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Rendezvous of Nonholonomic Robots via Output-Feedback Control
under Time-varying Delays

Emmanuel Nuño Antonio Lorı́a Elena Panteley Esteban Restrepo

Abstract— We address the problem of making nonholonomic
vehicles, with second-order dynamics and interconnected over
a bidirectional network, converge to a formation centered at
a non-prespecified point on the plane with a non-prespecified
common orientation. We assume that only the Cartesian posi-
tion of the center of mass of each vehicle and its orientation are
available for measurement, but not the velocities. In addition,
we assume that the interconnections are affected by time-
varying delays. Our control method consists in designing a
set of second-order systems that are interconnected with the
robots’ dynamics through virtual springs and transmit their
own coordinates to achieve consensus. This and the virtual
elastic couplings with the vehicles make the latter achieve
consensus too. To the best of our knowledge, output feedback
consensus control of underactuated nonholonomic vehicles
has been little studied, all the less in the presence of delays.

Index Terms— Rendezvous, consensus, autonomous vehicles,
persistency of excitation, output feedback, differential-drive
mobile robots.

I. INTRODUCTION

For first and second-order integrators the leaderless consensus
problem, which consists in the state variables of all agents converging
to a common value, is well-studied and solved under many different
scenarios [1]. The solution to this problem is more complex if one
considers the agents’ dynamics [2], [3], network constraints, such as
communication delays [4], unavailability of velocity measurements
[5], or nonholonomic constraints that restrict the system’s motion [6].
For autonomous vehicles, which, in contrast to mathematical models,
do occupy a physical space, the leaderless consensus problem consists
in making all robots converge to a rendezvous point while forming
a pattern with an unknown center. This is done by specifying an
offset position from the unknown center for each robot. It may be
required that either only the positions [6], [7] or only the orientations
[8] achieve a common equilibrium point, or that both positions and
orientations converge to a common value [9].

Rendezvous control is useful, e.g., if a group of robots must
converge to postures that form a desired geometric pattern in order
to subsequently maneuver as a whole [10]. This is a typical two-
stage formation problem. In the first, a rendezvous algorithm is
required for the stabilization of the agents [11]–[13] and in the
second a formation-tracking controller is employed [14]. From a
systems viewpoint, rendezvous control of nonholonomic vehicles is
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inherently a set-point stabilization problem. In that regard, it presents
the same technical difficulties as the stabilization of a single robot. In
particular, that nonholonomic systems are not stabilizable via time-
invariant smooth feedback [15], but either via discontinuous time-
invariant control [12] or time-varying smooth feedback [16], [17].

In this paper we solve the rendezvous problem for force-controlled
nonholonomic systems unequipped of velocity sensors and intercon-
nected over a network with bidirectional interconnections affected by
time-varying delays. Delays are common in network control systems
[18]. Not relying on velocity measurements is desirable since these
measurements are often contaminated by noise and velocity sensors
may be unreliable [19]. Measurement delays and lack of velocity
measurements have been addressed in the literature on consensus of
nonholonomic systems, but not simultaneously. For instance, [19]–
[21] address control problems without velocity measurements, and
delays are considered in [20], but they all concern leader-follower
formation tracking control; output-feedback consensus is addressed
in [22] and [23], but delays are not considered. In [24] a controller
achieving consensus formation in the presence of smooth time-
varying delays is proposed, but the controller uses state feedback.

The design of the controller that we propose in this paper is
inspired by the previous works [5] and [24]. The control approach
consists in designing a group of independent second-order systems
to achieve output consensus among themselves and, then, steer the
plants to output consensus through a virtual mechanical coupling.
The underlying idea is reminiscent of that used in [5], for flexible-
joint manipulators, but in contrast to the latter, we do not use a
high-gain nonlinear observer. As in [24], our controller relies on
persistency of excitation to overcome the difficulties imposed by the
nonholonomicity on set-point stabilization, but it is not a certainty-
equivalence modification of the controller in that reference.

The remainder of this paper is organized as follows. In the
next section we describe the nonholonomic second-order dynamic
model and lay our main assumptions. In Sections III and IV we
present some preliminary, but original, results on state- and output-
feedback consensus control that are useful to explain and put our
main results in perspective. The latter are presented in Section V. In
Section VI we provide some realistic simulations using the Gazebo-
ROS environment and we provide concluding remarks in Section VII.

II. MODEL AND PROBLEM FORMULATION

We consider a group of N autonomous nonholonomic second-
order vehicles modeled by the equations:

angular
motion

{
θ̇i = ωi (1a)

ω̇i = uωi, (1b)

linear
motion

{ żi = ϕ(θi)vi, (2a)

v̇i = uvi, i ∈ {1, 2 . . . N} (2b)

where
ϕ(θi) := [cos(θi) sin(θi)]

>, (3)

zi = [xi yi]
> ∈ R2 denotes the Cartesian coordinates of the ith
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vehicle on the plane, θi ∈ R denotes its orientation, and

uvi :=
1

rm
[τi1 + τi2], uωi :=

2R

Ir
[τi1 − τi2]

are the control inputs, which are defined in function of the wheel
torques τi1 and τi2, the robot inertia I , the mass m, the wheel radius
r, and the wheel axle length R.

Remark 1: For the purpose of analysis, the angles are defined as
real variables, but this may entail undesired unwinding. In practice,
θi ∈ (−π, π]. This is considered in Section VI. •
It is required that the vehicles meet in formation around a non-
predefined rendezvous point on the plane, denoted zc := (xc, yc), and
acquire a non-predefined common orientation, denoted θc, modulo a
given offset δi = [δxi δyi]

>, with i ≤ N , which determines the
position of the ith vehicle relative to the unknown center of the
formation. In other words, defining, z̄i := zi − δi (correspondingly,
x̄i := xi − δxi and ȳi := yi − δyi) the control goal is to make

lim
t→∞

vi(t) = 0, lim
t→∞

z̄i(t) = zc, (4)

lim
t→∞

ωi(t) = 0, lim
t→∞

θi(t) = θc ∀ i ≤ N. (5)

This is a leaderless consensus problem. That is, neither the coordi-
nates (xc, yc) nor the angle θc are determined a priori as a reference.
They depend on the initial postures, on the systems’ nonlinear
dynamics, and on network features. The rendezvous problem has been
successfully solved under different conditions, but the originality of
this paper resides in considering the realistic scenario determined by
the following assumptions simultaneously.

First, owing to the fact that velocity measurements are often cor-
rupted by noise and sensor defects we pose the following hypothesis.

Assumption 1: Only the coordinates (zi, θi) are measured.

Second, we assume that a WiFi communication network is avail-
able over which the ith robot communicates with a set of neighbors,
which we denote by Ni. It is naturally assumed that once a com-
munication is set between two robots i and j ∈ Ni, the flow of
information is bidirectional and is never lost. Whence the following.

Assumption 2: The network may be modeled using an intercon-
nection graph that is undirected, static, and connected.

Remark 2: In graph theory, a graph is undirected if the nodes ex-
change information in both direction, it is static if the interconnection
is constant, and it is connected if any node is reachable from any other
node. The latter is a necessary condition to achieve consensus [1]. •

On the other hand, because the robots communicate through a WiFi
network, the communication between the robots i and j is affected by
non-constant time-delays. More precisely, we consider the following.

Assumption 3: The communication from the jth to the ith robot
is subject to a variable time-delay denoted Tji(t). It is assumed that
the function t 7→ Tji(t) is bounded, has bounded time-derivatives,
up to the second, and the upper-bound, denoted T ji, is known.

Assumption 3, which is imposed only for technical reasons im-
posed by the method of formal analysis, carries certain conservatism
in the supposition that the delays are differentiable. Indeed, time-
delays over WiFi networks or the Internet may rather be of a non-
smooth nature [9], [18]. In Section VI we provide realistic simulations
in which Assumption 3 is violated. Yet, the formal solution to the
rendezvous problem defined above under Assumptions 1, 2, and under
discontinuous time-varying delays remains an open problem.

III. CONTROL ARCHITECTURE: STATE-FEEDBACK CASE

An essential feature of the model (1)–(2) is that it consists of two
coupled second-order systems driven by independent control inputs.

One system determines the linear motion and the other the angular
one. Each of the latter being a second-order mechanical system, the
control design starts by devising a consensus controller for (1) and
(2) separately. To that end, we revisit a controller from the literature,
but we provide an original analysis of robust stability that serves as
design-basis for our dynamic output-feedback controller, presented in
Section V.

A. Robust consensus control of second-order systems
The consensus problem for systems with dynamics

ϑ̈i = ui i ≤ N, ui ∈ R (6)

(that is steering ϑi → ϑc, ϑ̇i → 0, and ϑ̈i → 0 with ϑc constant and
not imposed a priori) is now well understood in various settings. For
instance, it is well known (see [1]) that if the systems modeled by
(6) communicate over a network modeled by an undirected, static,
and connected graph, the distributed control law, of proportional-
derivative (PD) type,

ui = −diϑ̇i − pi
∑
j∈Ni

aij(ϑi − ϑj); di, pi > 0, (7)

where aij > 0 if j ∈ Ni and aij = 0 otherwise, solves the consensus
problem. There are many reported ways to show this. For further
development we provide here a simple and original proof based on
Lyapunov’s direct method. Let ϑ := [ϑ1 · · · ϑN ]> and

ϑ̃ := ϑ− 1

N
1N1>Nϑ, 1N := [1 · · · 1]>. (8)

Indeed, ϑ̃ denotes a vector whose ith element corresponds to the
difference between ϑi and the average of all states, i.e., ϑc :=
(1/N)1>Nϑ. In addition, under Assumption 2, ϑc corresponds to the
consensus equilibrium point. Now, to abbreviate the notation, we also
define

Π := I − 1

N
1N1>N .

Note that Π = Π> and ‖Π‖ ≤ 1, where ‖Π‖ corresponds to the
induced norm of Π, and ϑ̃ = Πϑ.

Next, we introduce the Laplacian matrix, L := [`ij ] ∈ RN×N ,
where

`ij =

{ ∑
k∈Ni

aik i = j

−aij i 6= j.
(9)

By construction, L1N = 0 and, after Assumption 2, L is symmetric,
it has a unique zero-eigenvalue, and all of its other eigenvalues are
strictly positive. Thus, rank(L) = N − 1. Also, the last term on the
right-hand side of Equation (7) satisfies

col
[ ∑
j∈Ni

aij(ϑi − ϑj)
]

= Lϑ̃, (10)

where col[(·)i] denotes a column vector of N elements (·)i. Indeed,
by the definition of the Laplacian, we have

col
[ ∑
j∈Ni

aij(ϑi − ϑj)
]

= L
[
ϑ− 1

N
1N1>Nϑ

]
+

1

N
L1N1>Nϑ.

However, L1N = 0, so the right hand side of the equation above
equals to LΠϑ, which corresponds to Lϑ̃, by definition. These
identities are useful to write the closed-loop system (6)–(7) in the
multi-variable form

ϑ̈ = −Dϑ̇− PLϑ̃, (11)

where P := diag[pi] and D := diag[di], and to see that the Lyapunov
function

V1(ϑ̃, ϑ̇) :=
1

2

[
ϑ̃>Lϑ̃+ ϑ̇>P−1ϑ̇

]
(12)
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is positive definite, even if L is rank deficient. Indeed, the term
ϑ̃>Lϑ̃ ≥ λ2(L)|ϑ̃|, where λ2(L) > 0 corresponds to the second
eigenvalue of L (that is, the smallest positive eigenvalue), not for
any ϑ̃ ∈ RN , but for ϑ̃ as defined in (8). Now, evaluating the total
derivative of V1 along the trajectories of (11) and using L ˙̃

ϑ = Lϑ̇
(again, this holds because L1N = 0) we see that

V̇1(ϑ̃, ϑ̇) = ϑ̇>P−1D ϑ̇. (13)

Global asymptotic stability of the consensus manifold {(ϑ̃, ϑ̇) =
(0, 0)} may be ascertained from (13) by invoking Barbashin-
Krasovskı̆i’s theorem (also, but wrongly, known as LaSalle’s theo-
rem). As a matter of fact, since the system is linear time-invariant, it is
also globally exponentially stable and robust to external perturbations.

To see this more clearly, using V1 it is possible to construct
a simple strict Lyapunov function. This is useful to assess the
robustness of system (6) in closed loop with the consensus control
law defined in (7) in terms of input-to-state stability. Let

V2(ϑ̃, ϑ̇) := V1(ϑ̃, ϑ̇) + εϑ̃>P−1ϑ̇, ε ∈ (0, 1). (14)

In view of the properties of V1 it is clear that V2 also is positive
definite and radially unbounded, but only for all ϑ̃ as defined in (8)
and for sufficiently small values of ε ∈ (0, 1). The total derivative
of V2 along the closed-loop trajectories yields

V̇2(ϑ̃, ϑ̇) = V̇1 + ε
[
ϑ̇>ΠP−1ϑ̇− ϑ̃>ΠP−1Dϑ̇− ϑ̃>Lϑ̃

]
, (15)

which, in view of (13) and the fact that ‖Π‖ ≤ 1, implies that

V̇2(ϑ̃, ϑ̇) ≤ −c1
dm
pM
|ϑ̇|2 − εc2|ϑ̃|2 (16)

where dm and pM are the smallest and largest coefficients of D and
P respectively, c1 := 1−ε

[
1
λ+ 1

dm

]
and c2 := `2−λ dmpM are positive

for appropriate values of λ and ε ∈ (0, 1) and any `2 := λ2(L) > 0.
Remark 3: Consider, now, the systems ϑ̈i = ui + αi where αi

is a bounded external disturbance. Then, the previous computations
lead to the inequality

V̇2(ϑ̃, ϑ̇) ≤ −c1
dm
pM
|ϑ̇|2 − εc2|ϑ̃|2 + ϑ̇>α, (17)

with α := [α1 · · ·αN ]>. It follows that the map α 7→ ϑ̇ is state-
strictly passive [25] and, also, the closed-loop system is input-to-state
stable with respect to the input α. •
From the previous analysis, we conclude that for the angular-motion
subsystem (1) the controller

uωi = −dωiωi − pωi
∑
j∈Ni

aij(θi − θj) + αi, (18)

where dωi and pωi > 0, ensures global asymptotic stability of the
consensus manifold {ωi = 0 ∧ θi = θj} if αi ≡ 0 and the closed-
loop system is input-to-state stable with respect to αi —cf. [24].

Remark 4: The previous computations hold with obvious changes
in the notation for the angular-motion dynamics θ̈i = uωi, which is
equivalent to (1). This is used farther below. •

B. On consensus in the linear motion
After the developments in Section III-A and with the purpose

of designing two independent controllers for the angular and linear
motion, it appears appealing to use the following control law for the
subsystem (2). Let

uvi = −dvivi − pviϕ(θi)
> ∑
j∈Ni

aij(z̄i − z̄j) (19)

and let us replace the state variable θi with an arbitrary trajectory
θi(t) which, for the time being we assume to be bounded and to

have a bounded derivative ωi(t), for all t ≥ 0 and all i ≤ N (this
technical assumption is relaxed later). Thus, the closed-loop linear-
motion dynamics, formed by Eqs. (2) and (19), may be regarded
as a time-varying subsystem, decoupled from the angular motion
dynamics —cf. [25, p. 657], [26]. That is,

˙̄zi = ϕ(θi(t))vi, (20a)

v̇i = −dvivi − pviϕ(θi(t))
> ∑
j∈Ni

aij(z̄i − z̄j). (20b)

Next, akin to V1 in (12), we define the Lyapunov function

V3(v, z̄) :=
1

2

∑
i≤N

[ 1

pvi
v2i +

1

2

∑
j∈Ni

aij |z̄i − z̄j |2
]
, (21)

where v := [v1 · · · vN ]> and z̄ := [z̄1 · · · z̄N ]> —cf. (10). This
function is positive definite and radially unbounded in the velocities
vi and the consensus errors. The total derivative of V3 along the
closed-loop trajectories of (20) yields

V̇3(v, z̄) = −v>DvP−1v v, (22)

where Pv := diag[pvi] and Dv := diag[dvi].
Now, the system in (20) being non-autonomous, Barbashin-

Krasovskı̆i’s theorem does not apply, but we may use Barbălat’s
Lemma [25] to conclude (after integrating on both sides of (22))
that vi → 0 and v̇i → 0. In turn, from (20b), we see that

lim
t→∞

ϕ(θi(t))
> ∑
j∈Ni

aij
(
z̄i(t)− z̄j(t)

)
= 0.

This expression, however, does not imply that the consensus objective
is reached. Indeed, note that the set of equilibria of the system in (20)
corresponds to points belonging to the set

U :=
{
vi = 0 ∧ ϕ(θi)

>∑
j∈Ni

aij(z̄i − z̄j) = 0
}
,

which admits points such that z̄i 6= z̄j ∈ R2 because rankϕ(θ) = 1.
This means that if orientation consensus is reached and, for instance,
θi(t)→ 0 then x̄i → xc, but ȳi 6→ yc —see Eq. (3).

Remark 5: This shows that the consensus problem for nonholo-
nomic systems cannot be treated as that for ordinary second-order
systems —cf. [27]. •
To ensure consensus it is necessary that the set of equilibria corre-
spond to the set U ∩ U⊥, where

U⊥ :=
{
vi = 0 ∧ ϕ(θi)

⊥>∑
j∈Ni

aij(z̄i − z̄j) = 0
}
,

where ϕ(θi)
⊥ := [− sin(θi) cos(θi)]

> is the annihilator of ϕ(θi)
hence, ϕ(θi)

⊥>ϕ(θi) = ϕ(θi)
>ϕ(θi)

⊥ = 0.
Roughly speaking, the controller must “pull” out non-equivalently-

equal-to-zero trajectories that may remain “trapped” in U and away
from U⊥. To that end, we endow the angular-motion controller with
a term that incorporates an external function of time (smooth and
bounded) and acts as a perturbation to the angular-motion closed-
loop dynamics. This “perturbation” is designed to persist as long as

ϕ(θi)
⊥>∑

j∈Ni

aij(z̄i − z̄j) 6= 0.

More precisely, let ψi, ψ̇i, and ψ̈i be bounded (belong to L∞) let
ψ̇i be persistently exciting, i.e., let there exist T and µ > 0 such that∫ t+T

t
ψi(s)

2ds ≥ µ ∀ t ≥ 0. (23)

Then, for the control law in (18), we define

αi(t, θi, z̄i) := kαiψi(t)ϕ(θi)
⊥>(z̄i − z̄j), kαi > 0. (24)
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Thus, while αi injects excitation into the system, which ensures that
the position consensus errors converge, it acts as a bounded (hence
harmless) perturbation on the angular-motion dynamics —cf. (18).
Indeed, the state-feedback controller defined by (18), (19), and (24)
ensures full consensus, in position and orientation, for the closed-loop
system, even in the presence of delays; this is shown in [24].

IV. CONTROL ARCHITECTURE: OUTPUT-FEEDBACK CASE

As in the case where state feedback is available, the output-
feedback control design relies on the dichotomy of the system’s
dynamics (1)–(2). Let us consider, first, the angular-motion dynamics,
(1). Note that, expressed as θ̈i = uωi, this system corresponds to an
elementary Newtonian force-balance equation with unitary inertia.
The problem at hand still is to synchronize the angular positions θi
for N such systems, but since ωi is not available, we cannot use
the control law in (18) —with αi ≡ 0—. Yet, it appears reasonable
to conjecture that the objective θi → θj for all i, j ≤ N may be
achieved by coupling the subsystems θ̈i = uωi, via torsional springs,
to virtual second-order oscillators for which the states are available
and are synchronized by design —see Fig. 1 for an illustration.

θi

kωi

ϑωi

dωi

ϑωj

ϑωi

Fig. 1: Schematic representation of coupled mass-spring-damper sys-
tems: angular motion. It is the controller state variable, ϑωi that is
transmitted to neighboring robots and, correspondingly, ϑωj is received
from neighbors in the set Ni.

More precisely, consider the dynamic system

ϑ̈ωi + dωiϑ̇ωi + pωi
∑
j∈Ni

aij(ϑωi − ϑωj) = νωi (25)

where νωi is an external input to be defined, the state ϑωi ∈ R, and
dωi, pωi > 0.

As we showed in Section III-A, for (25) consensus is achieved, that
is, there exists a real constant ϑωc, such that ϑωi → ϑωc, ϑ̇ωi → 0,
for all i ≤ N , provided that dωi, pωi > 0, and νωi = 0. On the
other hand, the system in (25) defines a passive map νωi 7→ ϑ̇ωi.
Furthermore, the system (1b) also defines a passive map, uωi 7→ ωi.
Hence, it appears natural to hinge the systems (25) and (1) by setting

νωi := −uωi, uωi := −kωi(θi − ϑωi), kωi > 0. (26)

That is, the coupling −kωi(θi−ϑωi) may be interpreted as the force
exerted by a torsional spring that hinges the (angular) positions of the
two subsystems —again, see Fig. 1. Therefore, consensus among the
angular positions θi is achieved indirectly by imposing consensus on
the dynamic controllers’ variables ϑωi. Consensus among the plants’
variables θi is achieved in view of the virtual mechanical coupling
in (26). As a matter of fact, the control law in (26) is inspired by
how joint flexibility in robot manipulators is modeled —cf. [28], [29]
and the fact that consensus in the link positions may be achieved by
applying a consensus control law on the actuator dynamics —cf. [5].
Then, we have the following original statement on output-feedback
consensus control of second-order systems θ̈i = ui.

Proposition 1 (Output feedback orientation consensus): Consider
a group of differential-drive robots, each with dynamic model (1),
in closed loop with the dynamic controller defined by (25), (26)
and under Assumptions 1 and 2. Then, for any initial conditions

(θi◦, ωi◦, ϑωi◦, ϑ̇ωi◦) ∈ R4 there exist constants θc and ϑc ∈ R
such that, for all i and j ≤ N ,

lim
t→∞

θi(t) = lim
t→∞

θj(t) = θc, lim
t→∞

ωi(t) = 0,

lim
t→∞

ϑωi(t) = lim
t→∞

ϑωj(t) = ϑc, lim
t→∞

ϑ̇ωi(t) = 0.

�
Proof: Consider the function

W3(ϑ̇ω, ϑω, θ, ω) := W1(ϑω, ϑ̇ω) +W2(θ, ω, ϑω),

where ϑω := [ϑω1 · · · ϑωN ]>,

W1(ϑω, ϑ̇ω) :=
1

2

∑
i≤N

[ ϑ̇2ωi
pωi

+
1

2

∑
j∈Ni

aij(ϑωi − ϑωj)2
]
, (27)

W2(θ, ω, ϑω) :=
1

2

∑
i≤N

[ ω2
i

pωi
+ kωi(θi − ϑωi)2

]
. (28)

The function W2 corresponds to the total energy of the mass-spring
(closed-loop) system θ̈i = −kωi(θi − ϑωi); the first term is the
kinetic energy and the second the potential energy “stored” in the
torsional spring of stiffness kωi. Akin to V3 in (21) and V1 in (12),
the function W3 is positive definite and radially unbounded in the
consensus errors and the velocities. The total derivative of W3 along
the closed-loop trajectories yields

Ẇ3(ϑ̇ω, ϑω, θ, ω) = −1

2

∑
i≤N

dωi
pωi

ϑ̇2ωi. (29)

Then, the system being autonomous, we may invoke Barbashin-
Krasovskı̆i’s theorem. First, we see that Ẇ3 = 0 if and only if
ϑ̇ωi = 0. This implies that ϑ̈ωi = 0 and ϑωi = const for all i ≤ N .
From (25) and νωi := kωi(θi − ϑωi) we conclude that θi = const,
i.e., ωi = ω̇i = 0. In turn, from ω̇i = −kωi(θi − ϑωi) = −νωi = 0
and (25) we obtain∑

j∈Ni

aij(ϑωi − ϑωj) = 0 and θi = ϑωi ∀ i, j ≤ N.

After Assumption 2, it follows that the only solution to these
equations is θi = ϑωi = ϑc for all i, j ≤ N .

x̄i
kvi

ȳi

ϑvi
ϑvj

ϑvi1

ϑvi2

Fig. 2: Schematic representation of coupled mass-spring-damper sys-
tems: linear motion. The controller state variable ϑvi is sent to neighbor-
ing robots and, correspondingly, ϑvj is received from Ni neighbors.

Next, to steer the Cartesian positions z̄i to a consensual point,
we also use a second-order dynamic controller that is reminiscent of
the equation (6) in closed loop with the control (7), and an added
virtual-spring coupling term, −kvi(ϑvi − z̄i). That is, let

ϑ̈vi + dviϑ̇vi + pvi
∑
j∈Ni

aij(ϑvi − ϑvj) = −kvi(ϑvi − z̄i), (30)

where ϑvi ∈ R2 and ϑ̇vi are controller’s state variables, and all
control gains dvi, pvi and kvi are positive.
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Then, the dynamical system (30) is coupled to the double (nonholo-
nomic) integrator (2). In contrast to the case of the angular motion,
however, for the linear motion the control input uvi must incorporate
the change of coordinates defined by ϕ. Therefore, we define

uvi := −ϕ(θi)
>kvi(z̄i − ϑvi), kvi > 0 (31)

—cf. Eq. (26).
Thus, the controller (25)–(26) achieves consensus for the angular-

motion dynamics (1) via output feedback while the controller (30)–
(31) steers the linear-motion dynamics to consensus provided that
ϕ(θi(t)) is persistently exciting. To that end, as in Section III-B, we
“perturb” the control law in (26) with an additional term αi that is
designed to persist as long as so do the synchronization errors ezi.

V. OUTPUT FEEDBACK CONTROL UNDER DELAYS

Based on (30) and (31), the controller for the linear-motion
dynamics (2), in the presence of measurement delays, is given by

uvi = −kviϕ(θi)
> (z̄i − ϑvi) , (32a)

ϑ̈vi = −dviϑ̇vi − kvi (ϑvi − z̄i)− pvievi, (32b)

where the linear position errors are given by

evi :=
∑
j∈Ni

aij
(
ϑvi − ϑvj(t− Tji(t))

)
. (33)

On the other hand, for the angular motion dynamics, we introduce

uωi = −kωi(θi − ϑωi) + αi(t, θi, evi), (34a)

ϑ̈ωi = −dωiϑ̇ωi − kωi(ϑωi − θi)− pωieωi, (34b)

where
eωi :=

∑
j∈Ni

aij
(
ϑωi − ϑωj(t− Tji(t))

)
. (35)

All constant parameters are defined as above. In addition, in order
to be used with an output-feedback controller, the function αi is
redefined —cf. Eq. (24)— as

αi(t, θi, evi) := kαiψi(t)ϕ(θi)
⊥> (ϑvi − z̄i) , (36)

where kαi > 0, ψi is twice differentiable, bounded, with bounded
derivatives and ψ̇i is persistently exciting —cf. Section III-B. That
is, αi in (34a) fulfills the same role as explained above. Then, our
main statement is the following.

Proposition 2 (Main result): Consider the system (1)–(3), under
Assumptions 1–3, in closed-loop with (32)-(36). Then, for any initial
conditions (θi◦, ωi◦, z̄i◦, vi◦, ϑvi◦, ϑ̇vi◦, ϑωi◦, ϑ̇ωi◦) ∈ R11, there
exist constants θc ∈ R and zc ∈ R2 such that (4) and (5) hold, if

dvi >
1

2
pvi

∑
j∈Ni

aij

[
βi +

T
2
ji

βj

]
(37)

dωi >
1

2
pωi

∑
j∈Ni

aij

[
εi +

T
2
ji

εj

]
(38)

for some βi, εi > 0, for all i ≤ N . �
The conditions (37) and (38) impose bounds on the controller’s
damping gains, depending on the bounds on the delays (and their
derivatives). Note that these conditions are completely distributed; a
different bound is required for each vehicle individually.

The arguments behind the statement of Proposition 2 rely on the
observed dichotomy of the model (1)-(2) and the separate control
designs for the linear- and angular-motion dynamics. Indeed, the re-
sulting closed-loop equations have an underlaying cascaded structure:

Σvi

Eqs. (40)
Σωi

Eqs. (39)

αi(t,θi,evi)θi

Fig. 3: Schematic representation of the closed-loop system . Even though
the systems are feedback interconnected , they may be regarded as in
cascade [26], whence the feedback represented by a dashed arrow.

Σωi :


θ̇i =ωi (39a)

ω̇i =−kωi(θi − ϑωi) + αi(t, θi, evi) (39b)

ϑ̈ωi =−dωiϑ̇ωi − kωi(ϑωi − θi)− pωieωi (39c)

Σvi :


˙̄zi =ϕ(θi)vi (40a)

v̇i =−kviϕ(θi)
>(z̄i − ϑvi) (40b)

ϑ̈vi =−dviϑ̇vi − kvi(ϑvi − z̄i)− pvievi (40c)

As illustrated in Fig. 3, for each robot, the closed-loop equations
consist of two dynamical feedback-interconnected systems. However,
as explained in Section III-B, by replacing the state variables θi
with fixed, but arbitrary, trajectories θi(t) in (40a) and (40b), these
systems may be considered as if interconnected in cascade. Then,
the analysis of Σωi and Σvi may be carried out using arguments for
such systems [26]. In a nutshell, one needs to establish that: 1) all
trajectories are bounded; 2) for Σωi with αi ≡ 0 the consensus errors
converge to zero —cf. Proposition 1; 3) For Σvi the consensus errors
converge, under the persistently exciting effect of αi. A detailed proof
is provided in [30], but for completeness we provide a sketch of proof
in the Appendix.

VI. SIMULATION RESULTS

We used the simulator Gazebo-ROS and the Robot Operating
System (ROS) interface to evaluate the performance of our controller
in a scenario that reproduces as closely as possible that of a laboratory
experimental benchmark. We employed the model of a PIONEER 3-
DX wheeled robot [31], available in Gazebo’s library. For simplicity,
it is assumed that all the robots have the same inertial and geometrical
parameters given by m = 5.64 kg, I = 3.115 kg·m2, r = 0.09 m
and R = 0.157 m. It must be underlined that for this robot the
center of mass is not located on the axis joining the two wheels’.
Consequently, in this case, the Coriolis terms ri

3 ω
2
i and − rimi

3Ii
ωivi

appear on the left-hand side of Eqs. (1b) and (2b) respectively. Akin
to an actual experimentation set-up, these constitute dynamic effects
not considered in the model for which the controller is designed.

The six PIONEER 3D-X robots communicate over the undirected
connected graph like the one illustrated in Fig. 4, below.

1 2 3 4 5 6

Fig. 4: Communication topology: undirected connected graph

Then, to emulate the time-varying delays Tji(t), which are dif-
ferent for each pair of robots, we use randomly generated signals
following a normal distribution with mean µ = 0.3, variance σ2 =
0.0003 and a sample time of 10 ms —see Fig. 5 for the illustration
of one of such delays. Such time delay (non-smooth but piece-wise
continuous) does not satisfy Assumption 3 since its time-derivative
is bounded only almost everywhere (that is, except at the points of
discontinuity). However, it is considered in the simulations since it
is closer to what is encountered in a real-world set-up.
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Fig. 5: Variable delay between the robot 1 and the received information
from neighbor 2.

The initial postures of the robots are given in the 2nd-4th columns
of Table I, below.

TABLE I: Initial conditions and ofsets

Index xi [m] yi [m] θi [rad] δxi [m] δyi [m]
1 8 7 1.57 2 0
2 2 13 0.0 1 2
3 2 9 -0.39 -1 2
4 -2 6 0.39 -2 0
5 1 3 -0.39 -1 -2
6 4 4 -0.39 1 -2

The desired formation at rendezvous corresponds to a hexagon
determined by desired offsets δi = (δxi, δyi) with respect the
unknown center of the formation. These constants are presented in
the last two columns of Table I.

The control gains were set to kvi = 1, kωi = 2, dvi = 3, pvi =
0.4, dωi = 2, pωi = 0.1, for all i ∈ [1, 6]. These values correspond to
magnitudes compatible with the emulated physics of the PIONEER
3D-X robots in Gazebo-ROS and are chosen so that the poles of
the 2nd-order system ẍ = −d(·)ẋ − p(·)x have negative real parts
and the system have an over-damped step-response. The functions
αi were taken as in (36) with kαi = 0.4 and using the following
multi-periodic function (any persistently-exciting function applies):

ψi(t) = 2.5 + sin(2πt) + 0.3 cos(6πt)− 0.5 sin(8πt)

−0.1 cos(10πt) + sin(πt) ∀ i ≤ 6. (41)

The robots appear to achieve consensus, i.e., to meet at a non-
predefined rendezvous point in hexagonal formation and with com-
mon non-predefined orientation —see Fig. 6. The center of the
formation is located at (−3.6,−4) and the consensual orientations
settle at θc ≈ −2.932 rad. Note that the center of the formation
and the common orientation do not correspond to the average of
the vehicles’ initial conditions. Hence, the simulations illustrate that
for networks of nonholonomic vehicles, the initial conditions do
not determine the consensus point, as is the case of linear systems
interconnected over static undirected connected graphs.

In addition, for the purpose of graphic illustration, following [3],
we define the following synchronization errors, as the difference
between each robot’s variables and the corresponding average:

ezi := z̄i −
1

N

∑
j∈Ni

z̄j , eθi := θi −
1

N

∑
j∈Ni

θj , (42)

−6 −4 −2 0 2 4 6 8 10
−7

−4

−1

2

5

8

11

14

xi [m] i ∈ [1, 6]

y
i

[m
]

i
∈
[1
,6
]

zc
zc≈(−3.6,−4)

Fig. 6: Paths followed by the PIONEER 3D-X robots up to full formation
consensus —Gazebo-ROS simulation. A hexagonal formation is achieved
with coinciding orientations (illustrated by arrows).

That is, the limits in (4) and (5) hold if the error trajectories ezi(t)
and eθi(t) as defined above converge to zero, but the errors in (42)
do not correspond to variables actually used by the controller nor
measured for that matter. These errors are illustrated in Fig. 7 below.
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Fig. 7: Consensus errors (top: position errors, bottom: orientation errors)

From the top plot in Fig. 7 one can appreciate that the position
synchronization errors ezi tend to a steady state-error —a keen
observer will notice that the hexagon in Fig. 6 is actually not quite so.
The reason is that in the Gazebo-ROS simulation, after a transient,
the amplitude of the input torques becomes considerably small in
absolute value —see Fig. 8 below. Now, the presence of a steady-
state error and the persistency-of-excitation effect in the controller
maintain the input torques oscillating (periodically in this case due
to the choice of ψi(t) in (41) ), but, physically, they result insufficient
to overcome the robots’ inertia and friction forces that oppose their
forward and angular motions. It seems fitting to say that in numer-
ical simulations using Matlab, hence without considering the same
physical phenomena, it may be appreciated that the synchronization
errors tend to zero asymptotically and so do the control torques —
see [30]. Also, we emphasize that in the Gazebo-ROS environment
θi is defined in (−π, π] to avoid unwinding, whence the apparent
discontinuity appreciated in the bottom plot of Fig. 7.
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Fig. 8: Input torques — Gazebo-ROS simulation.

VII. CONCLUSIONS

The dynamic output-feedback controller for rendezvous of
differential-drive robots that we propose has the neat physical in-
terpretation of a second-order mechanical system itself and performs
well even in the presence of discontinuous time-varying delays. Some
readers may see a resemblance of our angular-motion controller with
an observer, since ϑωi → θi. However, note that one does not
necessarily have that ϑ̇ωi → ωi. This being said, there remains the
question of to what extent our control strategy may serve as a (partial)
state estimator in other output-feedback control problems.

Even though the assumptions that our main results rely on are
somewhat realistic, there are other hypotheses whose relaxing needs
further study. For instance, the study of multiagent nonholonomic
vehicles interconnected over directed graphs is a significant problem
under investigation. So is the formal analysis of the controller without
assuming differentiability of the time-varying delays.

Also, the numerical tests using the Gazebo-ROS simulator clearly
show the effects of the nonlinearities in the consensus. This is an
intriguing aspect to investigate further, notably by extending our main
statements to hold for nonholonomic systems modeled by second-
order systems that include Coriolis terms.

APPENDIX: SKETCH OF PROOF OF PROPOSITION 2
First, we analyze the linear-motion dynamics, Σv .
Claim 1 (Boundedness): For the system Σvi in (40), the following

holds true: ϑ̇vi ∈ L2 whereas vi, ϑ̇vi, |ϑvi − z̄i|, and |ϑvi − ϑvj |,
all belong to L∞ (are bounded). Furthermore, also evi ∈ L∞ and,
consequently, ϑ̈vi ∈ L∞ too. Finally, ϑ̇vi → 0.
The proof of Claim 1 relies on Barbălat’s Lemma and the energy-
based Lyapunov-Krasovskı̆i functional

V :=
∑
i≤N

[
1

pvi
Ei +

1

4

∑
j∈Ni

aij |ϑvi − ϑvj |2 + Υvi

]
(43a)

Ei :=
1

2

[
v2i + |ϑ̇vi|2 + kvi|ϑvi − z̄i|2

]
(43b)

Υvi :=
1

2βi

∑
j∈Ni

aijT ji

∫ 0

−T ji

∫ t

t+η
|ϑ̇vj(σ)|2dσdη, (43c)

where βi > 0 is introduced in the statement of Proposition 2.
The function Ei is reminiscent of an energy function; the first
two quadratic-in-velocities terms on the right-hand side may be
assimilated to kinetic energy terms while the third corresponds to

a potential-energy term associated to the springs with stiffness kvi
—see Fig. 2. The second term in the definition of V is quadratic in
the consensus errors and it is equivalent to ϑ̃>viLϑ̃vi with ϑ̃vi defined
as in (7) —cf. V1 in (12). Finally, because the closed-loop system
is in the form of a set of functional differential equations, we use
a so-called Lyapunov-Krasovskı̆i functional term Υvi . Now, the total
derivative of V along the trajectories of (40) yields

V̇ ≤ −
∑
i≤N

[
dvi
pvi
−
∑
j∈Ni

aij

[βi
2

+
T
2
ji

2βj

]]
|ϑ̇vi|2. (44)

Note that the factor of |ϑ̇vi|2 for any i ≤ N is positive under
condition (37). The claim follows from integrating along trajectories
on both sides of (44) and invoking Barbălat’s Lemma and [32,
Theorem 5].

Next, we analyze the trajectories of Σω subject to αi ≡ 0.
Claim 2: Under the condition that αi ≡ 0 the trajectories of Σωi

satisfy the following: ϑ̇ωi ∈ L2∩L∞ whereas ωi, [ϑωi−θi], [ϑωi−
ϑωj ], and eωi ∈ L∞. Finally, ϑ̇ωi → 0 asymptotically.
The proof of Claim 2 relies on the Lyapunov-Krasovskı̆i functional

W :=
∑
i≤N

[
1

pωi
Hi +

1

4

∑
j∈Ni

aij(ϑωi − ϑωj)2 + Υωi

]
(45a)

Hi :=
1

2

[
ω2
i + ϑ̇2ωi + kωi(ϑωi − θi)2

]
, (45b)

where εi > 0 —cf. Eq. (43c) and Υωi is defined as in (43c), replacing
βi with εi and ϑvj with ϑωj . Its derivative along the trajectories of
Σωi with αi ≡ 0 satisfies

Ẇ ≤ −
∑
i≤N

[
dωi
pωi
−
∑
j∈Ni

aij

[εi
2

+
T
2
ji

2εj

]]
ϑ̇2ωi, (46)

in which the factor of ϑ̇2ωi is positive in view of the condition (38).
The first part of the Claim follows by integrating on both sides of the
inequality in (46). Then, a simple inspection of (39) reveals that ω̇i
and ϑ̈ωi are also bounded (belong to L∞), so after Barbălat’s Lemma
it follows that ϑ̇ωi → 0. In addition, by successive derivations it also
follows that θi → θc and [θi − ϑωi]→ 0.

Now, the previous statements regarding Σω hold under the restric-
tion that αi ≡ 0. If this is not the case, we remark that since, ψi,
ϑvi − z̄i and ϕ⊥ are bounded along all trajectories, so is αi —
see Eq. (36). This and the fact that Σω is a marginally stable linear
time-varying system with uniformly bounded time-delays, imply that
ω̇i, ωi, ϑ̇ωi, ϑ̈ωi ∈ L∞ and so [θi − ϑωi] and eωi are also bounded
—cf. [33, Proposition 3]. Moreover, the limits in (5) follow from the
marginal stability of Σωi with αi ≡ 0 and, once more, invoking [33,
Proposition 3], provided that αi → 0. In turn, the latter follows from
the following statement that holds under the condition of persistency
of excitation (23) and whose proof is provided farther below.

Claim 3: The term (z̄i − ϑvi) converges to zero asymptotically.
Now we establish the first limit in (4). We argue as follows. Since

ϕ is uniformly bounded, from (40a) and (40b) we have that ˙̄zi ∈
L∞ and v̇i ∈ L∞. Moreover, from Assumption 3 (in view of the
boundedness of Ṫji and T̈ji), and the fact that ϑ̈vi, ϑ̇vi, ˙̄zi ∈ L∞ it
holds that ϑ(3)vi and ϑ(4)vi are bounded too, so by Barbălat’s Lemma,
ϑ̈vi → 0 and ϑ

(3)
vi → 0. From this it is concluded that ˙̄zi → 0.

Hence lim
t→∞

vi(t) = 0, which corresponds to the first limit in (4).

Now, the second limit in (4) is implied by ϑ̇vi, ϑ̈vi, and [z̄i−ϑvi]
converging to zero (for the latter see Claim 3 above). Indeed, if ϑ̈vi,
ϑ̇vi, and z̄i−ϑvi → 0, from the first equation in (40), it follows that
also evi converges to zero and this in turn implies that the second
limit in (4) holds. This comes from the fact that evi = 0 and ϑ̇vi = 0
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imply that (L ⊗ I2)ϑv = 0 which, in view of the properties of
L, implies the existence of z̄c ∈ R2 such that ϑv = 1N ⊗ z̄c, or
ϑvi = z̄c for all i ≤ N . Hence, from the third equation in (40), we
see that if ϑ̈vi, ϑ̇vi, and evi → 0, then lim

t→∞
z̄i(t) = lim

t→∞
ϑvi(t)

and lim
t→∞

z̄i(t) = z̄c. The statement follows.
Proof of Claim 3: From the second equation in (40) it follows

that, since v̇i, v̈i, ϑ̇vi, and vi → 0,

ϕ(θi)
>(z̄i − ϑvi)→ 0, ωiϕ(θi)

⊥>(z̄i − ϑvi)→ 0. (47)

On the other hand, the solutions of the equation

ϕ(θi)
>(z̄i − ϑvi) = 0 (48)

are of the form (z̄i − ϑvi) = c1ϕ(θi)
⊥ with c1 ∈ R while the

solutions of the equation

ωiϕ(θi)
⊥>(z̄i − ϑvi) = 0 (49)

are of the form (z̄i − ϑvi) = c2ωiϕ(θi) with c2 ∈ R. Therefore,
(48) and (49) hold together if and only if cωiϕ(θi) = ϕ(θi)

⊥ with
c := c1/c2. In turn, the latter may hold only if either c = 0 or
ωi = 0. Now, if c = 0 then (z̄i − ϑvi) = 0. Thus, (47) imply that
either (z̄i−ϑvi)→ 0, which is to be showed, or ωi → 0. In the latter
case lim

t→∞

∫ t
0 ω̇(s)ds = −ωi◦ < ∞ and since ω̈i ∈ L∞ we obtain,

from Barbălat’s Lemma, that ω̇i → 0. From a similar argument we
conclude that ω̈i → 0. Next, we show that ωi, ω̇i, ω̈i → 0 and ψ̇i 6→
0 —see (36)— imply together that (z̄i−ϑvi)→ 0, so the proof ends.
To that aim, we recall that the total derivative ofW in (45a) along the
trajectories of Σω satisfies Ẇ ≤ −

∑
i≤N

[
λωiϑ̇

2
ωi − 1

pωi
αiωi

]
=:

−Ψ. Now, integrating on both sides of the inequality Ψ ≤ −Ẇ ,
along the system’s trajectories, and using the boundedness of W , we
see that Ψ ∈ L1. Furthermore, all the terms defining Ψ̇ depend, also,
on bounded functions of time, so Ψ̇ ∈ L∞. It follows, after Theorem
5 in [32], that Ψ → 0. Since αi ∈ L∞ and ωi → 0 it follows, in
turn, that ϑ̇ωi → 0. Therefore, since ωi, ω̇i, ω̈i, ϑ̇ωi, ϑ̇vi → 0, all
the terms in the definition of ω̈i tend to zero but in view of (47) and
ψ̇i 6→ 0 we necessarily have (ϑvi − z̄i)→ 0. •
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