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ABSTRACT 

This paper presents exploratory work on sonic and visual rep-
resentations of heartbeats of a COVID-19 patient and a medical 
team. The aim of this work is to sonify heart signals to reflect how 
a medical team comes together during a COVID-19 treatment, i.e. 
to highlight other aspects of the COVID-19 pandemic than those 
usually portrayed through sonification, which often focuses on the 
number of cases. The proposed framework highlights synergies 
between sound and heart signals through mapping between time-
frequency coherence (TFC) of heart signals and harmonic tension 
and dissonance in music. Results from a listening experiment 
suggested that the proposed mapping between TFC and harmonic 
tension was successful in terms of communicating low versus high 
coherence between heart signals, with an overall accuracy of 69%, 
which was significantly higher than chance. In the light of the 
performed work, we discuss how links between heart- and sound 
signals can be further explored through sonification to promote 
understanding of aspects related to cardiovascular health. 

1. INTRODUCTION 

The COVID-19 (coronavirus disease 2019) pandemic has affected 
the world in many ways, not only in terms of world health, but 
also in relation to public understanding and access to health data. 
As the number of COVID-19 cases surged all over the world, a 
need to explain and interpret the health metrics communicated in 
news broadcasts also unfolded. The pandemic has highlighted the 
need to ensure that everyone has access to information on equal 
terms, which in turn has given rise to new attempts towards making 
health data more accessible to everyone, including those with vi-
sual impairments (see e.g. the review of the accessibility of statis-
tical charts about COVID-19 for people with low vision, published 
in [1]). As a result, numerous attempts to present accessible data 
through sonifications of COVID-19 data have been presented this 

This work is licensed under Creative Commons Attribution Non 
Commercial 4.0 International License. The full terms of the License are 
available at http://creativecommons.org/licenses/by-nc/4.0/ 

year (see e.g.  ]). The majority of these sonifications have fo3 [2, -
cused on progression of the pandemic through monitoring of num-
ber of positive cases or deceased (see e.g. , and genomes and 
spike proteins, i.e. the protein that gives COVID-19 its character

 [4–6])
-

istic crown-like appearance . Although some attention has 
been given to portrayal of other effects of the pandemic, for exam

 [7–11]
-

ple reduced air pollution in times of COVID-19 little work 
in this context has focused on aspects related to the experiences of 
the patient and health workers who are directly impacted by the 
pandemic. 

[12], 

In the current work, we propose to use sonification and visual-
ization to portray heartbeats of a medical team and a patient with 
COVID-19 during treatment. The aim is to explore time-frequency 
coherence (TFC) and heartbeat rhythms within this group, and to 
highlight how the medical team comes together as a whole to sup-
port the patient, through sonic representations. Through this work, 
we aim to highlight similarities between heartbeat signal analy-
sis and audio signal analysis through mappings from inter-cardiac 
time-frequency coherence to harmonic dissonance in musical rep-
resentations. Moreover, the ambition is to encourage future discus-
sions on the potential benefits of heartbeat sonifications focused on 
mappings to musical parameters, and how such work could aid in 
creating an understanding of cardiovascular signals for those with-
out bio-signal analysis backgrounds. Finally, the aim is to high-
light another aspect of the the pandemic, i.e. how a medical team 
works together to support a patient suffering from COVID-19, and 
how this can be viewed (and heard) in the form of time-varying 
rhythmic and harmonic tension transformations in a music repre-
sentation. 

In this paper we first provide an overview of the spectral com-
ponents of heart signals and explain the connection between such 
signals and music structures. We then propose a framework for 
sonification based on mapping time-frequency coherence to har-
monic tension. We subsequently evaluate our work through a lis-
tening experiment and discuss classification accuracy for sonifica-
tions generated using the proposed framework, to evaluate if the 
suggested model successfully could communicate if two heart sig-
nals are coherent versus non-coherent. Finally, we discuss im-
plications of the obtained results and suggest directions for fu-
ture work focusing on communication of cardiovascular features 
through sounds. 

http://creativecommons.org/licenses/by-nc/4.0
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2. BACKGROUND 

Music and heart signals share several common characteristics. The 
idea of drawing parallels between music and heart signals is not 
new; academic physicians wrote about the music of the human 
pulse already in the Middle Ages and the first use of music 
notation to describe cardiovascular anomalies was done by the in

[13], 
-

ventor of the stethoscope Physiological measures such as res [14]. -
piration, blood pressure and heart rate have been shown to increase 
and decrease with music tempo The similarities between 
the human pulse and music means that heart signals can be readily 
mapped to music; for example, arrhythmias and other heart condi

[15, 16]. 

-
tions are highly musical, considering their innate periodicity and 
time varying musical structures A set of collage pieces made 
by merging music excerpts that match segments of electrocardio

 [17]. 
-

gram (ECG), resulting in music that mirrors arrhythmia sequences, 
was presented in  Other examples of mappings between heart 
data and music include  For an overview of making music 
with heart signals, please refer to and [24]. [17] 

[19–23].
[18].

Previous work on sonification of cardiovascular features has 
largely focused on electrocardiography, the process of producing 
an electrocardiogram (ECG). An electrocardiogram is a visual rep-
resentation in the form of a graph depicting voltage versus time 
of the electrical activity of the heart, which can be measured us-
ing electrodes placed on the skin. Two main research directions 
can be identified in sonification research on ECGs (see for a 
systematic review on the topic): 1) sonifications of temporal fea

 [25] 
-

tures and 2) sonifications of certain pathological states correspond-
ing to changes in waves that compose the ECG signal, i.e. pro-
cesses serving as supporting tools in diagnosis tasks ]. The first 
of the two categories involves sonifications focusing on monitor

[26
-

ing heart rates  28], which is primarily used in applications in 
sports, while the second focuses on measures of heart rate variabil

[27,
-

ity (HRV) – ], i.e. beat to beat variance measures34[29 1. Other ex-
amples of sonifications of cardiovascular health data include sonic 
representations of systolic and diastolic blood pressure and 
pulse oximeter data [36, 37]. 

[35] 

A common way of assessing activity of the autonomic nervous 
system (ANS) is to analyze the heart rate variability (HRV), which 
corresponds to ”the degree to which the time interval between suc-
cessive heart beats fluctuates” [  The autonomic nervous sys38]. -
tem is the part of the nervous system that regulates involuntary 
action, such as activity of the intestines, heart, and glands  
It is usually divided into the sympathetic nervous system, which 
controls responses to stressful situations, and the parasympathetic 
system, which controls bodily functions when a person is at rest

[39].

2. 
HRV usually presents two oscillations, one with central frequency 
in the range 0.15-0.4 Hz, and one with central frequency in the 
range 0.04-0.15 Hz The first oscillation is linked to vagal 
parasympathetic activity, whereas the second oscillation is related 
to both sympathetic and parasympathetic activity. In the analy

[40]. 

-
sis of HRV signals, the estimation of spectral coherence, i.e. the 
degree of correlation between the spectral components of two sig-
nals  in the joint time-frequency domain can be used to assess 
degree of similarity between two signals over different frequen

[41],
-

cies. In other words, this can be used to evaluate HRV coupling 
between two individuals’ heart signals. In the current work, time-
frequency coherence (TFC) analysis is used for the purpose of 

1Heart rates are not constant; they vary, even from beat to beat. 
2This is a somewhat simplified explanation; in reality these relation-

ships are more complex. 

characterization of such dynamic cardiovascular interactions. For 
more details, see , and Sec. 3.2. [42]

A central aspect of the work presented in this paper was to 
highlight how the medical team came together when treating the 
COVID-19 patient. As such, our work connects to previous re-
search on synchronization and entrainment, i.e. the process by 
which independent rhythmical systems interact with each other, 
which may in turn result in systems synchronising Entrain[43]. -
ment has been investigated in a variety of contexts, ranging from 
body movement to perceptual music research (see e.g. . For 
example, studies on synchronized movements performed in pairs 
have suggested that periods of the interaction when both partici

[44])

-
pants reported high togetherness were associated with increased 
cardiovascular activity and high correlation between heart rate 
time series . Research on inter-cardiovascular time-frequency 
coherence has also shown that HRV synchronizes when non-
experts sing together  Most of this effect could be attributed 
to respiratory sinus arrhythmia, however, some HRV synchroniza

[46].

 [45]

-
tion persisted when the effect of respiration was removed using 
spectral decomposition 48]. [47,

In the current work, time-frequency coherence of heart signals 
are mapped to harmonic tension in the spiral array, a model for 
tonality in the form of a 3D representation of pitch classes, chords 
and key  In the spiral array, each pitch class is represented as 
spatial coordinates along a helix [ see Fig. 1. Notes that sound 
tonally close are positioned close to each other inside the array. For 
example, a C major chord only consists of spatially close pitches. 
In the spiral array, notes are arranged so that consecutive notes 
are one perfect fifth from each other, corresponding to a quarter 
turn in the spiral, resulting in notes positioned above each other 
representing a major third Three methods for quantifying 
aspects of tonal tension based on the spiral array are presented 
in one of them being the cloud diameter, which captures the 
largest distance between any two notes in a cloud. If a cloud of 
notes contains intervals that are dissonant, i.e. tonally far from 
each other, the distance in the spiral array will be large. In this 
way, Euclidean distance within the cloud can be used as a measure 
of harmonic tension. 

 [51], 

 [49]. 

50], 
s [49].

Figure 1: Distances in the pitch class helix of the spiral array. The 
pentatonic scale used as reference is highlighted in red, since this 
was one of the sets of pitches used to sonify the patient’s heart-
beats. The dotted arrow shows the distance from C to F], which 
are tonally far from one another. 

https://0.04-0.15
https://0.04-0.15
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Figure 2: Visualization of the workflow. 

3.  METHOD  

An overview of the workflow is displayed in Fig. 2. The separate 
stages of the process are described in detail below. 

3.1.  Data  Collection  

Holter recordings of 98 minutes on average3 were collected from 
one patient and five persons from the multidisciplinary team in-
volved in the ward round in the COVID Intensive Care Unit. The 
team was led by a cardiothoracic anaesthetic consultant, who was 
accompanied by one cardiology registrar, a junior intensivist, a 
physiotherapist, and a senior nurse. The patient and the medical 
team gave their explicit consent to their data being collected. The 
patient had a heart transplant, meaning that he had low autonomic 
tone, resulting in faster heart rate and low heart rate variability. 
The patient suffered from an autoimmune disease, was wheelchair 
bound, and had a tracheostomy resulting in difficulties speaking. 
After automatic extraction of the QRS complex  the R peaks 
were manually checked against the ECG and corrected in Sonic 
Visualise  The data was synchronized based on the starting 
times of the Holter recordings, which were precise to the minute. 
After data cleaning and alignment, the total duration of the record

r [53].

[52],

-
ings was 64 minutes, which is the total overlap between the ECG 
signals. Heart rates (in beats per minute) of the patient versus the 
medical team are visualized in Fig. 3. Descriptive statistics are 
presented in Tab. 1. 

Figure 3: Heart rates (in beats per minute) of the patient (P, in red) 
versus the medical team members. 

3Durations after cleaning, before alignment. End times varied within 
the medical team. 
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Person Mean Median Min Max SD 

P 
GM 
HR 
JH 
ME 
SD 

112.24 
76.06 
86.90 
79.47 
75.80 
72.69 

111.30 
76.04 
86.29 
79.18 
75.29 
73.14 

97.22 
59.08 
64.54 
50.86 
53.33 
42.91 

147.69 
108.17 
118.15 
105.21 
112.94 
96.00 

3.18 
5.16 
6.44 
8.01 
7.06 
7.26 

Table 1: Descriptive statistics of heart rates (beats per minute) of 
the patient (P) and the medical team members. 

Figure 4: Results for patient versus medical team member HR. The 
top plot shows the original cardiovascular signals, RRV1 shows 
HRV (in ms) for the patient, RRV2 shows HRV for person HR, 
and TFC shows TFC (MTSP). 

3.2.  Time-Frequency  Coherence  Analysis  

Instantaneous heart rates (in ms) were obtained from the cleaned 
R peaks extracted from the ECG data. When present, ectopic beats 
and artifacts were interpolated. Instantaneous heart rate series 
were re-sampled at 4 Hz and HRV signals were obtained by high-
pass filtering the series with a cut-off frequency of 0.03 Hz. The 
methodology used to obtain time-frequency coherence between 
the two cardiovascular signals for the patient and each member 
of the medical team was based on multitaper spectrogram (MTSP) 
(see A summary of the analysis outcome is displayed in 
Fig.4. The results obtained were averaged over frequencies, using 
the full range (0.03 - 1.00 Hz). An overview of the average time-
frequency coherence is displayed in Fig. 5. Descriptive statistics 
are presented in Tab. 2. A plot displaying mean TFC for the patient 
versus medical team member HR is shown in Fig. 6. The reader 
is encouraged to listen to the two sonifications of these excerpts to 
hear the difference in dissonance for the two curves4. 

[42]). 

3.3.  Mapping  to  Harmonic  Tension  

Distances in the spiral array were computed using functions de-
fined in the Python implementation of the spiral array model by 
Rui Guo5, which is further described in . [54]

4Supplementary material is available from 
https://drive.google.com/drive/folders/ 
17z2m3xwkK-ySipwrU6UHoxXR5BxU9hmp?usp=sharing. 
For this particular example, see files in the audio folder starting with 
“fig5 noncoh” versus “fig5 coh”. 

5See https://github.com/ruiguo-bio/midi-miner/ 
blob/master/example.ipynb. 

https://drive.google.com/drive/folders/17z2m3xwkK-ySipwrU6UHoxXR5BxU9hmp?usp=sharing
https://drive.google.com/drive/folders/17z2m3xwkK-ySipwrU6UHoxXR5BxU9hmp?usp=sharing
https://github.com/ruiguo-bio/midi-miner/blob/master/example.ipynb
https://github.com/ruiguo-bio/midi-miner/blob/master/example.ipynb
https://github.com/ruiguo-bio/midi-miner
https://drive.google.com/drive/folders
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Figure 5: Time-frequency coherence, averaged over frequencies, 
between each patient-medical team member pair. 

Figure 6: Two excerpts from patient versus team member HR used 
for sonification. 

The following rule-based system was implemented to map dis-
tances between pitches in the spiral array for the patient versus 
medical team members based on average TFC values: 

1. Pitches for the patient are randomly selected from a list of pitches provided 
by the user, using weighted random sampling. 

2. For all team members: 
3. For all heartbeats of the team member: 

(a) TFC values are selected only for sample points where a heartbeat 
occurs for the team member6. 

(b) The closest heartbeat of the patient prior to the heartbeat of the med-
ical team member is located. The pitch for this heartbeat is used as 
reference when computing distances in the spiral array. 

(c) If TFC identified in 3 (a) is below threshold A7 (low coherence <= 
0.72), select a dissonant interval8, i.e. large distance in the spiral 
array. 

(d) If TFC is above threshold A (high coherence, => 0.72 & <= 
0.77), select a consonant interval9, i.e. a small distance in the spiral 
array. 

(e) If TFC is higher than threshold B (> 0.77)10, select no interval, i.e. 
the patient pitch equals the medical team member’s pitch. 

6This was done since the TFC values are available for a higher sampling 
rate than the heartbeat occurrence; heartbeats occur only as discrete events. 

7The threshold was set to the average of the mean TFC for all persons. 
8Dissonant distance in the spiral array was set to [2.0, 3.0]. 
9Consonant distance in the spiral array was set to [0.1, 2.0]. 

1097.5% of the smallest value among all maximum TFC values. 
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Person Mean Median Min Max SD 

P-GM 
P-HR 
P-JH 
P-ME 
P-SD 

0.73 
0.72 
0.72 
0.72 
0.73 

0.73 
0.72 
0.72 
0.72 
0.72 

0.66 
0.64 
0.65 
0.66 
0.66 

0.80 
0.80 
0.81 
0.79 
0.81 

0.02 
0.03 
0.03 
0.02 
0.02 

Table 2: Descriptive statistics of average TFC between patient (P) 
and medical team members. 

The user can customize the input to the system in step 1. We used 
1) a C Major pentatonic scale (which will always sound rather 
consonant), and 2) pitches from consonant bars (1 and 84) of La 
Cathédrale Engloutie by Claude Debussy. Step 5 (c) and (d) where 
further divided into smaller ranges with clearly defined distances 
in the spiral array, in order to give finer control of the selection 
of pitches within the harmonic versus dissonant range. The above 
described procedure outputs a set of pitches for the patient and re-
spective person in the medical team, which can then be used for 
sound synthesis in SuperCollider. Each time the script is run, a 
new selection of pitches will be generated, according to the logic 
presented. In other words, the procedure can be repeated until you 
obtain a sonic result that you prefer. An example of a transcription 
generated from 10 heartbeats of all team members is displayed in 
Fig. 7. 

Figure 7: Example output of the system, produced by 10 heartbeats 
of patient and medical team. 

Since the spiral array takes pitch spellings into account, the 
distance between C and A[ versus G] will be different (see Fig. 1). 
In our implementation, pitch spellings were not accounted for (the 
smallest distance was chosen, independently of pitch spelling). 
Maximum distance was set to the diminished fifth, since this is 
perceived as very dissonant. For example, if starting on a C, maxi-
mum distance was obtained for F]. A full list of distances between 
pitches is available as supplementary material. 

3.4.  Sound  Design  and  Sound  Synthesis  

Opted mapping scheme was designed with specific musical out-
comes in mind, without compromising the presentation of the data 
in terms of accuracy. Sonifications in musical form, i.e. musi-
fications, have been shown to facilitate deeper engagement with 
complex multidimensional data in previous biomedical applica-
tions [ . Moreover, it has been shown that listeners participating 
in longer perceptual tests tend to find music less fatiguing than test 
tones, noise, or speech sounds . [56]

55]

Sound synthesis was done using SuperCollider. Mapping 
strategies are visualized in Fig. 8. As shown in this figure, the 
output of the sonification was a set of six voices (one per person). 
Heartbeats were used to trigger sounds for each person, and TFC 
was used to select pitches for the medical staff. In addition, we 
mapped TFC to the loudness of these sounds, so that increased co-
herence resulted in louder sounds for medical team members. The 
sound level of the patient was kept constant. With this as a starting 
point, we explored a range of different sound models. The ones 
included in this paper are synthesis of glockenspiel sounds, and 
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Figure 8: Mappings between heartbeat timing, average TFC and 
sounds. 

sampling of pitch-shifted cello plucking sounds. For both of these 
models, a Schroeder reverb was also applied. 

Sound examples of pairwise comparisons between patient and 
respective person in the medical team are available as supplemen-
tary material. We have also included examples in which all six 
voices, i.e. all persons in the medical team, are sonified simulta-
neously. Available sound examples include excerpts of the data 
when TFC is particularly low versus high, to highlight the sonic 
representation’s ability to sonify differences in TFC. 

3.5.  Visualization  

In order to further highlight the rhythmical structures created by all 
heartbeats as well as the differences between patient and medical 
team member’s TFCs, we created a visualization of the voices us-
ing Processing. Communication between SuperCollider and Pro-
cessing was enabled using OSC (Open Sound Control); thus allow-
ing for direct mapping between heart signal properties and visual 
parameters, synchronized with outputted sounds. The visualiza-
tion was designed in the form of a 2D space in which each person 
is represented by a colored square on a dedicated row, as seen in 
Fig. 9. The patient’s square is displayed at the top, with medical 
team members’ squares situated below him. For every heartbeat, 
the squares move a step to the right. Mean TFC between each 
person in the medical staff and the patient was mapped to a blue 
component of the color of the square; greater TFC resulted in a 
color more similar to that of the patient, which had a red hue. In 

Figure 9: Visualization of the heartbeats and mean TFC for start 
position (left) and after some heartbeats (right). The patient is rep-
resented by the top square, which is ahead of the medical team 
(represented by squares situated below, and to the left of the pa-
tient, since their heart rates are slower. 

June 25 -28 2021, Virtual Conference 

this manner, the visualization not only highlights which heart rates 
that are synchronized, but also time-frequency coherence. Videos 
of the visualization are available as supplementary material. 

4. EVALUATION 

We conducted a web-based auditory-only listening experiment to 
evaluate if the proposed sonification framework could be used to 
successfully communicate TFC through sounds. 

4.1.  Participants  

Participants were recruited on social media platforms and through 
mailing lists. The experiment was published using an online sur-
vey platform11. 

4.2.  Stimuli  

We created stimuli divided into two categories: coherent versus 
non-coherent. These two categories consisted of sound files cre-
ated by data excerpts with an average TFC below12 versus above13 

threshold A (see Sec. 3.3). We included 5 stimuli per category, 
with one excerpt for each medical team member versus patient 
pair. Sounds were created for both sound models, resulting in a 
total of 10 sound stimuli pairs (20 sound files in total). As input to 
the system, we provided the first bar of the Debussy piece. For this 
experiment, only the patient and one medical team member was 
sonified. Although loudness was originally used in the mapping 
described in Sec. 3.4, loudness level was kept constant in the ex-
periment to avoid introducing a confounding variable. All sound 
files were normalized using the perceived loudness normalization 
function in Audacity. 

4.3.  Procedure  

Participants were first presented with an introductory page describ-
ing the purpose of the study and whether they consented to their 
data being collected. They were then given the following instruc-
tions: 

In this survey, you will be asked to listen to sounds created from heart signals of 

a COVID-19 patient and a doctor treating this patient. The sounds are sonifications14 , 

i.e. non-speech audio signals used to convey information. The sonifications will sound 

differently depending on if the spectral content of the heart signals of the patient 

versus the doctor are similar or not (how coherent the signals are). When the heart 

signals are coherent, the sound will be more consonant (i.e., not sound dissonant). 

When the heart signals of the patient and doctor are not coherent, the sound will be 

more dissonant. In this survey, your task is to listen to 2 sounds, and then select the 

sound that you think is generated by the most coherent heart signals. Please note that 

the sounds are directly mapped to heartbeat data. As a result, different sounds will 

have different rhythmic structures. Please don’t consider the differences in rhythmical 

structure when deciding which of the two sounds that you think is coming from the 

most coherent signals. 

This was followed by a page with questions related to demo-
graphics (age, gender, nationality, country of residence, level of 

11See https://survey.alchemer.com/s3/6284149/ 
Heartbeat-Sonification-Survey and supplementary material. 

12Average TFCs: [0.65, 0.66, 0.67, 0.70, 0.70], selected to represent all 
ranges used in 3 (c) of the framework presented in Sec. 3.3. 

13Average TFCs: [0.72, 0.74, 0.76, 0.79, 0.80], selected to represent all 
ranges used in 3 (d) of the framework presented in Sec. 3.3. 

14https://sonification.de/son/definition/ 

https://survey.alchemer.com/s3/6284149/Heartbeat-Sonification-Survey
https://survey.alchemer.com/s3/6284149/Heartbeat-Sonification-Survey
https://sonification.de/son/definition/
https://survey.alchemer.com/s3/6284149
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Stimulus Glockenspiel Cello 

P-GM 78.05 78.05 
P-HR 80.49 73.17 
P-JH 58.54 53.66 
P-ME 60.98 68.29 
P-SD 68.29 68.29 

Table 3: Accuracy (%) per sound model and stimuli pair. 

musical expertise, and if they have had any formal musical train-
ing). Then, each page presented two sounds from the coherent 
versus non-coherent categories, both synthesized using the same 
sound model. Participants were asked to select the sound that 
they thought originated from the most coherent data. The task 
was repeated 10 times with different stimuli. The presentation or-
der of the stimuli was randomized for each participant. Finally, 
participants could optionally leave a comment about the aesthetics 
and usability of the presented sounds, including aspects related 
to pleasantness, informativeness and long-term listening, terms 
selected based on measures used in previous research presented 
in [26]. 

4.4.  Results  

A total of 41 participants took part in the listening test (average age 
45.95, 14 F, 27 M). In terms of musical expertise, 10 reported full-
professional activity (experts), 8 semi-professional activity (sev-
eral years of practice, skills confirmed), 8 some experience (ad-
vanced amateur, some years of practice), 9 little experience (occa-
sional amateur), and 6 no experience. A total of 26 reported hav-
ing had formal musical training. Pooling data across sound model 
and stimuli resulted in a total overall accuracy of 69.27%. A one-
sample χ2 test without continuity correction suggested that over-
all accuracy was above chance (χ2(1, n = 410) = 57.84, p < 
0.001). Total accuracy per sound model when pooling data across 
stimuli was 69.27% for the glockenspiel model, and 68.29% for 
the cello model. Pooling across sound models resulted in total 
accuracy ranges from 56.10% (stimuli pair P-JH15) to 78.05% (P-
GM16). 

Results divided by stimuli and sound model are presented in 
Tab. 3. Poisson regression analysis was carried out to predict 
the number of correct replies based on musical experience, sound 
model, and stimulus pair. However, no significant effects were 
identified. Overall, accuracy measures ranged from 53.66% (stim-
ulus pair P-JH using cello17) to 80.49% (stimulus pair P-HR using 
glockenspiel18). 

In order to evaluate if musical experts versus non-experts dif-
fered in accuracy, we assigned data for persons identifying as mu-
sical experts or semi-professionals to one category, and persons 
not identifying as musical experts or semi-professional to another 
one. This resulted in one group of 18 experts, and 23 non-experts. 
Results are presented in Tab. 4. Pooling data across sound mod-
els and stimuli pairs, overall accuracy for experts was 71.11%. 
The corresponding percentage for non-experts was 66.96%. A χ2 

test revealed no significant difference in accuracy between the two 
groups. 

Results from the open text question also provided some in-
sights. For example, 5 participants commented on the rhythmical 

15Average TFC values used to create these sonifications: 0.76, 0.66. 
16Average TFC: 0.79, 0.70. 
17Average TFC: 0.76, 0.66. 
18Average TFC: 0.80, 0.65. 
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P-GM P-HR P-JH P-ME P-SD Exp. 

Glockenspiel 

Cello 

77.79 
78.26 
72.22 
82.61 

72.22 
86.96 
66.67 
78.26 

66.67 
52.17 
55.56 
52.17 

77.78 
47.83 
66.67 
69.57 

77.78 
60.87 
77.78 
60.87 

E 
N 
E 
N 

Table 4: Accuracy per sound model (%) and stimuli pair for ex-
perts and semi-experts (E) versus non-experts (N). 

structure of the sounds. One participant mentioned that it was dif-
ficult to decouple the rhythmical structure when performing the 
task, and that rhythm also affected his overall perception of coher-
ence and dissonance. Another participant stated: “(...) it wasn’t 
that easy to separate the rhythmic relation from the perceived co-
herence of the sounds. The various qualities of the sound work 
together forming the experience for me.” Yet a third participant 
described: “The erratic rhythmic structure also influenced the 
way I perceived something to be consonant/dissonant.” In gen-
eral, most comments about the sounds were positive. For exam-
ple, 4 participants explicitly described the sonifications as pleas-
ant. One participant mentioned that the glockenspiel sounds were 
perhaps a bit more pleasant, and that they portrayed dissonance 
more clearly. Regarding informativeness, one participant men-
tioned that the sounds were quite informative on the coherency, 
and 2 participants mentioned that it was easier to detect the more 
coherent signal after some practice. When it comes to long-term 
listening, one participant mentioned “(...) the sounds are pleasant 
but they would start to blend-in with the background in a long-term 
listening session”. In addition, 2 participants described that it was 
difficult to decide which sound to pick after listening to multiple 
stimuli. 

5. DISCUSSION 

The current work aimed to explore potentials of mapping time-
frequency coherence between heart signals to musical parame-
ters related to the notion of musical tension in sonifications of 
heartbeats in an offline setting. Based on the overall accuracy of 
69.27%, we can conclude that the proposed framework was rather 
successful in terms of communicating coherence. Considering that 
the listening experiment was based on 10 second excerpts in which 
TFC varied over time, participants had to do some averaging in 
how they perceived the sounds. In other words, 100% accuracy is 
not to be expected. 

Qualitative findings suggested that the rhythmical structure of 
the sonified heartbeats may influence how coherent sonifications 
are perceived. This tendency to be unable to decouple the rhyth-
mical pattern is an interesting finding, considering that both tem-
poral patterns and spectral aspects are of interest when sonifying 
heart signals. The finding motivates future studies focused on how 
temporal versus spectral properties of heart signals can be mapped 
to musical parameters. 

Suggestions for future work building on the study presented in 
this paper involves speeding up the playback of the data to more 
easily portray larger changes over time, and to develop sound mod-
els that better fit such a representation. Additional work could also 
include exploring different mapping strategies, for example map-
pings between heart rates and octaves (resulting in higher frequen-
cies if the heart rate speeds up, while maintaining the same pitch 
intervals). Finally, it would be interesting to explore how other 
measures of tension could be mapped across a moving window of 
heartbeats to create pitch clouds and chords, based on TFC. 
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6. CONCLUSIONS 

In this paper we presented exploratory work focused on mapping 
time-frequency coherence measures of the heartbeats of a COVID-
19 patient versus persons in a medical team to notions of harmonic 
tension in music. Results from a listening experiment suggests that 
the proposed framework was successful in the terms of communi-
cating low versus high coherence through sonification. 
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