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Abstract
Under the influence of global warming, heatwaves are becoming a major threat in many parts of the world, affecting human 
health and mortality, food security, forest fires, biodiversity, energy consumption, as well as the production and transpor-
tation networks. Seasonal forecasting is a promising tool to help mitigate these impacts on society. Previous studies have 
highlighted some predictive capacity of seasonal forecast systems for specific strong heatwaves such as those of 2003 and 
2010. To our knowledge, this study is thus the first of its kind to systematically assess the prediction skill of heatwaves over 
Europe in a state-of-the-art seasonal forecast system. One major prerequisite to do so is to appropriately define heatwaves. 
Existing heatwave indices, built to measure heatwave duration and severity, are often designed for specific impacts and thus 
have limited robustness for an analysis of heatwave variability. In this study, we investigate the seasonal prediction skill of 
European summer heatwaves in the ECMWF System 5 operational forecast system by means of several dedicated metrics, 
as well as its added-value compared to a simple statistical model based on the linear trend. We are able to show, for the 
first time, that seasonal forecasts initialized in early May can provide potentially useful information of summer heatwave 
propensity, which is the tendency of a season to be predisposed to the occurrence of heatwaves.

Keywords Seasonal forecast · Heatwave

1 Introduction

Heatwave impacts are various, considerable and often under-
estimated by the general public (Perkins 2015). A heatwave 
can result in disruptions to transport and energy networks, 
crop loss (Barriopedro et al. 2011), air-quality degrada-
tion, forest fires (Karoly 2009), accelerated glacier melting 
(Hughes 2008), constitute a major threat for biodiversity 
(Welbergen et al. 2008), and cause increased human mor-
tality (Ballester et al. 2011). As an illustration, the 2003 and 
2010 heatwaves caused around 70,000 heat-related deaths 
in Europe (Robine et al. 2008) and around 55,000 deaths 
in Russia (Otto et al. 2012), respectively. During the sum-
mer of 2019, the months of June and July were the hottest 
on record for the European continent, leading to numerous 
fatalities and large disruptions in the European transport net-
work (WMO 2019). Due to global warming, heatwave fre-
quency and magnitude are expected to increase substantially 
in the coming decades (Russo et al. 2014; Schoetter et al. 
2015; Vogel et al. 2020). Giving insights into the risk of 
occurrence of extreme temperature a few months in advance 
will be crucial for climate services dedicated to adaptation 
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and risk management (Thomson et al. 2006; García-Herrera 
et al. 2010; Ceglar et al. 2018).

The mechanisms leading to the generation of a heatwave 
are not yet fully understood (Perkins 2015). Heatwaves are 
almost always associated with a synoptic-scale quasi-sta-
tionary high-pressure system (i.e. anticyclone) that persists 
for several days (Duchez et al. 2016; Brunner et al. 2018; 
Sousa et al. 2018). The occurrence of such persistent anti-
cyclones is strongly influenced by the chaotic variability of 
the atmosphere and it is therefore hardly predictable sev-
eral weeks to months ahead. However, several studies have 
shown that European heatwaves are also associated with 
slowly-evolving fields, such as North Atlantic sea surface 
temperatures (SSTs) (Cassou et  al. 2005; Duchez et  al. 
2016) and various low-frequency phenomena, such as the El 
Niño–Southern Oscillation (ENSO) (Zhu et al. 2015; Wulff 
et al. 2017), the North Atlantic Oscillation (NAO) (Kenyon 
and Hegerl 2008), and the Atlantic Multi-decadal Oscilla-
tion (AMO) (Della-Marta et al. 2007). These variability 
modes are predictable to some extent, but their teleconnec-
tions and contributions to heatwaves over Europe are not yet 
fully understood. The impact of such modes of variability 
on the sources and propagation of Rossby waves likely plays 
an important role in this regard (e.g. Wolf et al. 2020 ). In 
addition, the land-atmosphere interaction also contributes 
to the evolution of heatwaves. Dry soils amplify heatwaves 
through a positive feedback: soil moisture depletion by 
warm and dry atmospheric conditions leads to a reduction of 
evaporative cooling which further increases air temperatures 
(Miralles et al. 2014; Ardilouze et al. 2019). Quesada et al. 
(2012) showed that late spring wet soils generally inhibit the 
development of summer heatwaves, while the impact of dry 
soils is more uncertain. Nonetheless, Fischer et al. (2007) 
and Whan et al. (2015) found that late-spring dry conditions 
could enhance heatwave development. Vegetation phenology 
has also been found to play a role on heatwaves magnitude 
(Lorenz et al. 2013). Finally, it has been shown that a better 
representation of soil–atmosphere interactions improves the 
seasonal prediction skill of summer temperatures (Bunzel 
et al. 2018).

Heatwaves are meteorological events; therefore, they 
cannot be predicted with exact timing and location beyond 
approximately 2 weeks in advance. However, given that 
large-scale teleconnections and soil moisture play a role in 
heatwave development, as well as the warming trend asso-
ciated with climate change (Russo et al. 2014), the occur-
rence of European heatwaves is potentially partially pre-
dictable a few weeks-to-months ahead. Pepler et al. (2015) 
and Bhend et al. (2017) found that the seasonal predictive 
skill for extreme temperature indices was closely related to 
the skill of the seasonal mean temperature. The soil mois-
ture initialization increases the seasonal prediction skill 
for extreme temperature indices (Prodhomme et al. 2016b; 

Ardilouze et al. 2017). Recently, Wulff and Domeisen 
(2019) showed that heatwaves were more predictable at 
the sub-seasonal timescale than near-average and cold con-
ditions. In addition, a few studies have investigated the ret-
rospective predictability at seasonal time-scales of specific 
heatwaves. The 2003 European heatwave has been shown 
to be predictable at the seasonal time-scale, although the 
sources of predictability remain unclear (Weisheimer et al. 
(2011), Prodhomme et al. (2016b), among others). For the 
2010 Russian heatwave, Dole et al. (2011) and Katsafados 
et al. (2014) have shown limited prediction skill, although, 
it was suggested by Prodhomme et al. (2016b), the 2010 
heatwaves was predictable with a proper soil initializa-
tion. A comprehensive assessment of European heatwave 
predictive skill by operational seasonal forecasts has not 
yet been carried out.

In recent years, several climate indices have been used 
to measure heatwave duration and severity [see Perkins 
(2015) for a review]. These indices are often designed to 
target specific impacts (e.g., forest fires, mortality, or crop 
loss) and thus have limited usefulness for a comprehensive 
analysis of heatwave variability (Otto et al. 2012). Heat-
wave indices are often based on fixed thresholds, such as, 
for example, a relative threshold of 5 ◦ C above climatol-
ogy (Frich et al. 2002) or an absolute threshold of 30 ◦ C 
for Tmax (maximum temperature over a day) (Ceglar et al. 
2016). Fixed thresholds are not suitable for comparing 
regions with different climatological mean temperature 
and/or variance, nor for measuring the spatial extent of 
a heatwave encompassing climatologically heterogeneous 
regions, as discussed for Africa by Barbier et al. (2018) 
and Batté et al. (2018). In addition, they are not easily 
applied to model data, as models usually have biases in 
both climatology and variability. Indices based on percen-
tiles have also been used (Fischer and Schär 2010; Pepler 
et al. 2015; Bhend et al. 2017). Most of the existing indi-
ces do not allow simultaneous measurement of heatwave 
duration and amplitude while accounting for the local cli-
mate. To overcome these limitations, Russo et al. (2014) 
designed the Heat Wave Magnitude Index (HWMI). This 
index computes for one season the most severe heatwave 
(at least 3 days above the 90th percentile), with respect to 
local climate (see Sect. 2 for more details). We extend this 
index to produce a metric of seasonal heatwave propensity.

In this paper, we present a novel methodology for heat-
wave detection at the seasonal time scale and, based on sev-
eral complementary heatwave indices, we systematically 
assess the prediction skill of the ECMWF operational sea-
sonal forecast system 5 (SEAS5) when it comes to European 
heatwaves. Section 2 presents the data used and our meth-
odology. Section 3 describes the skill achieved for heatwave 
prediction by SEAS5 and Sect. 4 offers a summary and out-
look of the work.
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2  Data and methods

2.1  Seasonal prediction system and observational 
data

This study employs ensemble forecast and hindcast data 
from SEAS5 initialized on May 1st. The hindcasts span 
the period from 1981 to 2016 and consist of 25 ensemble 
members. This system became operational in 2017 (John-
son et al. 2019). The hindcast and the forecast use exactly 
the same model version, however some differences occur 
in the initialisation, therefore we decided to exclude the 
operational forecast for score calculation at grid point 
level and for regional averages (Correlation and Brier Skill 
Score). However, to obtain a more robust estimation of 
skill for the heatwave detection method, with more events, 
we also include the operational forecasts of years 2017, 
2018 and 2019, using 25 out of the 51 available members 
to be consistent with the hindcasts. The sensitivity of this 
choice is discussed in Sect. 3. All the analyses that follow 
are applied to the full summer season, from May 15th to 
August 31st (hereafter denoted, 15MJJA). We remove the 
two first weeks in order to exclude the predictability of the 
deterministic range and thus focus on the added value of 
the seasonal prediction system thereafter. We retain the 
second half of May, since heatwaves also occur during 
that period. We do not expect the model to be able to pre-
dict the exact timing of heatwaves, therefore removing the 
entire first month would arbitrarily limit the predictability 
of the model. The impact of this choice is discussed in 
Sect. 3.

To verify the performance of the SEAS5 forecasts, we 
use the ERA5 reanalysis (Hersbach et al. 2020) and a purely 
observational gridded temperature dataset, which is derived 
from a dense array of European weather stations, namely 
the E-OBS dataset (Cornes et al. 2018) (see supplementary 
material).

2.2  Heatwave definition

We first define heatwaves based on three indicators at a 
local, i.e. grid-point level. We then extend this local heat-
wave identification across contiguous grid points to produce 
a heatwave index that incorporates information of both event 
magnitude and spatial extent.

2.2.1  Local warm extremes

We use three indicators, described below, to define the sea-
sonal heatwave indices at a grid point level. The steps for the 
construction of these indices is illustrated on Fig. 1.

– N90: 

1. Estimation of the 90th percentile: As illustrated on 
Fig. 1a, we estimate the climatological daily 90th 
percentile of the maximum daily 2m air temperature 
(Tmax) at each grid point. The resulting 90th per-
centile as a function of the calendar day from May 
15th to August is smoothed by applying a polyno-
mial regression following Mahlstein et al. (2015), 
rather than the running mean applied by Russo et al. 
(2014).

2. N90: N90 is then defined as the number of days 
exceeding the smoothed 90th percentile within the 
considered season (15MJJA). 

 where Tmax(i, j, t) is the maximum 2m temperature 
for a given day t, longitude i and latitude j. P90(i, j, t) 
is the smoothed climatological 90th percentile for 
this date, latitude and longitude.

– HWMI 

3. Sub-heatwave definition: A heatwave is defined 
when at least 3 consecutive days exceed the 
smoothed 90th percentile. As in Russo et al. (2014), 
heatwaves lasting longer than 3 days are separated 
into consecutive sub-heatwaves; these sub-heat-
waves are all 3 days in length, with the exception of 
the last sub-heatwave which may be shorter (e.g. a 
heatwave lasting 7 days would be separated into 3 
sub-heatwaves ((days 1–3 and 4–6, and one of 1 day 
(day 7). For each sub-heatwave the corresponding 
magnitude M is given by: 

 where T is the first day of the sub-heatwave. Each 
sub-heatwave is shown with a different color in 
Fig. 1b.

4. Scaled Sub-heatwave: For each year and each grid-
point, we find the maximum M in the whole season 
(red star in Fig. 1b), hereafter MaxM, defined as: 

 With the maximum MaxM for each year, An empiri-
cal cumulative density function (ECDF) is fitted to 
the annual maximum of the sub-heatwave unscaled 
magnitudes, as illustrated in Fig. 1c. The reason why 

N90(i, j, year) =
∑

15∕05∕year<t<31∕08∕year

�(Tmax(i,j,t)>P90(i,j,t))

M(subHW(i, j, T))

=

T+3
∑

t=T

�(Tmax(i,j,t)>P90(i,j,t))
⋅ (Tmax(i, j, t) − P90(i, j, t))

MaxM(i, j, year) = max
{T∈year}

M(subHW(i, j, T))
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only the annual maximum MS’s are used is because 
the index means to exclude heatwaves that are less 
notable: heatwaves are in fact extreme events, there-
fore they are not expected to occur frequently. In a 
more recent article that makes use of the HWMI 
index, Russo et al. (2019) point out that, in order to 

study heatwaves on a statistical point of view, the 
decadal maximum has to be taken. For each M, we 
find its scaled magnitude (between 0 and 1) amongst 
all sub-heatwaves using the ECDF, as shown in 
Fig. 1d: 

Fig. 1  Construction of the HWMI and THWM indices for a grid 
point close to Paris during summer 2003 based on ERA5. For sim-
plicity, the process is illustrated without the cross validation. a The 
blue curve shows the daily time series of Tmax, the orange curve 
shows the climatological 90th percentile computed over the 1981–
2016 period, and the green line shows the smoothed climatological 
90th percentile, estimated with a 6th order polynomial regression. b 
The blue and green lines are the same as in a. Each sub-heatwave is 
indicated with a different colour and colored areas correspond to the 
sub-heatwave magnitude Ms estimate. The red star and area mark the 

maximum sub-heatwave of the season. c Construction of the ECDF 
using the maximum sub-heatwave of each year. d Estimation of SMs 
using the ECDF of c, with colors corresponding to the sub-heatwaves 
of b. e Estimation of HWMI: for each heatwave (HW) marked on 
b, we sum the SMs of all sub-heatwaves belonging to it. The maxi-
mum value is the HWMI (corresponding to HW5 for this example). f 
Estimation of the THWM for different periods: 15MJJA, JJA, JJ and 
June. For each period, the SMs of all the sub-heatwaves in the period 
are summed
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 where Nyear is the total number of years. This step 
scales all sub-heatwaves relative to the local climate 
variability. It offers an alternative to classical bias 
correction methods by defining derived quantities 
which are fully comparable between model and 
observations in terms of mean and variances. If 
SM(subHW) = 1 , this sub-heatwave corresponds 
to the warmest 3-day period (sub-heatwave) of the 
considered season (15MJJA) over all years for the 
grid point in question.

5. Heatwave magnitude: The magnitude of a heatwave 
is defined as the sum of the SM of the consecutive 
sub-heatwaves that the heatwave (HW) is comprised 
of: 

6. HWMI: A given year can have multiple heatwaves, 
and thus multiple values of MHW (HW) . The HWMI 
is defined as the maximum MHW for a given season 
(i.e. we obtain one value for each year, each ensem-
ble member and each grid point in our dataset). It 
represents the strongest heatwave for a given season 
based on both duration and intensity. The construc-
tion of MHW and HWMI is illustrated on Fig. 1e. 

– THWM: We define THWM for a grid-point as the sum 
of SMs values over a given season for one grid-point 
(Fig. 1f). This gives a seasonal heatwave index, incorpo-
rating the number of heatwaves, their duration and their 
magnitude. 

For the hindcast period (1981–2016), steps 1 and 4 above 
are done in cross-validation for both SEAS5 and re-analysis/
observational datasets, meaning that the climatology and the 
ECDF are estimated excluding the year we are considering. 
For the forecast period (2017–2019) the climatology and 
ECDF are estimated using the hindcast period as it would 
be done in operational prediction.

2.3  Studied regions

Spatial aggregations of the HWMI and THWM indices are 
also employed in order to investigate the predictive skill for 

ECDF(i, j,M) =

∑Nyear

year=1
�MaxM(i,j,year)≤M

Nyear

SM(subHW(i, j, T)) =ECDF(M(subHW(i, j, T)))

MHW (HW) =
∑

{subHW∈HW}

SM(subHW)

HWMI(i, j, year) = max
HW∈year

(MHW (i, j,HW))

THWM(i, j, year) =
∑

HW∈year

MHW (i, j,HW)

different regions. Table 1 lists the selected regions, which 
are also illustrated in Fig. S1:

2.3.1  Heatwave detection

In order to identify severe heatwaves, i.e. long-lasting and 
large-impact heatwaves that cover a large spatial area, we use 
a heatwave detection algorithm on the scaled sub-heatwave 
field of the entire European domain, SM. This algorithm is 
based on a seeding algorithm similar to Barbier et al. (2018). 
A heatwave event is defined as encompassing all the sub-
heatwave points separated by less than 2 ◦ spatially and 1 
day temporally. All sub-heatwave points are classified as 
part of one heatwave. Based on this detection algorithm, we 
compute for each heatwave the following quantities:

– total Magnitude: area-weighted, using the cosinus of the 
latitude, and temporal sum of all SMs over land belong-
ing to the heatwave. 

– Magnitude (1D-timeseries): area-weighted sum of all 
scaled sub-heatwaves over land belonging to the heat-
wave. 

– Heatwave pattern (2D field): at each grid point, the sum 
over time of all scaled sub-heatwaves belonging to the 
heatwave: 

– Start/end date: date of the first/last point belonging to the 
heatwave.

2.3.2  Severe heatwave

The algorithm described in the previous section groups 
sub-heatwaves into a single heatwave; any number of 

TM(HW) =

∑

(i,j,t)∈HW SM(subHW(i, j, t) cos(lat(j))
∑

(i,j)∈HW cos(lat(j))

HWM(t) =

∑

(i,j)∈HW SM(subHW(i, j, t) cos(lat(j))
∑

(i,j)∈HW cos(lat(j))

HWF(i, j) =
∑

T∈HW

SM(subHW(i, j, T))

Table 1  Definitions of the different European regions

Central Europe 5◦ E 25◦ E–44◦ N 55◦ N
Mediterranean 10◦ W 25◦ E–36◦ N 45◦ N
Western Europe 10◦ W 5 ◦ E–40◦ N 60◦ W
Northern Europe 10◦ W 30◦ E–55◦ N 70◦ N
Eastern Europe 30◦ E 60◦ E–40◦ N 65◦ N
Europe 15◦ W 60◦ E–35◦ N 70◦ N
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sub-heatwaves can be grouped. The resulting heatwaves 
can therefore cover a large spectrum of duration and spa-
tial extent. We do not expect a seasonal forecast system to 
be able to predict short and localized events, but we hope 
that it could give information about long-lasting and large-
extent ones. Therefore, we define a severe heatwave as a 
heatwave stronger to either of the N strongest heatwaves that 
occurred in the whole re-forecast period, excluding the year 
to be predicted (in terms of total magnitude, as defined in 
Sect. 2.3.1). For the operational forecasts (2017–2019) the 
entire hindcast period is used to estimate the threshold. This 
threshold is defined separately for model and observations 
to account for the different characteristics of simulated and 
observed heatwaves. For a given severity threshold N, due 
to cross-validation, it could happen than more than N severe 
heatwaves are detected. Afterwards, we refer to N as the 
Heatwave Severity Threshold, HST.

2.4  Verification

We assess the model performance by comparing the indi-
ces described above in our hindcasts/forecasts with both re-
analysis data and temperature observations (E-OBS). To this 
end, we use various widely-used forecast skill scores. At the 
grid point level, and for regional averages, we use the tem-
poral Pearson correlation coefficient (Corr). We computed 
the Brier Skill Score (BSS; Brier 1950) using two different 
references: the climatology and a reference accounting for 
the warming trend (see Appendix for more details). The cor-
relation coefficient indicates how close the ensemble mean 
is to the truth while the BSS indicates to what extent the 
distribution of the members is representative of the likeli-
hood of occurrence of a heatwave.

The detection of severe heatwaves at European scale is 
verified with several metrics based on the contingency table 
for event detection verification: accuracy, hit rate, threat 
score (TS) and equitable threat score (ETS) (Jolliffe and 
Stephenson 2012). All the scores are described in detail in 
Appendix 1.

2.4.1  Heatwave propensity

We do not expect seasonal forecasts to be able to accurately 
predict the onset, duration and magnitude of a particular 
heatwave event, in other words with the same timing and 
location that the observed event (this is verified in the Sect. 3 
on Fig. 9). Seasonal forecasts might be able to indicate if 
a season is predisposed to the occurrence of heatwaves. 
This is referred afterwards as heatwave propensity. For a 
given grid point, heatwave propensity could be estimated 
using the three local indices defined above: N90, HWMI 
and THWM. The heatwave propensity of a given region 
could be obtained by spatially averaging these indices over 

this region. Another method to obtain the heatwave propen-
sity for the whole European domain, is to apply the detec-
tion algorithm described above and estimate the number of 
severe heatwaves produced by the dynamical forecast sys-
tem. The skill of heatwave propensity in SEAS5 for these 
different metrics is described in the Sect. 3.

2.5  Statistical prediction based on linear trend

A large part of temperature predictability over Europe is 
associated with the global warming trend (Doblas-Reyes 
et al. 2006). To assess whether the model heatwave predic-
tion skill is related solely to the warming trend, we use a 
simple statistical prediction model, assuming a linear trend, 
constructed in cross-validation:

where var is the variable we want to predict (i.e., N90, 
HWMI or THWM), year the year we want to predict, 
�year(var) and �year(var) are the regression coefficients esti-
mated for the variable var from all the years except the year 
year (cross-validation), using the least squares method.

For the detection of severe heatwaves, this statistical pre-
diction necessarily produces a more severe heatwave every 
year, therefore it simply locates the HST = N strongest heat-
waves during the N last years of the period of interest.

This model is particularly simple, but it constitutes a 
proper benchmark prediction for our purposes. Any predic-
tive skill beyond the one of this benchmark can be attributed 
to the ability of SEAS5 to predict the interannual variability 
in heatwave propensity and characteristics over Europe (i.e., 
the crucial “noise” around the decadal warming trend). It is 
beyond the scope of this paper to construct a more sophisti-
cated statistical prediction model for this purpose.

3  Results

We first verify the ability of SEAS5 to forecast/hindcast 
observed heatwave metrics from 1981–2016 at a grid-point 
level. We then consider larger regions (given in Table 1) 
through a simple spatial averaging of the grid-point metrics. 
Finally, we use our heatwave detection algorithm to identify 
observed severe heatwaves, taking into account amplitude, 
duration and spatial scale, and assess the model ability to 
predict the amplitude, location and timing of these events.

3.1  Analysis of local warm extremes

In order to provide a first assessment of seasonal heatwave 
prediction skill, Fig. 2a–d shows the correlation index (Corr) 
of the SEAS5 ensemble mean for mean temperature, number 

Predstat(var, year) = �year(var).year + �year(var),
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of days exceeding the 90th percentile (N90), HWMI and 
THWM verified against ERA5. For all metrics, SEAS5 
exhibits positive correlation over most of the European 
domain that is statistically significant at the 95% confidence 
level especially in southern and eastern Europe. The skill for 
the heatwave indices (three rightmost columns) is slightly 
lower and less significant than that for mean 2m-temper-
ature, particularly over western Europe. This is consistent 
with previous studies analysing the skill of extreme indices 
at seasonal time scale (Pepler et al. 2015; Bhend et al. 2017). 
The correlation achieved for N90 is larger than for HWMI 
and THWM, thus implying that SEAS5 is able to predict the 
total number of hot days, but it is less skillful in predicting 
the heatwave intensity. The level of skill measured with the 
E-OBS dataset is very similar (see supplementary material 
Fig. S2), therefore in the rest of the paper the verification is 
performed using only ERA5.

To ascertain how much of the prediction skill of SEAS5 
can be attributed to simply reproducing the observed warm-
ing trend (i.e. more recent years are hotter, with more heat-
wave activity), we compare the skill, as determined by 
correlation, of the SEAS5 model with that from a simple 
prediction model based on a linear trend (ModTrend, see 
Sect. 2). Figure 2e–h, shows the correlation obtained with 
ModTrend for the mean 2m-temperature and warm extreme 
indices. For all indices and generally over the entire region, 
SEAS5 exhibits higher correlations than ModTrend, except 
over Central Europe. The prediction skill of SEAS5 is 
indeed to some extent related to the warming trend, but there 
is useful additional information from the dynamical model. 
Such a gain in predictability by the dynamical model appears 
particularly pronounced over Russia.

We further analyse the skill of SEAS5 in predicting sum-
mer mean temperature and heatwave metrics using the Brier 

Skill Score (BSS) computed with the climatology as a refer-
ence. Figure 3a–c shows BSS of T2M compared to ERA5 for 
three categories: lower quintile (cold summers, inferior to 
20%), inter-quintile range (normal summers, between 20 and 
80%) and upper quintile (warm summers, superior to 80%). 
SEAS5 shows little probabilistic prediction skill above the 
statistical prediction ( BSS > 0 ). The SEAS5 shows little 
prediction skill ( BSS > 0 ) for normal summer (Fig. 3b) and 
higher for extreme summer, especially for warm extremes 
(right column). Figure 3d–l shows the BSS for the same 
three categories for heatwave indices (N90, HWMI and 
THWM). For each of the three indices, the SEAS5 shows 
low skill for weak and moderate heatwaves (left column and 
central column), and higher skill for strong heatwaves, espe-
cially over Eastern Europe and Mediterranean region (right 
column). Figure S3, shows the same figure but for BSS com-
puted with a reference accounting for the warming trend, this 
figures shows similar results, with a higher predictability of 
warm extremes, beyond the warming trend, especially over 
Eastern Europe.

3.2  Regional heatwave analysis

In the above section, we show that SEAS5 has some skill 
in predicting local heatwave metrics over much of Europe; 
however, heatwaves are typically widespread events, affect-
ing many neighbouring grid points simultaneously. One 
simple way to consider heatwave metrics over a larger area 
is to spatially average them. We calculate seasonal-mean 
area-averages of HWMI and THWM for the different regions 
shown in Table 1 and Fig. S1. Figures 4 and 5 show these 
time series for HWMI and THWM, respectively; the black 
line shows ERA-5 values, while red dots and blue stars 
show the SEAS5 ensemble members and ensemble mean, 

Fig. 2  Grid point correlation (Corr) between SEAS5 and ERA5 for 
the a average 2m-temperature (15MJJA), b number of days above 
daily N90 in 15MJJA, c HWMI computed for 15MJJA and d THWM 

computed for 15MJJA. e–h Same as a–d but for the statistical predic-
tion model based on linear trend (ModTrend). For all panels stippling 
indicates correlation significant at the 95% confidence level
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respectively. The corresponding correlation coefficients are 
shown in the upper left of each panel. SEAS5 achieves sig-
nificant correlation, and therefore potentially useful skill, for 
all considered regions, except Northern and Western Europe, 
for both HWMI and THWM. A positive trend associated 
with warming is apparent in all regions and it is also well-
reproduced by the SEAS5 ensemble mean. As a confirma-
tion of what is shown in the correlation maps (Fig. 2), the 
skill is slightly higher for THWM than HWMI.

The black dashed line in Figs. 4 and 5 shows the results 
obtained from the Modtrend simple model. For both the 
HWMI (Fig. 4) and THWM (Fig. 5) indices, the dynamical 
model prediction (SEAS5) tends to outperform the simple 
linear model, except over Central Europe, consistent with 
Fig. 2. The increase in correlation coefficient for SEAS5 
relative to that from the linear model is significant at the 

95% confidence level (see Sect. 1 for more details) for both 
HWMI and THWM indices for Eastern Europe.

SEAS5 performs slightly better than a simple statisti-
cal forecast in capturing characteristics of heatwaves, as 
described by the HWMI and THWM indices. To better 
understand up to which time horizon heatwaves could 
be predicted, we compute the THWM correlation with 
ERA5 for different time periods within the summer season 
(Fig. 6). All skill scores are for forecasts initialized at the 
beginning of May, e.g. for the time period starting on July 
1st we ignore the first 2 months of forecast. As examples, 
the circle denotes the correlation for THWM calculated 
from June 1st for 30 days, i.e. June 1st-30th; the black 
square is for THWM calculated from June 1st for 90 days, 
i.e. June 1st–Aug 29th. Correlation values, not significant 
at the 95% confidence level and correlations inferior to 

Fig. 3  Brier Skill Score for SEAS5 heatwave prediction using a 
average 2m-temperature (15MJJA) below the first quintile, b aver-
age 2m-temperature (15MJJA) in the inter-quintile range, c average 

2m-temperature (15MJJA) above the third quintile. d–f Same as a–c 
but for N90. g–i Same as a–c but for HWMI. j–l Same as a–c but for 
THWMI
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that of the simple statistical model are masked. Stippling 
indicates correlation significantly higher at the 90% confi-
dence level than the ones achieved by the statistical model. 
In Northern, Western and Central Europe, there is almost 
no predictive skill for summer heatwaves (consistent with 
Figs. 4e, 5e). For Central Europe, SEAS5 does not perform 
better than the simple statistical model. Over the whole 
European domain, SEAS5 shows potentially useful skill 
for most of the considered time horizons, however it does 
not perform significantly better than ModTrend, except 
around June-July. SEAS5 exhibits significant correlation 
(above 0.4) and significantly higher than ModTrend, for 
two regions—Eastern Europe and the Mediterranean—for 
almost all forecast horizons considered, suggesting that in 
these two regions it could provide skilful heatwave fore-
casts up to three months in advance. The heatwave pre-
dictability beyond the warming trend in these two regions 
could be related to the strong soil–atmosphere coupling 
and the impact of soil pre-conditioning, as shown by Prod-
homme et al. (2016a).

3.3  Severe heatwave analysis

As shown above, SEAS5 shows some predictive capability 
for summer heatwave indices over some parts of Europe, 
especially Eastern Europe and the Mediterranean region, 
which offers important prospects for public health and socio-
economic activities. However, societal adaptation would be 
easier if forecasts could also provide information about the 
timing, duration, location, magnitude and spatial extent of a 
single severe heatwave. Heatwaves with large spatial extent 
and long duration have much bigger impact on society than 
short-lived local heatwaves. It remains unclear if seasonal 
forecasts can predict single severe heatwaves such as the 
2003, 2010 and 2015 events (Prodhomme et al. 2016b; 
Feudale and Shukla 2011a, b; Fischer et al. 2007; Dole 
et al. 2011; Katsafados et al. 2014; Weisheimer et al. 2011; 
Mecking et al. 2019). In order to assess the performance 
of SEAS5 in this regard, we use the method described in 
Sect. 2.3.1, that considers as a single heatwave all the sub-
heatwave points separated by less than 2 ◦ and 1 day. We 

Fig. 4  a HWMI averaged over the whole Europe for 15MJJA. The 
black line shows ERA5, red dots show the different ensemble mem-
bers and blue stars the ensemble mean. The black dashed line shows 
the results of the statistical prediction model constructed using the 
linear trend with cross-validation. The correlation between ensemble 
mean and observations is shown on top left of the figure for SEAS5 

and for the statistical model. One star indicates correlation signifi-
cant at the 95% confidence level and + and ++ show that SEAS5 
has correlation higher than the statistical model at the 90% and 95% 
confidence interval, respectively. b–f Same as a but for the Western 
Europe, Central Europe, Eastern Europe, Northern Europe and the 
Mediterranean region, respectively
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consider that SEAS5 predicts a severe heatwave if at least 
30% of its members (i.e 8 members) predict it (see Sect. 2 
for more details).

Figure 7a shows the performance in 15MJJA prediction of 
severe heatwaves from May 1st, using the severity threshold 
HST = 5 and HST = 10 . We compare the dynamical sea-
sonal prediction system with ModTrend, which would pre-
dict the severe heatwaves in the last 5 (or 10) years of the 
re-forecast period. Results show that the dynamical model 
performs better than using either random predictions (ETS 
> 0) or simple statistical predictions. Consistent with Kat-
safados et al. (2014), who suggested that the 2010 heatwave 
was not predictable at a seasonal scale, it is not predicted 
by SEAS5 as a severe heatwave, when HST = 5 . However, 
for HST = 10 , the 2010 heatwave is successfully predicted. 
Therefore SEAS5 does predict that a heatwave occurs, but 
with a too small magnitude. It is interesting to note that 
the 2010 heatwave is not detected when we consider simple 
area-average metrics and ensemble means (Figs. 4, 5). This 
confirms that for predicting extreme events and extracting 
the maximum of information from seasonal forecast sys-
tems, special methodologies designed for extreme events 
are needed and simple spatio-temporal averages are not 
appropriate.

In order to better understand the sensitivity of this heat-
wave detection method to the choice of the severity thresh-
old and the probability threshold, Fig. 8 shows the ETS score 
of SEAS5 and ModTrend as a function of HST. We also 
compare two different choices for the probability thresh-
old, either using a fixed probability threshold, or using an 
optimal threshold maximizing the ETS in cross-validation 
(sea more details in Appendix 1). For both types of prob-
ability thresholds, SEAS5 performs generally better than 
ModTrend and a simple random forecast (ETS > 0) for a 
severity threshold 5 < HST < 20 . The skill, measured with 
the ETS, is strongly dependant on the parameter HST, and 
is maximum for 10 < HST < 15 . Choosing a HST < 10 is 
too demanding for the model, since it would require a pre-
cise prediction of the total heatwave magnitude. SEAS5 is 
able to predict a severe heatwave with some uncertainty on 
the magnitude of the heatwave, as illustrated previously for 
the 2010 heatwave. Using the optimal probability threshold 
gives higher skill than using a fixed threshold at 30%, for 
HST < 5 and HST > 15 . Therefore, in order to optimize the 
forecast skill of heatwaves, the severity threshold should be 
between 10 and 15 and the probability threshold fixed at 
30%. Fig. S4 shows the same figure computed only over 
the hindcast period (1981–2016) and shows similar results, 

Fig. 5  Same as Fig. 4 but for THWM
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which suggest that this result is not dependant to the chosen 
period.

To get a broader insight into individual heatwave char-
acteristics (magnitude, spatial pattern, timing) captured 
by the forecast system, Fig. 9 compares the patterns of the 
severe observed heatwaves with their predicted counterparts, 
using the Heatwave detection method defined in Sect. 2. We 
choose to illustrate the results of this method for a severity 
threshold N = 10 , for which a high ETS is achieved, in order 
to see what could be the information that SEAS5 could pro-
vide with an optimal choice of severe heatwave parameters. 
The first column shows the observed heatwave pattern, sum 
over time of all sub-heatwaves belonging to the heatwave (as 
defined in Sect. 2). The second column shows the ensem-
ble-mean heatwave pattern, including only the members in 
which a heatwave is detected. This figure shows that, for 
some severe heatwaves, the location of the heatwave pre-
dicted by the model is very close to the observed one, such 
as 2007, 2010 and 2012, despite an underestimation of the 
magnitude. Individual members can forecast heatwaves with 
magnitudes that are comparable to observed heatwaves but 
with a different exact location. In the ensemble-averaging 
process, as expected, we obtain a heatwave pattern with 

weaker magnitude and larger spatial extent than in the obser-
vations. For the rest of the years, the spatial pattern predicted 
by the model does not match the observed one. Therefore, 
the reliability of SEAS5 to predict severe heatwave location 
from May seems relatively low. The third column of Fig. 9 
shows the time evolution of the observed heatwave (black 
line) as well as the maximal magnitude of the heatwaves pre-
dicted in the different members of SEAS5 and their timing 
(dots). The blue line shows the ensemble mean of heatwave 
magnitudes, for all the members predicting a heatwave. This 
figure illustrates that there is very little agreement among 
members about the timing of the heatwave peak, confirm-
ing that there is no deterministic predictability of the time 
evolution of the heatwave.

4  Discussion and outlook

In this study, we propose a comprehensive methodology 
to evaluate the heatwave propensity prediction skill using 
dynamical seasonal prediction systems and illustrate this 
methodology with the ECMWF operational seasonal 
forecast system SEAS5. We show that seasonal forecasts 

Fig. 6  Correlation values for THWM computed over different fore-
cast windows between SEAS5 and ERA5 for different European 
regions (different panels). Only correlation values superior to the 
ones achieved by ModTrend and significant at the 95% confidence 
level are shown. Each point shows the correlation achieved for a dif-
ferent sub-season: from the date represented on the x-axis and over 
the integration period given on the y-axis. For example, the top left 

point corresponds to the correlation for MJJA, indicated in Fig.  5. 
The bottom-left point corresponds to the weather prediction from 
May 1st to May 10th. The black circle corresponds to the prediction 
of the month of June initialized on May 1st, while the black square 
corresponds to the prediction of JJA. Stippling indicates correla-
tions significantly higher at the 90% confidence interval than the ones 
achieved by ModTrend
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skilfully predict several local heatwave indices, especially 
over eastern and southern Europe. Consistent with pre-
vious studies, the prediction skill of extreme indices is 
bounded by the skill of mean temperature. Generally, the 
dynamical forecast system performs better than a sim-
ple statistical model based on the global warming trend. 
Dynamical forecasts also provide potentially useful infor-
mation at the regional scale up to two months ahead for 
THWM integrated over one, two or three months for the 
whole European domain, the Mediterranean region and 
Eastern Europe. Seasonal forecasts are able to provide reli-
able information about the propensity of occurrence of 
individual severe heatwaves, performing better than ran-
dom predictions or a simple statistical model based on a 
linear trend. The prediction system does not seem able to 
give reliable information about the timing of the heatwave 
peak nor about the heatwave spatial pattern though.

Two main limitations of the present study are that it 
focused exclusively on one dynamical prediction system 
(SEAS5) and that it used a fairly simple statistical prediction 
model as a benchmark to the SEAS5 performance.

Fig. 7  a Prediction of severe 
heatwaves with a threshold 
defined as the HST = 5 most 
severe heatwaves over the whole 
period, excluding the predicted 
year (e.g cross-validation). Top 
circles indicate observed severe 
heatwaves. Diameters of circles 
correspond to the observed 
magnitude. The bottom circles 
indicate the severe heatwaves 
that were predicted. Stacked cir-
cles indicate that different mem-
bers predicted severe heatwaves. 
The size of the circles indicates 
the magnitude of the simulated 
heatwaves. The horizontal 
black line corresponds to the 
percentage of members needed 
to formally detect an event, in 
this case we use a threshold 
of 30% (i.e., 8 members). The 
color corresponds to the contin-
gency table, grey: False Alarm 
or missed event, red: hit, blue: 
correct rejection. The num-
bers show the score obtained 
by SEAS5 and by the simple 
statistical model in parentheses 
(more information in Sect. 1). 
b Same as a but for the severity 
threshold N = 10

Fig. 8  ETS for severe heatwave prediction for different values of the 
parameter HST. The black dashed line shows the ETS achieved with 
ModTrend. Blue and orange lines show the ETS achieved with SEAS 
5 using two different probability thresholds: a fixed threshold at 30% 
(blue) and an optimal threshold estimated by maximising the ETS in 
cross-validation (orange)
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Fig. 9  (First column) Observed heatwave patterns (see Sect. 2) of the 
severe heatwaves defined with HST = 10 . (Second column) Simu-
lated heatwave patterns averaged for all heatwaves detected in SEAS5. 
(Third column) Black line: time evolution of the observed heatwave 
magnitude (weighted spatial sum of all sub-heatwaves as a function of 

time), blue line: ensemble mean of heatwave magnitude as a function 
of time for all members in which a heatwave is detected, colored dots 
show the day of maximum heatwave magnitude for each member of 
SEAS5 in which an heatwave is detected
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From our results, the predictability of Eastern Europe and 
Mediterranean heatwaves is not only related to the warming 
trend. This could allow us to investigate the source of pre-
dictability and mechanisms leading to the formations of these 
heatwaves (atmospheric circulation, large-scale teleconnec-
tions and land-atmosphere coupling). By comparing the abil-
ity to re-forecast past events of different seasonal prediction 
systems as a function of their different characteristics, we 

could investigate potential mechanisms underlying severe heat-
waves. Analysing the predictability of severe heatwave, using 
the systematic method presented in this study, in sensitivity 
experiments with different initial conditions, such Prodhomme 
et al. (2016b) and Ardilouze et al. (2017) for soil-moisture, 
could be used to quantify the impact of soil pre-conditioning 
on the occurrence and characteristics of severe heatwave. The 
application of the heatwave detection algorithm in sensitivity 

Fig. 9  (continued)
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experiments similar to (Wehrli et al. 2019), that prescribed 
SSTs, large scale circulation and/or soil conditions in a cou-
pled models, would allow to understand more precisely the 
contribution of the different components and their biases on 
heatwave development and draw prospect for heatwave sea-
sonal prediction improvements.

For European summer mean temperature, statistical pre-
diction systems including large scale teleconnections, already 
exist (Della-Marta et al. 2007); our results suggest that similar 
work, targeting specifically heatwaves indices, would be ben-
eficial. Knowing the importance of soil atmosphere-coupling 
in heatwave development, such models could also include soil 
preconditioning.

Our study focused on Europe. Although heatwaves are a 
global issue, very few studies have investigated heatwave sea-
sonal predictability in Africa (Batté et al. 2018), America (Luo 
and Zhang 2012) and Asia (Gao et al. 2018). A similar meth-
odology to the one presented here could be applied in these 
less studied regions, and also extended to marine heatwaves.

Our work demonstrates that heatwaves are partly predict-
able one or two months ahead, this could have important 
impacts on society for water management (Hartick et al. 2019; 
Turco et al. 2017), agriculture (Santos et al. 2020; Ceglar et al. 
2018), health (Tompkins et al. 2018) and fire risk (Marcos 
et al. 2015). However, the heatwave predictability strongly 
varies depending on the considered index, regions, seasons 
and forecast horizons (Fig. 6). Similarly, Straaten et al. (2020) 
found that, for sub-seasonal temperature forecasts, skill hori-
zons strongly differ depending on the region and that temporal 
and spatial aggregation does not systematically result in higher 
predictability. Therefore, in order to transform this predict-
ability into valuable information for stakeholders and policy 
makers, careful evaluations of dedicated metrics, specifically 
targeted to the sector of interests should be performed. This 
kind of assessment implies strong trans-disciplinary collabora-
tion, including social scientists, and integration of stakeholders 
and policy-makers. In addition, further work should be done 
to maximize heatwave predictability using statistical post-
processing and multi-model combination (Mishra et al. 2019).

Appendix 1: Scores description

The skill scores used throughout this article are described here. 
The Pearson correlation coefficient is given by:

where f is the forecast time, mi(f ) the forecast for the year i, 
̄mi(f ) the forecast averaged over the hindcast period exclud-

ing the year i (anomaly computed in cross-validation), ri(f ) 
and ̄ri(f ) the corresponding reference data at forecast time 

Cor(f ) =

∑Nyear

i=1
(mi(f ) − m̄i(f ))(ri(f ) − r̄(f ))

�

∑Nyear

i=1
(mi(f ) − m̄(f ))2

∑N

i=1
(ri(f ) − r̄(f ))2

f, and Nyear the number of years in the re-forecast period. 
We provide uncertainty estimates and confidence interval 
with all the correlations values. We use the Student’s t-dis-
tribution with N degrees of freedom to estimate the signifi-
cance level of correlation. The significance of the difference 
between two correlations is estimated using the methodology 
of Siegert et al. (2016), which takes into account the depend-
ence from sharing the same observations in both correlation 
coefficients and the number of independent data in each time 
series, which is necessary given the serial correlation typical 
of the time series considered. The Brier score is defined as:

where yi(f ) is the forecast probability of occurrence of a 
given event estimated from the ensemble distribution. In our 
case, an event could be the temperature reaching the upper/
lower climatological quintile or to remain in the climatologi-
cal inter-quantile range. Its probability of occurrence would 
be computed from the fraction of ensemble members pre-
dicting this event. oi(f ) is the corresponding “observation” 
and has a value of 1 if the event happens, 0 otherwise. The 
Brier score is a distance in probability space. The Brier Skill 
Score is defined as:

where BS(r) is the Brier score of the reference probability 
forecast, typically a climatological forecast, for which e.g. 
the probability of occurrence of the upper and lower quintile 
are 20% and the interquintile range 60%.

For the reference model accounting for the warming trend 
used in the calculation of the BSS for Fig. S3, the probability 
for each year is defined by the following equation:

where P(1/5) and P(4/5) are the probability to be below the 
first quintile and above last quintile, respectively. The prob-
ability to be in the interquintile range is constant: 3/5.

For verification of the detection of large heatwaves, as defined 
in Sect. 2.3.1, we use scores based on the contingency table:

Model Observation

Heatwave No heatwave

Heatwave Hit False alarm (FA)
No heatwave Miss Correct rejection (CR)

BS(f ) =
1

N

N
∑

i=1

(yi(f ) − oi(f ))
2

BSS(f ) = 1.0 −
BS(f )

BS(r)

P1∕5(year) =
2Nyear

Nyear + 1
(1 − year)

P4∕5(year) =
2Nyear

Nyear + 1
year
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– Accuracy: proportion of forecasts which are correct 
between 0 and 1. 

– Hitrate: proportion of extreme events which are captured 
(between 0 and 1). 

– Threat Score (TS): It measures the fraction of observed and 
predicted events that were both observed and predicted. It can 
be thought of as the accuracy when correct negatives have 
been removed from consideration. This score is sensitive to 
hits, penalizes both misses and false alarms. It depends on cli-
matological frequency of events (poorer scores for rarer events) 
since some hits can occur purely due to random chance. 

– Equitable Threat Score: It measures the fraction of observed 
and predicted events that were both observed and predicted, 
adjusted for hits associated with random chance (for exam-
ple, it is easier to correctly forecast rain occurrence in a wet 
climate than in a dry climate). It is sensitive to hits and it 
penalises both misses and false alarms in the same way. 

 where 

Appendix 2: ETS optimal probability 
threshold

In order to test the sensitivity of the severe heatwave 
detection to the probability threshold, we use two differ-
ent methods for Fig. 8, a fixed probability threshold at 
30% (in other words at least 8 members detecting a severe 
heatwave) and an optimal probability threshold calculated 
in cross-validation, as described below:

– Step 1: with a fixed value of the heatwave sever-
ity parameter n, we compute the ETS, for the whole 
hindcast period, except the year we want to forecast 
(cross-validation) for different value of the probability 
threshold: 10%, 20%, 30%, 40%, 50%, 60%.

accuracy =
hit + CR

nyear

hitrate =
hit

hit + miss

TS =
hit

hit + miss + FA

ETS =
hit − hitrandom

hit + miss + FA − hitrandom

hitrandom =
(hit + miss)(hit + FA)

nyear

– Step 2: Keep the probability threshold for which the 
ETS has the highest value.

– Step 3: Using the probability threshold defined in Step 
2, we estimate if the model detect an heatwave for the 
considered year.

– Step 4: Perform Steps 1, 2 and for all the years and 
computed the ETS for the whole period.
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