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Abstract

Let Yn be the number of attempts needed to get the nth success in a non-
stationary sequence of independent Bernoulli trials and denote by α a fixed
irrational number. We prove that, under mild conditions on the probabilities of
success, the law of the fractional part of αYn converges weakly to the uniform
distribution on [0, 1) whenever α is irrational. We then compute upper bounds
of the convergence rates depending on a measure of irrationality of α and on
the probabilities of success. As an application, we discuss the mantissa of aYn
for positive integer a and the mantissa of the nth random Mersenne number
generated by the Cramér model of pseudo-primes.

1 Introduction
We denote by U the uniform distribution on [0, 1) and by {y} the fractional part of
a real y. When dealing with fractional parts it is natural to identify [0, 1) to a circle
of radius (2π)−1. We will then write circle [0, 1) to indicate that we equip [0, 1)
with the topology generated by the functions f which are continuous in the usual
sense and satisfy limx→1 f(x) = f(0). This is crucial for the Weyl criterion and the
Erdős-Turán inequality (Lemmas 1 and 2 below) on which all our results rely.

As n → +∞, the uniform probability measure on the set {{αk} : k = 1, . . . , n}
converges weakly to U if and only if α is irrational [11, p. 8]. For this reason,
the sequences (αn)n with irrational α are said to be uniformly distributed modulo
1. We see them as non-random walks on the circle [0, 1). Consider an irrational
number α and a sequence of independent Bernoulli trials whose probabilities of
success sum to +∞ and decrease to zero as the process moves forward. Remove
from the sequence ({αn})n all the points {αk} for which the kth trial fails (k =
1, 2, . . . ). The remaining points are {αY1}, {αY2}, . . . , where Yn denotes the number
of attempts needed to get the n-th success. The sequence of random variables
({αYn})n is a random walk on [0, 1) whose trajectories are random subsequences of
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({αn})n. The present paper investigates the distribution of the possible values of
the nth term of these subsequences.

We prove below that, as n → +∞, the law of {αYn} converges weakly to U
whenever α is irrational. We then provide some bounds of the convergence rates
depending on the type of α and the probabilities of success. As applications we
discuss the mantissa of aYn for positive integer a and the mantissa of the nth random
Mersenne number generated by the Cramér model of pseudo-primes. The law of a
random variable, the type of an irrational number, the mantissa of a positive real
and the random Mersenne numbers are defined in Section 1.1.

The convergence rate of the law of {αZn}, where Zn is the sum of n independent
and identically distributed random, is examined in [20] and [2]. The involved random
variables are subject to certain additional conditions in [2] and take values -1 and 1
with probabilities 1/2 in [20]. In both papers, the bounds depend explicitly on the
type of α. In our work the random variables Yn+1− Yn are not independent and are
not identically distributed (except in Section 5) and our bounds depend not only on
the type of α but also on the probabilities of success.

Among many other references, relevant background material concerning Uniform
Distribution Theory and on Benford’s law in connection with Number Theory or
Probability Theory is available in [1, 4, 11, 13].

1.1 Definitions and notation

Recall that we denote by U the uniform distribution on [0, 1) and by {y} the frac-
tional part of a real y. We will use standard notation: byc for the greatest integer
less than or equal to y, [y] for the nearest integer value of y (there is no ambiguity
when y is irrational), 〈y〉 for the distance between y and its nearest integer, pn for
the nth prime number, log n for the natural logarithm of n, logb a for the logarithm
to the base b of a and eh(x) for exp(2iπhx) with i2 = −1.

Let (Xn)n≥1 be a sequence of independent Bernoulli random variables. We
suppose that the probabilities of success qn = P (Xn = 1) sum to +∞. Ac-
cording to Borel-Cantelli Lemma, this is necessary and sufficient to ensure that
Sn =

∑n
j=1Xj → +∞ almost surely as n → +∞ and so that the number of trials

needed to get the n-th success Yn = min{N : SN = n} is almost surely well defined
for all n. We set κ(n) = q1 + · · ·+ qn and λ(n) = qn/

√
κ(n− 1).

The nth Mersenne number is 2pn − 1. If q1 = q2 = 0 and qn = (log n)−1 for
n ≥ 3, Yn is the nth Camér random pseudo-prime [21, p. 91–97] and is denoted by
p∗n below. The sequences of random variables (p∗n)n and (2p

∗
n − 1)n will be called in

the sequel the Cramér sequence and Mersenne-Cramér sequence respectively. The
Cramér sequence is almost surely equivalent to (pn)n [5].

Fix a numeration base b > 1. The mantissa in base b of a positive real x
is the unique number Mb(x) ∈ [1, b) such that x = Mb(x)bm for some integer
m. The Benford’s law in base b is the probability distribution Bb on [1, b) defined
by Bb([1, t)) = logb t for t ∈ [1, b). A sequence (xn)n of positive real numbers
is said to be Benford in base b when the uniform probability measure on the set
{Mb(xk) : k = 1, . . . , n} converges weakly to Bb as n→ +∞.

Following [11, p. 161], we define the type η(α) of an irrational α by

η(α) = sup{γ : lim inf
h→+∞

hγ〈hα〉 = 0}.
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The greater η(α) is, the closer α is to rationals with reasonable denominators. An
irrational α is said to be of constant type if h〈hα〉 > c for some constant c > 0 and
all positive integers h or equivalently if the partial quotients of its continued fraction
expansion are bounded [11, p. 122]. Such α is of type 1.

The law of a random variable Z is the unique probability measure Q satisfying
Q(B) = P (Z ∈ B) for every Borel set B.

1.2 Content

Our results on the weak convergence of the laws of {αYn} andMb(a
Yn) and on the

rates of convergence are stated and compared with existing literature in Section 2.
Section 3 collects the main tools used in our proofs; they are all well-known, with the
possible exception of Proposition 1. Our proofs are collected in Section 4. Finally,
we discuss shortly the accuracy of our bounds is in Section 5.

1.3 Information about Mersenne numbers

The consideration of Mersenne numbers was motivated by the construction of even
perfect numbers [18, pp. 75-83]. It is easy to check that if ak − 1 is prime for some
positive integers a and k, then it is a Mersenne number. Seven of the first eight
Mersenne numbers are prime. However the frequency of primes among the Mersenne
numbers seems tiny since the 47th prime Mersenne number is 243 112 609−1 [24]. The
largest known prime since December 2018 is the Mersenne number 282 589 933 − 1
which has more than 24 million digits in base 10 [24]. Most of the known prime
Mersenne numbers have held the record of the largest known prime at a time.

1.4 Information about Benford law

Note that {logb x} = logb(Mb(x)). Thus

(Mb(x) < t) ⇐⇒ ({logb x} < logb t) (t ∈ [1, b)) (1)

and so, for any positive random variable Z, Mb(Z) is distributed following Bb if
and only if {logb Z} is distributed following U and, for positive random variables Zn
(n = 1, 2, . . . ), the law ofMb(Zn) converges weakly to Bb as n→ +∞ if and only if
the law of {logb Zn} converges weakly to U . In particular a sequence (xn)n is Benford
in base b if and only if the sequence (logb(xn))n is uniformly distributed modulo 1.
As a consequence, (an)n is Benford in base b if and only if logb a is irrational.

Since logb
(

k
k−1

)
decreases as k increases, the Benford sequences satisfy the so

called first digit phenomenon: the terms with small first digit k are more frequent
than the others. For example, for large n, the frequency of numbers with first digit
1 in base 10 among 2, 4, . . . , 2n is approximately 30.1 percent. Among other fast
growing sequences of positive numbers [13], the sequences (n!)n, (

∏n
1 pk)n and (nn)n

are Benford in any base b. Moreover (n)n and (pn)n satisfy somehow the first digit
phenomenon but in a weaker sense only [7].

The sequence ({αpn})n is uniformly distributed modulo 1 when α is irrational [21,
pp. 105–107]. This and simple calculations prove that the sequence of Mersenne
numbers (2pn − 1)n is Benford in base b whenever b is not a power of 2. Some
computer simulations we have made suggest that the law of the random variable
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M10(p
∗
n) does not converge weakly as n → +∞ whereas, as proved below, the law

ofMb((2
p∗n − 1))n converges weakly to Bb whenever b is not a power of 2.

In many cases, the law of the mantissa in base b of products of independent or
stationary positive random variables converges weakly to Bb [4].

1.5 Information about η(α)

Roth and Baker received the Fields Medal in 1958 and 1970 respectively for their con-
tributions on this subject. The terms irrationality exponent, measure of irrationality
and approximation exponent also designate η(α) (see Section 1.1) or η(α) + 1 in the
literature. The Liouville numbers [17, p. 310] are the reals of infinite type; they are
very well approximated by rationals. By Roth Theorem, all the algebraic numbers
are of type 1 [3, p. 169]; they are badly approximated by rationals. Here is what
is known, excepting possible recent improvements, on the type of some common
transcendental numbers:

η(e) = 1 , η(π) < 6.2 , η(π2) < 4.5 , η(log 2) < 2.6 and η(log 3) < 4.2.

(we have rounded to one decimal place for simplicity). See [23] for references.
The set {α : η(α) > 1} has Lebesgue measure zero [3, p. 168] but is uncountable

since each real greater than 1 is the type of at least one transcendental non-Liouville
number [19, Corollary 4.].

All the quadratic numbers are of constant type (see Section 1.1) according to
Liouville’s theorem [17, p. 299]. The number e is not of constant type although
η(e) = 1 [17, p. 294]. So the quadratic irrationals are more badly approximated by
rationals than e.

2 Results and comments
We collect here the statements of our main results and compare them with existing
literature.

2.1 Limit law of {αYn} and Mb(a
Yn)

Note that the values of {αYn} are concentrated in a finite subset of [0, 1) when α
is rational and so the law of {αYn} cannot converge to U in this case. Recall that
κ(n) = q1 + · · ·+ qn.

Theorem 1. The law of the random variable {αYn} converges weakly to U as n→
+∞ whenever α is irrational, (qn)n decreases to 0 and limn κ(n) = +∞.

The treatment of the mantissa of aYn derives easily from the above theorem. It
may be worth reminding the reader that there exists no positive random variable
Z such that Mb(Z) is distributed following Bb for every numeration base b [4,
Proposition 5.2].

Corollary 1. Suppose that (qn)n decreases to 0 and that limn κ(n) = +∞. Then the
law of Mb(a

Yn) converges weakly to Bb as n → +∞ whenever logb a is irrational.
Moreover the law ofMb(2

Yn − 1) converges weakly to Bb whenever b is not a power
of 2.
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2.2 Rates of convergence

Let Qn and Q∗n designate the law of {αYn} and that of Mb(a
Yn) respectively. We

are now concerned with the Kolmogorov-Smirnov distance between Qn and U ,

∆(Qn, U) = sup
0≤s<1

|Qn([0, s))− s|,

and in
∆(Q∗n, Bb) = sup

1≤t<b
|Q∗n([1, t))− logb t|.

Note that
∆(Qn, U) = ∆(Q∗n, Bb) (2)

if α = logb a (replace logb t by s in (1)).
Because of the factor | sin(πhα)|−1 in (8) (see Section 4.2), we need to know

to what extent the values of 〈hα〉 are close to zero as h → +∞. This is why our
bounds depend on η(α). Recall that λ(n) = qn/

√
κ(n− 1). Here are a few examples

of asymptotics of λ(n): λ(n) ∼ (log n)−
1
2n−1 when qn = n−1, λ(n) ∼ 2−

1
2n−

3
4 when

qn = n−
1
2 and λ(n) ∼ (log n)−

1
2n−

1
2 when qn = (log n)−1.

Theorem 2. Suppose that α is an irrational of finite type (see Sections and 1.1 and
1.5) and that the qn decrease to 0 and sum to infinity. Denote by η(α) the type of
α. Then

∆(Qn, U) = O
(
λ(n)

1
η

)
for all η > η(α).

In particular ∆(Qn, U) = O
(
λ(n)

1
η

)
for all η > 1 when α is algebraic or equal

to e and ∆(Qn, U) = O
(
λ(n)

1
6.2

)
when α = π.

By way of comparison, ∆(Uα,n, U) = O
(

(1/n)
1
η

)
for all η > η(α) if Uα,n des-

ignates the uniform probability measure on the set {{αk} : k = 1, . . . , n} [11, p.
123]. Moreover ∆(Q±αn , U) = O

(
(1/
√
n)

1
η

)
for all η > η(2α) if Q±αn designates

the law of {αZn} and Zn is the sum of n independent and identically distributed
random variables taking values -1 and 1 with probabilities 1/2 [20, Theorem 5.5]
and ∆(Qn, U) = O (1/

√
n) if Qn designates the law of {αZn} and Zn is the sum

of n independent and identically distributed integer valued random variables with
finite variance and α is of contant type [2, Theorem 1.1] .

Again the treatment of the mantissa of aYn derives easily from the above theorem.

Corollary 2. Suppose that logb a is irrational and that the qn decrease to 0 and sum
to +∞. Let F denotes the set of prime factors of b. Then

∆(Q∗n, Bb) = O
(
λ(n)

1
η

)
, where we can choose η = 2.5 · 104 log a log b in the general case and, when a = 2,
η = 7.7 if F = {2, 3}, η = 15.3 if F = {2, 3, 5} and η = 256.9 if F = {2, 3, 5, 7}.

Several other particular values of a can be discussed in view of Lemma 5 and of
the arguments featuring in the proof of Proposition 1.

Now we set qn = (log n)−1. In this case, Yn = p∗n, the nth-Cramér number, and
2Yn − 1 is the n-th Mersenne-Cramér number.

5



Corollary 3. The conclusions of Corollary 2 remain true (with λ(n) ∼ (n log n)−
1
2 )

when Q∗n denotes the law ofMb(2
p∗n − 1).

In particular, when Q∗n denotes the law of the mantissa in base 10 of the nth
Mersenne-Cramér number,

∆(Q∗n, B10) = O
(

(n log n)−
1

30.6

)
.

We can slightly improve the bound in Theorem 2 when α is an irrational quadratic
number, like

√
2 or the golden ratio, or more generally when it is of constant type

(see Sections and 1.1 and 1.5).

Theorem 3. Suppose that α is an irrational of constant type and that the qn decrease
to 0 and sum to infinity. Then

∆(Qn, U) = O
(
λ(n) log2(1/λ(n)

)
.

In particular,
∆(Qn, U) = O

(
n−1 log

3
2 n
)

if qn = 1/n and
∆(Qn, U) = O

(
(n−1(log log n)−

1
2 log n

)
if qn = 1/(n log n).

On the other hand, let (xn)n be any sequence in [0, 1) and Q
(x)
n designate the

uniform probability measure on the set {xk : k = 1, . . . , n} (n = 1, 2, . . . ). Then
∆(Q

(x)
n , U) = O (n−1 log n) when xn = {αn} and α is any irrational quadratic

number [11, p. 125] and when (xn)n is the van der Corput sequence [11, p. 127]
frequently used to approximate integrals by quasi-Monte Carlo methods. No smaller
order of magnitude of ∆(Q

(x)
n , U) is possible [11, p. 109].

So the convergence rate ofQn when α is a quadratic irrational and qn = 1/(n log n)

is better than the best possible convergence rate of Q(x)
n . And it is even slightly bet-

ter if we choose qn = 1/(n log n log log n) and so on. However, we must take into
account, that for each fixed n, the set of atoms of Q(x)

n is finite, while that of Qn is
not.

3 Preliminaries
We present here the main tools used in the following.

3.1 Weak convergence on the circle [0, 1)

The Lévy continuity theorem states that the weak convergence of a sequence of
probability measures on the real line is characterized by the pointwise convergence
of the corresponding characteristic functions. For probability measures on the circle
[0, 1), the convergence of the Fourier coefficients suffices. We present here the case
where the limit distribution is U . Let Z,Z1, Z2, . . . be some random variables taking
their values in [0, 1).

Lemma 1 is the Weyl criterion. A direct proof is easily obtained by extending
the arguments in [11, p. 7] to general sequences of probability measures. It is also
a consequence of Lemma 2 below which has been established later.
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Lemma 1. In order that the law of Zn converges weakly to U as n → +∞ it is
necessary and sufficient that, for every positive integer h,

lim
n→+∞

E(eh(Zn)) = 0.

Lemma 2 is the Erdős-Turán inequality. It is a kind of Berry-Esseen theorem on
the circle [14]. Theorem 1 in [14] is the most general version in the univariate case.
Here is a simplified formulation which is sufficient in our network.

Lemma 2. Let Q stand for the law of Z. Then, for every positive integer H,

sup
0≤t<1

|Q([0, t))− t| ≤ C

(
1

H
+

H∑
h=1

|E(eh(Z))|
h

)
,

where the constant C is independent of H.

3.2 Concentration function

We will make use of general results on the Lévy concentration function [15, p. 38]
to get some information about the maximal size of the atoms of Sn. Lemma 3
derives from Lemma 1 in [15, p. 38] because, when n1 ≤ n2, Sn1 and Sn2 − Sn1 are
independent.

Lemma 3. If n1 ≤ n2, then

max
0≤j≤n1

P (Sn1 = j) ≥ max
0≤j≤n2

P (Sn2 = j).

Lemma 4 is a particular case of the Kolmogorov-Rogozin inequality on concen-
tration function (Theorem 4 in [15, p. 44]).

Lemma 4. When (qn)n decreases to 0,

max
0≤j≤n

P (Sn = j) = O
(
κ(n)−

1
2

)
,

where O denotes the Landau big O.

3.3 The type of logb a

Let a and b be two integers both greater than 1. We need some upper bounds for
η(logb a) to investigate the rate of convergence of the law of Mb(a

Yn). Recall that
[y] denotes the nearest integer value of y. If we find c > 0 and γ0 > 0 such that

|hα− [hα]| ≥ ch−γ0 for all sufficiently large h, (3)

then we show that η(α) ≤ γ0. If α = logb a, then

|hα− [hα]| = (log b)−1|h log a− k log b|,

where k = [h logb a]. So lower bounds on linear forms in logarithms can yield upper
bounds on measure of irrationality.

According to the Gelfond-Schneider theorem [3, p. 2], logb a cannot be an irra-
tional algebraic number. It is either rational (when a is a rational power of b) or
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transcendental. According to Baker’s Theorem [3, p. 2] it is of finite type. How-
ever Baker’s initial papers provide general upper bounds of η(logb a) which are far
too large to be meaningful in our context. In [10], the authors derive from them
that η(log10 2) ≤ 2.4 · 10602. Improving Baker’s general bounds has motivated many
authors including Baker himself. See [3, pp. 195–221] for references.

It seems that the best available general result which can be helpful for us is
Gouillon’s one [9, Corollary 2.3.] which leads to

η(logb a) < 4 · 104 log a log b. (4)

Some results of Rhin [16] and of Wu [22] provide reasonable bounds of η(logb a) when
the prime factors of a and b are small and logb a is irrational. The following lemma
groups them in simplified versions and, aiming at simplicity and the investigation
of the Mersenne-Cramér sequence, we then focus on the case a = 2.

Lemma 5. Let u1, u2, u3 and u4 be four integers. Set H2 = max(|u1|, |u2|), H3 =
max(|u1|, |u2|, |u3|) and H4 = max(|u1|, |u2|, |u3|, |u4|). Then, for sufficient large H2,
H3 and H4,

|u1 log 2 + u2 log 3| ≥ H−7.622 ,

|u1 log 2 + u2 log 3 + u3 log 5| ≥ H−15.283 ,

|u1 log 2 + u2 log 3 + u3 log 5 + u4 log 7| ≥ H−256.874 .

The following proposition may sound obvious to the specialists in view of Lemma
5, but they are not formulated in the papers of Rhin and Wu or anywhere else it
seems.

Proposition 1. Suppose that b is not a power of 2 and let F denotes the set of
prime factors of b. Then η(logb 2) ≤ 7.62 when F ⊂ {2, 3}, η(logb 2) ≤ 15.28 when
F ⊂ {2, 3, 5} and η(logb 2) ≤ 256.87 when F ⊂ {2, 3, 5, 7}.

Proof. We only demonstrate the first statement. The proofs of the two others follow
the same lines. Recall that [x] stands for the nearest integer of x.

Suppose that b = 2v13v2 with v2 > 0. For each positive integer h, set

k = [hη(logb 2)] and H = max(|h− kv1|, kv2).

Lemma 5 ensures the existence of H0 such that

|h logb 2− k| = (log b)−1|(h− kv1) log 2− kv2 log 3| ≥ (log b)−1H−7.62

for all H ≥ H0. Moreover hη(logb 2)− 1 ≤ k ≤ hη(logb 2) + 1 and so

(hη(logb 2)− 1)v2 ≤ kv2 ≤ H ≤ h+ kv1 + kv2 ≤ Ch,

where C = (1 + (η(logb 2) + 1)(v1 + v2)). Then H ≥ H0 for sufficiently large h and
this implies

|h logb 2− k| ≥ (log b)−1H−7.62 ≥ (log b)−1C−7.62h−7.62.

This and (3) complete the proof.
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4 Proofs

4.1 An important auxiliary result

We begin with a general property on Bernoulli trials whose proof uses and details
some arguments of the proof of [12, Theorem 4.6.]. Recall the notation presented in
Section 1.1.

Proposition 2. For each fixed n ≥ 1, the sequence (P (Sm = n))m≥n is bell-shaped
and

+∞∑
m=n

|P (Sm+1 = n)− P (Sm = n)| ≤ 2 max
0≤j≤n

P (Sn = j).

Proof. Fix n ≥ 1. Then, for all m ≥ n,

P (Sm+1 = n) = qm+1P (Sm = n− 1) + (1− qm+1)P (Sm = n)

and this leads to

P (Sm+1 = n)− P (Sm = n) = qm+1 (P (Sm = n− 1)− P (Sm = n)) . (5)

By [6], the laws of the random variables Sm are bell-shaped and, when {κ(m)}
grows from 0 to 1, the mode is firstly at bκ(m)c, then at both bκ(m)c and bκ(m)c+1
and finally at bκ(m)c+ 1.

Hence, as m grows, P (Sm = n− 1)− P (Sm = n) is

• nonnegative when κ(m) < n− 1,

• nonnegative when n− 1 ≤ κ(m) ≤ n and the mode is at bκ(m)c,

• nul when n− 1 ≤ κ(m) ≤ n and the mode is at both bκ(m)c and bκ(m)c+ 1,

• nonpositive when n− 1 ≤ κ(m) ≤ n and the mode is at bκ(m)c+ 1,

• nonpositive when n < κ(m).

The same applies for P (Sm+1 = n) − P (Sm = n) in view of (5) and so the
sequence (P (Sm = n))m≥n is bell-shaped. This yields

+∞∑
m=n

|P (Sm+1 = n)− P (Sm = n)| ≤ 2 max
0≤j≤m0

P (Sm0 = j)

for some m0 ≥ n. According to Lemma 3,

max
0≤j≤m0

P (Sm0 = j) ≤ max
0≤j≤n

P (Sn = j).

The proof is completed.
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4.2 Proof of Theorem 1

Let α be any irrational. By Lemma 1 we need only to check that, for all positive
integers h,

lim
n→+∞

E(eh(αYn)) = lim
n→+∞

+∞∑
m=n

P (Yn = m)eh(αm) = 0.

The random variables Xn being independent,

P (Yn = m) = qmP (Sm−1 = n− 1) (6)

for allm ≥ n. Fix the positive integers n, h andN ≥ n and set σm =
∑m

j=n qjeh(αj)).
When α is irrational, |

∑K
l=k eh(αl)| ≤ | sin(πhα)|−1 for all positive integers k and

K with k < K. Hence a summation by parts gives for every m ≥ n

|σm| =

∣∣∣∣∣qm
m∑
j=n

eh(αj) +
m−1∑
j=n

(qj − qj+1)

j∑
l=n

eh(αl)

∣∣∣∣∣
≤

(
qm +

m−1∑
j=n

(qj − qj+1)

)
| sin(πhα)|−1 = qn| sin(πhα)|−1 (7)

(recall that (qn)n is decreasing). By (6) and another summation by parts, we get

N∑
m=n

P (Yn = m)eh(αm) =
N∑

m=n

P (Sm−1 = n− 1)qmeh(αm)

=P (SN−1 = n− 1)σN

+
N−1∑
m=n

(P (Sm−1 = n− 1)− P (Sm = n− 1))σm.

Then Lemma 3, Proposition 2 and (7) yield for every N ≥ n

∣∣∣∣∣
N∑

m=n

P (Yn = m)eh(αm)

∣∣∣∣∣ ≤ qn
| sin(πhα)|

max
0≤j≤N−1

P (SN−1 = j)

+
2qn

| sin(πhα)|
max

0≤j≤n−1
P (Sn−1 = j)

≤ 3qn
| sin(πhα)|

max
0≤j≤n−1

P (Sn−1 = j).

We have demonstrated that

|E(eh(αYn))| ≤ 3qn
| sin(πhα)|

max
0≤j≤n−1

P (Sn−1 = j) (8)

which concludes our proof because limn qn = 0 (see also Lemma 4).
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4.3 Proof of Corollary 1

The first assertion is a direct consequence of Theorem 1 and Section 1.4.
Assume that b is not a power of 2 and that qn = (log n)−1 for n ≥ 3. Then

Yn = p∗n and so the law of {logb(2
p∗n)} converges weakly to the U because logb 2 is

irrational.
In view of Section 1.4 and Lemma 1, it remains only to check that, for all positive

integers h,
lim

n→+∞
E
(
eh(logb(2

p∗n))− eh(logb(2
p∗n − 1))

)
= 0.

But

eh(logb(2
p∗n))− eh(logb(2

p∗n − 1)) = eh(logb(2
p∗n))

(
1− eh(logb(1− 2−p

∗
n))
)

and so (eh(logb(2
p∗n))−eh(logb(2

p∗n−1)))n is a bounded sequence of random variables
which converges almost surely to 0 as n → +∞ because (p∗n)n converges almost
surely to +∞. The Lebesgue dominated convergence theorem completes the proof.

4.4 Proof of Theorem 2

Fix η > η(α). Using Lemma 2, we get for all positive integers H

∆(Qn, U) ≤ C

(
1

H
+

H∑
h=1

|E(eh(αYn))|
h

)

≤ C

(
1

H
+O(λ(n))

H∑
h=1

1

h| sin(πhα)|

)
,

because, by (8) and Lemma 4,

|E(eh(αYn))| = O(λ(n))

| sin(πhα)|
.

We have | sin(πhα)| = sin(π〈hα〉) ≥ 2〈hα〉 since 〈hα〉 ≤ 1/2. Moreover 〈hα〉 ≥
h−η for sufficiently large h by definition of η(α) (see Section 1.1). So direct calcula-
tions yield

∑H
h=1(h| sin(πhα)|)−1 = O(Hη), but the particular nature of the sequence

(〈hα〉)h provides a better estimate, namely

H∑
h=1

1

h| sin(πhα)|
= O(Hη−1) (9)

(see [11, p. 123]). We then arrive at

∆(Qn, U) ≤ C

(
1

H
+O(λ(n))O(Hη−1)

)
. (10)

We choose H = bλ(n)−
1
η c and get

∆(Qn, U) = O
(
λ(n)

1
η

)
.

The two others assertions derive from the first one and Section 1.5.
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4.5 Proof of Corollaries 2 and 3

Recall that
∆(Qn, U) = ∆(Q∗n, Bb) (11)

if α = logb a. So Corollary 2 is a consequence of Theorem 2 and of (4) and Propo-
sition 2 in Section 3.3.

Classical arguments give

|eh(logb(2
p∗n))− eh(logb(2

p∗n − 1))| = |eh(logb(2
p∗n))||(1− eh(logb(1− 2−p

∗
n))|

= O(2−p
∗
n) = O(2−n)

since p∗n ≥ n. Hence

|E(eh(logb(2
p∗n − 1)))| = |E(eh(logb(2

p∗n)))|+O(2−n).

In view of (9) this implies

H∑
h=1

|E(eh(logb(2
p∗n − 1)))|

h
= O(λ(n))O(Hη−1) +O(2−n)O(logH)

= O(λ(n))O(Hη−1)

for all η > η(logb 2). So the final arguments of the proof of Theorem 2 apply again
and this proves Corollary 3.

4.6 Proof of Theorem 3

Suppose that α is of contant type. Then η(α) = 1 and h〈hα〉 > c for all posi-
tive integers h and some c > 0 independent of h (see Section 1.1). In this case∑H

h=1(h| sin(πhα)|)−1 = O(log2H) according to Lemma 3.3 in [11, p. 123] (here
log2 x means (log x)2). Moreover, we no longer need to consider η > η(α) in the
proof of Theorem 2.

So we can replace η by 1 and O(Hη−1) by O(log2H) in (9) and (10) and get

∆(Qn, U) = O
(
λ(n) log2(1/λ(n)

)
.

The two other assertions derive from the first one and simple calculations.

5 Concluding remark
We are unable to provide general and meaningful lower bounds for ∆(Qn, U). How-
ever what follows makes us hope that the estimates featuring in Theorem 2 are quite
accurate.

We have supposed for simplicity that qn decreases to 0 but our arguments still
apply when all the qn are equal to q > 0 (with minor changes in Lemma 4 and its
consequences when q > 1/2). In this case Yn is the sum of n independent and iden-
tically distributed random variables distributed following the geometric distribution
with parameter q. These random variables being square integrable, [8, Theorem 4.2]
leads to

sup
m≥n

P (Yn = m) ≥ C1n
− 1

2

12



for some constant C1 > 0. The maximal size of the atoms of the law of {αYn} admits
the same lower bound. Therefore

2∆(Qn, U) ≥ C1n
− 1

2

whatever is the value of η(α). On the other hand, when all the qn are equal to q > 0,
λ(n) =

√
q√

n−1 and so, if in addition α is quadratic irrational, Theorem 3 gives

∆(Qn, U) ≤ C2n
− 1

2 (log n)2

for some C2 > 0.
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