k+|P|+2)-stw ⊆ L(φk). The latter is an instance of the
bounded model-checking problem. By Fact 2 and Theorem 8, we obtain decidability. ◀

▶ Remark 28. The set of weakly k-synchronous MSCs is not directly expressible in LCPDL
(the reason is that LCPDL does not have a built-in counting mechanism). However, its
complement is expressible in the extension of LCPDL with existentially quantified propositions
(we need k + 1 of them). The model-checking problem for this kind of property is still in
EXPTIME and, therefore, so is the problem from Theorem 27 when k is given in unary. It is
very likely that our approach can also be used to infer the PSPACE upper bound from [8]
by showing bounded path width and using finite word automata instead of tree automata.
Finally, note that the problem to decide whether there exists an integer k ∈ N such that all
MSCs in Lcom(S) are weakly k-synchronous has recently been studied in [20] and requires
different techniques.

Observe also that we can remove the constraint of all the sends preceding all the receives
in a k-exchange, and still have decidability. We then have the following definition.

▶ Definition 29 (modified k-exchange). Let M = (E , →,◁, λ) be an MSC and k ∈ N. We
call M a modified k-exchange if |SendEv(M)| ≤ k.

We extend this notion to consider modified weakly k-synchronous executions as before,
and the graphical characterization of this property is that there are at most k nodes in every
SCC of the conflict graph. Hence, this class is also MSO-definable, and since each modified
k-exchange has at most 2k events, it also has bounded special tree-width.

4.3 Strongly k-Synchronous MSCs and Other Classes

Our framework can be applied to a variety of other classes. Here we show how the decidability
results can be shown for a variant of the class of weakly k-synchronous MSCs.

▶ Definition 30. Let M = (E , →,◁, λ) ∈ MSCmb. We call M strongly k-synchronous if it
can be written as M = M1 · . . . ·Mn such that every MSC Mi = (Ei, →i,◁i, λi) is a k-exchange
and, for all (e, f) ∈ ⊏M , there are 1 ≤ i ≤ j ≤ n such that e ∈ Ei and f ∈ Ej.

B. Bollig et al. 13

▶ Example 31. MSC M4 ∈ MSCmb in Fig. 6 is strongly 1-synchronous.
Indeed, we can decompose it into 1-exchanges and this decomposition
allows for a total order compatible with ⊏M4 . Moreover, MSC M3
in Fig. 5, which is weakly 1-synchronous, is strongly 3-synchronous.
Indeed, we need to put the three messages in the same k-exchange
to regain our total order. Finally, for all k, MSC M1 in Fig. 1 is not
strongly k-synchronous, as we cannot put all messages in the same
k-exchange, where all sends are followed by all receptions. Here, this
is not possible as the reception of m3 has to take place before the
sending of m4.

p q

m1

m1

m1

Figure 6 MSC M4

▶ Proposition 32. For all k ∈ N, the set of strongly k-synchronous mailbox MSCs is
MSO-definable and STW-bounded.

The proof proceeds similarly to what has been shown in the previous cases, but MSO-
definability now relies on an extended conflict graph. As a corollary, we thus obtain:

▶ Theorem 33. The following problem is decidable: Given finite sets P and M, a commu-
nicating system S, and k ∈ N, is every MSC in Lmb(S) strongly k-synchronous?

▶ Remark 34. Only mailbox MSCs are considered for the definition of strongly k-synchronous
MSCs for the following reason: A natural p2p analogue of Definition 30 would require from
the decomposition that, for all (e, f) ∈ ≤M , there are indices 1 ≤ i ≤ j ≤ n such that e ∈ Ei

and f ∈ Ej . But this is always satisfied. So the natural definition of “strongly k-synchronous
MSCs” would coincide with weakly k-synchronous MSCs.

Like the variant for the case of weakly synchronous MSCs, we can also generalize strongly
k-synchronous MSCs by removing the restriction on the number of messages per exchange:

▶ Definition 35. Let M = (E , →,◁, λ) ∈ MSCmb. We call M strongly synchronous if it can
be written as M = M1 · . . . · Mn such that every MSC Mi = (Ei, →i,◁i, λi) is an exchange
and, for all (e, f) ∈ ⊏M , there are indices 1 ≤ i ≤ j ≤ n such that e ∈ Ei and f ∈ Ej.

Similarly to the constructions for strongly k-synchronous MSCs, we can obtain a graphical
characterization where we only look for the absence of RS-edges in a cycle. Hence, this class
is also MSO-definable (in fact, even LCPDL-definable) and STW-bounded.

4.4 Existentially k-Bounded MSCs

Now, we turn to existentially k-bounded MSCs [18,19,24]. Synchronizability has been studied
for the p2p case in [18], so we only consider the mailbox case here. A linearization ⇝ of an
MSC M = (E , →,◁, λ) ∈ MSC is called k-mailbox-bounded if, for all e ∈ Matched(M), say
with λ(e) = send(p, q, m), we have #Send(,q,)(⇝, e) − #Rec(,q,)(⇝, e) ≤ k .

▶ Definition 36. Let M = (E , →,◁, λ) ∈ MSC and k ∈ N. We call M existentially k-
mailbox-bounded if it has some mailbox linearization that is k-mailbox-bounded.

Note that every existentially k-mailbox-bounded MSC is a mailbox
MSC.

▶ Example 37. MSC M5 in Fig. 7 is existentially 1-mailbox-bounded,
as witnessed by the (informally given) linearization s(q, p, m2) ⇝
s(p, q, m1) ⇝ s(q, r, m3) ⇝ r(q, r, m3) ⇝ r(p, q, m1) ⇝ s(p, q, m1) ⇝
r(q, p, m2) ⇝ s(q, r, m3) . . . Note that M5 is neither weakly nor
strongly synchronous as we cannot divide it into exchanges.

p q r
m

1

m
1

m
1

m
2

m
2

m3
m3

m3

Figure 7 MSC M5

14 A Unifying Framework for Deciding Synchronizability

Weakly synchronizable
Existentially bounded

Universally
bounded

Weakly
k-synchronizable S5S8S1S3S6S7

Figure 8 Hierarchy of classes for p2p systems

Weakly synchro.
Existentially

bounded

Weakly
k-synchro.

Strongly
synchro.

Strongly
k-synchro. Universally

bounded

S2

S9

S7

S13 S3

S11

S10

S6

S4 S12

S1

S5

S8

Figure 9 Hierarchy of classes for mailbox systems

▶ Proposition 38. For all k ∈ N, the set of existentially k-mailbox-bounded MSCs is MSO-
definable and STW-bounded.

This extension is also valid for the p2p definition of existentially k-bounded MSCs, which
were addressed in [18]. Finally, our framework can also be adapted to treat universally
bounded systems [21,24].

5 Relations Between Classes

In this section we study how the classes introduced and recalled so far are related to each
other. Notably, depending on the semantics (p2p or mailbox), we obtain two different
classifications. The results are summed up in Figures 8 and 9. Here, we define existentially
k-p2p-bounded MSCs and universally bounded counterparts as expected (formal definitions
are available in Appendices C.8 and C.9).

To refer to those systems we use the following terminology: a system S is called weakly
synchronizable (resp. strongly synchronizable) if all MSCs M in the respective language
are weakly synchronous (resp. strongly synchronous). A system is called weakly k-synchro-
nizable (resp. strongly k-synchronizable, existentially bounded or universally bounded) if all
MSCs are weakly k-synchronous (resp. strongly k-synchronous, existentially k-bounded or
universally k-bounded). A similar comparison relating existentially bounded systems, weakly
k-synchronizable systems, as well as other systems that have not been described here, can
also be found in [23] for p2p systems.

We give some results showing the inclusion of certain classes. Recall that strong k-
synchronizability is tailored to mailbox systems (cf. also Remark 34) so that, for p2p systems,
we only consider the case of weak (k-)synchronizability.

▶ Proposition 39. Every weakly k-synchronous MSC is existentially k-p2p-bounded. Moreover,
every strongly k-synchronous mailbox MSC is existentially k-mailbox-bounded.

Finally, if a system is weakly synchronizable and universally k-bounded then, there is
a k′ such that it is also weakly k′-synchronizable. The equivalent property is also valid for
strong classes.

B. Bollig et al. 15

▶ Proposition 40. Every weakly (resp. strongly) synchronizable and universally k-bounded
system is weakly (resp. strongly) k′-synchronizable for a k′.

6 Conclusion and Perspectives

We have presented a unifying framework based on MSO logic and (special) tree-width, that
brings together existing definitions, explains their good properties, and allows one to easily
derive other, more general definitions and decidability results for synchronizability. Let us
notice that the send-synchronizability does not fit in our framework because the question
Lp2p(S) ⊆ C0 would be decidable (by Theorem 11), where C0 is the set of send-synchronizable
MSCs, but this property is equivalent to checking whether the system S is send-synchronizable
and this last property is undecidable [16].

Many other related questions could be studied in the future. For example, we could
think about the hypotheses to add to our general framework to make the problem “does
there exist an k ≥ 0 such that Lp2p(S) ⊆ Ck?” decidable. From very recent work [20], one
knows that the problem “does there exist an k ≥ 0 such that the system is (weakly/strongly)
k-synchronizable?" is decidable; but it remains to be seen if it would be possible to obtain
these results by showing that these properties can be expressed in a decidable extension of
our framework. Let us remark that the decidability of the question whether there exists
an k ≥ 0 such that Lp2p(S) ⊆ Ck allows us to build a bounded model checking strategy by
first deciding whether there exists such an k ≥ 0 and then by testing if Lp2p(S) ⊆ Ck for
k = 0, 1, 2 One may use this strategy for weakly/strongly synchronizable systems, but
not for existentially bounded systems (except for deadlock-free systems) or for deterministic
deadlock-free universally bounded systems. In [23], Lange and Yoshida introduced an
asynchronous compatibility property and it would also be interesting to verify whether this
property could be expressed into our framework.

References
1 C. Aiswarya and Paul Gastin. Reasoning about distributed systems: WYSIWYG (invited talk).

In Venkatesh Raman and S. P. Suresh, editors, 34th International Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17,
2014, New Delhi, India, volume 29 of LIPIcs, pages 11–30. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.11.

2 C. Aiswarya, Paul Gastin, and K. Narayan Kumar. Verifying communicating multi-pushdown
systems via split-width. In Automated Technology for Verification and Analysis - 12th Inter-
national Symposium, ATVA 2014, volume 8837 of Lecture Notes in Computer Science, pages
1–17. Springer, 2014.

3 Samik Basu and Tevfik Bultan. Choreography conformance via synchronizability. In Sadagopan
Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi
Kumar, editors, Proceedings of the 20th International Conference on World Wide Web, WWW
2011, Hyderabad, India, March 28 - April 1, 2011, pages 795–804. ACM, 2011.

4 Bernard Boigelot and Patrice Godefroid. Symbolic verification of communication protocols
with infinite state spaces using qdds (extended abstract). In Rajeev Alur and Thomas A.
Henzinger, editors, Computer Aided Verification, 8th International Conference, CAV ’96, New
Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings, volume 1102 of Lecture Notes in
Computer Science, pages 1–12. Springer, 1996. doi:10.1007/3-540-61474-5_53.

5 Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded reachability problems are
decidable in FIFO machines. In Igor Konnov and Laura Kovacs, editors, Proceedings of the
31st International Conference on Concurrency Theory (CONCUR’20), volume 171 of Leibniz

https://doi.org/10.4230/LIPIcs.FSTTCS.2014.11
https://doi.org/10.1007/3-540-61474-5_53

16 A Unifying Framework for Deciding Synchronizability

International Proceedings in Informatics, pages 49:1–49:17, Vienna, Austria, September 2020.
Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/
12861.

6 Benedikt Bollig, Marie Fortin, and Paul Gastin. Communicating finite-state machines, first-
order logic, and star-free propositional dynamic logic. J. Comput. Syst. Sci., 115:22–53,
2021.

7 Benedikt Bollig and Paul Gastin. Non-sequential theory of distributed systems. CoRR,
abs/1904.06942, 2019. URL: http://arxiv.org/abs/1904.06942, arXiv:1904.06942.

8 Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the completeness of
verifying message passing programs under bounded asynchrony. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer Science, pages 372–391.
Springer, 2018. doi:10.1007/978-3-319-96142-2_23.

9 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983. URL: http://doi.acm.org/10.1145/322374.322380, doi:10.1145/
322374.322380.

10 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication.
Information and Computation, 202(2):166–190, November 2005. URL: http://www.lsv.
ens-cachan.fr/Publis/PAPERS/PDF/CF-icomp05.pdf, doi:10.1016/j.ic.2005.05.006.

11 Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to
verify than perfect channels. Information and Computation, 124(1):20–31, January 1996. URL:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/CFP-IC96.ps.

12 Bruno Courcelle. Special tree-width and the verification of monadic second-order graph
properties. In FSTTCS, volume 8 of LIPIcs, pages 13–29, 2010.

13 Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown
systems via split-width. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012 -
Concurrency Theory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne,
UK, September 4-7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science,
pages 547–561. Springer, 2012. doi:10.1007/978-3-642-32940-1_38.

14 Cinzia Di Giusto, Laetitia Laversa, and Étienne Lozes. On the k-synchronizability of systems.
In Jean Goubault-Larrecq and Barbara König, editors, Foundations of Software Science
and Computation Structures - 23rd International Conference, FOSSACS 2020, Proceedings,
volume 12077 of Lecture Notes in Computer Science, pages 157–176. Springer, 2020. doi:
10.1007/978-3-030-45231-5_9.

15 Javier Esparza, Pierre Ganty, and Rupak Majumdar. A perfect model for bounded verification.
In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer
Science, LICS ’12, pages 285–294, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/LICS.2012.39.

16 Alain Finkel and Étienne Lozes. Synchronizability of communicating finite state machines is
not decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 122:1–122:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

17 Alain Finkel and M. Praveen. Verification of Flat FIFO Systems. Logical Methods in
Computer Science, 20(4), October 2020. URL: https://lmcs.episciences.org/6839, doi:
10.23638/LMCS-16(4:4)2020.

18 Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with bounded
channels. Fundamenta Informaticae, 80(1-3):147–167, 2007.

19 Blaise Genest, Anca Muscholl, and Dietrich Kuske. A kleene theorem for a class of communic-
ating automata with effective algorithms. In Cristian Calude, Elena Calude, and Michael J.
Dinneen, editors, Developments in Language Theory, 8th International Conference, DLT 2004,

https://drops.dagstuhl.de/opus/volltexte/2020/12861
https://drops.dagstuhl.de/opus/volltexte/2020/12861
http://arxiv.org/abs/1904.06942
http://arxiv.org/abs/1904.06942
https://doi.org/10.1007/978-3-319-96142-2_23
http://doi.acm.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CF-icomp05.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CF-icomp05.pdf
https://doi.org/10.1016/j.ic.2005.05.006
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/CFP-IC96.ps
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-030-45231-5_9
https://doi.org/10.1007/978-3-030-45231-5_9
https://doi.org/10.1109/LICS.2012.39
https://lmcs.episciences.org/6839
https://doi.org/10.23638/LMCS-16(4:4)2020
https://doi.org/10.23638/LMCS-16(4:4)2020

B. Bollig et al. 17

Auckland, New Zealand, December 13-17, 2004, Proceedings, volume 3340 of Lecture Notes in
Computer Science, pages 30–48. Springer, 2004. doi:10.1007/978-3-540-30550-7_4.

20 Cinzia Di Giusto, Laetitia Laversa, and Étienne Lozes. Guessing the buffer bound for
k-synchronizability. In Implementation and Application of Automata - 25th International
Conference, CIAA 2021, Proceedings, Lecture Notes in Computer Science. Springer, 2021. To
appear.

21 Jesper G. Henriksen, Madhavan Mukund, K. Narayan Kumar, Milind Sohoni, and P.S.
Thiagarajan. A theory of regular msc languages. Information and Computation, 202(1):1–38,
2005.

22 Dietrich Kuske and Anca Muscholl. Communicating automata, 2014.
23 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating

session automata. CoRR, abs/1901.09606, 2019. URL: http://arxiv.org/abs/1901.09606,
arXiv:1901.09606.

24 Markus Lohrey and Anca Muscholl. Bounded MSC communication. In Mogens Nielsen and
Uffe Engberg, editors, Foundations of Software Science and Computation Structures, 5th
International Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings,
volume 2303 of Lecture Notes in Computer Science, pages 295–309. Springer, 2002. doi:
10.1007/3-540-45931-6_21.

25 Markus Lohrey and Anca Muscholl. Bounded MSC communication. Inf. Comput., 189(2):160–
181, 2004. doi:10.1016/j.ic.2003.10.002.

26 P. Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In Thomas Ball
and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 283–294. ACM, 2011.

27 Robert S. Streett. Propositional dynamic logic of looping and converse. In Proceedings of
the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee,
Wisconsin, USA, pages 375–383. ACM, 1981.

28 Gregor von Bochmann. Communication protocols and error recovery procedures. Operating
Systems Review, 9(3):45–50, 1975.

https://doi.org/10.1007/978-3-540-30550-7_4
http://arxiv.org/abs/1901.09606
http://arxiv.org/abs/1901.09606
https://doi.org/10.1007/3-540-45931-6_21
https://doi.org/10.1007/3-540-45931-6_21
https://doi.org/10.1016/j.ic.2003.10.002

18 A Unifying Framework for Deciding Synchronizability

A Proof for Section 2

A.1 Proof of Lemma 3

▶ Lemma 3. Every prefix of a mailbox MSC is a mailbox MSC.

Proof. Let M = (E , →,◁, λ) ∈ MSCmb and M0 = (E0, →0,◁0, λ0) be a prefix of M , i.e.,
E0 ⊆ E . By contradiction, suppose that M0 is not a mailbox MSC. Then, there are distinct
e, f ∈ E0 such that e ⪯M0 f ⪯M0 e with ⪯M0 = (→0 ∪ ◁0 ∪ ⊏M0)∗. As E0 ⊆ E , we have
that →0 ⊆ →, ◁0 ⊆ ◁, and ⊏M0 ⊆ ⊏M . Finally, ⪯M0 ⊆ ⪯M and M is not a mailbox MSC,
which is a contradiction. ◀

B Proofs for Section 3

B.1 Proof of Theorem 8

▶ Theorem 8. The bounded model-checking problem for com = mb is decidable. When the
formulas φ are from LCPDL, then the problem is solvable in exponential time.

Proof. Using the mailbox semantics and the MSO formula φmb, we get

Lmb(S) ∩ MSCk-stw ⊆ L(φ)

⇐⇒ Lp2p(S) ∩ MSCk-stw ∩ L(φmb) ⊆ L(φ)

⇐⇒ Lp2p(S) ∩ MSCk-stw ⊆ L(φ ∨ ¬φmb) .

The latter is decidable due to Fact 2. Similarly, we can use the LCPDL formula Φmb, whose
size is polynomial in the number of processes and messages. ◀

B.2 Proof of Lemma 10

▶ Lemma 10. Let k ∈ N and C ⊆ MSCk-stw. For all M ∈ MSC \ C, we have (Pref (M) ∩
MSC(k+2)-stw) \ C ̸= ∅.

Proof. Let k and C be fixed, and let M ∈ MSC \ C. Let M ′ ∈ Pref (M) \ C such that, for all
≤M ′-maximal events e of M ′, removing e (and its adjacent edge(s)) creates an MSC in C.
We obtain such an MSC by successively removing maximal events. If M ′ is the empty MSC,
we are done, since then M ′ ∈ (Pref (M) ∩ MSCk+2-stw) \ C. Otherwise, let e be ≤M ′ -maximal
and let M ′′ = M ′ \ {e}.

Since M ′ was taken minimal in terms of number of events, M ′′ ∈ C. So Eve has a winning
strategy with k + 1 pebbles for M ′′. Let us design a winning strategy with k + 3 pebbles for
Eve for M ′, which will show the claim.

Observe that the event e occurs at the end of the timeline of a process (say p), and it is
part of at most two edges:

one with the previous p-event (if any)
one with the corresponding send event (if e is a receive event)

Let e1, e2 be the two neighbors of e. The strategy of Eve is the following: in the first round,
mark e, e1, e2, then erase the edges (e1, e) and (e2, e), then split the remaining graph in two
parts: M ′′ on the one side, and the single node graph {e} on the other side. Then Eve
applies its winning strategy for M ′′, except that initially the two events e1, e2 are marked
(so she may need up to k + 3 pebbles). ◀

B. Bollig et al. 19

C Proofs for Section 4

C.1 Proof of Proposition 16

▶ Proposition 16. Let M be an MSC. Then, M is weakly synchronous iff no RS edge occurs
on any cyclic path in the conflict graph CG(M).

Proof. =⇒ Let M be an MSC. If M is weakly synchronous, then M = M1 · . . . · Mn such
that every Mi is an exchange. Hence, for every vertex v of the conflict graph, there is exactly
one index ι(v) ∈ {1, . . . , n} such that ∃λ−1(e) ∈ Mι(v), where e ∈ Send(, , v). Note that
if there is an edge from v to v′ in the conflict graph, some action of v must happen before
some action of v′, i.e., ι(v) ≤ ι(v′). Furthermore, note that if v

RS−−→ v′ , then ι(v) < ι(v′),
since within an exchange all the sends precede all the receives. So an RS edge cannot occur
on a cyclic path.

⇐= Let M be an MSC. We assume now that the conflict graph of M does not contain
a cyclic path with an RS edge. Let V1, . . . , Vn be the set of maximal SCCs of the conflict
graph, listed in some topological order. For a fixed i, let Mi = s1 . . . smr1 . . . rm′ be the
enumeration of the actions of the message exchanges of Vi defined by first taking all send
actions of Vi obeying the relation ≤M , and then all the receive actions of Vi in the same
order as in ≤M . Let M ′ = M1 . . . Mn. Then the conflict graph of M ′ is the same as that
of M , as the permutation of actions we defined could only postpone a receive after a send
of a same SCC, therefore it could only replace some v

RS−−→ v′ edge with an v
SR−−→ v′ edge

between two vertices v, v′ of a same SCC. However, since we assumed that the cycles (hence
by extensions SCCs) do not contain RS edges, this cannot happen. Therefore M and M ′

have the same conflict graph, and correspond to the same MSC. Furthermore, since each Mi

is a downward-closed set, M ′ is weakly synchronous, and so is M . ◀

C.2 Proof of Corollary 17

▶ Corollary 17. The sets of weakly synchronous MSCs and weakly synchronous mailbox
MSCs are LCPDL-definable. Both formulas have polynomial size.

Proof. LCPDL can be used to express the graphical characterization of weakly synchronous
MSCs. This follows from the formulas below. Here, we let R =

∨
a∈Rec(, ,) a.

SS−−→ = test(¬R)· →+ ·test(¬R)
RR−−→ = test(¬R) ·◁· →+ ·◁−1 ·test(¬R)
RS−−→ = test(¬R) ·◁· →+ ·test(¬R)
SR−−→ = test(¬R)· →+ ·◁−1 ·test(¬R)
CG−−→ = (SS−−→ + RR−−→ + RS−−→ + SR−−→)

The absence of RS edges in any cycle in the conflict graph can be expressed by the
following formula:

Φwsync = ¬Loop⟨(CG−−→)∗· RS−−→ ·(CG−−→)∗⟩ ◀

C.3 Proof of Theorem 20

▶ Theorem 20. The following problem is undecidable: Given finite sets P and M as well as
a communicating system S, is every MSC in Lp2p(S) weakly synchronous?

20 A Unifying Framework for Deciding Synchronizability

Proof. We show that the control state reachability problem for p2p weakly synchronizable
systems is not decidable. This immediately shows that the model-checking problem for p2p
weak synchronizable systems is not decidable. With some extra coding, it also shows that the
membership problem (decide whether a given system is p2p weakly synchronizable) also is
undecidable: indeed, it is enough to add a non weak synchronizable behavior after the control
states for which reachability is undecidable: the system will be not weakly synchronizable iff
the control states are reached.

We reduce from Post correspondence problem (PCP). Let us recall that a PCP instance
consists of N pairs (ui, vi) of finite words over an alphabet A, and that PCP undecidability
holds already for N = 7 and A = {0, 1}. We let the set of messages be {1, . . . , N} ⊎ A ⊎ {♯},
and we consider a system with four machines: Prover1, Prover2, Verifier1, and Verifier2. We
have unidirectional communication channels from provers to verifiers, so the system is weakly
synchronous by construction.

Informally, the system works as follows:

Prover1 guesses a solution ui1 . . . uim
of the PCP instance, and Prover2 also guesses the

same solution vi1 ...vim
.

Prover1 sends ui1 . . . uin to Verifier1 and sends simultaneously i1 . . . im to Verifier2
Prover2 sends vi1 . . . vim

to Verifier1 and sends simultaneously i1 . . . im to Verifier 2
Verifier1 checks that the two words are equal and Verifier2 checks that the sequences of
indices are equal.

Let us now formally define these machines. We describe them with regular expressions. For
w = a1 · · · an, we write send∗(p, q, w) (resp rec∗(p, q, w)) for send(p, q, a1) · · · send(p, q, an)
(resp rec(p, q, a1) · · · rec(p, q, an)). We abbreviate Prover1 as P1, Prover2 as P2, Verifier1 as
V1, and Verifier2 as V2

Prover1 is

(N∑
i=1

send(P1, V1, i)send∗(P1, V2, ui)
)+send(P1, V1, ♯)send(P1, V2, ♯)

Prover2 is

(N∑
i=1

send(P2, V1, i)send∗(P2, V2, vi)
)+send(P2, V1, ♯)send(P2, V2, ♯)

Verifier1 is (N∑
i=1

rec(P1, V1, i)rec(P2, V1, i)
)∗rec(P1, V1, ♯)rec(P2, V1, ♯)

Verifier2 is (∑
a∈Σ

rec(P1, V2, a)rec(P2, V2, a)
)∗rec(P1, V2, ♯)rec(P2, V2, ♯)

It can be checked that all machines reach their own final state if and only if the PCP
instance has a solution. ◀

B. Bollig et al. 21

C.4 Proof of Proposition 24

▶ Proposition 24. Let k ∈ N. The set of weakly k-synchronous p2p (mailbox, respectively)
MSCs is effectively MSO-definable.

Proof. The formula for the property that there is no strongly connected component of size
greater than k in the conflict graph is as follows:

∄e1, . . . , ek+1. [
∧
i ̸=j

CG∗(ei, ej)] ◀

C.5 Proof of Proposition 26

▶ Proposition 26. Let k ∈ N. The set of MSCs that are weakly k-synchronous have special
tree-width bounded by 2k + |P|.

Proof. Let M be a k-synchronous MSC. By definition, we know that M = M1 · . . . · Mn such
that every Mi is a k-exchange.

Eve’s strategy is to mark the vertices belonging to the set M1. Hence, she marks at most
2k vertices. We can remove the edges between these vertices. Let the new marked MSC
fragment be (G, U), where G is the new MSC fragment (with the edges between marked
vertices removed), and U the set of marked vertices.

Notice that |U | ≤ 2k. Furthermore, since every vertex corresponding to a send message
in U is either unmatched or matched with a reception in U (by definition), we can be sure
that there are no message edges between vertices of U and any other vertex. Moreover, we
can also be sure that there are at most |P| process edges between vertices in U and vertices
outside this set. Let us mark these |P| vertices. We call these vertices U ′. Let the new
marked MSC fragment be (G′, U ∪ U ′), where G′ is the new MSC fragment (with the edges
between all vertices in U ∪ U ′ removed). Now, we see that there are no edges between any of
the vertices in U and any other vertex, i.e. all the vertices in U are isolated. We can divide
the MSC fragment to consist of the vertices U and V \ U and the corresponding edges.

Let the MSC fragment with vertices in U be (G1, U1). It consists of at most 2k isolated
colored vertices. Let the MSC fragment with vertices in V \ U be (G2, U2). We observe
that |U2| = n. Adam trivially loses if he chooses (G1, U1), hence, he has to choose (G2, U2).
Now, we mark the vertices corresponding to M2, which are again, at most 2k. We have two
possibilities for each vertex in U2, either they belong to the set M2 or belong to another set
Mp where p > 2. However, if they belong to Mp, we can be sure that there is no other event
on the same process that belongs to M2 - this is because it was the successor of some event
in M1. Hence, we see once again, that marking all the vertices in M2 and the immediate
successors along each process will result in marked vertices of size at most 2k + |P|. And
once again, we see that we can separate into MSC fragments (G′

1, U ′
1) and (G′

2, U ′
2) such

that every vertex in U ′
1 is isolated, and |U ′

1| ≤ 2k. We do this for all i ∈ [n], and hence,
we can effectively use 2k + |P| colors. Therefore, set of MSCs over |P| processes which are
k-synchronous have bounded special tree-width. ◀

C.6 Proof of Proposition 32

As was shown in [14], in order to capture the mailbox semantics, we need extended edges.
We recall from [14] the extended edge relation XY

999K with X, Y ∈ {S, R} in Figure 10. We
call the conflict graph along with the new extended edges the extended conflict graph (ECG).
This graph is also used to characterize some classes of MSCs in Section 4.3.

22 A Unifying Framework for Deciding Synchronizability

v1
XY−−→ v2

v1
XY
999K v2

(Rule 1) v ∈ ◁

v
SR
999K v

(Rule 2) v1
RR−−→ v2

v1
SS
999K v2

(Rule 3)

v1
XY
999K

Y Z
999K v2

v1
XZ
999K v2

(Rule 4)

e1 ∈ Matched(M) e2 ∈ Unm(M)
e1 ∈ Send(p1, q,), e2 ∈ Send(p2, q,), p1, p2, q ∈ P

µ(e1) SS
999K e2

(Rule 5)

Figure 10 Additional rules for extended conflict graph; XY−−→ refers to an edge in the conflict
graph

▶ Proposition 32. For all k ∈ N, the set of strongly k-synchronous mailbox MSCs is
MSO-definable and STW-bounded.

Similar to Theorem 25, we now show the graphical characterization of strong synchroniz-
ability.

▶ Theorem 41 (Graphical Characterization of strongly k-synchronous MSCs). Let M ∈ MSCmb.
M is strongly k-synchronous iff every strongly connected component (SCC) in the ECG is of
size at most k and no RS edge occurs on any cycle in the ECG.

Proof. (=⇒) Assume that we have an MSC M that is strongly k-synchronous. Hence, we
can divide M = M1 . . . Mn such that each Mi is a k-exchange. By contradiction, suppose
that there is an SCC of size k′ > k in ECG(M). As there are at most k messages in
each k-exchange, there are v, v′ which belong to the SCC such that v ∈ Mi and v′ ∈ Mj ,
1 ≤ i < j ≤ n. Then, we have v 99K∗ v′ 99K∗ v.

By induction, we prove that v′ 99K∗ v implies that j ≤ i.

Base There are two cases.
Suppose that v′ XY−−→ v then an action of v′ is done by the same process than an action
of v and it is done before it. Then, j ≤ i.
Suppose that v′ SS

999K v, built by Rule 5 (because others rules do not add any
edges between vertices that are not already connected), then, v′ is matched and v is
unmatched, such that, v ∈ Send(q, p, v) and v′ ∈ Send(q′, p, v′), q, q′ ∈ P. Then, the
send of v′ has to be done before the send of v and so j ≤ i.

Step By hypothesis, there is v′ 99K∗ v1 99K v such that v1 ∈ Ml, j ≤ l ≤ n. There are also two
cases.

Either v1
XY−−→ v. Then, an action of v1 is done before and by the same process than

an action of v. Then, l ≤ i and so j ≤ i.
Or v1

SS
999K v. Then, similarly as before, v1 has to be sent before v and so l ≤ i.

Therefore, j ≤ i.

Finally, we have that v′ 99K∗ v implies that j ≤ i and so there is a contradiction.
Now, we show that there is no RS edge in any SCC. By contradiction, suppose that we

have v
RS−−→ v′ 99K∗ v in the extended conflict graph. Then, as proved before, v and v′ have

to be in the same Mi, 1 ≤ i ≤ n. However, v
RS−−→ v′ implies that the reception of v has to

be done before the send of v′, but a k-exchange can, by definition, be linearized with all the
sends followed by all the receptions. So we have a contradiction.

B. Bollig et al. 23

(⇐=) Conversely, assume that every SCC in the extended conflict graph of M is of size
at most k and no RS edge occurs on any cyclic path in the ECG. Then, we first show that
every SCC in the extended conflict graph is k-synchronous. Let C be an SCC formed of a
set of nodes v1, · · · , vn, for some 1 ≤ n ≤ k such that si ∈ Send(, , vi), for all 1 ≤ i ≤ n.
W.l.o.g., assume that the indexing of the nodes in C is consistent with the edges labeled by SS
(note that there is no cycle formed only of edges labeled by SS), i.e., for every 1 ≤ i1 < i2 ≤ n,
C doesn’t contain an edge labeled by SS from i2 to i1, and for every 1 ≤ i < j < k ≤ n,
if si, sk ∈ Send(p, ,) for p ∈ P then sj ∈ Send(p, ,). Let i1, · · · , im be the maximal
subsequence of 1, . . . , n such that rℓ ∈ Rec(, , vi) for every ℓ = ij where 1 ≤ j ≤ m. We
have that C is the graph of the execution e = si1 · · · sin

ri1 · · · rim
. The fact that all sends

can be executed before the receives is a consequence of the fact that C doesn’t contain edges
labeled by RS. Then, the order between receives is consistent with the one between sends
because C satisfies causal delivery. By definition, e is the label of an n-exchange transition,
and therefore, C is strongly k-synchronous.

To complete the proof we proceed by induction on the number of strongly connected
components of the extended conflict graph. The base case is for an MSC with a single SCC,
which can be deduced from above. For the induction step, assume that the claim holds for
every MSC whose extended conflict graph has at most n strongly connected components, and
let M be a MSC with n + 1 strongly connected components. Let C be a strongly connected
component of M such that C has no outgoing edges towards another strongly connected
component of M . By the definition of the extended conflict-graph, M = M ′ · M ′′ is the MSC
corresponding to the nodes of C. We have shown above that M ′′ is k-synchronous, and by
the induction hypothesis, M ′ is also k-synchronous. As there is no outgoing edges from M ′′,
we know that all messages in it have not to be done before a message of M ′. Therefore, M

is strongly k-synchronous. ◀

For the extended conflict graph, we use the following MSO formulas to express the edge
relation. For instance, the extended SR edge relation includes all SR edges along with the set
of self loops around each message that ensures that the sends are before the corresponding
receives.

ESR(e1, e2) = SR(e1, e2) ∨ (∃f1. [e1 ◁ f1 ∧ (e1 = e2)])

Similarly, the extended send edge relation includes the SS edges along with the edges
produced from Rule 3 and Rule 5.

ESS(e1, e2) = SS(e1, e2) ∨ RR(e1, e2) ∨
(

∃f1. [e1 ◁ f1 ∧ ∄f2. [e2 ◁ f2]]

∧
∨

p,p′,q∈P
[(λ(e1) = Send(p, q,) ∧ λ(e2) = Send(p′, q,))]

)

The extended RR and RS edges are the same as in the conflict graph.

ERR(e1, e2) = RR(e1, e2)
ERS(e1, e2) = RS(e1, e2)

The transitive closure of each of these formulas is defined as follows. It essentially takes
care of Rule 4. For all X, Y, Z ∈ {R, S}, we have:

24 A Unifying Framework for Deciding Synchronizability

EXY(e1, e2) ∧ EYZ(e2, e3) =⇒ EXZ∗(e1, e3)
EXZ(e1, e2) =⇒ EXZ∗(e1, e2)

We then extend the rest of the results, as in the case of the conflict graph in the previous
section.

And finally, for the condition of the bounded STW, we observe that the set of strongly
k-synchronizable MSCs are included in the set of weakly k-synchronizable MSCs. Hence, the
decomposition strategy as used for the weakly k-synchronizable MSCs can be applied to the
set of strongly k-synchronizable MSCs.

Therefore, the family (Ck)k∈N is MSO-definable and STW-bounded.

C.7 Proof of Proposition 38

We define the following relation in order to characterize k-mailbox-bounded MSCs.
Let k ≥ 1, and let M be a fixed mailbox MSC. Let rev−−→k be the binary relation among

events of M defined as follows: r
rev−−→k s if

1. r is a receive event of a process p;
2. let r′ be the k-th receive event of process p after r; then s◁ r′.

▶ Lemma 42. M is existential k-mailbox-bounded if and only if ⪯M ∪ rev−−→k is acyclic.

Proof. Assume that M is existential k-mailbox-bounded. Let ⇝ be a mailbox linearisation
of M such that for all e ∈ Matched(M), say with λ(e) = send(p, q, m),

#Send(−,q,)(⇝, e) − #Rec(−,q,)(⇝, e) ≤ k .

Then ⇝ is also a linearisation of (⪯M ∪ rev−−→k)∗. Indeed, if it was not the case, there would
be a pair of events r, s such that r

rev−−→k s and s⇝ r. But then we would have

#Send(−,q,)(⇝, s) − #Rec(−,q,)(⇝, s) > k ,

and the contradiction. So ⇝ is a linearisation of (⪯M ∪ rev−−→k)∗ and ⪯M ∪ rev−−→k is acyclic.
Conversely, assume that ⪯M ∪ rev−−→k, and let ⇝ be a linearisation of (⪯M ∪ rev−−→k)∗. In

particular, ⇝ is a mailbox linearisation of M . Let us show that for all s ∈ Matched(M), say
with λ(s) = send(p, q, m),

#Send(−,q,)(⇝, s) − #Rec(−,q,)(⇝, s) ≤ k .

Let s ∈ Matched(M) be fixed, and let r′ be such that s◁ r′. There are two cases:

#Rec(−,q,)(→, r′) ≤ k. Then

#Send(−,q,)(⇝, s) ≤ k ,

because all sends before s are matched. So

#Send(−,q,)(⇝, s) − #Rec(−,q,)(⇝, s) ≤ k ,

#Rec(−,q,)(→, r′) ≤ k. Then there is r on process q such that r
rev−−→k s. So r ⇝ s, and

there are at most k messages in the buffer of q at the time of event s, or in other words,

#Send(−,q,)(⇝, e) − #Rec(−,q,)(⇝, e) ≤ k .

B. Bollig et al. 25

So ⇝ is a mailbox linearisation with k bounded buffers, and M is existential k-mailbox-
bounded. ◀

▶ Proposition 38. For all k ∈ N, the set of existentially k-mailbox-bounded MSCs is MSO-
definable and STW-bounded.

Proof. Let k ≥ 1 be fixed. Since every existentially k-mailbox-bounded MSCs is also
existentially k-p2p-bounded, and since the class of existentially k-p2p-bounded MSCs is STW
bounded (cf Proposition 44), the class of existentially k-mailbox-bounded MSCs is also STW
bounded.

Let us show that it is moreover MSO definable.
By Lemma 42, it is enough to show that the acyclicity of ⪯M ∪ rev−−→k is MSO definable,

and since ⪯M was already shown MSO definable and acyclicity is easily MSO definable, it is
enough to show that rev−−→k is MSO definable. It is indeed the case, as demonstrated by this
formula

φ(r, s) = ∃r1, r2, . . . , rn.r → r1 → r2 → . . . → rn ∧ s◁ rn.

Finally, let us show that existentially k-mailbox-bounded is also LCPDL definable. This
follows from the following formulas:

≺M = (◁+ →)+

R = ⟨◁−1⟩⊤
next R−−−−→= (→ ∧test(¬R))∗ · (→ ∧test(R))

rev−−→k= (next R−−−−→)k.(◁)−1.

Φ∃k mb-bounded = ¬ELoop⟨(≺M + rev−−→k)+⟩
◀

C.8 Existentially k-p2p-bounded MSCs

▶ Definition 43. Let M = (E , →,◁, λ) ∈ MSC and k ∈ N. A linearization ⇝ of M is called
k-p2p-bounded if, for all e ∈ Matched(M), say with λ(e) = send(p, q, m),
#Send(p,q,)(⇝, e) − #Rec(p,q,)(⇝, e) ≤ k ,

We call M existentially k-p2p-bounded if it has some p2p linearization that is k-p2p-
bounded,

▶ Proposition 44. For all k ∈ N, the set of existentially k-p2p-bounded MSCs is MSO-
definable and STW-bounded.

Proof. The set of existentially k-p2p-bounded MSCs was shown to be MSO-definable (in
fact, even FO-definable) in [25]. Note that there are minor differences in the definitions (in
particular, the fact that we deal with unmatched messages), which, however, do not affect
FO-definability. In [7, Proposition 5.4, page 163], it was shown that their special tree-width
is bounded by k|P|2 + |P|. ◀

▶ Theorem 45. For com ∈ {p2p, mb}, the following problem is decidable: Given finite sets
P and M, a communicating system S, and k ∈ N, is every MSC in Lcom(S) existentially
k-p2p-bounded?

Proof. Again, the proof follows exactly the same lines as that or Theorem 27, now using
Proposition 44. ◀

Note that this is similar to the problem considered in [18, 22], though there is a subtle
difference: in [18,22], there are a notion of deadlock and distinguished final configurations.

26 A Unifying Framework for Deciding Synchronizability

C.9 Definition of universally bounded MSCs

▶ Definition 46 (Universally bounded MSC). Let M = (E , →,◁, λ) and k ∈ N. We call M

universally k-p2p-bounded (resp., universally k-mailbox-bounded) if every p2p (resp., mailbox)
linearization ⇝ ⊆ E × E is k-p2p-bounded (resp., k-mailbox-bounded).

D Additional Material for Section 5

D.1 Proofs

Proof of the property from Remark 34:

▶ Proposition 47. Consider an MSC of the form M = M1 · . . . · Mn such that every MSC
Mi = (Ei, →i,◁i, λi) is a (k-)exchange. Then, for all (e, f) ∈ ≤M , there are 1 ≤ i ≤ j ≤ n

such that e ∈ Ei and f ∈ Ej.

Proof. If e ≤M f , then there is a sequence of events e = e0 ▷◁1 e1 ▷◁2 . . . ▷◁m em = f where
▷◁ is either → or ◁. Clearly, for every ℓ ∈ {0, . . . , m − 1}, there are 1 ≤ i ≤ j ≤ n such that
eℓ ∈ Ei and eℓ+1 ∈ Ej . By transitivity, this proves the statement. ◀

▶ Proposition 39. Every weakly k-synchronous MSC is existentially k-p2p-bounded. Moreover,
every strongly k-synchronous mailbox MSC is existentially k-mailbox-bounded.

Proof. We begin by considering a p2p MSC. Let M ∈ MSC be such that M is strongly
k-synchronous. Then, there is M = M1 · · · Mn, Mi which is a k-exchange, 1 ≤ i ≤ n. By
induction on M :

1. Base M = M1 then M is a k-exchange and by definition |Matched(M) ∪ Unm(M)| ≤ k.
Then, for all e ∈ Matched(M) s.t. λ(e) = send(p, q, m), we have

#Send(p,q,)(⇝, e) − #Rec(p,q,)(⇝, e) ≤ k.

Then, M is k-p2p-bounded.
2. Step M = M ′ · Mn and we suppose that M ′ = M1 · · · Mn−1 is k-p2p-bounded. For

all 1 ≤ i ≤ n, Mi is a k-exchange, and so an MSC, and by definition we know that
any reception belongs to the same MSC as its matched send. Let ⇝ be a linearization
and f ∈ Matched(M ′) s.t. λ(f) = send(p, q, m) and, for all e ∈ Matched(M ′) s.t.
λ(e) = send(p, q, m),

#Send(p,q,)(⇝, f) > #Send(p,q,)(⇝, e).

Then, we have:

#Send(p,q,)(⇝, f) − #Rec(p,q,)(⇝, f) = 0.

Note that there is no unmatched message sent to q before f as f is matched. As Mn is a
k-exchange, we have for all e ∈ Matched(Mn) s.t. λ(e) = send(p, q, m)

#Send(p,q,)(⇝, e) − #Rec(p,q,)(⇝, e) ≤ k.

Finally, for all e′ ∈ Matched(M) s.t. λ(e′) = send(p, q, m), there is e ∈ Matched(Mn)
such that we can decompose:

#Send(p,q,)(⇝, e′) = #Send(p,q,)(⇝, f) + #Send(p,q,)(⇝, e)

B. Bollig et al. 27

and

#Rec(p,q,)(⇝, e′) = #Rec(p,q,)(⇝, f) + #Rec(p,q,)(⇝, e).

Therefore

#Send(p,q,)(⇝, e′) − #Rec(p,q,)(⇝, e′) ≤ k.

Then, M is k-p2p-bounded.

Now, we move to mailbox MSCs. Let M ∈ MSCmb be a strongly k-synchronous MSC. By
definition, M = M1 · · · Mn such that every Mi = (Ei, →i,◁i, λi) is a k-exchange and, for all
(e, f) ∈ ⊏M , there are indices 1 ≤ i < j ≤ n such that e ∈ Ei and f ∈ Ej .

By induction of M , we show that M is k-mailbox-bounded.

1. Base M = M1 then M is a k-exchange and |Matched(M) ∪ Unm(M)| ≤ k. Let ⇝ be
any linearization of M and so, for all e ∈ Matched(M) s.t. λ(e) = send(p, q, m), we have
#Send(,q,)(⇝, e) − #Rec(,q,)(⇝, e) ≤ k. Then, M is k-mailbox-bounded.

2. Step M = M ′ · Mn and we suppose that M ′ = M1 · · · Mn−1 is k-mailbox-bounded. For
all 1 ≤ i ≤ n, Mi is a k-exchange, and so an MSC, and by definition we know that
any reception belongs to the same MSC as its matched send. Let ⇝ be a linearization
and f ∈ Matched(M ′) s.t. λ(f) = send(p, q, m) and, for all e ∈ Matched(M ′) s.t.
λ(e) = send(p, q, m),

#Send(,q,)(⇝, f) > #Send(,q,)(⇝, e).

Then, we have:

#Send(,q,)(⇝, f) − #Rec(,q,)(⇝, f) = 0.

Note that there is no unmatched message sent to q before f as f is matched. As Mn is a
k-exchange, we have for all e ∈ Matched(Mn) s.t. λ(e) = send(p, q, m)

#Send(,q,)(⇝, e) − #Rec(,q,)(⇝, e) ≤ k.

Finally, for all e′ ∈ Matched(M) s.t. λ(e′) = send(p, q, m), there is e ∈ Matched(Mn)
such that we can decompose:

#Send(,q,)(⇝, e′) = #Send(,q,)(⇝, f) + #Send(,q,)(⇝, e)

and

#Rec(,q,)(⇝, e′) = #Rec(,q,)(⇝, f) + #Rec(,q,)(⇝, e).

Therefore

#Send(,q,)(⇝, e′) − #Rec(,q,)(⇝, e′) ≤ k.

Then, M is k-mailbox-bounded.

◀

▶ Proposition 40. Every weakly (resp. strongly) synchronizable and universally k-bounded
system is weakly (resp. strongly) k′-synchronizable for a k′.

28 A Unifying Framework for Deciding Synchronizability

Proof. Let S be a system such that, for all M ∈ MSC, M = M1 · · · Mn where Mi is an
exchange, 1 ≤ i ≤ n. Moreover, for all e ∈ Matched(M) s.t. λ(e) = send(p, q, m),

if M ∈ MSC \ MSCmb, for all ⇝⊆ ≤M ,

#Send(p,q,)(⇝, e) − #Rec(p,q,)(⇝, e) ≤ k.

if M ∈ MSCmb, for all ⇝⊆ ⪯M ,

#Send(,q,)(⇝, e) − #Rec(,q,)(⇝, e) ≤ k.

1. Base Suppose that M = M1 so M is an exchange.

Either M ∈ MSC \ MSCmb and, as M is k-p2p-bounded, | M |= k1 ≤ k× | P |2. So M

is weakly k1-synchronous.
Or M ∈ MSCmb and, as M is k-mailbox-bounded, | M |= k2 ≤ k× | P |. So M is
strongly k2-synchronous.

2. Step Suppose now that M = M ′ · M ′′ such that M ′ is weakly k-synchronous for a k′ ∈ N.
Then,

if M ∈ MSC \ MSCmb, for all linearizations ⇝⊆≤M , let f ∈ Matched(M ′) s.t. λ(f) =
send(p, q, m) and, for all e ∈ Matched(M ′) s.t. λ(e) = send(p, q, m),

#Send(p,q,)(⇝, f) > #Send(p,q,)(⇝, e).

Then, we have:

#Send(p,q,)(⇝, f) − #Rec(p,q,)(⇝, f) = 0.

As S is universally k-bounded, | M ′′ |≤ k1, and as M ′′ is an exchange, we know that
M ′′ is a k1-exchange.
if M ∈ MSCmb, for all linearizations ⇝⊆⪯M , let f ∈ Matched(M ′) s.t. λ(f) =
send(p, q, m) and, for all e ∈ Matched(M ′) s.t. λ(e) = send(p, q, m),

#Send(,q,)(⇝, f) > #Send(,q,)(⇝, e).

Then, we have:

#Send(,q,)(⇝, f) − #Rec(,q,)(⇝, f) = 0.

As S is universally k-bounded, | M ′′ |≤ k2, and as M ′′ is an exchange, we know that
M ′′ is a k2-exchange.

Then, M is at least weakly k1-synchronous (k1 > k2).

Finally, as all MSCs are weakly k1-synchronous, S is weakly k1-synchronizable.
The equivalent proposition for strong properties can be shown in the same way. As an

MSC is strongly synchronizable, it can be divided while maintaining the mailbox order. In a
recursive way, as MSC is universally k-bounded, we have that each exchange of the MSC
is bounded. Finally, each MSC is strongly k′-synchronous for a k′ depending of k and the
number of channels, and so the system is strongly k′-synchronizable.

◀

B. Bollig et al. 29

D.2 Examples

D.2.1 p2p systems

For p2p semantics, weakly synchronizable and strongly synchronizable systems form a single
class, as strongly k-synchronizable and weakly k-synchronizable form a single class too.
Indeed, as a consequence of Proposition 47, weakly k-synchronizable systems are strongly
k-synchronizable, and weakly synchronizable are strongly synchronizable. Therefore, for this
p2p part, we will only talk about weak classes. We will see that this is not the case for
mailbox systems.

However, universally bounded and existentially bounded classes are not equal, an univer-
sally bounded system is existentially bounded by definition but we can find a existentially
bounded system, as system S5 in Fig. 11 where, as we can see in a corresponding MSC in
Fig. 7, an unbounded number of m3 can be sent before be read by r, which prevent the
system to be universally bounded.

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) send(p, q, m1)

rec(q, p, m2)

Ap

ℓ0
q ℓ1

q

send(q, p, m2)

rec(p, q, m1)

send(q, r, m3) send(q, r, m3)

Aq

ℓ0
r

rec(q, r, m3)

Ar

Figure 11 System S5

By definition, weakly k-synchronizable systems are weakly synchronizable. Also, strongly
k-synchronizable systems are included into existentially k-bounded systems, as proved by
Proposition 39, so weakly k-synchronizable are included into existentially k-bounded.

We can see that weakly synchronizable systems and existentially bounded systems are
incomparable. System S6 in Fig. 12 is weakly synchronizable because we can send all
messages before read them, and existentially 1-bounded because each MSC of Lp2p(S6) has a
linearization of the form send(q, p, m2) · (send(p, q, m1) · rec(p, q, m1))∗rec(q, p, m2), allowing
to have in each channel only one pending message.

ℓ0
p ℓ1

p

send(p, q, m1)

rec(q, r, m2)

Ap

ℓ0
q ℓ1

q

send(q, r, m2)
rec(p, q, m1)

Aq

Figure 12 System S6

p q

m
1

m
1

m
2

Figure 13 MSC M6

But, system S7 in Fig.14 is only weakly synchronizable. Indeed, for each execution we
can add an iteration of message m1 or m2, or both, and, as we can see in Fig. 15, we need to
send all messages before begin to read, and so each execution need a bigger channel than the
previous one.

30 A Unifying Framework for Deciding Synchronizability

ℓ0
p ℓ1

p

send(p, q, m1)

send(p, q, m1)

rec(q, p, m2)Ap

ℓ0
q ℓ1

q

send(q, p, m2)

send(q, p, m2)

rec(p, q, m1)Aq

Figure 14 System S7

p q

m
1

m
1

m
2

m
2

Figure 15 MSC M7

For system S8 in Fig. 16, we can see an example of MSC in Fig. 17 which cannot be
divided into exchanges as send and receptions are intertwined and so S8 is not weakly
synchronizable.

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) send(p, q, m1)

rec(q, p, m2)

Ap

ℓ0
q ℓ1

q

send(q, p, m2)

rec(p, q, m1)

Aq

Figure 16 System S8

p q

m
1

m
1

m
1

m2

m2

Figure 17 MSC M8

We can observe that S8 is universally 3-bounded as each time a message is sent, one is
received and the maximal number of messages in a buffer is 3. As we said, S7 is weakly
synchronizable but not existentially bounded and so not universally bounded, so weakly
synchronizable and universally bounded systems are incomparable. However, as proved in
Proposition 40, a system which is both is also weakly k-synchronizable (not necessarly for
the same k).

Finally, weakly k-synchronizable and universally k-bounded systems are incomparable.
System S1 in Fig. 2 is both weakly 1-synchronizable and universally 1-bounded. But, we
have, for example, system S3 below which is weakly 1-synchronizable but not universally
k-bounded for any k. Indeed, each execution can be rescheduled to have all the receptions
just after the respective sends. Then each MSC can be divided into 1-exchanges (for an
example, see MSC M3 in Fig. 5). However, as we can send an unbounded number of m2
messages before reading them, the size of channel cp can also be unbounded thus the system
is not universally bounded. Conversely, as we have seen, system S8 is universally 3-bounded
but not weakly k-synchronizable for any k.

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) rec(q, p, m2)

rec(q, p, m2)

Ap

ℓ0
q ℓ1

q ℓ2
q

send(q, p, m2)

send(q, p, m2)

rec(r, q, m3)

Aq

ℓ0
r ℓ1

r

send(r, q, m3)

Ar

Figure 18 System S3

B. Bollig et al. 31

D.2.2 Mailbox systems

Now consider mailbox semantics. As depicted in Fig. 9, we can now distinguish between
weakly and strongly synchronizable systems.

Some inclusions are obvious, by definition of the classes:

universally bounded systems are existentially bounded, but it is a proper inclusion. Indeed,
a system, as system S5 in Fig. 11, can be existentially 1-bounded, but not universally
bounded. In this case, as in p2p semantics, an unbounded number of message m3 can be
sent before be read, as we can see in MSC M5 in Fig. 7.

strongly k-synchronizable systems are strongly synchronizable. As well, a system can be
strongly synchronizable without have a bound on the size of its exchange, as system S7
in Fig 14. See an example of MSC of S7 in Fig 15, where we can always build a bigger
exchange adding iterations of messages m1 or m2.

weakly k-synchronizable systems are weakly synchronizable. We can also find a weakly
synchronizable system without bound on the size of its exchange. Let see S2 in Fig. 19
with MSC M2 in Fig. 4, which can be divided into exchanges, each message can be in a
separate exchange, except messages m2 and m3 that have to be all in the same exchange.
As we can have as many repetitions of them, this exchange no have bound on its size and
prevent the system to be weakly k-synchronizable for a precise k.

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) rec(q, p, m2)
Ap

ℓ0
q ℓ1

q ℓ2
q

send(q, r, m3)
send(q, r, m3)

rec(r, q, m4)
rec(r, q, m5)

Aq

ℓ0
q ℓ1

q ℓ2
q

send(r, q, m4)
send(r, q, m4) rec(q, r, m3)

send(r, q, m5)
Ar

Figure 19 System S2

The classes of weakly synchronizable and weakly k-synchronizable systems are incompar-
able with the classes of existentially bounded and universally bounded systems.

Indeed, let see system S8 in Fig. 16 which is universally 3-bounded. It cannot be weakly
synchronizable (and so weakly k-synchronizable for a k) as we cannot divide a corresponding
MSC, as M8 in Fig. 17, into exchanges, where all sends have to be before all receptions, as
in p2p semantics. We see a difference with the p2p semantics looking at S9 in Fig. 20 which
is weakly synchronizable but not existentially bounded. Indeed, we can see in Fig. 21 that
M9 can be divided easily into 1-exchange but, as m1 has to be sent before m4, and m2 has
to be sent to send m4, it means that all messages m2 have to wait the send of m4 to be
read. Then, each execution is x-mailbox-bounded, where x is the number of repetitions of
m2. Then, there is no bound on the buffers and S9 cannot be existentially bounded (and so
universally bounded).

32 A Unifying Framework for Deciding Synchronizability

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m2)
send(p, q, m2)
send(p, s, m3)

Ap

ℓ0
q ℓ1

q ℓ2
q

send(q, r, m1) rec(p, q, m2)
rec(p, q, m2)Aq

ℓ0
r ℓ1

r

rec(s, r, m4)
Ar

ℓ0
s ℓ1

s ℓ2
s

rec(p, s, m3) send(s, r, m4)
As

Figure 20 System S9

p q r s

m1

m2

m2

m3

m4

Figure 21 MSC M9

Finally, as proved in Proposition 40, if a system is weakly synchronizable and universally
bounded system, there is a k such that it is also strongly k-synchronizable. In all the other
intersections, we can find a system:

weakly synchronizable and existentially bounded (but not weakly k-synchronizable or
universally bounded): S10 in Fig. 22 is existentially 1-bounded but there is no bound on
the size of the exchange containing messages m3 and m4 and so S10 cannot be weakly
k-synchronizable, and repetitions of m3 prevent it to be universally bounded;

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) rec(q, p, m2)
Ap

ℓ0
q ℓ1

q ℓ2
q

send(q, r, m3)
rec(r, q, m4) rec(r, q, m5)

Aq

ℓ0
q ℓ1

q ℓ2
q

send(r, q, m4)
rec(q, r, m3)

send(r, q, m5)
Aq

Figure 22 System S10

q rp

m1
m2

m
3

m
3
m

4

m5

Figure 23 MSC M10

weakly k-synchronizable and existentially bounded (but not universally bounded): S11
in Fig. 24 is weakly 1-synchronizable and existentially 1-bounded but repetitions of m3
prevent it from being universally bounded;

ℓ0
p ℓ1

p ℓ2
p

send(p, q, m1) rec(q, p, m2)
Ap

ℓ0
q ℓ1

q ℓ2
q

send(q, r, m3)
send(q, p, m2) rec(r, q, m4)

Aq

ℓ0
q ℓ1

q

rec(q, r, m3)
send(r, q, m4)

Aq

Figure 24 System S11

q rp

m1

m2

m3

m3

m4

Figure 25 MSC M11

weakly k-synchronizable and universally bounded as S8 in Fig. 2.

B. Bollig et al. 33

Now, focus on the strong classes. We know by Proposition 39 that a strongly k-synchro-
nizable is existentially bounded. So let compare strongly k-synchronizable systems with
universally bounded ones. We can see that there are incomparable. S4 in Fig. 26 is strongly
1-synchronizable, as we can see with M4 in Fig. 6, but cannot be universally bounded as the
unbounded iterations of m1 can be stored before begin to read. As we see before S7 is only
universally bounded and cannot have any synchronizable property. But, S12 in Fig. 27 is
both strongly 1-synchronizable and universally 1-bounded.

ℓ0
p send(p, q, m1)

Ap

ℓ0
q rec(p, q, m1)

Aq

Figure 26 System S4

ℓ0
p ℓ1

p

send(p, q, m1)

rec(q, r, m2)

Ap

ℓ0
q ℓ1

q

rec(p, q, m1)

send(q, p, m2)

Aq

Figure 27 System S12

p q

m1

m2

m1

m2

Figure 28 MSC M12

Similarly, strongly synchronizable systems are incomparable with existentially bounded
ones. S13 in Fig. 29 is strongly synchronizable (and also weakly 1-synchronizable) but, to
get an execution from M13 we need to send message m5 before m1 and, as we see with
M6 previously, the number of iterations of m2 becomes the bound of the channels for this
execution. As it is unbounded, the system cannot be existentially bounded.

ℓ0
p ℓ1

p

send(p, q, m2)
rec(s, p, m4)

Ap

ℓ0
q ℓ1

q ℓ2
q

send(q, r, m1)
rec(p, q, m2)
rec(s, q, m3)

Aq

ℓ0
q ℓ1

q

rec(s, r, m5)
Ar

ℓ0
q ℓ1

q ℓ2
q ℓ3

q

send(s, q, m3) send(s, p, m4) send(s, r, m5)
As

Figure 29 System S13

p q r s
m1

m2

m2

m3

m4

m5

Figure 30 MSC M13

S10 in Fig. 22 is existentially bounded and weakly synchronizable, but, again, message m5
have to be sent before m1, so all messages in M10 have to be in the same exchange. However,
on process r, receptions of m3 precedes send of m5 and so this is not an exchange, and the
system is not strongly synchronizable.

For the intersection, as with weak, a strongly synchronizable and existentially bounded
systems is always strongly k-synchronizable for a k, by Proposition 40. We can have for
example, S2 which is strongly synchronizable, universally bounded, weakly 1-synchronizable
but, as an exchange have to contain all messages that we have in M3, and we can repeat m2
as many times we want, an exchange in mailbox is no bounded, and the system is not strongly
k-synchronizable for any k. We can also have S6 in Fig. 12 which is strongly synchronizable
and existentially bounded but, as one execution is always an exchange, and it can grow
without limits, we cannot be neither strongly k-synchronizable nor weakly k-synchronizable
for any k.

	1 Introduction
	2 Preliminaries
	2.1 Message Sequence Charts
	2.2 Communicating Systems
	2.3 Conflict Graph

	3 Model Checking and Synchronizability
	3.1 Logic and Special Tree-Width
	3.2 Model Checking
	3.3 Synchronizability

	4 Application to Concrete Classes of Synchronizability
	4.1 A New General Class: Weakly Synchronous MSCs
	4.2 Weakly k-Synchronous MSCs
	4.3 Strongly k-Synchronous MSCs and Other Classes
	4.4 Existentially k-Bounded MSCs

	5 Relations Between Classes
	6 Conclusion and Perspectives
	A Proof for Section 2
	A.1 Proof of Lemma 3

	B Proofs for Section 3
	B.1 Proof of Theorem 8
	B.2 Proof of Lemma 10

	C Proofs for Section 4
	C.1 Proof of Proposition 16
	C.2 Proof of Corollary 17
	C.3 Proof of Theorem 20
	C.4 Proof of Proposition 24
	C.5 Proof of Proposition 26
	C.6 Proof of Proposition 32
	C.7 Proof of Proposition 38
	C.8 Existentially k-p2p-bounded MSCs
	C.9 Definition of universally bounded MSCs

	D Additional Material for Section 5
	D.1 Proofs
	D.2 Examples
	D.2.1 p2p systems
	D.2.2 Mailbox systems

