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A statistical rainfall-runoff mixture model with heavy-tailed
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[1] We present a conditional density model of river runoff given covariate information
which includes precipitation at four surrounding stations. The proposed model is
nonparametric in the central part of the distribution and relies on extreme value theory
parametric assumptions for the upper tail of the distribution. From the trained conditional
density model, we can compute quantiles of various levels. The median can serve to
simulate river runoff, quantiles of level 5% and 95% can be used to form a 90%
confidence interval, and, finally, extreme quantiles can estimate the probability of large
runoff. The conditional density model is based on a mixture of hybrid Paretos. The hybrid
Pareto is built by stitching a truncated Gaussian with a generalized Pareto distribution. The
mixture is made conditional by considering its parameters as functions of covariates. A
neural network is used to implement those functions. A penalty term on the tail indexes is
added to the conditional log likelihood to guide the maximum likelihood estimator toward
solutions that are preferred. This alleviates the difficulties encountered with the maximum
likelihood estimator of the tail index on small training sets. We evaluate the proposed
model on rainfall-runoff data from the Orgeval basin in France. The effect of the tail
penalty is further illustrated on synthetic data.

Citation: Carreau, J., P. Naveau, and E. Sauquet (2009), A statistical rainfall-runoff mixture model with heavy-tailed components,
Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880.

1. Introduction
[2] River runoff modeling is relevant for hydroelectricity

planning, irrigation and flood prevention. It is a well-known
fact among hydrologists that the river runoff is fat tailed,
meaning that sudden large values of runoff can occur which
are three or four standard deviations away from the sample
mean [Bernadara et al., 2008]. Taking into account those
large values is essential since they understandably have a
very large impact. Another well-known fact is that precip-
itation in the hydrographic basin influences the river runoff.
However, there are many other mechanisms at work such as
underground water tables and soil permeability that are
specific to a given hydrographic basin. Most hydrological
models try to reproduce the dynamics of the basin by
modeling the mechanisms in terms of reservoirs. An alter-
native approach is to use a stochastic model which provides
a full distribution of the river runoff. For example, such a
model has been proposed byLu and Berliner[1999]. They
assume three states or regimes of the runoff process: rising,
falling and normal. Transitions probabilities between the
states are modelled depending on past runoff values and on
rainfall data. Given the current state, the distribution of the
river runoff is assumed to follow an autoregressive process
which depends on the past runoff values and the observed

precipitation. We propose to model the distribution of the
runoff at a future time stept + 1 given covariate information
available at timet with another stochastic model, the
conditional mixture of hybrid Paretos presented byCarreau
and Bengio[2009a]. This model bears some similarities to
the model ofLu and Berliner[1999]. In the conditional
mixture, we can see the number of components as the
number of states, which is determined by model selection
instead of being set a priori. The state selection which is
controlled by the mixture weights depends on all the
covariates but not on the previous state. The distribution
of the river runoff given the current state is given by the
corresponding component density, that is a hybrid Pareto
density. The parameters of this density are modeled as
function of covariates which include past runoff and pre-
cipitation. The conditional mixture can adapt to a more
general shape of the underlying distribution, including
asymmetry and multimodality. Also, the hybrid Pareto
enables the stochastic model to take explicitly extreme
values into account. Moreover, a neural network computes,
given the covariates, the mixture weights (or state proba-
bilities) and the component density parameters. In contrast
to Lu and Berliner [1999], we don’t need to assume a
specific form for the relationship between the covariates and
the model parameters since such a neural network can in
principle approximate any continuous mapping. The model
will be further detailed in section 2.

[3] Neural networks have been popular models for a good
while in hydrology (seeMaier and Dandy[2000] for a
survey). They were used to predict river runoff but, to our
knowledge, not within a conditional mixture framework.
Such traditional neural networks are generally not apt at
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capturing extreme observations. On the other hand, standard
models to tackle extremes are drawn from extreme value
theory (EVT) [Embrechts et al., 1997]. These models
consider either maxima over a given period, in which case
the generalized extreme value (GEV) distribution is used, or
observations that exceed a selected threshold and a gener-
alized Pareto distribution (GPD) models the distribution of
the exceedances. The EVT models thereby mean to estimate
the upper tail of the underlying distribution. The choice
of the GEV and the GPD is motivated by the fact that these
are the limiting distributions of the maxima and the exceed-
ances, respectively, under some fairly general conditions.
Although extreme runoff behavior is utterly important,
hydrologists need to model the whole runoff distribution.
One way to extend the GPD model to the whole distribution
has been proposed byFrigessi et al.[2002]. Their model is
a two-component mixture with one light-tailed component
and one GPD component. The hybrid Pareto mixture can be
seen as a different way to include the GPD into a mixture
model. The hybrid is built by stitching together a Gaussian
and a GPD while ensuring continuity at the junction point.
In the hybrid Pareto mixture, the number of components is
chosen according to the data at hand. The central part of the
hybrid Pareto mixture consists of a Gaussian mixture which
is a flexible nonparametric estimator. The upper tail of the
hybrid Pareto mixture is made of a linear combination of
GPDs. Through experiments, this approach has shown to
perform well on heavy-tailed data [Carreau and Bengio,
2009b].

[4] Vrac and Naveau[2007] have incorporated covariates
in the Frigessi mixture [Frigessi et al., 2002] in order to
predict the distribution of rainfall. The covariates help
discriminating between different sorts of rainfall regimes:
no rainfall, regular rainfall and extreme rainfall. A particular
distribution is used according to which regime prevails.
Another way to include covariates into an EVT model has
been developed byChavez-Demoulin and Davison[2004].
Covariates are assumed to influence the value taken by the
GPD parameters. This relationship is modeled by spline
smoothers. In the conditional hybrid Pareto model, the
mapping between the hybrid Pareto mixture and the cova-
riates is modeled by a neural network. In this case, the
whole conditional distribution is estimated, not just the
conditional upper tail, as in the model ofChavez-Demoulin
and Davison[2004].

[5] The tail index parameter is the most difficult param-
eter to estimate, whatever model is used, be it the GPD, the
GEV distribution or some other method which one could
think of for tail index estimation. This is because the tail
index parameter, also termed the shape parameter, gives a
sense of the overall shape of the distribution and in
particular, of the tail behavior. Typically, few observations
will occur in the tail which makes the estimation of the tail
index very sensitive. Despite the good asymptotic properties
of maximum likelihood estimators (MLEs), they are not
very reliable in small samples given their high variance.
Estimators of moments show a better behavior in small
samples, however they assume that the expectation of the
underlying distribution is finite (equivalently, that the tail
index is smaller than one).Coles and Dixon[1999] intro-
duced a penalty term in the MLEs of the GEV parameters.
The intuition behind the penalty term is to include a similar

range restriction on the tail index estimator as for the
moment estimator.Coles and Dixon[1999] show that the
penalized MLE of the tail index performs better in small
samples than the classical MLE.

[6] The hybrid Pareto is one such model with a tail index
parameter, which is inherited from the GPD. When density
estimation is performed with a hybrid Pareto mixture, the
tail index of the underlying distribution can be estimated
from the tail index of the dominant component in the
mixture, that is the component with the largest tail index
(and consequently, the heaviest tail). In this case, the MLEs
sensitivity in small samples appears in the following way:
large tail indexes are assigned to components with negligi-
ble mixture weights. To prevent this, we add a penalty term
to the log likelihood based on a prior distribution of the
mixture tail indexes. This is similar in spirits to the penalty
proposed byColes and Dixon[1999]. We devised a prior
distribution of the mixture tail indexes based on the follow-
ing intuitive idea. We would expect that most components
would take care of modeling the central part of the distri-
bution and therefore, have a tail index close to zero. If the
tail of the underlying distribution is heavy, we would then
expect that some components would have a tail index close
to the tail index of the underlying distribution.

[7] We evaluate the conditional hybrid Pareto mixture on
rainfall-runoff data from the Orgeval basin in France. The
conditional median of the learned conditional hybrid Pareto
mixture serves to generate river runoff at a future time step
t + 1. A 90% confidence interval is also computed as the
quantiles of level 5% and 95%. This is in contrast with the
work of Frigessi et al. [2002] and Vrac and Naveau
[2007] who did not use their model for prediction at a
future time step. We also look at the distribution of the
conditional tail indexes on the test set; the effect of the tail
penalty term in the maximum likelihood estimator can be
seen. We gain then more insight into the effect of the new
penalty by looking at experiments on synthetic data.

2. Statistical Model of the Rainfall-Runoff
Process

[8] We propose to model the rainfall-runoff process with
the conditional hybrid Pareto mixture [seeCarreau and
Bengio, 2009a]. This model combines the flexibility of
nonparametric modeling and the extrapolation capability
of the GPD methodology. Given a vector of covariates
which describe meteorological and hydrological conditions,
the conditional distribution of the river runoff is modeled by
a mixture of hybrid Paretos whose parameters depend on
covariates. Such a mixture is able to adapt to asymmetry,
multimodality and tail heaviness that might be present in the
conditional distribution of the runoff. The neural network
which learns the relationship between the covariates and the
mixture parameters is able to approximate properly the
highly nonlinear relationship between rainfall and runoff.
The conditional hybrid Pareto mixture provides a condi-
tional density model that has proven to perform well on
many kind of data sets [seeCarreau and Bengio, 2009a].
The model is explained in detail in sections 2.1–2.3.

2.1. Hybrid Pareto Mixture
[9] Suppose we want to model the distribution ofY, a

variable representing the river runoff, with no additional
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predictive information. We could estimate the distribution of
Y with a mixture of Gaussians, which is a popular nonpara-
metric estimator [Bishop, 1995]. This type of approach
circumvents the need to choose a specific parametric form
for the distribution of the runoff and can take into account
multimodality and asymmetry. Mixtures of Gaussians
approximate a density by adding up weighted Gaussians or
‘‘bumps’’ (see Figure 1). The density estimator is formally
given by

P m
j¼1 pjf mj

,sj
(y), where thepj are the mixture

weights andf mj
,sj

(�) is the Gaussian density with parameters
mj andsj. The weights must sum to one, that is,

P m
j¼1 pj = 1,

to ensure that the estimator is a proper density.
[10] A Gaussian mixture approximates the distribution of

heavy-tailed data, such as runoff data, by locating one
component with a large standard deviation around the
largest observations. However, its capacity to extrapolate
beyond the sample range might be poor.

[11] The hybrid Pareto distribution was put forward as a
way to transfer the extrapolation properties of the GPD
[Embrechts et al., 1997] to mixture models. The hybrid
Pareto distribution is a smooth extension of the GPD to the
whole real axis. This new distribution is built by stitching a
GPD tail to a Gaussian, while enforcing continuity of the
resulting density and of its derivative. In this work, we focus
on runoff data which is heavy tailed so we letx > 0 in the
GPD density where the scale parameterb is positive and the
location parametera is real:

gx;b y � að Þ ¼
1
b

1 þ
x
b

y � að Þ
� � � 1=x� 1

x > 0; y > a:

Let a be the junction point andf m;s(y) = 1/(
������
2p

p
s)

exp(� (y � m)2/(2s2)) be the Gaussian density function
with parametersm 2 R and s > 0. The two constraint
equations (equality of the density and of its derivative ata)
are solved so thata andb, the GPD scale parameter, become
functions of x, the GPD tail index and ofm and s, the

Gaussian parameters. Letq= (x, m, s) be the parameter vector
of the hybrid Pareto. The hybrid Pareto density is given by

hq yð Þ ¼

1
g

f m;s yð Þ if y � a;

1
g

gx;b y � að Þ if y > a;

8
>><

>>:

where the dependent parameters area(x, m, s) = m +

s

����������������������������������

W 1 þ xð Þ2=2p
� �r

, b( x, s) = ( s( 1 + x) ) /
 ����������������������������������

W 1 þ xð Þ2=2p
� �r !

and W is the LambertW function

defined byw = W(wew) [see Corless et al., 1996]. The
reweighting factorg ensures that the density integrates to one
and is given by

g xð Þ ¼1 þ
1
2

1 þ Erf

���������������������������������������

W 1 þ xð Þ2=2p
� �

=2

r� �� �
;

whereErf(�) is the error functionErf(z) = 2��
p

p
Rz

0 e� t2 dt =
2 F(z

���
2

p
) � 1 andF is the standard Gaussian distribution

function [seePress et al., 1992]. The hybrid Pareto, while
inheriting the approximation properties of the GPD, bypasses
the need for threshold selection inherent in the classical GPD
methodology [Embrechts et al., 1997] sincea, the junction
point of the Gaussian and the GPD is computed implicitly as a
function of the hybrid parameters.

[12] With a hybrid Pareto mixture
P m

j¼1 pjhqj
(y) to model

the distribution of the river runoff, we get the best of both
worlds: the central part is a mixture of Gaussians which
benefits from flexible approximation properties and the
upper tail is a linear combination of GPD densities that
are capable of extrapolating in areas of unseen data under
sound parametric assumptions.

2.2. Conditional Density Model
[13] Our goal is to provide a model of the river runoff at a

future time step. We have at our disposal rainfall data in the
hydrographic basin of interest which influences river runoff.
We therefore look into modeling the distribution of the
runoff at timet + 1 given covariate information at timet,
which includes rainfall observations and past runoff. The
hybrid Pareto mixture can be turned into a conditional
density model by thinking of the parameters of the mixture
as function of covariates [Bishop, 1995]. These functions
can be implemented in many ways. The simplest model
would be a linear model. However, the relationship between
rainfall and runoff is highly nonlinear. A one-layer feed
forward neural network of which the linear model is a
special case (no hidden units) is able, if the number of
hidden units is well chosen, to approximate any continuous
relationship between covariates and mixture parameters.
Data-driven selection of the number of hidden units pro-
vides a proper level of complexity (or nonlinearity). A
representation of the conditional mixture model with a
neural network is given in Figure 2. The covariates, or
inputs, are combined linearly and either fed to the hidden
units or directly connected to the neural network outputs.
We took the hyperbolic tangent as the activation function of
the hidden layer. The neural network outputs are then

Figure 1. Gaussian mixture density (solid line) with seven
components trained on heavy-tailed data. The dashed lines
represent the contribution of each component to the density.
Five components model the central part, and the other two
components contribute to the density in the upper tail.
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transformed into the mixture parameters. Different transfor-
mation functions constrain the range of each mixture
parameter. Theaj

(0) in Figure 2 are dedicated to the mixture
weights. The transformation function, the softmax, ensures
that these weights are positive and sum to one:pj =
exp(aj

(0))/
P

k exp(ak
(0)). The aj

(1) and aj
(3) control the tail

index and the spread parameter, respectively, of thejth
component. They are guaranteed to be positive by using a
softplus [Dugas et al., 2001], a slow-growing version of the
exponential:y = softplus(x) = log(1 + expx). Finally, the
aj

(2) are assigned to the location parameters and need no
range constraint.

[14] There are two hyperparameters to adjust the level of
complexity in the conditional hybrid Pareto mixture: the
number of hidden units in the neural network and the
number of components in the mixture. The former controls
the degree of nonlinearity of the mapping between the
covariates and the mixture parameters and the latter
accounts for the complexity of the conditional density (in
particular, the multimodality and asymmetry). Given the
approximation capabilities of the neural network and of
the mixture model, if the complexity level is well chosen,
the conditional mixture should be able to approximate any
type of conditional density. The hyperparameters are chosen

so as to maximize the conditional log likelihood on a valida-
tion set, distinct from the training set and thus, should be
reasonably close to the ones that give the best generalization
performance (the capacity to perform well on unseen data).
Because there are many sources of variability (training data,
optimization process), the hyperparameter selection can be
variable as well. Overall, the conditional hybrid Pareto
mixture gave a better performance than other conditional
density estimator in the presence of heavy-tailed data
[Carreau and Bengio, 2009a].

2.3. Learning and Regularization
[15] The conditional mixture parameters are the neural

network parametersw. These are learned by minimizing the
negative conditional log likelihood on the training data:

L wð Þ ¼ �
Xn

i¼1

log y w yi jxið Þð Þ;

where the sum is over the training setDn = {(x1, y1), . . ., (xn,
yn)} and y w(yijxi) is the hybrid Pareto conditional mixture
model evaluated at the data pointi.

[16] Carreau and Bengio[2009a] observed empirically
that maximum likelihood estimation of the hybrid Pareto

Figure 2. Representation of a conditional mixture model with hybrid Pareto componentsy w(yjx). Inputs
are fed to a one-layer feed forward neural network with an extra linear connection directly to the outputs.
The outputs are then transformed into the mixture parameters so as to fulfill range constraints.
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mixture, conditional or not, can lead to overestimation of
the tail indexes. This is especially striking for small training
sets. The overestimation of the tail index, even by a small
amount, leads to gross overestimation of the extreme
quantiles. In order to guide maximum likelihood estimation
and avoid the overestimation of the tail indexes, we use a
penalty term based on the prior density of equation (1):

f x; t ; h; rð Þ ¼th exp � hxf g þ 1 � tð Þ
exp � x � 0:5ð Þ2= 2r 2ð Þ

n o

������
2p

p
r

:

ð1Þ

[17] Figure 3 illustrates two typical shapes of the prior
density. In the case of runoff data, we can safely assume that
the distribution has a tail index around 0.5 [Bernadara et
al., 2008]. This implies that a variant of the solid line
density in Figure 3 will hold. Most components will be light
tailed, with tail indexes close to zero. These components
will take care of modeling the central part of the distribu-
tion. Some components will be heavy tailed, with a tail
index value close to the one of the underlying density and
these will estimate the upper tail of the distribution. Hence,
the solid line density is bimodal, with one mode at zero and
the other one, smaller, around 0.5. On the other hand, if the
data are light tailed, then we assume that all the components
will have tail indexes close to zero. The prior density in this
case would look like the dashed line density in Figure 3.

[18] The two-component mixture of equation (1) can
generate densities such as those illustrated in Figure 3.
The exponential component with parameterh controls the
density assigned to the small tail indexes and the Gaussian
component centered at 0.5 with standard deviationr deter-
mines how wide the range of the larger tail indexes can be.

The mixture weightt establishes the trade-off between the
two components. Whent is equal to zero, we are in the
light-tail case.

[19] The conditional mixture parametersw are now
learned by minimizing a new cost function, the negative
conditional log likelihood minus the penalty term:

L wð Þ ¼ �
Xn

i¼1

log y w yi jxið Þð Þ �
l
n

Xn

i¼1

Xm

j¼1

logf xi;j ; t ; h; r
� �

;

where the first sum is over the training setDn, the second
sum in the penalty term is over the number of components
m, y w(yijxi) is the hybrid Pareto conditional mixture model
evaluated at pointi and f(xi,j; t , h, r ) is the prior density
evaluated at the tail index of thejth component of the
conditional mixture at pointi. The penalty term introduces
four other hyperparameters:l which controls the weight of
the penalty with respect to the conditional log likelihood
andt , h andr from the prior density (see equation (1)). A
restricted set of values for the prior density parameters was
selected so as to ensure that the prior density follows our
prior information about the shape of the distributions of the
tail indexes. The model is trained for several combinations
of hyperparameters (which include the number of hidden
units and the number of components of the conditional
hybrid Pareto mixture and the hyperparameters attached to
the penalty term). The set of hyperparameters which gives
the smallest cost in terms of negative conditional log
likelihood on data unseen during training (the validation set)
is selected.

3. Experiments
[20] We evaluate the conditional hybrid Pareto mixture on

the rainfall-runoff data from the Orgeval basin in France.
Synthetic data experiments help to gain more insight into
the role of the new penalty term in the cost function. Since
the generative model is known, the predicted tail indexes
can be compared with the tail indexes of the generative
model. We also compare the conditional quantiles of the
generative versus learned model.

3.1. Orgeval Basin Data
[21] The Orgeval Basin is located in France, east of Paris.

There is no snow accumulation in the area that could affect
the river runoff. Therefore, we focus on rainfall as a
predictor of the river runoff. In order to capture the
mechanisms of the basin, moving averages and moving
standard deviations of various window lengths of the river
runoff are included in the covariates. The river runoffQt
from the Avenelles subbasin and the precipitations at four
surrounding stations,Pt

j, j = 1, . . ., 4, are available at a
hourly time step for over 30 years but we use approximately
10 years of data, from 1986 to 1996 (see http://www.antony.
cemagref.fr for more details on the data and the basin). We
also have daily average temperatures at this site for the same
time period. Date variables serve to capture the cycles and
trends in the data. Precisely, there are 16 covariates to
predict the river runoff distribution: rainfall from the four
precipitation stations at the previous time step, the runoff at
the two previous time steps, moving averages and standard
deviations with daily, weekly and monthly window widths,

Figure 3. The distribution represented by the solid line
has one mode at zero and one mode at 0.5, while the
distribution represented by the dashed line has significant
density only around zero. The former distribution reflects
our prior information about how the tail indexes of a hybrid
Pareto mixture should be distributed when the data are
heavy tailed, and the latter distribution, reflects the situation
when the data are light tailed.
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three date variables concerning the year, the month and the
week and the daily average temperature at the previous day.
Three time periods where there is no missing data are
split into training and test sets. The data sets are summarized
in Table 1. For this experiment, we setYt = Qt+1 andXt =
[Qt, Qt� 1, Pt

1, . . .,] which means that given information
available at timet, we model the distribution of the runoff at
time t + 1. With the hourly data, we thus model the
conditional distribution of the runoff at the next hour. In
order to increase the prediction horizon to 6 and 12 h, the
hourly data are aggregated to form 6 h and 12 h time steps.
To this end, we take the average of the runoff and the sum of
the rainfall over the appropriate time period. This means
that the lengths of our initial data sets in Table 1 are divided
by the length of the time steps. We thus have three different
models, one for each time step.

[22] We assume that given the covariate vectorXt, theYt
are independent and identically distributed. It is thus pos-
sible to perform model selection via fivefold cross valida-
tion (as opposed to sequential cross validation which is
more computationally intensive; seeBishop [1995] for
details). Model selection works as follows. The training
set is divided into five subsets or folds. The conditional
hybrid Pareto mixture is first trained on four of those folds
by minimizing the penalized negative conditional log like-
lihood for each set of hyperparameters considered and the
performance in terms of conditional log likelihood of each
trained model is evaluated on the left out fold. This process
is repeated five times, so that each fold in turn was left out
and that the model performance was evaluated on all the
data of the training set. The hyperparameters that gave the
best performance in validation are selected. The model with
the selected hyperparameters are trained again this time on
the whole training set. The generalization ability, that is how
well the model does on unseen data, is then evaluated on the
test set, which is distinct from the training set. Results from
the experiments on the Orgeval basin data are summarized
in Table 2 for each time step (1 h, 6 h, 12 h). The selected
hyperparameters for the penalty term, (l , t , h, s), corre-
spond to the prior belief that the distribution is heavy tailed.
The confidence interval is computed from the conditional
quantiles of level 0.05 and 0.95; therefore, the observed
runoff should fall into that interval nine times out of ten.
The percentage given on the confidence interval row is the
actual percentage of observed runoff on the test set which
fall into the confidence interval. We can see that it is pretty
close to the expected one. A measure of goodness of fit is
the so-calledRsquare given asR2 = 1�

P
i(yi � ŷi)

2/
P

i(yi �
y)2, whereyi is the observed runoff,ŷi is the prediction andy is
the sample average. The closerR2 is to one, the better the
prediction is. TheR square is computed on the test set and

the conditional median of the trained model is used to
predict the runoff. We can see from the last row of Table 2
that theR square for all time steps are very good, although
the accuracy of the prediction decreases with the length of
the time step. Prediction at longer time steps are under-
standably more difficult. A different test set is used for the
12 h time step data (data set number 2 in Table 1) in order to
leave more data for the training set. The prediction is
possibly more challenging on that time period and at least,
not directly comparable with the other two models, 1 h and
6 h, which uses a similar test set.

[23] The river runoff for the test period is illustrated in the
left plots of Figure 4. The top, middle, and bottom plots
each correspond to one time step. The model prediction,
which is the conditional median of the trained model, is
plotted for each test set in the right plots of Figure 4. For all
time steps, we can see that the model captured very well the
dynamics of the river runoff. In the left plots of Figure 5, we
have plotted the confidence intervals in light grey with
quantiles of level 0.05 and 0.95 for the first 100 points of
the test set. The black line is the observed runoff. Some-
times, the confidence interval is very narrow while it grows
larger where the model perceives more uncertainty. We can
check the effect of the tail penalty by looking at the
distribution of the tail indexes of the conditional hybrid
Pareto mixture on the test set. This is illustrated the histo-
grams in Figure 5. Except for a few cases in which the tail
index exceeds one (which is allowed by the prior), the
largest tail index values vary between 0.2 and 0.6 while
most tail indexes take on values near zero. The distribution
of the tail indexes is thus consistent with our prior belief.

3.2. Synthetic Data
[24] We generate synthetic data which resemble the

runoff data in the sense that there are cycles and that the
tail indexes are in the same range. LetY be a random
variable distributed according to a Fre´chet distribution
whose parameters are functions of an input variableX.
Then the distribution function ofYjX = x is given by

P Y � yjX ¼ xð Þ¼

0 si y � m xð Þ;

exp �
y � m xð Þ

s xð Þ

� � � 1=x xð Þ
( )

si y > m xð Þ:

8
><

>:

Table 1. Three Periods With No Missing Value in the Orgeval
Basin Data in Order of Decreasing Lengths

Data Set Time Period
Hourly

Observations

1 26 Mar 1986 1800:00 to 22 May 1994 0800:00 71,487
2 22 Jul 1996 1500:00 to 24 Aug 2001 1600:00 44,618
3 30 May 1994 1800:00 to 18 Jun 1996 0300:00 17,987

Table 2. Experiments for the Orgeval Basin Data for Each Time
Stepa

Hourly 6 h 12 h

Training data 52 846 (1) 9 913 (1) 7 455 (1,3)
Test data 10,000 (1) 2000 (1) 3 717 (2)
h, m (4,4) (4,8) (4,12)
l , t , h, r (0.01,0.5,50,0.1) (0.1,0.1,50,0.2) (1,0.1,50,0.1)
Confidence interval (%) 91.94 92.1 87.6
R2 0.99 0.92 0.73

aShown are the sizes of the training and test sets (with data set number
from Table 1 in parentheses), the selected number of hidden units and
components (h, m) followed by the selected penalty hyperparameters (l , t ,
h, s), the percentage of the runoff in the test set which falls in the predicted
90% confidence interval, and theR2 of the predicted median on the test set.

6 of 11

W10437 CARREAU ET AL.: A STATISTICAL RAINFALL-RUNOFF MIXTURE MODEL W10437



The Fréchet distribution is a canonical heavy-tail distribu-
tion: the tail of most heavy-tailed distribution eventually
behaves like the Fre´chet tail. The input variableX is
distributed according to a standard Normal distribution. We
chose the following sine-shaped functional form for the
dependence functionx(�):

x xð Þ ¼b1 þ b2 sin g1 þ g2xð Þ:

SinceX � N (0, 1), we select the parameters ofx(�) so that
x(X) 2 [0.25, 0.5] with probability 0.99. The dependence
function m(�) ands(�) have a similar sine-shaped form but
their parameters are chosen so thatm(X) 2 [2, 6] ands(X) 2
[0.5, 1] with probability 0.99. We generated pairs of
observations (Xi, Yi) according to this generative model.

Figure 6 (left) illustrates the training set which is made of
2000 such pairs of observations. Figure 6 (right) shows the
corresponding tail indexes. Model selection (the choice of
the proper set of hyperparameters) is performed via fivefold
cross validation on the training set. Results are presented on
a test set, distinct from the training set, which consists of
10,000 pairs of observations generated according to the
conditional Fre´chet distribution described above.

[25] The model selected via fivefold cross validation for
the training set of Figure 6 has eight hidden units and two
mixture components. The hyperparameters for the tail
penalty are the following:l = 0.1, t = 0.45, h = 50 and
s = 0.05. This corresponds to the shape of a prior density
for heavy tails in Figure 3. The effect of the tail penalty can
be seen in Figure 7 (left): the histogram of the conditional

Figure 4. (left) Observed runoff of the Avenelles subbasin for the test period corresponding to a given
time step: (top) 1 h, (middle) 6 h, and (bottom) 12 h. (right) Predicted median on the test set from the
learned hybrid Pareto conditional mixture for the three time steps.
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Figure 5. (left) The observed runoff for the first 100 points of the test set illustrated in Figure 4 (black)
together with a 90% confidence interval (light grey) predicted from the conditional mixture. (right)
Histogram of the tail indexes of the conditional hybrid Pareto mixture on the test set.
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tail indexes of the conditional hybrid Pareto mixture on the
test set reflects the shape of the prior density. Note that less
than 1% of the tail indexes are larger than 1 and are thus not
shown in Figure 7, this is due to the upper tail of the prior
which still has some significative density in that area. For
the generative model, the conditional tail indexesx(X) vary
between 0.25 and 0.5 (see Figure 6, right). According to our
prior belief, there should be a small subset of tail indexes
from the conditional hybrid Pareto mixture which take care
of modeling the upper tail and thus should take values in the
same interval [0.25, 0.5]. The histogram of Figure 7 is
consistent with this prior belief. In Figure 7 (right) we have
plotted the test set together with the quantiles of level 0.05%
and 0.95% which form a 90% confidence interval as
predicted from the trained conditional hybrid Pareto mix-
ture. Among the test set, 89% of the data points fall into the
confidence interval.

[26] In order to check how well the conditional density is
learned in the upper tail, we compare three conditional
quantiles of levels 0.9, 0.95 and 0.99 as computed from the
generative model and the learned model. These are plotted
in Figure 8: the black line is the quantile as computed from
the trained conditional hybrid Pareto mixture and the light

grey line is the quantile from the generative model. For the
levels 0.9 and 0.95 (Figure 8, top), the two lines are almost
indistinguishable from one another except for the lower and
upper ends. The data density is much lower in these areas
(see Figure 6) because theX variable follows a standard
Normal distribution and this makes learning more difficult.
The conditional quantile of level 0.99 is less well approx-
imated. This is also due to data scarcity and shows that the
model is less reliable in that case. Table 3 compares the
percentage of the data in the test set which fall below
the conditional quantiles of the generative model and the
trained model for the three quantile levels. The picture is
pretty similar for both models. Overall, the performance of
the conditional hybrid Pareto mixture with the new tail
penalty proves to be satisfying.

4. Conclusion
[27] We have propose a new stochastic