N
N

N

HAL

open science

Algebraic multigrid preconditioner for statically
condensed systems arising from lowest-order hybrid
discretizations

Daniele Antonio Di Pietro, Frank Hiilsemann, Pierre Matalon, Paul Mycek,
Ulrich Riide

» To cite this version:

Daniele Antonio Di Pietro, Frank Hiilsemann, Pierre Matalon, Paul Mycek, Ulrich Riide. Algebraic
multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretiza-
tions. SIAM Journal on Scientific Computing, 2023, 45 (3), 10.1137/21M1429849 . hal-03272468v2

HAL Id: hal-03272468
https://hal.science/hal-03272468v2

Submitted on 10 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03272468v2
https://hal.archives-ouvertes.fr

ALGEBRAIC MULTIGRID PRECONDITIONER FOR STATICALLY
CONDENSED SYSTEMS ARISING FROM LOWEST-ORDER
HYBRID DISCRETIZATIONS *

DANIELE A. DI PIETRO!, FRANK HULSEMANN?!, PIERRE MATALONT&9Il
PAUL MYCEKY, AND ULRICH RUDEYI

Abstract. We address the numerical solution of linear systems arising from the hybrid dis-
cretizations of second-order elliptic partial differential equations (PDEs). Such discretizations hinge
on a hybrid set of degrees of freedom (DoF's), respectively defined in cells and faces, which naturally
gives rise to a global hybrid system of linear equations. Assuming that the cell unknowns are only
locally coupled, they can be efficiently eliminated from the system, leaving only face unknowns in
the resulting Schur complement, also called statically condensed matrix. We propose in this work
an algebraic multigrid (AMG) preconditioner specifically targeting condensed systems correspond-
ing to lowest order discretizations (piecewise constant). Like traditional AMG methods, we retrieve
geometric information on the coupling of the DoFs from algebraic data. However, as the condensed
matrix only gives information on the faces, we use the uncondensed version to reconstruct the con-
nectivity graph between elements and faces. An aggregation-based coarsening strategy mimicking a
geometric coarsening or semi-coarsening can then be set up to build coarse levels. Numerical experi-
ments are performed on diffusion problems discretized by the Hybrid High-Order (HHO) method at
the lowest order. Our approach uses a K-cycle to precondition an outer flexible Krylov method. The
results demonstrate similar performances, in most cases, compared to a standard AMG method, and
a notable improvement on anisotropic problems with Cartesian meshes.

Key words. Algebraic multigrid, hybrid methods, static condensation.

AMS subject classifications. 65N55, 656N22, 65F50, 65F08

1. Introduction. Hybrid discretizations have been part of the landscape of nu-
merical methods to solve Partial Differential Equations (PDEs) since the seventies. In
his 1978 book [8, p. 421], P. G. Ciarlet states the following definition: “we may define
(...) as a hybrid method any finite element method based on a formulation where one
unknown is a function, or some of its derivatives, on the set 2, and the other unknown
is the trace of some of its derivatives of the same function, or the trace of the function
itself, along the boundaries of the set K" () representing the domain of study and K
a mesh element). Although hybridization of finite element methods first appeared as
an implementation trick [40], it was later proven [1] that the new unknowns at faces,
introduced as Lagrange multipliers, held additional information on the exact solution,
which could be exploited to improve the accuracy of the numerical approximation. A
large number of finite element schemes have given rise to hybrid counterparts, starting
with the mixed formulations of Raviart-Thomas (RT) [30] and Brezzi-Douglas-Marini
(BDM) [6]. More recently, in the context of Discontinuous Galerkin (DG) methods,
hybridization was also used to overcome its main drawback, namely, the large num-
ber of unknowns resulting from the lack of continuity at element interfaces. Indeed,

*Submitted to the editors June 28th, 2021.

Funding: ANR project Fast4HHO under contract ANR-17-CE23-0019.

fIMAG, Univ. Montpellier, CNRS, Montpellier, France (pierre.matalon@gmail.com)
fEDF R&D, Paris-Saclay, France

$IRIT, Toulouse, France

ICERFACS, Toulouse, France

IFAU, Erlangen-Niirnberg, Germany

mailto:pierre.matalon@gmail.com

2 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

hybridization allows for the local elimination of cell-based unknowns from the global
system, leaving the face unknowns as the only remaining ones in the resulting Schur
complement, also called statically condensed or trace system. Examples of meth-
ods whose DoFs verify this structural property include, in particular, Hybridizable
Discontinuous Galerkin (HDG), Compatible Discrete Operators (CDO) [3], Hybrid
High-Order (HHO) methods [14, 13], Mimetic Finite Differences (MFD) [2], Mixed
and Hybrid Finite Volumes (MHFV) [17, 19, 18]. For a more extensive introduction
to hybrid methods and hybridization, we refer to the preface of [12] and the first pages
of [10].

Algebraic multigrid (AMG) solvers [20, 33] are very popular for the solution of
large linear systems arising from the discretization of elliptic equations on unstruc-
tured meshes. Unlike geometric multigrid methods, which require a hierarchy of
meshes of different granularity, algebraic algorithms classically do not need more in-
formation than the linear system to solve. Discarding all geometric information as
input parameter results in the most appreciated feature of these methods, that is,
their usability in a black-box fashion.

The availability of an easy-to-use, scalable linear solver is essential to help pop-
ularize novel discretization methods with the industrial actors, to whom it is crucial
to efficiently solve problems of large size. Adopting a new discretization in an indus-
trial context requires heavy preliminary testing, that can be facilitated if the software
for the appropriate solver is already available on the market or if its development
can easily be externalized. Being isolated from the mesh, which can be generated,
stored, and transferred in numerous ways, AMG solvers ally interoperability and per-
formance. Although novel hybrid methods like HHO have gained growing interest
in recent years, thus pushing the development of ad-hoc geometric multigrid algo-
rithms [9, 22, 39, 15] or other iterative methods [35, 23], we are not aware of any
AMG specifically targeting condensed systems arising from such discretizations at
this time.

Usual AMG solvers designed for low-order finite element or finite difference meth-
ods infer mesh information under the assumption that each row in the matrix corre-
sponds to a DoF located at a mesh node or element. Thus, the connectivity graph
of the mesh can be reconstructed algebraically, and coarsening strategies mimicking
geometric algorithms can then be performed in order to build the coarse levels. Al-
gebraic algorithms are commonly separated in two families according to how their
coarsening strategies can be geometrically interpreted. In the first one, one defines
the coarse unknowns as a subset of the fine ones. Geometrically, in an isotropic set-
ting, it consists of selecting fine nodes to keep on the coarse mesh, in such a way
that the domain is still uniformly covered while the number of nodes is significantly
reduced. This approach has given rise to the so-called Classical AMG (also referred
to as C/F AMG) [31, 32], of which BoomerAMG [21] can be mentioned as a popular
implementation. The other family regroups aggregation-based methods [7, 4, 27, 25].
In such methods, unknowns are now respectively assimilated to node-defined DoF's (or
DoFs within distinct elements), which can then be agglomerated to define a coarse
mesh. Among the well-known representatives of aggregation-based AMG software
packages, one can cite AGMG [28]. We refer to [34] for a numerical comparison of
both approaches applied on a specific application of the Navier—Stokes equations. In
the present work, we especially focus on aggregation-based methods. In our hybrid
setting at the lowest order, the unknowns of the system are actually linked to faces,
i.e. neither nodes nor elements. Consequently, at first glance it might seem pecu-
liar, from a geometrical point of view, to apply the above approaches in this context.

AMG FOR HYBRID METHODS 3

Indeed, looking at the example stencil illustrated by Figure 1.1a, aggregation-based
coarsening might (and sometimes actually does) aggregate the red DoF with the blue
one located the further on its right. As their respective edges do not touch, it is diffi-
cult to perceive a geometrical sense in this aggregation. Nonetheless, numerical tests
with AGMG show that the approach still works well, which can be geometrically jus-
tified by forgetting about the DoFs being actually face-defined and considering them
as mere nodal values. See Figure 1.1b for an illustration of the algebraic stencil as
perceived by standard AMG methods. That being said, one can legitimately wonder
if a coarsening strategy making geometrical sense in light of the actual meaning of
the DoF's as face-defined values could not yield even better results.

°
.

(a) Geometric, face-aware view of the (b) Algebraic view of the stencil (un-

stencil aware of the faces), as perceived by a

standard AMG method

Fig. 1.1: Stencil given by the statically condensed matrix at the lowest order. Solid
points represent DoFs, which, in this context, are located at faces (edges here). The
considered DoF is represented by a red square. Its stencil is highlighted by thick blue
lines and blue DoFs.

The idea at the origin of the present work is the algebraic reconstruction of the
mesh information based, not on the condensed matrix, but on the uncondensed one,
which contains the connectivity graph between elements and faces. Note that it im-
plies that this method requires more information than the sole system to solve. Parts
of the uncondensed matrix must indeed be brought to the algorithm as additional
information, which makes the method less “black-box”, but still purely algebraic.
Among similar approaches, one can cite AMGe [5]. Once the so-called algebraic mesh
is retrieved, especially the neighbouring information between elements, an element-
based aggregation method can be set up in order to mimic the behaviour of a geometric
coarsening or semi-coarsening strategy. Although the construction of the coarse levels
is mainly based on plain aggregation principles, the prolongation operator also uses
techniques borrowed from smoothed aggregation methods [36, 37, 29].

AMG methods directly used as solvers may lack efficiency [38, p. 663][24]. Using
them as preconditioners for a Krylov method is generally favored. Moreover, plain
aggregation methods also suffer from slower convergence than Classical AMG in a
V-cycle. To handle these issues, we adopt the choices made by AGMG [27]. Namely,
we use the so-called K-cycle, which introduces Krylov acceleration into the multigrid
recursive cycle. Secondly, one such cycle is used to precondition an outer Krylov
method. As the K-cycle does not yield a constant preconditioner, the outer iteration
is required to be flexible. More generally, the technical choices made in this work
are borrowed from AGMG (pairwise aggregation, strong negative coupling criterion,

4 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

K-cycle...) in order to establish a proper comparison with a standard AMG solver
that relies only on the condensed system.

The rest of this work is organized as follows. Section 2 lists the features we
assume for the underlying discretization to fit our method. Section 3 describes the
construction of our algebraic multigrid algorithm. In Section 4, we apply our method
to the lowest order HHO discretization of homogeneous and heterogeneous diffusion
problems in 2D and 3D. The outer solver is a Flexible Conjugate Gradient, pre-
conditioned with our algebraic multigrid in conjunction with the K-cycle: compared
to a standard aggregation-based AMG, we report equivalent performances in CPU
time, an enhanced robustness to anisotropy on Cartesian meshes, and a similar quasi-
optimal asymptotic behaviour. Finally, we discuss limitations and future work in the
concluding Section 5.

2. Assumptions. We consider a scalar elliptic PDE over a domain discretized
by a polytopal mesh. For simplicity, we suppose Dirichlet boundary conditions. We
assume that the PDE is discretized by a lowest-order hybrid discretization method
DoF's corresponding to one scalar value per cell and per face. Throughout this work,
the subscript T' (resp. F') will consistently refer to the cell-based (resp. face-based)
quantities. We also assume that the global uncondensed linear system arising from
the hybrid discretization at hand is symmetric positive definite, of the form

Arr Arp) (o7 br
2.1 =
@1) <A;F AFF) <xF> (bF) 7

from which Dirichlet boundary unknowns have been eliminated, and where A rep-
resents the coupling among cell-DoFs, Arp between cell- and face-DoFs, and App
among face-DoF's. Assuming the discretization is such that the cell unknowns are
only locally coupled, Apr is diagonal, and thus inexpensive to invert. The statically
condensed system resulting from the local elimination of the cell unknowns is

(22) AVI'F :g, g = AFF - A;FA%%ATF, g = bF — A;EFA;%Z)T

As a Schur complement, A is also symmetric positive definite.

3. Algebraic multigrid. We propose to construct an algebraic multigrid method
to solve the condensed system (2.2) by using the coupling information given in the
uncondensed matrix (2.1). We base our multigrid algorithm on ingredients classically
used in aggregation-based AMG. AGMG [27] will serve as a reference for specific tech-
nical choices such as the pairwise aggregation, the strong negative coupling criterion,
the Krylov acceleration in the multigrid cycle. We also take inspiration from the good
results of the geometric multigrid algorithm [16] for the adaptation of the coarsening
strategy to the hybrid setting, as well as for the multigrid prolongation operator.

3.1. Construction of the algebraic mesh. It is straightforward to algebra-
ically reconstruct the geometric relationships using the connectivity graph given by
Arp. Rows of App correspond to elements, while columns correspond to faces.
Adopting the notation [1,n] := {1,...,n} for all n € Ni, we then define the set
of element indices T := [1,nr| (resp. the set of face indices F := [1,np|) where nr
(resp. np) is the number of rows (resp. columns) of App. For each i € T, the locations
of the non-zero coefficients in the i-th row of Arp correspond to the associated face
indices, which we collect in the set F; C F. Reciprocally, for all k € F, we collect
in Ty, C T the element indices that contain in their boundary the face of index k. In

AMG FOR HYBRID METHODS 5

Arp, two different rows having a non-zero entry in the same column correspond to
neighbouring elements. Their interface is given by the faces algebraically defined by
the indices of such columns. Formally, for all (i,j) € T2, i and j are neighbours if
F; N Fj # (. Moreover, for all i € T and k € F;, we denote by oy, the neighbour of 4
relative to the face k. Algorithm 3.1 summarizes the process.

Algorithm 3.1 BuildMesh
Input: Arp
Output: Mesh defined as the dataset M := (T, F, (Fi)icr, (T)rer, (Tik) (i, k)eTx F)

1: np :=rows(Arp); = [1,nr]

2: np = cols(Arp); F:=[1,np]

3: forieTdo F,:={keF|(Arr)i # 0} end for
4: for ke Fdo T, :={i €T | (Arr)ix # 0} end for
5. fori#jeT do

6: if FZﬂFj#chen

7 VkEFiﬁFj,Set ok = 7 and Ojk =1

8: end if

9: end for

3.2. Mesh coarsening by element aggregation and face collapsing. Now
that we have built the algebraic mesh, that is, a list of elements, a list of faces, as
well as the links between them and subsequently the neighbouring relationships, we
are able to algebraically reproduce a geometric element-based aggregation strategy.
The framework of the present contribution does not restrict the aggregation method,
as long as the required information for choosing the aggregates can be retrieved from
the uncondensed system. That is why the way the elements are agglomerated will
remain abstract in the general algorithm. As such, Algorithm 3.2, which describes the
global process of element aggregation, refers to the abstract function BuildAggregate
(at step 6). BuildAggregate takes an element ¢ € T as an argument and returns a
list of elements (including ¢) chosen to form an aggregate. The simplest aggregation
method, corresponding to clustering ¢ with all its unaggregated neighbours, would
be enough to put our algorithm to the test. However, it would only rely on the
element connectivity graph, i.e. on the location of the non-zero coefficients in the
block A7, regardless of their values. In order to manage anisotropic problems and
give an example of how semi-coarsening can be performed in our hybrid setting, we
give in subsection 3.3 a hybrid counterpart of the node-defined pairwise aggregation
based on the strong negative coupling criterion, as it is formulated in the early version
of AGMG described by [27]. We denote by (GT,i)ic[1,n, . the produced aggregates,
with np . defining the number of aggregates.

In a multigrid method that applies to trace systems, as the smoother operates
on the face unknowns, the efficient reduction of the low-frequency components of the
error relies on accessing coarse representations of the face-defined functions. This
implies that faces must be coarsened between levels (see [15, §4.4.3]), which is a
new constraint imposed to any suited coarsening strategy. Consequently, we combine
the element aggregation with an additional step of face aggregation, also called face
collapsing. In particular, we reproduce the technique devised in [16], which consists
of merging into single faces the interfaces between aggregates.

During the element aggregation process, the fine faces are split into two disjoint
subsets FUF = F according to their situation with respect to the aggregates. F

6 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

Algorithm 3.2 ElementAggregation

Input: Mesh, output of Algorithm 3.1
Output: Aggregation information Gr, defined as the collection of data:
(Gr,i)ieing,.]: element aggregates
(9i)ie[1,ny): association of the element i to the aggregate g; it belongs to
(Fi)ie[l,nT,c]5 fine faces interior to the aggregates
(ﬁi)z‘e[l,nT,c}: fine faces at the boundary of the aggregates
1: Todo :=T // remaining non-aggregated elements
2: n:=0 // aggregate index
3: while Todo # () do

4: Select ¢ € Todo

5: n:=n+1

6: Gr,, = BuildAggregate(i, Todo) // see Algorithm 3.4 for a possible algo.

7: for j € G, do // save for each fine element the aggregate it is in

8: gj :=mn

9: end for

10: F,={ke U F|3i+4je Grn st. ke F;NF;} // interior faces

i€GT n

11: E, = (U FZ> \ F), // boundary faces

i€EGT N

12: Todo := Todo \ Gr,,,
13: end while
14: npc:=n

regroups the faces interior to an aggregate, i.e. the faces shared by two elements
aggregated together. Geometrically speaking, those faces are “removed” to give rise to
the aggregates. The remaining faces, which compose the aggregates’ boundaries, are
collected in F'. We also denote their local counterparts, with respect to each aggregate,
by (Fi)ieitng.] and (F)ie[1,ny..)- See Figure 3.1a for a geometric illustration.

bo bz 7

) Element aggregation) Face collapsing

Fig. 3.1: Aggregation process with face collapsing. In (a), elements are aggregated,
yielding two aggregates. “Removed” edges, represented in dashed red lines, are col-
lected in F, while the remaining ones are collected in F. Then, in (b), the interface
between the two neighbouring aggregates, here made of two edges (in dashed red
lines), is collapsed into a single one (solid blue line). The other edges yield singleton
face aggregates.

Neighbouring relationships between element aggregates can be directly deduced
from F. We can then collapse the interfaces between aggregates into one single face

AMG FOR HYBRID METHODS 7

without altering the coarse adjacency graph. Note that each interface, whether it
is made of multiple faces or only one, gives rise to one face aggregate, so singleton
aggregates are produced. Figure 3.1b gives a geometric interpretation of the face
collapsing, and Algorithm 3.3 formalizes the process.

Algorithm 3.3 FaceCollapsing

Input: Fine mesh, output of Algorithm 3.1
Aggregation information, output of Algorithm 3.2
Output: Face collapsing information Gr, defined as the collection of data:
(GFx)reing.): face aggregates
(Hi)ien,nr.): collapsed faces defining the new boundaries of the aggregates

. Todo := F // fine faces to process
m =0 // face aggregate index
while Todo # () do
Select k € Todo
m:=m-+1
Let G := U;er, 9i // the aggregates the face k is at the interface of
Grm = Nhea F, // fine faces (including k) composing that interface
for n € G do
H, := H,U{m} // in the coarse mesh, m is now a face of the aggregate n
end for
Todo := Todo \ Grm
: end while
P NMEec =M

_ = = e
Wy e

Now that aggregates have been made for elements and faces, they can be num-
bered and become the coarse elements and faces, thus defining a coarse mesh.

3.3. Pairwise aggregation by strong negative coupling. This strategy al-
lows one to aggregate pairs of neighbouring elements in the direction of strong anisot-
ropy, and gives an implementation of the abstract method BuildAggregate at step 6
of Algorithm 3.2. In standard AMG, the usual rule of negative coupling governs the
choice of the aggregated neighbours. Here, this rule is adapted to hybrid unknowns.
For each element, it allows one to evaluate, for all of its neighbours, a numerical
criterion indicating their strength of connection. Only those which have a strong
enough connection and are not already aggregated are considered for aggregation.
Among them, the strongest one is chosen, and leads to a pair aggregate. However, if
none of the strong neighbours are available, i.e. they have all already been previously
aggregated, then the element stays alone in a so-called singleton aggregate.

Before introducing our hybrid criterion for the strong negative relationship, let
us recall the node-defined criterion used by standard AMG methods. As multiple
variations of this criterion exist, we follow the example of AGMG in the version of
[27]. Given the stiffness matrix A and an algebraic node ¢ associated to the i—th
row of A, the coupling coefficient modelling the connection of j to i is provided
by the matrix entry A;; (see Figure 3.2a). We say that j is negatively coupled (or
connected) to i if A;; < 0, and the strength of connection is defined by the modulus of
that coefficient. The strongest connection then corresponds to ¢; := max;|a,, <o |Asj|-
Given a weak/strong connection threshold 0 < 8 <1 (typically set to 0.25), the set
of nodes strongly connected to ¢ is {j | A;; < 0 and |A;;| > 8¢}

8 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

, Aij ,

1]
(a) Coupling of nodes ¢ and j in stan- (b) Coupling of elements ¢ and 7 via their com-
dard AMG. mon face k in the hybrid setting.

Fig. 3.2: Coupling values in standard and hybrid settings.

In our case, in hybrid form, elements are coupled through Arp. Specifically,
given an element of index ¢ € T and its neighbour of index j, the coupling coefficient
is provided through their common face of index k by the matrix coefficient (Arg);;
see Figure 3.2b. We then introduce the following definition for the negative coupling
criterion: j is negatively coupled to i via k if (Arp)ix < 0. Now, for the purpose
of managing heterogeneous problems by preventing aggregation across large jumps
in the diffusion coefficient, we remark that this sole value is not enough to detect a
discontinuity between i and j. Indeed, (A7)ik only bears information local to i. We
also notice that, in the heterogeneous isotropic diffusion case, the coefficient (Arp)ix
is scaled by the actual diffusion coefficient of the element of index . We then introduce
the heterogeneity ratio between the elements of indices ¢ and j connected by the face
of index k as

(Arr)ix (Arr)jk
(Arp)jk’ (ATF)ik> =1

Meaning to penalize aggregation across jumps, instead of simply defining the coupling
strength by |(Arr)ik|, we define it as

(3.1) pij = max (

Cik = |(ATF)ik|/pi0'ik’

where we recall that o;; refers to the element index j that shares the face index k
with 7. According to this criterion, the remaining definitions are straightforward. The
strongest connection to 7 is given by

G = max Ciks
kEF;,(ArFr)ir<0

and the set of faces strongly connected to i by
(32) EZ = {k e F; | (ATF)ik < 0 and ¢ > ﬂ@}

Finally, the strong neighbours of ¢ may be retrieved in the set {o;,k € F,;}. The
corresponding implementation of the abstract function BuildAggregate is given by
Algorithm 3.4.

Notice that the number of singleton aggregates can significantly vary depending
on the order following which the elements are aggregated. So, to minimize the number
of singleton aggregates, the elements are beforehand parsed and attributed a priority
value in order to favor those that have the fewest strong neighbours. In particular,
we follow the priority numbering algorithm described in [11] and process elements by
order of priority at step 4 of Algorithm 3.2.

AMG FOR HYBRID METHODS 9

Algorithm 3.4 BuildAggregate

Input: ¢ € T: element to aggregate
T C T: non-aggregated elements
Output: G: aggregate
1: // Collect faces strongly connected to i through which neighbours are still avail-
able

2 Fy:={keF,|owecT}//cf. (3.2) for the definition of F,

3. if F; # () then

4: k := argmax, gz c;o // face with the strongest coupling

5: G := {i,ou} // aggregation of i and its neighbour relative to k
6: else

7: G :={i} // i forms a singleton aggregate

8: end if

3.4. Cell- and face-defined auxiliary prolongation operators. Given T :=
[1,n7] (resp. F :=[1,np]) the fine element (resp. face) indices in the algebraic mesh,
we denote by T, := [1,np.] (vesp. F. := [1,np.]) the coarse elements (resp. faces)
constructed by the aggregation process of subsection 3.2. We start by defining an
auxiliary cell-defined prolongation matrix Qr (of size np X ny.) in the manner of
plain aggregation:

(3.3a) VieT, VjeT, (Qr)y:= {1 ifieGr,

0 otherwise.
This highly sparse prolongation operator (exactly 1 non-zero per row) transfers the
unknown values respectively assigned to the coarse elements onto the fine elements
they aggregate. Without smoothed aggregation techniques, all fine elements of the
same aggregate receive the same value. Regarding the faces, we define the auxiliary
prolongation matrix Qp (of size np X ng.) such that for k € F,

(i) ifk e ﬁ, i.e. k belongs to a face aggregate,

1 ifkeGry
0 otherwise;

(3.3b) Vle F., (Qp)re:= {

(ii) if k € F, let m be the coarse element embedding k (ie. k € Fm)) and H,, its
set of (potentially) collapsed faces; then,

(3-3¢) VieF., (Qr)ke = {UCard(Hm) ihe Hm

0 otherwise,
where card() returns the number of elements. To summarize, an aggregated face
takes the value of the corresponding coarse aggregate (just like the elements), and a
“removed” face, embedded in a coarse element, takes the average value of that coarse
element’s faces; see Figure 3.3.

3.5. Multilevel hierarchy. As the method described in subsection 3.2 does
not necessarily yield an aggressive enough coarsening [27], and also in order to build
more levels for the multigrid hierarchy, we want to repeat the coarsening process, thus

10 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

/

(a) Aggregated faces (€ F) (b) Interior/removed face (€ F)

Fig. 3.3: Operator Q. The fine red DoF's are set by the coarse black ones.

defining the so-called multiple coarsening. To do so, one has to define a coarse version
of the uncondensed matrix (2.1) to allow recursive execution.

Given the initial blocks Arr, Arr and Apg of the fine uncondensed matrix, we
use the auxiliary prolongation operators introduced in subsection 3.4 to define coarse
counterparts in a Galerkin fashion:

(3.4) (ATT,C ATF7C> — (QT >T (ATT ATF) <QT) '

A;EF.,C AFrF.c Qr Alp App Qr
Note that in practice, only the blocks used in the algorithm must be assembled. In
this work, we only need Arpg (for the coarsening strategy) and Arr (used in the
multigrid prolongation operator Pp further described in subsection 3.6).

Algorithm 3.5 describes one step of coarsening. In addition to building the coarse
blocks (step 5), the coarsening process also constructs the operator Pg that will be
used as a prolongation operator in the multigrid algorithm (step 6). Indeed, although
Qr could be employed for that purpose, we choose to explore another, more efficient
approach (the construction of the operator Pr is described in subsection 3.6 below).
Furthermore, the coarse operator for the lower level of the multigrid algorithm is
defined as the Galerkin operator, constructed from Pr and the condensed matrix A,
initialized at the finest level by the Schur complement (2.2) (step 7). Finally, to be
more consistent with this coarse operator, we recompute the coarse blocks following
formula (3.4) in which QF is replaced with Pr, i.e.

(3.5) (ATT,C ATF,C) _ (QT)T (ATT ATF) (QT) _
Arp. Arpe Pr Alp Arpr Pr

Again, only the blocks actually needed, here Arp ., are recomputed; see step 8.

While Algorithm 3.5 performs one step of coarsening, Algorithm 3.6 handles the
recursion until a targeted coarsening factor is reached. The end of this multiple
coarsening process defines one new multigrid level, and the two-level prolongation
operator is defined by successively chaining the prolongation operators coming out of
each coarsening (step 7).

3.6. Multigrid prolongation operator. Although Qr could also be used as
a prolongation operator for the multigrid algorithm, we choose to explore another
approach, which happens to give better results. Thus, we would like to emphasize
that Qg is only employed to build the coarse blocks during the setup phase, while

AMG FOR HYBRID METHODS 11

Algorithm 3.5 Coarsening

Input: App, Arp, A -
Output: Arre, Arpe, Ac, Pr

M :=BuildMesh(Arp) // Algorithm 3.1
: Gr := ElementAggregation(M) // Algorithm 3.2
: Gr := FaceCollapsing(M,Gr) // Algorithm 3.3

: Compute Qr and Qr by (3.3)

Arre = QrArrQr; Arpe:= QrArpQr // cf. (3.4)
Compute P by (3.8)

A, := Pl AP

ATF,c = Q}—ATFPF // cf. (35)

A A

Algorithm 3.6 MultipleCoarsening

Input: Apr, Arp, /Nl, targetCF
Output: Arr., Arpe, Ac, Pr

L Arraunx = Arrs Arpan = Arp

2: Aaux = A

3: Pp:=1

4: cf := 0 // coarsening factor

5: while cf < targetCF do _

6: [ATT,ca ATF,(:; Aca PF@ux] = coarsening(ATT,amu ATF,aux; Aaux) // Algo‘
rithm 3.5

7 PF ::PFPF,aux

8: Arraux = Ar7e; ATPaux = Arpe

: Aqux = Ac
10: cf := cols(Arp)/ cols(Arp.)
11: end while

Pr, described in this section, defines the prolongation operator used in the multigrid
iterations. It is meant to be an algebraic counterpart of the geometric prolongation
operator defined in [15], which relies on the decondensation of the cell unknowns.

First, we introduce a preliminary prolongation operator denoted by P}O). For all
k € F,its k-th row (P}(,ﬂo))k is defined as

oy . J(@QF)k if ke F
(3.6) (Pr e = {(ngc)k if ke F.

In this definition, ©, € R"T.<X"F.c Jocally computes the value on the coarse cells from
their respective coarse faces, while ITf € R™F*"T.c transfers the value associated the
coarse cells to their respective interior fine faces. We define

(37) ec = 7A;jl",CATF,C7

which reverses the static condensation by solving for the cell unknowns local problems
on the coarse cells given values on the faces. Next, for any face k € F,

1 ifkek,
VneT, (Hf);m::{ e

0 otherwise.

12 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

Figure 3.4 illustrates PI(DO).

e\ T T --e___ _ ST T
\ T 1 \
\ \
Cu Y QQ e ¢ 7 o e
\ \
\ \
/Y\- I \
\\“_:—".‘_7 - \\\‘_—”"_7
(a) Qp for F (b) IO, for F

Fig. 3.4: Preliminary prolongation operator PI(TO). In these figures, we consider two

fine elements (dashed lines) aggregated into one (solid lines). The DoF's on the coarse
faces are represented by black dots, on the fine faces by red dots, on the coarse element
by a blue dot.

Second, we remark that the stencil, in Pl(po)

, of the DoF's associated with removed
fine faces (i.e. k € F) is local to coarse elements. Given that the stencil in A is also
local to coarse elements for those unknowns, one sweep of Jacobi smoothing can be
applied to them without enlarging the prolongation stencil. This allows one to boost
the convergence with virtually no additional computational cost. Note that a second
smoothing iteration would enlarge the stencil outside of coarse elements, which we do
not want. Setting the damping factor to w := 2/3, the smoothing matrix is defined by
Ji=1- wﬁflg, where [is the identity matrix and D the diagonal part of A. The
final multigrid prolongation operator P is then defined row-wise for all rows k € F' as

(Qp)k if ke F\
3.8 Pr)g = .
(3:8) (Fr) {(JP};’))k if ke F.
To conclude about the formulation of Pr, we want to point out its mixed construction
with respect to aggregation-based methods: plain aggregation is used for F, while F’
benefits from smoothed prolongation.

3.7. Multigrid method. A hierarchy of L levels is built by multiple coarsening
following subsection 3.5, and numbered from 1 (the coarsest) to L (the finest). At
each level ¢, the prolongation operator is given by (3.8), which we simply denote by
P, instead of Pp¢. The other multigrid ingredients are chosen as per the variational
framework: namely, the restriction is set to PZT, and the coarse operator gg,l to
the Galerkin construction, initialized by the condensed matrix (2.2) as the finest
operator EL (i.e. ﬁg,l = PKTAVZP[, V¢ =2,...,L). The other parameters of the
method (smoothers, cycle, coarsening factor, weak/strong coupling threshold, coarse
grid solver) are left to the user’s discretion; our choices are detailed in subsection 4.1.

Prolongation operators arising from plain aggregation are known to yield poor
approximation properties of the coarse grid correction. However, it is known [24]
that this loss of approximation, leading to bad convergence of the V-cycle, can be
compensated by the use of the K-cycle ([27, Algorithm 3.2]), and by preconditioning
a Krylov method. The variable number of Krylov iterations in the K-cycle makes it a
variable preconditioner, which implies that a flexible version of the Krylov method has
to be used. As the arising system is symmetric positive-definite, a flexible conjugate

AMG FOR HYBRID METHODS 13

gradient (FCQG) is chosen. In particular, we use the so-called FCG(1) [26], also referred
to as IPCG.

4. Numerical tests.

4.1. Experimental setup. Letting be a bounded polytopal domain of R¢,
d € {2,3}, we consider the diffusion problem

-V -(KVu)=f inQ,
u=0 on 09,

where f € L?(f) is a given source term and K: Q — R¥*4 is the diffusion tensor field,
which is assumed to be real, symmetric, uniformly elliptic. This problem is discretized
by the HHO method [12] at the lowest order, which matches the structural require-
ments of Section 2. The homogeneous Dirichlet boundary condition is handled by
elimination. The multigrid preconditioner performs one sweep of Gauss—Seidel in lex-
icographic order as pre-smoothing and one sweep of Gauss—Seidel in anti-lexicographic
order as post-smoothing. We refer to this cycle as the K(1,1)-cycle. FCG(1) is used
for the outer iteration as well as for the inner iteration of the K-cycle, meaning
that the FCG, as outer solver, is preconditioned by the K(1,1)-cycle of our multigrid
method. The preconditioner being symmetric positive definite, convergence of the
outer FCG is ensured. To build each coarse level, multiple pairwise aggregations with
the weak/strong coupling threshold 8 = 0.25 are performed (subsection 3.3), enforc-
ing a coarsening factor > 3.8. Coarse levels are built until the operator matrix has
less than 1000 rows, where the system is solved by a direct solver. Iterations stop
when the backward error, defined by the residual normalized by the right-hand-side,
reaches a value lower than 10~%. In the following results, note that the number of
iterations refers to the outer solver, i.e. FCG.

4.2. Methodology. The main goal of the following numerical experiments is
to establish a comparison between the solver developed in this work and the equiva-
lent one made in the way of standard AMG. We will refer to them as Uncondensed
AMG (U-AMG) and Condensed AMG (C-AMG), respectively. The former uses the
uncondensed matrix to devise an element-based coarsening strategy, while the latter
is directly working on the condensed system by implementing a node-defined coars-
ening strategy. The pairwise aggregation of C-AMG is performed according to the
nodewise strong coupling relationship described in the introductory paragraphs of
subsection 3.3, and we note that the multiple pairwise aggregation reduces in this
case to the double pairwise aggregation. Its prolongation operator follows plain ag-
gregation, i.e. is built similarly to the operator Qr in (3.3a). The rest of the method
shall be parametrized identically to U-AMG (same Krylov method, smoothers, cycle,
etc.).

Comparing overall performances of two iterative methods is a difficult exercise.
The convergence rate or number of iterations, alone, is not sufficient to establish a
fair comparison, because the actual time to solution also depends on the iteration
cost. Combining both criteria is usually made in terms of computational work or
CPU time. The plain aggregation prolongation matrices, which contain only ones,
are therefore applied to vectors without any theoretical flop, although their practical
application still consumes non-negligible CPU time. As a consequence, we find the
computational work not to be a good indicator in that case. As our U-AMG and
C-AMG implementations both benefit from identical software components and opti-
mizations, we adopt the CPU time (in sequential execution) as overall performance

14 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

criterion. Additionally, classical data used to assess convergence and cost of multigrid
methods shall also be given. In particular, we introduce the operator complexity C,,
and grid complexity Cyq defined by

These indicators give insight into the memory requirement and the computational
cost of multigrid solvers.

Given the chosen parameters, namely FCG Krylov method, Gauss-Seidel
smoothers, K(1,1)-cycle, etc., C-AMG corresponds almost exactly to the algorithm
implemented by AGMG in the version of [27]. One minor difference is that our al-
gorithm omits the special treatment of strongly diagonal-dominant rows, made to
manage Dirichlet boundary conditions enforced by penalization. Furthermore, the
current release of the software AGMG implements a quality control over the ag-
gregates described in [25], which may significantly improve its overall performance,
especially in anisotropic cases, where the “shape” of the coarse elements plays an
essential role in the convergence rate. Such a quality control preventing the formation
of “bad” aggregates is omitted in our C-AMG and U-AMG algorithms. Additionally,
differences in the implementation prevents a fair comparison, in terms of execution
time, with the fully optimized AGMG, for which better results can reasonably be
expected. The term implementation here refers to any factor, besides the algorithm
itself, that can influence the CPU time. Typically, it includes the software technolo-
gies employed (programming language, third-party libraries, compiling options, etc.)
as well as the efficiency of the coding itself. For those reasons, results obtained with
the current release of AGMG shall be included for information, more as a reference
to a state-of-the-art solver than as direct comparative data.

4.3. Numerical results.

4.3.1. Speed and robustness. Table 4.1 describes the test cases studied. Sim-
ple and complex geometries are used, discretized by Cartesian or unstructured simpli-
cial meshes. Tests with anisotropic and heterogeneous tensors are performed. They
all gather between 3 and 6 million face unknowns, ensuring at least 6 multigrid levels.
Although all but the heterogeneous one are 3D problems, we point out that the results
are consistent in 2D. The test results are displayed in Table 4.2. They include the
following data: operator complexity (Cop); grid complexity (Cgq); number of multigrid
levels (L); number of iterations to reach the convergence criterion (it); asymptotic
convergence rate (o), defined as the geometric mean of the residual convergence ratios
for the last five iterations; solve CPU time in seconds, excluding setup (¢). Figure 4.2
summarizes in a comparative chart the solve CPU times of the solvers. As explained
in subsection 4.2, this figure shall concentrate most of the comments in this section.

Let us first examine the dependency on the mesh. On a structured Cartesian mesh
(Cube-cart), we remark that U-AMG is significantly faster than C-AMG (—25%).
However, on the same geometry, this time with an unstructured tetrahedral mesh
(Cube-tet), we get equivalent solve time. Finally, on a tetrahedral mesh describing
a complex geometry (Complex-tet), the advantage of U-AMG fades out: U-AMG
becomes slightly slower than C-AMG (+6%). Next, on a heterogeneous problem with
large coefficient jump (Heterogle8), we see that both methods perform equivalently.
Finally, tackling anisotropic problems, U-AMG is considerably faster than C-AMG
on a Cartesian mesh (Cube-cart-aniso100), whereas they show comparable perfor-

AMG FOR HYBRID METHODS 15

Test case Geometry Mesh Tensor Elements Unknowns
Cube-cart Cube Cartesian Isotropic, 2,097,152 6,242,304
homogeneous
Cube-tet Cube Unstruct. Isotropic, 1,224,179 2,418,910
tetrahedral homogeneous
Complex-tet Figure 4.1a Unstruct. Isotropic, 3,319,309 6,532,291
tetrahedral homogeneous
Heterogle8 Square Unstruct. Isotropic, 2,431,032 3,644,496

triangular ~ heterogeneous
according to
Figure 4.1b
Cube-cart-aniso100 Cube Cartesian Anisotropic in 2,097,152 6,242,304

the x direction,
coefficient 100

Cube-tet-aniso20 Cube Unstruct. Anisotropic in 1,224,179 2,418,910
tetrahedral the x direction,
coefficient 20

Table 4.1: Description of the test cases.

VYY) o | o
Va4 o

(a) Geometry of test case Complex-tet: 3D (b) Heterogeneity pattern of test case
plate with cylindrical holes. Heterogle8: fori = 1,2, Ko, := xil, with
K/l/KJQ = 108.

Fig. 4.1: Supplementary figures for test cases Complex-tet (a) and Heterogle8 (b).

mance on an unstructured one (Cube-tet-aniso20). This set of tests demonstrates
that U-AMG is favored by Cartesian meshes. To justify this result, we begin by
recalling that the remaining unknowns of the condensed system are located on the
faces. Indeed, viewed as nodes located at the center of the faces, these DoF's are not
displayed, relative to each other, in a Cartesian way. See the node locations in Fig-
ure 4.3a: geometrically speaking, compared to the usual 2D Cartesian grid of element
width h, the nodes form a set of rows evenly spaced by h/2, and where every other row
has been shifted by h/2, giving the impression that the nodes are diagonally aligned.
A fortiori, the Cartesian structure is partially lost in the sense that only one Cartesian
direction is present in the stencil of each node (see solid red and dashed blue stencils
in Figure 4.3a). The problem for C-AMG becomes visible on an anisotropic setting,
where the anisotropy follows —for instance— the z-axis. Although one wants the
aggregation process to produce horizontal aggregates, the shapes actually formed are

16 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

I0U-AMG — n
801" |Inc-AMG B i
JoAGMG
= 60 e
@
=
=) 40 + B
[
®]
i H HH H W 7
0 " " H . Py H TQ S
S e 3 & Q D
e’Q‘Zy \OQK\) \Qﬁ*)‘) ‘0@ .\%0X NS
o O N & g o
Qox & o‘b’{q \06/‘@
o o

Fig. 4.2: Solver comparison in CPU time.

more diverse, and can even be vertical. Figure 4.3b illustrates the aggregates obtained
by the double pairwise aggregation in this case: while desired horizontal aggregates
are represented in solid red, one can also see vertical aggregates in dashed blue, as
well as “waves” in dotted green. Referring to the solid red stencil of Figure 4.3a, we
notice that nodes located on vertical grid lines have horizontal stencils, which allows
them to be aggregated horizontally and form red aggregates. Similarly, nodes located
on horizontal grid lines have inherently vertical stencils (in dashed blue). Specifically,
their stencils do not contain any node to aggregate with in the horizontal direction in
order to comply with the anisotropy. Nodes on the same grid line are indeed not part
of the stencil. Consequently, due to the values of coefficients and the game of aggrega-
tion priorities, other shapes are formed instead: vertical aggregates in dashed blue or,
better (because closer to horizontal), waves in dotted green. On the other hand, the
reconstruction of the actual elements performed by U-AMG yields entities with fully
Cartesian stencils, allowing the desired semi-coarsening; see Figure 4.3c. This explains
why U-AMG performs so much better than C-AMG on the Cube-cart-aniso100 test
case. One can also add that in this case, the larger the anisotropy ratio, the better
U-AMG performs compared to C-AMG. Whereas if the mesh is unstructured, they
both perform equivalently whatever the anisotropy ratio. Note that this advantage
is not limited to anisotropy directions that follow one of the axes; this profitable be-
haviour is also observed for orthotropic diffusion, namely, when the elements line up
in the anisotropy direction. They can be rectangles in 2D and hexahedra in 3D, but
also, more loosely, polytopes having two opposite faces orthogonal to the direction of
anisotropy. However, if the mesh is fully unstructured, aggregating nodes probably
offers more, or at least equivalent flexibility to follow the direction of anisotropy than
aggregating elements. Hence the results obtained on the Cube-tet-aniso20 test case,
where U-AMG loses its superiority.

An interpretation of the results of AGMG can be attempted in light of these
observations. As stated in subsection 4.2, AGMG implements a complex quality
control preventing bad aggregates from being formed, which we have not carried out
in C-AMG. In particular, we think that aggregates such as the blue ones in Figure 4.3b

AMG FOR HYBRID METHODS 17

Cube-cart Cop Cyqa L it 0 t

U-AMG 1.33 130 7 19 0.38 31.0
C-AMG 1.51 134 8 15 0.25 41.1
AGMG 2.03 164 9 24 19.7
Cube-tet Cop Cyqqa L it 0 t

U-AMG 1.78 122 6 31 0.51 234
C-AMG 151 134 7 27 049 24.1
AGMG 1.98 1.79 7 28 15.3
Complex-tet Cop Cyqa L it 0 t

U-AMG 1.76 122 7 31 0.51 83.8
C-AMG 1.51 134 8 27 0.46 79.1
AGMG 1.96 1.78 7 27 46.6
Heterogle8 Cop Cyqa L it 0 t

U-AMG 1.55 127 7 27 0.42 26.1
C-AMG 142 134 7 23 0.38 285
AGMG 1.52 140 7 20 18.8
Cube-cart-aniso100 C,, Cyq L it 0 t

U-AMG 1.32 133 7 10 0.15 13.8
C-AMG 1.95 133 8 30 0.54 815
AGMG 1.70 151 7 23 19.3
Cube-tet-aniso20 Cop Cgqa L it 0 t

U-AMG 1.82 123 6 77 0.80 625
C-AMG 1.60 143 8 75 0.78 62.3
AGMG 297 278 6 55 49.7

Table 4.2: Test results.

(namely, those orthogonal to the direction of anisotropy) do not occur in AGMG
thanks to that quality control, thus explaining the large performance gap between
C-AMG and AGMG on the Cube-cart-anisol00 test case. We can also suppose
that, when the problem is isotropic and the mesh unstructured, there are not many
bad aggregates to prevent. In that case, we can then admit that the difference in CPU
time between C-AMG and AGMG results from other aspects of the implementation.
Looking at the results of the test cases Cube-tet, Complex-tet and Heterogle8, we
can attribute 35 to 50% of the CPU time consumed by C-AMG to an implementation
overhead. As U-AMG benefits from the same implementation, this proportion gives
a hint on how to compare U-AMG to AGMG. Specifically, we remark that even
in spite of this overhead, U-AMG still performs better than AGMG on the test case
Cube-cart-aniso100. This indicates that the new algorithm can lead to an improved
efficiency for such cases.

4.3.2. Asymptotic behaviour. Figure 4.4 presents, for the test case Cube-tet
and for each solver, the number of iterations required to achieve convergence according
to the number of unknowns in the system. We remark that U-AMG scales the same

18 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

e o o o oo o o o o oo oo | oo

0 0 i 0. 0 .0 @ 00 0 8 &
e o o o o * o ¢ e e oo o | oo

¢ 0 0 0 =00 L SRR SRR SEEEEL SRR SR 4
e o o o o 1ot e 1ot o1 @ oo oo |oloe

TR RR
[) [] [] [] [] 1 &——0—1+—0—1—0 1 0 1 [2 2 L 2 L] *——e

"E::}“"'" pootitdoodod
[) [} | &—1T—0—1T——0—1]0 ; o ; [2 L @ g *—0

e o 0.9 6.6 6 & & &
[] [] [] o [} *—o—0—0 ® [2 @ @ . J *—0
(a) Face DoF's and stencils. (b) Node aggregation. (c) Element aggregation.

Fig. 4.3: (a) Location of the face DoFs on a Cartesian grid. (b) and (c): result of the
nodewise and elementwise double pairwise aggregations, according to an anisotropic
problem following the x-axis.

35 T T T T T
—o— U-AMG

w 30 | —=— C-AMG
3 —+— AGMG
S o5 |
—~
2
= 20 + |

15 Ll Lol Lol

10° 108 107
Number of unknowns

Fig. 4.4: Asymptotic behaviour with respect to the number of unknowns.

way as C-AMG, and slightly better than AGMG. This means that the new algorithm
offers equivalent robustness to the meshsize as the existing method, and shares its
algorithmic quasi-optimality.

4.3.3. Convergence/cost trade-off. We remark from Table 4.2 that the num-
ber of iterations required by U-AMG to reach convergence is generally higher than for
C-AMG. We would like to discuss in this section the link between convergence rate
and aggressiveness of coarsening.

The so-called multiple coarsening performed by U-AMG and C-AMG recursively
coarsens until a desired coarsening factor (relative to the number of unknowns, i.e.
the number of faces) is achieved. Note that for C-AMG, the number of required
steps of coarsening is always 2, whereras for U-AMG, it needs to be higher to build
the first levels, and decreases as the levels grow coarser. The fact that unknowns
are face unknowns, again, explains this phenomenon. Indeed, one step of coarsening
corresponds to aggregating elements pairwise and collapsing faces between aggregates.
Consequently, the efficient reduction of unknowns heavily relies on opportunities to
collapse faces. Now, starting from a simplicial mesh, i.e. polytopes with minimal
number of faces, the possibilities of collapsing faces is limited, and so is the size of
the subsequent face aggregates. The situation starts to improve as the levels grow

AMG FOR HYBRID METHODS 19

coarser because the elements then have a larger number of faces, which benefits the
face collapsing process.

The downside of enforcing a coarsening factor, thus triggering multiple steps of
coarsening, is that element aggregates can be large between two levels, which deterio-
rates the accuracy of the prolongation operator, and therefore that of the coarse grid
correction. On the other hand, by fixing the number of coarsening steps performed
between each level, we expect a better accuracy, but costlier iterations. Besides the
larger number of levels built due to the less aggressive coarsening, we emphasize that
between the highest levels, where the coarsening factor is low, the sparsity of the
operator is barely improved, which implies similar smoothing costs at those levels.
We compare the multigrid results of both strategies in Table 4.3. As expected, the
fixed double coarsening strategy induces a better convergence rate than the multiple
coarsening, with a number of iterations that is now lower than both C-AMG and
AGMG. However, the operator and grid complexities have increased. While the grid
complexity is still reasonable, in the sense that it is equivalent to that of AGMG, the
operator complexity is significantly larger than with the adaptive multiple coarsening
strategy, which reflects the high cost of smoothing and memory storage. All in all,
the solver converges in more CPU time, hence our choice of the multiple coarsening
method. Nonetheless, the double coarsening is yet not to be discarded. Finding ways
to sparsen the coarse operators in order to optimize the trade-off between convergence
rate and operator complexity is another research path.

Cube-tet Cop Cqa L it 0 t

U-AMG (multiple coarsening) 1.78 122 6 31 0.51 234
U-AMG (double coarsening) 288 1.72 8 25 046 255
C-AMG 151 134 7 27 049 241
AGMG 198 179 7 28 15.3

Table 4.3: Comparative solver results.

4.4. Alternative algorithms. In order to justify our algorithmic choices, we
present supplementary numerical results using alternative prolongation operators. In
particular, we want to compare the results of our method with those obtained us-
ing QF as a prolongation operator (cf. subsection 3.6). Indeed, since Qp is used to
build coarse levels in the setup phase, re-using it as the prolongation operator in the
multigrid iterations comes as a more straightforward solution than constructing a new
operator. Second, in order to evaluate the effect of the partial smoothing (cf. J in
(3.8)), we also consider the multigrid method without this enhancement. Namely, it
corresponds to using P}O) (cf. (3.6)) as a prolongation operator instead of Pp, and
to introduce the operator Q}momh as the counterpart of @, enhanced with the same
partial smoothing. Let us first consider the results obtained on the Cube-tet test
case, given in the top half of Table 4.4. While plain Qg provides a faster solver than
P}O), the addition of the partial smoothing makes the final Pr and Q5°°*! give equiv-
alent results. In particular, the addition of one Jacobi sweep significantly improves
the convergence rate of Pl(po), resulting in a non-negligible reduction of the CPU time,
whereas no notable improvement is observed with Qr. Although the results given
by Pr and Q57°°*® on isotropic test cases do not present much difference, the better

20 P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

robustness of Pr manifests itself on the anisotropic test case Cube-cart-aniso100.
Indeed, with or without additional smoothing, the method based on Pr gives signif-
icantly better results than that based on Q. This difference can be explained by
the simplicity of Q. Clearly, assigning the mere average value of the local boundary
faces to the DoF's on the local interior faces does not take the anisotropic coefficient
into account. On the other hand, the decondensation of the cell unknowns performed
by Pp through formula (3.7) successfully does so.

Cube-tet Cop Cyqa L it 0 t

Pr 178 122 6 31 051 234
Qmooth 179 122 6 30 051 234
Y 1.80 1.22 6 32 056 28.0
Qr 1.80 122 6 31 051 24.1
Cube-cart-aniso100 C,, Cq¢ L it 0 t

P 132 133 7 10 015 13.8
Qmooth 132 132 7 15 036 221
P 132 132 7 19 047 2838
Qr 131 130 7 27 056 39.3

Table 4.4: Results with alternative prolongation operators.

4.5. Setup cost. Figure 4.5 compares the setup costs, measured in CPU time,
of C-AMG and U-AMG. The alternative algorithms of the preceding section are also
included. Firstly, in Figure 4.5a, one can observe the large overhead of U-AMG’s
setup relative to C-AMG’s in the unstructured, isotropic case. As discussed in sub-
section 4.3.3, this is mainly due to the need for multiple coarsening steps to efficiently
reduce the coarsening ratio in the number of unknowns, while only two are performed
in C-AMG. Besides, the reconstruction of the algebraic mesh at each coarsening step
is inherently more involved in U-AMG than in C-AMG. The partial smoothing op-
eration included in the prolongation also has a significant setup cost (see U-AMG
(Pg) vs. U-AMG (PY), and U-AMG (Q5m°°th) vs. U-AMG (Qr)). In our imple-
mentation, the smoothing matrix J is explicitly assembled to construct the matrix
Pr (cf. (3.8)), which is then applied as a matrix-vector product during the solving
step. A more efficient implementation could be to dynamically smooth the data after
applying the prolongation operator P}O), without explicitly computing J. Secondly, in
Figure 4.5b, we observe that the gap between C-AMG and U-AMG has significantly
reduced. The reason is two-fold: first, the Cartesian mesh benefits the coarsening
process of U-AMG, which, in this case, is only applied twice between levels. In the
meantime, the anisotropy slightly slows down that of C-AMG, which creates more sin-
gleton aggregates. In this configuration, and without the partial smoothing, U-AMG
and C-AMG have comparable setup costs.

5. Conclusion. The solver developed in this work proposes an alternative AMG
approach for the solution of linear systems arising from lowest-order hybrid discretiza-
tions. Although not entirely “black-box” (because it requires parts of the uncondensed
system), it remains purely algebraic. Compared to the equivalent aggregation-based
AMG constructed in the standard way (i.e. by viewing system unknowns as nodes),

AMG FOR HYBRID METHODS 21

200

g 150 \g 200
F 100 R
= - 100
a 50 a8
O : o
G o) ™ © 3 G o) &N © D
€ @0 @ @ SE @D W g
CAR S RS CHR ST RS
N R ISR SN S
VY N
(a) Cube-tet (b) Cube-cart-aniso100

Fig. 4.5: CPU time of the setup phase by algorithm.

it shows similar performance in most cases, while being more robust with respect to
orthotropic anisotropy. Consequently, it can offer substantial added value for solving
problems comprising both isotropic and anisotropic regions, like, e.g., Darcy flows.
The solver, in this case, allies the flexibility of AMG to handle unstructured meshes
on isotropic regions while exploiting the special element shapes on anisotropic ones.
The cost of this improvement is mainly payed during the setup phase: (i) more mem-
ory storage may be required because of the use of the uncondensed matrix; but the
blocks needed by the setup may be kept in storage anyway, because they are also
needed to recover the cell unknowns after solving the condensed system. (ii) The
more involved coarsening strategy and more complex integrid operators also imply a
costlier setup.

Hybrid discretizations achieve their full potential in high order of approximation.
Yet, this solver only applies to the lowest order. Even for more classical, non-hybrid
discretizations, purely algebraic solvers for higher orders are still an open problem.
In aggregation-based methods, the difficulty lies in the transfer of high order com-
ponents from the coarse unknowns to the fine ones they aggregate. In this context,
the elementwise view of the aggregation process is certainly easier to work with and
geometrically interpret than a face aggregation view.

REFERENCES

[1] ArNoLD, D. N. AND BREzzl, F., Mized and nonconforming finite element methods : im-
plementation, postprocessing and error estimates, ESAIM: M2AN, 19 (1985), pp. 7-32,
https://doi.org/10.1051 /m2an/1985190100071.

[2] L. BEIRAO DA VEIGA, K. LIPNIKOV, AND G. MANZINI, The Mimetic Finite Difference Method
for Elliptic Problems, Springer International Publishing, Cham, 2014, https://doi.org/10.
1007/978-3-319-02663- 3.

[3] BONELLE, JEROME AND ERN, ALEXANDRE, Analysis of compatible discrete operator schemes
for elliptic problems on polyhedral meshes, ESAIM: M2AN, 48 (2014), pp. 553-581, https:
//doi.org/10.1051/m2an/2013104.

[4] D. BrAESS, Towards algebraic multigrid for elliptic problems of second order, Computing, 55
(1995), pp. 379-393, https://doi.org/10.1007/BF02238488.

[5] M. BREZINA, A. J. CLEARY, R. D. FaLcouT, V. E. HENSON, J. E. JoNES, T. A. MANTEUFFEL,
S. F. McCorMICK, AND J. W. RUGE, Algebraic Multigrid Based on Element Interpolation
(AMGe), SIAM Journal on Scientific Computing, 22 (2001), pp. 1570-1592, https://doi.
org/10.1137/51064827598344303.

[6] F. BrEzz1, J. DouGLAS, AND L. D. MARINI, Two families of mized finite elements for second

https://doi.org/10.1051/m2an/1985190100071
https://doi.org/10.1007/978-3-319-02663-3
https://doi.org/10.1007/978-3-319-02663-3
https://doi.org/10.1051/m2an/2013104
https://doi.org/10.1051/m2an/2013104
https://doi.org/10.1007/BF02238488
https://doi.org/10.1137/S1064827598344303
https://doi.org/10.1137/S1064827598344303

22

[15]

[16]

[19]

[20]

21]

22]

(23]

(24]

[25]

[26]

v

w

P. MATALON, D. A. DI PIETRO, F. HULSEMANN, P. MYCEK, U. RUDE

order elliptic problems, Numerische Mathematik, 47 (1985), pp. 217-235, https://doi.org/
10.1007/BF01389710.

. E. BuLcAakov, Multi-level iterative technique and aggregation concept with semi-analytical
preconditioning for solving boundary-value problems, Communications in Numerical Meth-
ods in Engineering, 9 (1993), pp. 649-657, https://doi.org/10.1002/cnm.1640090804.

. G. CIARLET, The Finite Element Method for Elliptic Problems., Elsevier, Burlington, 1978,

http://www.123library.org/book_details/?id=41072. OCLC: 476223224.

. COCKBURN, O. DuBoIs, J. GOPALAKRISHNAN, AND S. TAN, Multigrid for an HDG method,

IMA Journal of Numerical Analysis, 34 (2014), pp. 1386-1425.

. COCKBURN, J. GOPALAKRISHNAN, AND R. LAzZAROV, Unified Hybridization of Discontinuous

Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems,
SIAM Journal on Numerical Analysis, 47 (2009), pp. 1319-1365, https://doi.org/10.1137/
070706616.

. CuTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric matrices, in Proceed-

ings of the 1969 24th national conference, ACM ’69, New York, NY, USA, Aug. 1969, As-
sociation for Computing Machinery, pp. 157-172, https://doi.org/10.1145/800195.805928.

D. A. D1 PiETRO AND J. DrONIOU, The Hybrid High-Order method for polytopal meshes,

no. 19 in Modeling, Simulation and Application, Springer International Publishing, 2020,
https://doi.org/10.1007/978-3-030-37203- 3.

D. A. D1 PIETRO AND A. ERN, A hybrid high-order locking-free method for linear elasticity

on general meshes, Comput. Meth. Appl. Mech. Engrg., 283 (2015), pp. 1-21, https://doi.
org/10.1016/j.cma.2014.09.009.

D. A. D1 PIETRO, A. ERN, AND S. LEMAIRE, An arbitrary-order and compact-stencil discretiza-

tion of diffusion on general meshes based on local reconstruction operators, Comput. Meth.
Appl. Math., 14 (2014), pp. 461-472, https://doi.org/10.1515/cmam-2014-0018. Open ac-
cess (editor’s choice).

D. A. D1 PieTRO, F. HULSEMANN, P. MATALON, P. MYCEK, U. RUDE, AND D. Ruiz, An h-

multigrid method for Hybrid High-Order discretizations, STAM Journal on Scientific Com-
puting, (2021), https://doi.org/10.1137/20M1342471.

D. A. D1 PIETRO, F. HULSEMANN, P. MATALON, P. MYCEK, U. RUDE, AND D. Ruiz, Towards

—

S.

robust, fast solutions of elliptic equations on complex domains through HHO discretiza-
tions and non-nested multigrid methods, International Journal for Numerical Methods in
Engineering, (2021), https://doi.org/10.1002/nme.6803.

. DRONIOU AND R. EYMARD, A mized finite volume scheme for anisotropic diffusion problems

on any grid, Numerische Mathematik, 105 (2006), pp. 35-71, https://doi.org/10.1007/
s00211-006-0034-1.
Droniou, R. EYMARD, T. GALLOUET, AND R. HERBIN, A unified approach to mimetic
finite difference, hybrid finite volume and mized finite volume methods, Mathematical
Models and Methods in Applied Sciences, 20 (2010), pp. 265-295, https://doi.org/10.1142/
S0218202510004222.

. EymMARrRD, T. GALLOUET, AND R. HERBIN, Discretization of heterogeneous and anisotropic

diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization
and hybrid interfaces, IMA Journal of Numerical Analysis, 30 (2010), pp. 1009-1043, https:
//doi.org/10.1093 /imanum /drn084.

. D. FaLGgouT, An Introduction to Algebraic Multigrid, Computing in Science & Engineering,

8 (2006), pp. 24-33, https://doi.org/10.1109/MCSE.2006.105.

E. HENsON AND U. M. YANG, Boomeramg: A parallel algebraic multigrid solver and
preconditioner, Appl. Numer. Math., 41 (2002), p. 155-177, https://doi.org/10.1016/
S0168-9274(01)00115-5.

. KRONBICHLER AND W. WALL, A Performance Comparison of Continuous and Discontinu-
ous Galerkin Methods with Fast Multigrid Solvers, SIAM Journal on Scientific Computing,
40 (2018), pp. A3423-A3448, https://doi.org/10.1137/16M110455X.

MURALIKRISHNAN, T. BUl-THANH, AND J. N. SHADID, A multilevel approach for trace system
in HDG discretizations, Journal of Computational Physics, 407 (2020), p. 109240, https:
//doi.org/10.1016/j.jcp.2020.109240.

A. C. MURESAN AND Y. Notay, Analysis of Aggregation-Based Multigrid, SIAM Journal on

Scientific Computing, 30 (2008), pp. 1082-1103, https://doi.org/10.1137/060678397.

A. NApov AND Y. NoTAY, An Algebraic Multigrid Method with Guaranteed Convergence Rate,

SIAM Journal on Scientific Computing, 34 (2012), pp. A1079-A1109, https://doi.org/10.
1137/1008185009.

Y. Notay, Flezible Conjugate Gradients, SIAM Journal on Scientific Computing, 22 (2000),

pp. 1444-1460, https://doi.org/10.1137/S1064827599362314.

https://doi.org/10.1007/BF01389710
https://doi.org/10.1007/BF01389710
https://doi.org/10.1002/cnm.1640090804
http://www.123library.org/book_details/?id=41072
https://doi.org/10.1137/070706616
https://doi.org/10.1137/070706616
https://doi.org/10.1145/800195.805928
https://doi.org/10.1007/978-3-030-37203-3
https://doi.org/10.1016/j.cma.2014.09.009
https://doi.org/10.1016/j.cma.2014.09.009
https://doi.org/10.1515/cmam-2014-0018
https://doi.org/10.1137/20M1342471
https://doi.org/10.1002/nme.6803
https://doi.org/10.1007/s00211-006-0034-1
https://doi.org/10.1007/s00211-006-0034-1
https://doi.org/10.1142/S0218202510004222
https://doi.org/10.1142/S0218202510004222
https://doi.org/10.1093/imanum/drn084
https://doi.org/10.1093/imanum/drn084
https://doi.org/10.1109/MCSE.2006.105
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1137/16M110455X
https://doi.org/10.1016/j.jcp.2020.109240
https://doi.org/10.1016/j.jcp.2020.109240
https://doi.org/10.1137/060678397
https://doi.org/10.1137/100818509
https://doi.org/10.1137/100818509
https://doi.org/10.1137/S1064827599362314

AMG FOR HYBRID METHODS 23

Y. NoTAy, An aggregation-based algebraic multigrid method, Electronic Transactions on Nu-
merical Analysis, 37 (2010), pp. 123-146.

Y. NOTAY AND A. NAPOV, A massively parallel solver for discrete Poisson-like problems, Jour-
nal of Computational Physics, 281 (2015), pp. 237-250, https://doi.org/10.1016/j.jcp.2014.
10.043.

L. N. OLsoN AND J. B. SCHRODER, Smoothed aggregation multigrid solvers for high-order
discontinuous Galerkin methods for elliptic problems, Journal of Computational Physics,
230 (2011), pp. 6959-6976.

P. A. RAVIART AND J. M. THOMAS, A mized finite element method for 2-nd order elliptic prob-
lems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes,
eds., Berlin, Heidelberg, 1977, Springer Berlin Heidelberg, pp. 292-315.

J. RUGE AND K. STUBEN, Efficient solution of finite difference and finite element equations by
algebraic multigrid (AMG), GMD, 1984.

J. W. RUGE AND K. STUBEN, 4. Algebraic Multigrid, in Multigrid Methods, Frontiers in Applied
Mathematics, Society for Industrial and Applied Mathematics, Jan. 1987, pp. 73-130,
https://doi.org/10.1137/1.9781611971057.ch4.

K. STUBEN, A review of algebraic multigrid, in Numerical Analysis: Historical Developments
in the 20th Century, C. Brezinski and L. Wuytack, eds., Elsevier, Amsterdam, Jan. 2001,
pp. 331-359, https://doi.org/10.1016/B9I78-0-444-50617-7.50015-X.

S. J. THOMAS, S. ANANTHAN, S. YELLAPANTULA, J. J. HU, M. LAWSON, AND M. A. SPRAGUE,
A Comparison of Classical and Aggregation-Based Algebraic Multigrid Preconditioners for
High-Fidelity Simulation of Wind Turbine Incompressible Flows, SIAM Journal on Scien-
tific Computing, 41 (2019), pp. S196-5219, https://doi.org/10.1137/18M1179018. Pub-
lisher: Society for Industrial and Applied Mathematics.

X. Tu AND B. WANG, A BDDC algorithm for second-order elliptic problems with hybridizable
discontinuous Galerkin discretizations, Electronic Transactions on Numerical Analysis, 45
(2016).

P. VANEK, Acceleration of convergence of a two-level algorithm by smoothing transfer operators,
Applications of Mathematics, 37 (1992), pp. 265-274, https://doi.org/10.21136/AM.1992.
104509.

P. VANEK, Fast multigrid solver, Applications of Mathematics, 40 (1995), pp. 1-20, https:
//doi.org/10.21136/AM.1995.134274.

R. WIENANDS AND C. W. OOSTERLEE, On Three-Grid Fourier Analysis for Multigrid,
SIAM Journal on Scientific Computing, 23 (2001), pp. 651-671, https://doi.org/10.1137/
S5106482750037367X.

T. WILDEY, S. MURALIKRISHNAN, AND T. BUI-THANH, Unified Geometric Multigrid Algorithm
for Hybridized High-Order Finite Element Methods, STAM Journal on Scientific Comput-
ing, 41 (2019), pp. S172-S195, https://doi.org/10.1137/18M1193505.

O. C. ZIENKIEWICZ, Displacement and equilibrium models in the finite element method by
B. Fraeijs de Veubeke, Chapter 9, Pages 145-197 of Stress Analysis, Edited by O. C.
Zienkiewicz and G. S. Holister, Published by John Wiley & Sons, 1965, International
Journal for Numerical Methods in Engineering, 52 (2001), pp. 287-342, https://doi.org/
10.1002/nme.339.

https://doi.org/10.1016/j.jcp.2014.10.043
https://doi.org/10.1016/j.jcp.2014.10.043
https://doi.org/10.1137/1.9781611971057.ch4
https://doi.org/10.1016/B978-0-444-50617-7.50015-X
https://doi.org/10.1137/18M1179018
https://doi.org/10.21136/AM.1992.104509
https://doi.org/10.21136/AM.1992.104509
https://doi.org/10.21136/AM.1995.134274
https://doi.org/10.21136/AM.1995.134274
https://doi.org/10.1137/S106482750037367X
https://doi.org/10.1137/S106482750037367X
https://doi.org/10.1137/18M1193505
https://doi.org/10.1002/nme.339
https://doi.org/10.1002/nme.339

	Introduction
	Assumptions
	Algebraic multigrid
	Construction of the algebraic mesh
	Mesh coarsening by element aggregation and face collapsing
	Pairwise aggregation by strong negative coupling
	Cell- and face-defined auxiliary prolongation operators
	Multilevel hierarchy
	Multigrid prolongation operator
	Multigrid method

	Numerical tests
	Experimental setup
	Methodology
	Numerical results
	Speed and robustness
	Asymptotic behaviour
	Convergence/cost trade-off

	Alternative algorithms
	Setup cost

	Conclusion
	References

