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[11 We present a conditional density model of river runoff given covariate information
which includes precipitation at four surrounding stations. The proposed model is
nonparametric in the central part of the distribution and relies on extreme value theory
parametric assumptions for the upper tail of the distribution. From the trained conditional
density model, we can compute quantiles of various levels. The median can serve to
simulate river runoff, quantiles of level 5% and 95% can be used to form a 90%
confidence interval, and, finally, extreme quantiles can estimate the probability of large
runoff. The conditional density model is based on a mixture of hybrid Paretos. The hybrid
Pareto is built by stitching a truncated Gaussian with a generalized Pareto distribution. The
mixture is made conditional by considering its parameters as functions of covariates. A
neural network is used to implement those functions. A penalty term on the tail indexes is
added to the conditional log likelihood to guide the maximum likelihood estimator toward
solutions that are preferred. This alleviates the difficulties encountered with the maximum
likelihood estimator of the tail index on small training sets. We evaluate the proposed
model on rainfall-runoff data from the Orgeval basin in France. The effect of the tall
penalty is further illustrated on synthetic data.

Citation: Carreau, J., P. Naveau, and E. Sauquet (2009), A statistical rainfall-runoff mixture model with heavy-tailed components,
Water Resour. Rest5, W10437, doi:10.1029/2009WR007880.

1. Introduction precipitation. We propose to model the distribution of the
[2] River runoff modeling is relevant for hydroelectricit)func.’ﬁc at a future time stepr 1 given covariate information
planning, irrigation and flood prevention. It is awell-knowﬁ‘va'l‘fible at timet with a_nother stochastic model, the

fact among hydrologists that the river runoff is fat taile@nditional mixture ofr?ybnd Pallretos presentegﬂﬁyrggu
meaning that sudden large values of runoff can occur whidid Bengid2009a]. This model bears some similarities to

are three or four standard deviations away from the samplg model ofLu and Berliner[1999]. In the conditional
mean Bernadara et al. 2008]. Taking into account those/MXture, we can see the number of components as the
large values is essential since they understandably haJ&'@ber of states, which is determined by model selection
very large impact. Another well-known fact is that precidm‘tead of being set a priorl. T_he state selection which is
itation in the hydrographic basin influences the river runoffontrolled by the mixture weights depends on all the
However, there are many other mechanisms at work suctfg¥ariates but not on the previous state. The distribution
underground water tabies and soil permeability that & the river runoff given the current state is given by the

specific to a given hydrographic basin. Most hydrologic§P'"€SPonding component density, that is a hybrid Pareto
models try to reproduce the dynamics of the basin nsity. The parameters of this density are modeled as

modeling the mechanisms in terms of reservoirs. An alt _n_ctiqn of covariate_s' which jnclude past runoff and pre-
tation. The conditional mixture can adapt to a more

native approach is to use a stochastic model which provi¢&a ) o e . .
a full distribution of the river runoff. For example, such §€n€ral shape of the underlying distribution, including
model has been proposed by and Berlinef1999]. They asymmetry and multimodalityAlso, the hybrid Pareto
assume three states or regimes of the runoff process: ris ,bleg the stochastic model to take explicitly extreme
falling and normal. Transitions probabilities between tH@IUES into account. Moreover, a neural network computes,
states are modelled depending on past runoff values an n the covariates, the mixture weights (or state proba-
rainfall data. Given the current state, the distribution of tR8Il€S) and the component density parameters. In contrast

river runoff is assumed to follow an autoregressive procd@s-U and Berliner[1999], we don’t need to assume a
gcific form for the relationship between the covariates and

which depends on the past runoff values and the observ ) .
the model parameters since such a neural network can in
principle approximate any continuous mapping. The model

ILaboratoire des Sciences du Climat et de I'Environnement, UMR 15%&ill be further detailed in section 2.

CEA, UVSQ, CNRS, Gif-sur-Yvette, France. _ [s] Neural networks have been popular models for a good

Lyogye'T;%Leeijon, Unitele Recherche Hydrologie-Hydraulique de LyonWhile in hydrology (seeMaier an_d D_andy[ZOOO] for a
survey). They were used to predict river runoff but, to our

Copyright 2009 by the American Geophysical Union. knowledge, not within a conditional mixture framework.

0043-1397/09/2009WR007880 Such traditional neural networks are generally not apt at
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capturing extreme observations. On the other hand, standarthe restriction on the tail index estimator as for the
models to tackle extremes are drawn from extreme valmement estimatoiColes and Dixor{1999] show that the
theory (EVT) Embrechts et al.1997]. These models penalized MLE of the tail index performs better in small
consider either maxima over a given period, in which casamples than the classical MLE.
the generalized extreme value (GEV) distribution is used, ofs] The hybrid Pareto is one such model with a tail index
observations that exceed a selected threshold and a ggmeameter, which is inherited from the GPD. When density
alized Pareto distribution (GPD) models the distribution estimation is performed with a hybrid Pareto mixture, the
the exceedances. The EVT models thereby mean to estint@iteindex of the underlying distribution can be estimated
the upper tail of the underlying distribution. The choickom the tail index of the dominant component in the
of the GEV and the GPD is motivated by the fact that thesgxture, that is the component with the largest tail index
are the limiting distributions of the maxima and the excee@nd consequently, the heaviest tail). In this case, the MLEs
ances, respectively, under some fairly general conditioaensitivity in small samples appears in the following way:
Although extreme runoff behavior is utterly importaniarge tail indexes are assigned to components with negligi-
hydrologists need to model the whole runoff distributiofole mixture weights. To prevent this, we add a penalty term
One way to extend the GPD model to the whole distributida the log likelihood based on a prior distribution of the
has been proposed Ifyigessi et al[2002]. Their model is mixture tail indexes. This is similar in spirits to the penalty
a two-component mixture with one light-tailed componeptoposed byColes and Dixor{1999]. We devised a prior
and one GPD component. The hybrid Pareto mixture candistribution of the mixture tail indexes based on the follow-
seen as a different way to include the GPD into a mixtuiregy intuitive idea. We would expect that most components
model. The hybrid is built by stitching together a Gaussiavould take care of modeling the central part of the distri-
and a GPD while ensuring continuity at the junction pointbution and therefore, have a tail index close to zero. If the
In the hybrid Pareto mixture, the number of componentstal of the underlying distribution is heavy, we would then
chosen according to the data at hand. The central part of¢lpect that some components would have a tail index close
hybrid Pareto mixture consists of a Gaussian mixture whitththe tail index of the underlying distribution.
is a flexible nonparametric estimator. The upper tail of the[7] We evaluate the conditional hybrid Pareto mixture on
hybrid Pareto mixture is made of a linear combination odinfall-runoff data from the Orgeval basin in France. The
GPDs. Through experiments, this approach has shownctmditional median of the learned conditional hybrid Pareto
perform well on heavy-tailed dat&€4rreau and Bengio mixture serves to generate river runoff at a future time step
2009b]. t + 1. A 90% confidence interval is also computed as the
[4 Vrac and Navea(R007] have incorporated covariategjuantiles of level 5% and 95%. This is in contrast with the
in the Frigessi mixtureHrigessi et al. 2002] in order to work of Frigessi et al.[2002] and Vrac and Naveau
predict the distribution of rainfall. The covariates helf2007] who did not use their model for prediction at a
discriminating between different sorts of rainfall regimefuiture time step. We also look at the distribution of the
no rainfall, regular rainfall and extreme rainfall. A particularzonditional tail indexes on the test set; the effect of the tail
distribution is used according to which regime prevailpenalty term in the maximum likelihood estimator can be
Another way to include covariates into an EVT model hagen. We gain then more insight into the effect of the new
been developed bghavez-Demoulin and Davis¢p004]. penalty by looking at experiments on synthetic data.
Covariates are assumed to influence the value taken by the
GPD parameters. This relationship is modeled by splipe  gtatistical Model of the Rainfall-Runoff
smoothers. In the conditional hybrid Pareto model, t ocess
mapping between the hybrid Pareto mixture and the cova- i i
riates is modeled by a neural network. In this case, thd8l We propose to model the rainfall-runoff process with
whole conditional distribution is estimated, not just thg'€ conditional hybrid Pareto mixture [s&@arreau and
conditional upper tail, as in the model ®havez-Demoulin B&€NYIi9 2009a]. This model combines the flexibility of
and Davison[2004]. nonparametric modeling and the extrapolation capability
[s] The tail index parameter is the most difficult paranf2f the GPD methodology. Given a vector of covariates
eter to estimate, whatever model is used, be it the GPD, Yfich describe meteorological and hydrological conditions,
GEV distribution or some other method which one coul@€ conditional distribution of the river runoff is modeled by
think of for tail index estimation. This is because the til Mixture of hybrid Paretos whose parameters depend on
index parameter, also termed the shape parameter, giv€§Varates. Such a mixture is able to adapt to asymmetry,
sense of the overall shape of the distribution and fRultimodality and tail heaviness that might be present in the
particular, of the tail behavior. Typically, few observatiorféonditional distribution of the runoff. The neural network
will occur in the tail which makes the estimation of the tajfhich learns the relationship between the covariates and the
index very sensitive. Despite the good asymptotic propertfB&ture parameters is able to approximate properly the
of maximum likelihood estimators (MLEs), they are ndtighly nonlinear relationship between rainfall and runoff.
very reliable in small samples given their high varianc&€ conditional hybrid Pareto mixture provides a condi-
Estimators of moments show a better behavior in sméfnal density model that has proven to perform well on
samples, however they assume that the expectation of Jy Kind of data sets [sé@arreau and Bengio2009a].
underlying distribution is finite (equivalently, that the tail "€ model is explained in detail in sections 2.1-2.3.
index is smaller than onefioles and Dixor[1999] intro- 2.1. Hybrid Pareto Mixture
duced a penalty term in the MLEs of the GEV parameters[g] Suppose we want to model the distribution Yofa

The intuition behind the penalty term is to include a similgg;iaple representing the river runoff, with no additional
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sl Mixture Gaussian parameters. lget (x, m s) be the parameter vector
- = =7 Components of the hybrid Pareto. The hybrid Pareto density is given by
0.7r . 8 .
0.6 ‘\ " ‘| E*fmsayp |f y a,
- N hedyP ¥ 9
Zost iU 2 Sgwdy abif y>a;
8 [ \ g
Ty 1
S 0
.; P where the dependent parameters afe, m s) = m +
0.3+ : i ! ' N
AN s W dalpxB=2p, b(x s) = (s(1 + x))/
020 oY r !
ol L W &p xB=2p andWis the LamberW function
' I’ " “ ll ‘\ /“( \‘\
VNPT SRS L L L datalututole kel defined byw = W(we") [see Corless et al. 1996]. The
0 1 2 3 4 5 6

reweighting factog ensures that the density integrates to one
and is given by

Figure 1. Gaussian mixture density (solid line) with seven
components trained on heavy-tailed data. The dashed lines
represent the contribution of each component to the density.
Five components model the central part, and the other two R,
components contribute to the density in the upper tail. whergErf() is the error functiorErf(z) = 2 2 e 2 dt =

2F(z 2) 1 andF is the standard Gaussian distribution

r
géxw/ap% 1p Ef W &lp xB=2p =2 ;

methodology Embrechts et gl.1997] sincea, the junction

Bint of the Gaussian and the GPD is computed implicitly as a
nction of the hybrid parameters.p

12] With a hybrid Pareto mixture jT,Al pjhg(y) to model
distribution of the river runoff, we get the best of both

circumvents the need to choose a specific parametric f
for the distribution of the runoff and can take into accou
multimodality and asymmetry. Mixtures of Gaussians
approximate a density by adding up weighted Gaussians

"bumps” (see Figure 1). The density estimator is formally,iys: the central part is a mixture of Gaussians which
given by jy pif ms(y), where thep; are the mixture penefits from flexible approximation properties and the
weights and n,s () is the Gaussian density yith parameteigpper tail is a linear combination of GPD densities that

m ands;. The weights must sum to one, thatisy,, pj=1, are capable of extrapolating in areas of unseen data under
to ensure that the estimator is a proper density. sound parametric assumptions.

[10] A Gaussian mixture approximates the distribution oﬁt . .
heavy-tailed data, such as runoff data, by locating o & Conditional Density Model
component with a large standard deviation around thd3 Ourgoalis to provide a model of the river runoff at a
largest observations. However, its capacity to extrapolédéure time step. We have at our disposal rainfall data in the
beyond the sample range might be poor. hydrographic basin c_)f interest which influgnc_es r_iver runoff.
[1] The hybrid Pareto distribution was put forward as We therefore look into modeling the distribution of the
way to transfer the extrapolation properties of the GRBnoff at timet + 1 given covariate information at tinte
[Embrechts et al.1997] to mixture models. The hybridwhich includes rainfall observations and past runoff. The
Pareto distribution is a smooth extension of the GPD to tRgbrid Pareto mixture can be turned into a conditional
whole real axis. This new distribution is built by stitching gensity model by thinking of the parameters of the mixture
GPD tail to a Gaussian, while enforcing continuity of thas function of covariatesfshop 1995]. These functions
resulting density and of its derivative. In this work, we focugan be implemented in many ways. The simplest model
on runoff data which is heavy tailed so we et 0 in the would be a linear model. However, the relationship between
GPD density where the scale parambter positive and the rainfall and runoff is highly nonlinear. A one-layer feed
location parametea is real: forward neural network of which the linear model is a
special case (no hidden units) is able, if the number of

1> 1 hidden units is well chosen, to approximate any continuous

Ox:b Oy apl/% 1pgay ab x>0; y>a:

Let a be the junction point and ys(y) = 1/(p 2ps)
exp( (y

relationship between covariates and mixture parameters.
Data-driven selection of the number of hidden units pro-
vides a proper level of complexity (or nonlinearity). A
representation of the conditional mixture model with a

m?/(2s?) be the Gaussian density functiomeural network is given in Figure 2. The covariates, or

with parameterasn2 R ands > 0. The two constraint inputs, are combined linearly and either fed to the hidden
equations (equality of the density and of its derivativa)at units or directly connected to the neural network outputs.
are solved so that andb, the GPD scale parameter, becomé/e took the hyperbolic tangent as the activation function of
functions ofx, the GPD tail index and ofn and s, the the hidden layer. The neural network outputs are then
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Figure 2. Representation of a conditional mixture model with hybrid Pareto compaongits). Inputs
are fed to a one-layer feed forward neural network with an extra linear connection directly to the outputs.
The outputs are then transformed into the mixture parameters so as to fulfill range constraints.

transformed into the mixture parameters. Different transfep as to maximize the conditional log likelihood on a valida-
mation functions constrain the range of each mixtutien set, distinct from the training set and thus, should be
parameter. The,(o) in Figure 2 are dedicated to the mixtureeasonably close to the ones that give the best generalization
weights. The transformation function, the softmax, ensumsrformance (the capacity to perform well on unseen data).
that thege weights are positive and sum to gme= Because there are many sources of variability (training data,
exp@?)/ | exp@?). The a® and a® control the tail optimization process), the hyperparameter selection can be
index and the spread parameter, respectively, ofjtthe variable as well. Overall, the conditional hybrid Pareto
component. They are guaranteed to be positive by usingixture gave a better performance than other conditional
softplus Pugas et al. 2001], a slow-growing version of thedensity estimator in the presence of heavy-tailed data
exg;onentialy = softplusk) = log(1 + expx). Finally, the [Carreau and Bengio2009a].

a,-(2 are assigned to the location parameters and need)ng Learning and Regularization

range constraint.

[14 There are two hyperparameters to adjust the level
complexity in the conditional hybrid Pareto mixture: th8
number of hidden units in the neural network and tH¥
number of components in the mixture. The former controls o
the dggree of nonllnearlty of the mapping between the Lavb Y logdy , iix Hp
covariates and the mixture parameters and the latter v
accounts for the complexity of the conditional density (in
particular, the multimodality and asymmetry). Given th&here the sum is over the training Bgt= {(X1, Y1), - - -, (Xns
approximation capabilities of the neural network and gf)} and y (yijx) is the hybrid Pareto conditional mixture
the mixture model, if the complexity level is well chosemrmodel evaluated at the data paint
the conditional mixture should be able to approximate anyie] Carreau and Bengid2009a] observed empirically
type of conditional density. The hyperparameters are chosigst maximum likelihood estimation of the hybrid Pareto

oftsl The conditional mixture parameters are the neural
etwork parameters. These are learned by minimizing the
gative conditional log likelihood on the training data:
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8 The mixture weight establishes the trade-off between the
two components. Wheh is equal to zero, we are in the
light-tail case.

S [19] The conditional mixture parameterg are now

learned by minimizing a new cost function, the negative

% 5 conditional log likelihood minus the penalty term:
g
= Xn | X0
Lowb Y4 logdy ,,&ijx B> — logf x;tihir 5
o

ival ival Y

o L/\___ where the first sum is over the training 8g{, the second

I I I I \ \ sum in the penalty term is over the number of components

00 02 04 06 08 1.0 m, yw{YijX) is the hybrid Pareto conditional mixture model
evaluated at point and f(x;;; t, h, r) is the prior density
Tail index evaluated at the tail index of thjgh component of the

. C ., ._conditional mixture at point The penalty term introduces
Figure 3. The distribution represented by the sohdl lin€yur other hyperparametetswhich controls the weight of
has one mode at zero and one mode at 0.5, while thg penalty with respect to the conditional log likelihood
distribution represented by the dashed line has S|gn|f|cza|p|tdt’ h andr from the prior density (see equation (1)). A
density only around zero. The former distribution reflectasiricted set of values for the prior density parameters was
our prior information about how the tail indexes of a hybrigg|ected so as to ensure that the prior density follows our
Pareto mixture should be distributed when the data @€, information about the shape of the distributions of the
heavy tailed, and thg Iatte( distribution, reflects the situatigf)| indexes. The model is trained for several combinations
when the data are light tailed. of hyperparameters (which include the number of hidden
units and the number of components of the conditional
hybrid Pareto mixture and the hyperparameters attached to

e penalty term). The set of hyperparameters which gives
the tail indexes. This is especially striking for small trainin e smallest cost in terms of negative conditional log
sets. The overestimation of the tail index, even by a sm glihood on data unseen during training (the validation set)
amount, leads to gross overestimation of the extrefieselected.
guantiles. In order to guide maximum likelihood estimation
and avoid the overestimation of the tail indexes, we us8a Experiments

penalty term based on the prior density of equation (1): [25 We evaluate the conditional hybrid Pareto mixture on
N o the rainfall-runoff data from the Orgeval basin in France.
5 B=pr 2 Synthetic data experiments help to gain more insight into
exp & O05B=@r<b . . .
foct:hrpyvithext hgpd tp p . the role of the new penalty term in the cost function. Since
2pr the generative model is known, the predicted tail indexes
gp can be compared with the tail indexes of the generative
model. We also compare the conditional quantiles of the

. . . . generative versus learned model.

[17] Figure 3 illustrates two typical shapes of the prio _
density. In the case of runoff data, we can safely assume that Orgeval Basin Data
the distribution has a tail index around OBefnadara et [21] The Orgeval Basin is located in France, east of Paris.
al., 2008]. This implies that a variant of the solid lindhere is no snow accumulation in the area that could affect
density in Figure 3 will hold. Most components will be lighthe river runoff. Therefore, we focus on rainfall as a
tailed, with tail indexes close to zero. These componemt®dictor of the river runoff. In order to capture the
will take care of modeling the central part of the distribunechanisms of the basin, moving averages and moving
tion. Some components will be heavy tailed, with a tastandard deviations of various window lengths of the river
index value close to the one of the underlying density anghoff are included in the covariates. The river rur@ff
these will estimate the upper tail of the distribution. Hendepm the Avenelles subbasin and the precipitations at four
the solid line density is bimodal, with one mode at zero asdrrounding stations?}, j = 1, ..., 4, are available at a
the other one, smaller, around 0.5. On the other hand, if thaurly time step for over 30 years but we use approximately
data are light tailed, then we assume that all the componelis/ears of data, from 1986 to 1996 (see http://www.antony.
will have tail indexes close to zero. The prior density in thiemagref.fr for more details on the data and the basin). We
case would look like the dashed line density in Figure 3also have daily average temperatures at this site for the same

[18] The two-component mixture of equation (1) catime period. Date variables serve to capture the cycles and
generate densities such as those illustrated in Figuretr8nds in the data. Precisely, there are 16 covariates to
The exponential component with paraméterontrols the predict the river runoff distribution: rainfall from the four
density assigned to the small tail indexes and the Gausgieecipitation stations at the previous time step, the runoff at
component centered at 0.5 with standard deviatideter- the two previous time steps, moving averages and standard
mines how wide the range of the larger tail indexes can loeviations with daily, weekly and monthly window widths,

mixture, conditional or not, can lead to overestimation
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Table 1. Three Periods With No Missing Value in the Orgevajhe conditional median of the trained model is used to

Basin Data in Order of Decreasing Lengths predict the runoff. We can see from the last row of Table 2
Hourly that theR square for all time steps are very good, although
Data Set Time Period Observations the accuracy of the prediction decreases with the length of

) 26 Mar 1986 1800:00 to 22 May 1994 0800:00 71487 the time step. Pr_eqiction at longer time steps are under-
5 22 Jul 1996 1500:00 to 24 Aug 2001 1600:00 44618 standably more difficult. A different test set is use'd for the

3 30 May 1994 1800:00 to 18 Jun 1996 0300:00 17,087 12 htime step data (data set number 2 in Table 1) in order to
leave more data for the training set. The prediction is

possibly more challenging on that time period and at least,
not directly comparable with the other two models, 1 h and

6 h, which uses a similar test set.

three date variables concerning the year, the month and e The river runoff for the test period is illustrated in the
week and the daily average temperature at the previous ¢y, Plots of Figure 4. The top, middle, and bottom plots
Three time periods where there is no missing data &ach correspond to one time step. The model prediction,
split into training and test sets. The data sets are summari¢8¢£h is the conditional median of the trained model, is
in Table 1. For this experiment, we 86t= Q. and X, = plotted for each test set in the right plots of Figure 4. For all
[Q, Q: 1, PY ....] which means that given informationtime steps, we can see that the model captured very well the
available at time, we model the distribution of the runoff adynamics of the river runoff. In the left plots of Figure 5, we
time t + 1. With the hourly data, we thus model thdave _plotted the confidence intervals in light grey with
conditional distribution of the runoff at the next hour. |quantiles of level 0.05 and 0.95 for the first 100 points of
order to increase the prediction horizon to 6 and 12 h, ti¢ test set. The black line is the observed runoff. Some-
hourly data are aggregated to form 6 h and 12 h time stelJ&€s; the confidence interval is very narrow while it grows
To this end, we take the average of the runoff and the sum@@€r where the model perceives more uncertainty. We can
the rainfall over the appropriate time period. This meaf8€ck the effect of the tail penalty by looking at the
that the lengths of our initial data sets in Table 1 are divid@ftribution of the tail indexes of the conditional hybrid
by the length of the time steps. We thus have three differ&@reto mixture on the test set. This is illustrated the histo-
models, one for each time step. grams in Figure 5. Except for a few cases in which the tail
[22 We assume that given the covariate vedothe Y, index exceeds one (which is allowed by the prior), the
are independent and identically distributed. It is thus pddrgest tail index values vary between 0.2 and 0.6 while
sible to perform model selection via fivefold cross validdl0St tail indexes take on values near zero. The distribution
tion (as opposed to sequential cross validation which qkthe tail indexes is thus consistent with our prior belief.
more computationally intensive; sé&dshop [1995] for 3.2. Synthetic Data
details). Model selection works as follows. The training 24] We generate synthetic data which resemble the
set is divided into five subsets or folds. The condition@lnoff data in the sense that there are cycles and that the
hybrid Pareto mixture is first trained on four of those foldsj| indexes are in the same range. hebe a random

by minimizing the penalized negative conditional log likg;ariaple distributed according to a Ehet distribution
lihood for each set of hyperparameters considered and se parameters are functions of an input variable

performance in terms of conditional log likelihood of eacfihen the distribution function ofjX = x is given by
trained model is evaluated on the left out fold. This process
is repeated five times, so that each fold in turn was left out

and that the model performance was evaluated on all the 8 _
data of the training set. The hyperparameters that gave the 20 s) siy mixp
best performance in validation are selected. The model withy  yjX Y xB7, y mxp 7P

) . o > exp siy> mxp
the selected hyperparameters are trained again this time on : s&p

the whole training set. The generalization ability, that is how

well the model does on unseen data, is then evaluated on the

test set, which is distinct from the training set. Results from

the experiments on the Orgeval basin data are summarized

in Table 2 for each time step (1 h, 6 h, 12 h). The select&able 2. Experiments for the Orgeval Basin Data for Each Time
hyperparameters for the penalty terin, f{, h, s), corre- Step

spond to the prior belief that the distribution is heavy tailed.

The confidence interval is computed from the conditional Hourly eh 1zh
quantiles of level 0.05 and 0.95; therefore, the observedining data 52 846 (1) 9913 (1) 7455 (1,3)
runoff should fall into that interval nine times out of tenlest data 10,000 (1) 2000 (1) 3717 (2)
The percentage given on the confidence interval row is m&i hr (0.01(3.’;1)50 0.1) (0_1(‘5'?50 0.2) (§46.112)50 0.1)
actual percentage of observed runoff on the test set WhiGafidence interval (%)  91.94 901 876
fall into the confidence interval. We can see that it is pret& 0.99 0.92 0.73

Ckl]ose o ﬁ?e&expected_oneé Tfaspre of go%ﬂﬂess of fit Ia'qShown are the sizes of the training and test sets (with data set number

t zeso'ca e_ Square given - i(Yi 91) i(Yi . from Table 1 in parentheses), the selected number of hidden units and

y)“, wherey; is the observed rungi, is the prediction anglis  componentsh, m) followed by the selected penalty hyperparameters,

the sample average. The clogeris to one, the better theh, s), the percentage of the runoff in the test set which falls in the predicted
it i i % confidence interval, and tR8 of the predicted median on the test set.

prediction is. TheR square is computed on the test set a
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Figure 4. (left) Observed runoff of the Avenelles subbasin for the test period corresponding to a given
time step: (top) 1 h, (middle) 6 h, and (bottom) 12 h. (right) Predicted median on the test set from the
learned hybrid Pareto conditional mixture for the three time steps.

The Frehet distribution is a canonical heavy-tail distribuFigure 6 (left) illustrates the training set which is made of
tion: the tail of most heavy-tailed distribution e