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Spatial self-organization of dryland vegetation constitutes one of the
most promising indicators for an ecosystem’s proximity to desertifi-
cation. This insight is based on studies of reaction-diffusion mod-
els that reproduce visual characteristics of vegetation patterns ob-
served on aerial photographs. However, until now the development
of reliable early warning systems has been hampered by the lack
of more in-depth comparisons between model predictions and real
ecosystem patterns. In this paper, we combined topographical data,
(remotely sensed) optical data and in-situ biomass measurements
from two sites in Somalia to generate a multi-level description of
dryland vegetation patterns. We performed an in-depth comparison
between these observed vegetation pattern characteristics and pre-
dictions made by the extended-Klausmeier model for dryland vegeta-
tion patterning. Consistent with model predictions, we found that for
a given topography, there is multi-stability of ecosystem states with
different pattern wavenumbers. Furthermore, observations corrob-
orated model predictions regarding the relationships between pat-
tern wavenumber, total biomass and maximum biomass. In contrast,
model predictions regarding the role of slope angles were not corrob-
orated by the empirical data, suggesting that inclusion of small-scale
topographical heterogeneity is a promising avenue for future model
development. Our findings suggest that patterned dryland ecosys-
tems may be more resilient to environmental change than previously
anticipated, but this enhanced resilience crucially depends on the
adaptive capacity of vegetation patterns.

vegetation patterns | spatial self-organization | Busse balloon | arid
ecosystems | ecosystem resilience

A key aim of ecological modeling is to generate an under-
standing of the mechanisms driving observed patterns (1).

A significant challenge in this pursuit, however, is that mul-
tiple alternative processes may generate the same emergent
outcome (1–4), a phenomenon also referred to as equifinal-
ity (5, 6). As a result, modeling efforts may reveal that a
particular ecological pattern can be explained by a suite of
alternative driver mechanisms. Therefore, a match between a
pattern simulated with a mechanistic model and a pattern ob-
served in a real ecosystem may only constitute limited support
for the modeled mechanism being its true driver (2, 5, 6).

Pattern-oriented modeling (2, 7) aims to address the chal-
lenge of equifinality of alternative model formulations. In this
approach, model assessment is based on the degree to which
the output corresponds to observed patterns. A distinction
is made between strong and weak patterns. Strong patterns
are the dominant emergent features a model should reproduce,
such as the cycles within predator and prey population sizes,

or a spatial distribution of vegetation patches (6, 7). Weak
patterns are typically qualitative relationships, such as the
existence of a population over a specific timespan, or a posi-
tive association between one state variable and another (6, 7).
Rather than comparing model output to a single strong pat-
tern, additional comparisons to multiple weak patterns, at
different scales or levels of organization, provide more power
to model validation and selection procedures (2, 6, 7).

A specific type of ecological patterns that has received
considerable attention is regular spatial patterning of sessile
biota (8). On flat terrain, the reported patterns are gaps,
labyrinths, and spots (9, 10). On sloping grounds banded pat-
terns form, their regular spacing enabling a description of the
characteristic band-inter-band period and wavenumber. Evi-
dence is accumulating that these patterns are self-organized,
meaning that the larger-scale patterning is driven by inter-
nal ecosystem processes operating at smaller scales (8, 11).
The crucial component in this self-organization process is a
long-range negative effect of biota on itself, either directly or
through modulation of resource availability. In cases where
this long-range negative feedback is coupled to a locally posi-
tive feedback, the mechanism creating pattern formation may
be linked to the existence of alternative stable states, as well
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as the possibility of so-called catastrophic shifts between these
states (11). This phenomenon has been most prominently
studied in (semi-)arid ecosystems, where decreases in resource
availability or increases in grazing pressure may trigger catas-
trophic shifts from vegetated states to desert states without
vegetation (12–14). In this context, the formation of regu-
lar spatial vegetation patterns may indicate proximity to a
threshold of catastrophic change (11).

There is a long tradition in the scientific literature of ex-
plaining regular spatial patterning with reaction-diffusion
models (15–17). In line with this work, a variety of
reaction-diffusion models has been applied to investigate self-
organization in (semi-)arid ecosystems (9, 10, 18, 19). Despite
the broad support for the findings obtained with these models
and their implications for (semi-)arid ecosystem functioning,
comparisons of model results with empirical data have mainly
been limited to comparison of a single strong pattern, namely
the spatial distribution of vegetation patches. Until now, the
few studies considering additional weak patterns have shown
that reaction-diffusion model simulations successfully repro-
duce associations between pattern shape and aridity, and as-
sociations between pattern shape and slope of the terrain (20).
In addition, models that account for sloped terrain also seem
to capture the observed migration of the location of banded
patterns in uphill direction (21). Despite these promising
agreements between model results and empirical data, a more
systematic comparison between model results and data, based
on multiple patterns at different levels of organization (2, 7),
was still lacking.

Advanced model analyses that have recently been applied
to ecological models have yielded a number of findings which,
when confronted with high quality remote sensing products,
makes a more systematic comparison possible. More specifi-
cally, recent theoretical studies have shown that for a given
environmental condition (i.e. a given parameter combination),
not a single ecosystem state, but multiple ecosystem states
with patterns spanning a range of wavenumbers may be stable,
hence observable (22–24). The range of observable patterns,
across a range of environmental conditions forms a bounded re-
gion in (parameter, wavenumber)-space. This region is referred
to as the Busse balloon, after F.H. Busse, who studied similar
phenomena in the field of fluid dynamics (25). Although the
patterned ecosystem states in the Busse balloon are defined by
their wavenumber, other properties, like migration speed and
spatially averaged biomass, have also been studied (26) and
are suggested to depend on the position of a system within
the Busse balloon. These theoretical findings provide multiple
additional weak patterns that can be compared to empirical
data, providing opportunities for more powerful tests of the
validity of the developed reaction-diffusion models to describe
dryland ecosystems.

The aim of this study was to confront theoretical findings
regarding pattern wavenumber, biomass and migration speed
with the same pattern properties derived from aerial imagery
and remote sensing products of banded vegetation patterns
in the Horn of Africa, a location with prominent undisturbed
presence of vegetation pattern formation. Hence, a multi-
level comparison between theory and data in line with the
pattern-oriented modeling approach was conducted (2, 6, 7).

1. Theory

A. Model description. Multiple reaction-diffusion models of
dryland vegetation dynamics include a mechanism in which
vegetation acts as an ecosystem engineer, locally increasing
the influx of available water (9, 10, 18, 19). Despite the differ-
ent nuances between these models, a number of predictions
can be robustly derived from these frameworks. One of the
simplest of these ecosystem models – and the archetype con-
sidered in this article – is an extended version of the dryland
ecosystem model by Klausmeier (18, 22), which we will refer
to as the extended-Klausmeier model. This model describes
the interaction between water, w, and plant biomass, n. A
non-dimensional version of this model is used for the purposes
of this article. A dimensional version of the model and the
physical meaning of its parameters can be found in SI 1. The
model is given by the following equations{

∂w
∂t

= e ∂2w
∂x2 + ∂(vw)

∂x
+ a− w − wn2,

∂n
∂t

= ∂2n
∂x2 −mn+ wn2.

[1.1]

The reaction terms model the change in water as a combined
effect of rainfall (+a), evaporation (−w) and uptake by plants
(−wn2). The change of plant biomass comes from mortality
(−mn) and plant growth (+wn2). Dispersion by plants is
modeled as diffusion and the movement of water as a combined
effect of diffusion and advection. The latter is due to gradients
in the terrain, which are proportional to the slope parameter
v.

B. Theoretical outcomes.

B.1. Multi-stability of patterned states. Reaction-advection-
diffusion equations in general – and the extended-Klausmeier
model in particular – exhibit a vast variety of spatial
patterns (27, 28). However, not all feasible patterns are
stable solutions of these models. Which patterned states
are stable (hence, observable) depends on the combina-
tion of the model parameters. For regular patterns, the
concept of the Busse balloon can help to illustrate this
dependency (25). A Busse balloon is a model dependent
shape in the (parameter,wavenumber)-space that indicates all
combinations of parameter and wavenumber that represent
stable solutions of the model. If, for a given set of model
parameters, a wavenumber k lies within the Busse balloon,
then regular patterns with wavenumber k are observable. So,
in measurements, all (non-transient) patterns are expected to
be present in the Busse balloon.

Typically, the Busse balloon is a high-dimensional struc-
ture due to the number of parameters in a system. Therefore,
usually, only one parameter is varied when a Busse balloon is
visualized. This produces a 2D-slice of the full Busse balloon.
In the context of desertification research, the straightforward
choice would be to vary the rainfall (23). However, mean
annual rainfall was relatively constant in our study sites dur-
ing the observation period considered. Instead, topography
(i.e. the slope gradient) comprised the main source of envi-
ronmental variation within our study areas. Thus, relevant
theoretical predictions for our study sites can be generated
by varying the slope parameter v (while keeping rainfall con-
stant). Here, we present two of such 2D-Busse balloon slices
for the extended-Klausmeier model (Figure 1), which were
constructed by tracking the boundary of the Busse balloon
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(a) a = 3.0, m = 0.45 and e = 500.
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(b) a = 2.5, m = 0.45 and e = 500.

Fig. 1. (slope,wavenumber )-Busse balloon slices for the extended-Klausmeier model
for two different values of the rainfall parameter a. A banded pattern solution to
the extended-Klausmeier model with slope v and wavenumber k is stable if the
(v, k)-combination lies inside the Busse balloon. This indicates that a wide spread of
(v, k)-combinations yields stable banded patterns. The latter are therefore expected
for a broad range of wavenumbers – and not for specific (v, k)-choices only. The
shape of a Busse balloon can change between models and between parameter values.
This is illustrated in the figures which were computed for different a-values.

using numerical continuation methods (23, 24, 29, 30). The
shaded region in these figures indicates the combinations of
pattern wavenumber k and slope v for which stable solutions
exist. Thus, a specific slope v does not lead to one specific
pattern. In fact, the model shows multi-stability; a given slope
v can sustain a continuous range of wavenumbers k. A similar
spread in wavenumbers is expected in the real system.

Though the Busse balloon indicates which patterns might
be observed, it does not specify the likelihood of finding a
certain pattern with specific wavenumber k within this range.
Recent numerical studies suggest that the (entire) history of en-
vironmental changes is relevant in the selection process (26, 31).
To understand these hysteretic dynamics, it is vital to acknowl-
edge that model patterns do not change their wavenumber
unless they have to (23, 30): if an environmental change forces
the system outside of the Busse balloon, the current pattern
has become unstable, and will need to adapt into a new pat-
tern that is again stable – thus part of the Busse balloon.
During this (fast) adaption, only part of the vegetation bands
are lost, while the remaining bands increases in size; these
adaptions thus have limited effect on the total biomass in
the system (23). Hence multiple wavenumber adaptations are
expected to occur after each other that will, gradually, lead to
a complete desertification of the system (23). Precisely which
wavenumber k gets selected at each of these destabilizations
is difficult to predict, though, for low noise levels, a prefer-
ence for an approximate period doubling is expected, i.e. the
wavenumber gets halved (23).

Numerical simulations help to get an insight in the kind of
wavenumber distribution one ought to expect in observations.
To illustrate the typical spread in wavenumber, a total of 200
simulations on a flat terrain (v = 0) were run, where the
rainfall parameter was slowly decreased from a = 3 to a = 0.5.
The initial configurations for these runs were chosen randomly,
but close to the equilibrium state of uniform biomass before
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Fig. 2. Histogram demonstrating a spread in wavenumber (k) at the end of 200
simulations of the extended-Klausmeier model on a flat terrain (v = 0) with model
parameters e = 500 and m = 0.45. These simulations had a random initial
configuration close to a stable fully vegetated state. A climate change was simulated
by decreasing the rainfall parameter a linearly from 3 to 0.5 over the course of
105 time unit, causing several pattern selections and corresponding changes in
wavenumber.

the onset of patterns (between 90% and 110% of the uniform
vegetated equilibrium state). At the end of each simulation
– after several pattern selections – the wavenumber of the
remaining pattern was measured. This gives a snapshot of the
wavenumber distribution, similar to the snapshots acquired
from observations. Note that a similar experiment was done
before, albeit on a much smaller scale (30). The histogram of
the resulting wavenumbers is shown in Figure 2. It shows a
substantial spread, which goes from a wavenumber of 0.08 to
0.16 (a difference of 100%).

B.2. Biomass & migration speed. Besides a wavenumber, each
ecosystem state also has a specific biomass and a specific
pattern migration speed. The biomass of regular patterned
states has been studied using numerical simulations (23) and
more general formulas have been derived for small-wavenumber
patterns (32). Both indicate that the biomass (per unit area)
is positively correlated with both the wavenumber k of the
pattern and the slope parameter v (23); see also Figure 3a.
This has a physical interpretation: both steeper slopes and
higher wavenumbers (lower wavelengths) reduce the time it
takes for water to reach vegetation bands, and thereby reduce
water losses during the transportation process. As a result, the
vegetation will be able to harvest water from the uphill inter-
bands more effectively. The biomass per wavelength is also of
interest. The same studies indicate that the band biomass (per
wavelength) is increased when the wavenumber k is decreased
and when the slope v is increased. Hence, vegetation bands
are expected to have more biomass when other vegetation is
farther away, because of the larger (upslope) inter-band area
water can be collected from.

The theoretical predictions for migration speed (of a pat-
tern’s location) are a bit more subtle. For terrains with a con-
stant slope, numerical simulations have been done (33, 34) and
general formulas have been determined for small-wavenumber
patterns (32, 35). In these idealized limit cases, migration
speed is negatively correlated with wavenumber k and posi-
tively correlated with slope v. However, beyond these ideal-
izations, numerical computations show the contour lines are
slightly humped, see Figure 3b. This indicates a (slightly)
negative correlation between speed and slope v for large slopes.

C. Testable predictions. The theoretical findings in this sec-
tion lead to predictions that can be confronted with the field
data. First of all, the model possesses a Busse balloon, which
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(a) Total biomass contours.
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(b) Migration speed contours

Fig. 3. (slope,wavenumber )-Busse balloon slices for the extended Klausmeier model
that include contours for the total biomass (per area) B (a) and the migration speed
c (b). Biomass (per area) is positively correlated with both wavenumber k and
slope v; the migration speed is negatively correlated with the wavenumber k. Model
parameters used: a = 3, m = 0.45, e = 500.

should lead to a wide spread in observable pattern wavenum-
bers (Figures 1 and 2). Moreover, biomass and migration
speed are affected by pattern wavenumber. The biomass (per
unit area) is expected to be positively correlated with both
the wavenumber and the slope of the terrain (Figure 3a).
Migration speed is expected to decrease as a function of pat-
tern wavenumber; the effect of slope on the migration speed
is context-specific, as it can be either positive or negative
depending on the specific topographical and environmental
conditions (Figure 3b).

2. Data acquisition & processing

For this comparison study, two sites were selected in Somalia.
The first one (8◦0′14′′ to 8◦15′11′′N; 47◦11′54′′ to 47◦31′4′′E)
is located in the Haud pastoral region, which will be referred
to as the ‘Haud’ site. The other site (9◦18′49′′ to 9◦34′34′′N;
48◦8′15′′ to 48◦43′15′′E) is located in the Sool-Plateau pastoral
area and will be called the ‘Sool’ site. Both sites mainly exhibit
banded vegetation and have ground slopes ranging from zero
to one percent. Vegetation mainly constitutes of perennial
grasses, which typically have an average life time of one to
seven years (36–38). A more detailed description of these sites
can be found in SI 2; a map with the location of these sites
along with the mean annual rainfall in these areas is shown in
Figure S1.

To study the pattern properties in these study areas, each
site was divided into square windows (of size 750m× 750m for
the Haud site and of size 1010m × 1010m for the Sool site).
As has been done in previous studies, the type of pattern (e.g.
bare soil, banded vegetation), along with its wavenumber, was
determined using spectral analysis (20, 39–41). Only those
windows were kept that exhibited banded vegetation with a
wavenumber that could be determined with enough certainty
(i.e. between 0.4 and 2.5 cycles per 100m). Moreover, windows
with a too large curvature were ignored, because the theoretical
predictions only apply to terrains with a constant slope. To
obtain data on the migration speed of the banded vegetation,
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(a) Frequency distribution for the Haud site
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(b) Frequency distribution for the Sool site

Fig. 4. Frequency distribution of banded patterns as function of ground slope and
wavenumber (number of cycles per 100m) for the Haud site (a) and Sool site (b). The
distribution on the right indicates the relative frequency of banded vegetation with
corresponding wavenumber. The color gradient indicates the amount of windows (N ).

a cross-spectral analysis was performed, along the lines of
previous studies (21, 42, 43). A more in-depth explanation of
these processing steps can be found in SI 4.

The topographical data used in this article were derived
from the ALOS World 3D (AW3D) digital raster elevation
model; biomass data for the Haud site have been retrieved
from a recently made map on (above-ground) biomass of
African savannahs and woodlands (44) (no reliable data for
the Sool site was available). Finally, optical data were acquired
from various sources: three multispectral WorldView-2 images
were mosaicked and used as reference for the Haud site; a
panchromatic Ikonos ‘Geo’ Imagery was acquired for the same
site. For the Sool site, six WorldView-2 images were used and
a panchromatic SPOT4 image preprocessed to level 2A was
used as reference layer (©Cnes 2004 – Spot Image distribution).
Moreover, two 7µm digitized panchromatic declassified Corona
spy satellite image, national intelligence reconnaissance system,
available from the USGS were obtained for the Haud and the
Sool sites. More information about these data sets can be
found in SI 3.

3. Results

Empirical Busse balloon. The most prominent pattern prop-
erty studied in this article is the pattern wavenumber, which
was derived from aerial imagery. The resulting distribution of
wavenumbers is reported in Figure 4. These figures show the
number of windows that have a particular slope-wavenumber
combination. Also given is the relative frequency that indi-
cates the spread of wavenumbers across all windows. This
data displays banded vegetation with wavenumbers roughly
between 0.4 and 2.0 cycles per 100m. Importantly, this large
spread is present for all of the ground slope values which had
a representative sample size and could not be explained by

4 |

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

Bastiaansen et al.



DRAFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.4

0.8

1.2

1.6

2.0

2.4

ground slope (%)

cy
cl
es

1
00

m
−
1

10

20

30

40

50

t
h
a
−
1

(a) Biomass per unit area (Haud site)
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Fig. 5. Biomass distribution per area (a) and per period (b) as a function of ground
slope and wavenumber (cycles per 100m) for the Haud site. The color gradient
indicates the amount of biomass measured for a particular (slope, wavenumber)-
combination.

present heterogeneities in elevation or rainfall. This shows
that for a given environmental condition not a single wavenum-
ber pattern, but rather multiple patterns spanning a sizable
range of wavenumbers are observable. Additionally, measure-
ments used to determine the migration speed show barely any
changes in wavenumber over the scope of 39 years (consistent
with (43)), indicating that these patterns are in fact quite
stable. Therefore, the observations are in agreement with the
existence of a Busse balloon in the real ecosystem.

Biomass and migration speed. The processed biomass data
for the Haud site is shown in Figure 5. In Figure 5a the rela-
tion between biomass per area (in t ha−1) is plotted against
the ground slope and the wavenumber. From the same data
the biomass per period is computed – which is biomass per
area divided by the window’s wavenumber. The resulting plot
is given in Figure 5b. The measurements of biomass show
agreement with theoretical predictions of model studies; in
both, the total biomass increases (all slopes: r = 0.80, n = 714,
P < 0.001; linear regression) and the biomass per period de-
creases when the wavenumber increases (all slopes: r = −0.30,
n = 714, P < 0.001; linear regression). However, a more
in-depth inspection reveals disagreements. For one, the effect
of ground slope is not strongly present in the data, though its
effect is clear in the extended-Klausmeier model (Figure 3a).
Additionally, the more refined details of wavenumber depen-
dence also differ (it is concave in the theoretical model and
convex in the real-life data).

The migration speed is plotted in Figure 6 for both the
Haud and the Sool sites. These measurements show an increase
in speed when the wavenumber decreases (Haud: r = −0.65,
n = 104, P < 0.001; Sool: r = −0.67, n = 79, P < 0.001;
linear regression), corroborating theoretical predictions (see
Figure 3b).

4. Discussion

Leading ecological frameworks emphasize the potential role of
regular spatial vegetation patterns as indicators for proximity
to catastrophic ecosystem shifts (11, 45). In these frameworks,
however, mono-stability of patterns is implicitly assumed, sug-
gesting that for a given environmental condition there is only
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Fig. 6. Observed (average) migration speed of vegetation bands in the Haud (a)
and the Sool (b) sites over the course of 39 years as a function of ground slope and
wavenumber (cycles per 100m). The colour gradient indicates the migration speed
for a particular (slope,wavenumber )-combination. The sign indicates the direction of
migration relative to the slope, with positive and negative values indicating upslope
and downslope migration respectively.

one stable vegetated state, i.e. a single pattern with a specific
wavelength (11, 45). Subsequent theoretical insights have chal-
lenged this view, highlighting the possibility of multi-stability
of patterns, bounded by the so-called Busse balloon. In this
study, we provide the first empirical evidence corroborating
the existence of a Busse balloon for stable vegetation patterns
in dryland ecosystems. Specifically, our two study sites in
Somalia revealed the sustained (i.e. over a 39-year period)
co-occurrence of banded vegetation with wavenumbers varying
over a substantial range. Our findings have major implications
for the way in which vegetation patterns indicate ecosystem
resilience and mediate ecosystem responses to environmental
change.

Specifically, the existence of a Busse balloon implies that
an ecosystem’s resilience can no longer merely be defined by
the magnitude of environmental change it can cope with (46).
In these systems there is not one tipping point, but a cascade
of destabilizations – indicated by the boundary of the Busse
balloon. When environmental changes push a patterned ecosys-
tem beyond the boundary of the Busse balloon, a wavelength
adaptation occurs, and typically part of the vegetation patches
are lost, while the remaining patches grow in size. The extent
of these adaptations depends on the rate of environmental
change (23, 26, 47, 48). Moreover, human activities or natural
variations can cause local disturbances, diminishing the regu-
larity of ecosystem patterns. The recovery process from such
disturbances may involve a rearrangement of patches in the
landscape (23, 32). Again, the extent to which such recovery is
possible depends on the rate of environmental change that the
ecosystem is exposed to (47). Hence, the existence of a Busse
balloon of stable dryland vegetation patterns suggests that
adaptability of patches to changing environmental conditions
provides a more comprehensive indicator for the ecosystem’s
resilience than the shape of the pattern itself, as suggested
in current leading frameworks (11, 45). Future studies in
this direction should provide a more thorough understanding
of what determines the spatial rearrangement of vegetation
patches resulting from disturbances, environmental changes
and spatial heterogeneities in the landscape.

The pattern-oriented modeling approach was mainly devel-
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oped to aid model development and design, but the approach
can also be used to evaluate the success of existing models to
explain multiple strong and weak patterns observed (7). This
so-called ‘reverse pattern-oriented modeling’ approach (7)
was used in the current study. Such systematic comparisons
between model predictions and empirical data can be part of
an iterative process toward further model improvement (5, 6).
In this context, it is interesting to note the discrepancy that we
observed between model predictions and field measurements of
the influence of the ground slope on pattern migration speeds.
Because topography critically changes the distribution of wa-
ter within ecosystems, it also alters the migration speed of
patterns. Therefore, future model developments should relax
the assumption of uniform slopes, and examine the effects of
more complex topographies for dryland ecosystem dynamics.

Since their appearance on aerial photographs in the
1950s (49), the origin of regular vegetation patterns in dryland
ecosystems has been a topic of fascination within the scientific
community. The study of these patterns through reaction-
diffusion modeling subsequently highlighted the importance of
these patterns for the functioning of dryland ecosystems, and

their response to environmental change. The recent increase
in the availability of optical and topographical data provides
unprecedented opportunities to confront model predictions
with empirical data (6, 31). In this study, we combined these
data sources with in-situ measurements of biomass, enabling
the comparison of multiple pattern characteristics of Soma-
lia drylands with predictions derived from reaction-diffusion
modeling. The empirical evidence corroborates theories of
multi-stability of patterned vegetation states, improving our
understanding of these systems’ resilience to environmental
change. In addition, our results call for more detailed inves-
tigations of the role of small-scale topographic variability in
pattern formation and migration, to be undertaken in future
studies.
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