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LOGARITHMIC SHEAVES OF COMPLETE INTERSECTIONS

DANIELE FAENZI, MARCOS JARDIM, AND JEAN VALLES

ABSTRACT. We define logarithmic tangent sheaves associated with complete
intersections in connection with Jacobian syzygies and distributions. We anal-
yse the notions of local freeness, freeness and stability of these sheaves.

We carry out a complete study of logarithmic sheaves associated with pen-
cils of quadrics and compute their projective dimension from the classical
invariants such as the Segre symbol and new invariants (splitting type and
degree vector) designed for the classification of irregular pencils. This leads to
a complete classification of free (equivalently, locally free) pencils of quadrics.

Finally we produce examples of locally free, non free pencils of surfaces
in P3 of arbitrary degree k > 3, answering (in the negative) a question of
Calvo-Andrade, Cerveau, Giraldo and Lins Neto about codimension foliations
on P3.
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1. INTRODUCTION

Let x be an algebraically closed field of characteristic zero and consider a regular
sequence o = (f1,..., fr) of homogeneous polynomials f; € R = k[xo,...,x,] of
degree d; + 1, for some 0 < dy < --- <dj and k <n. Let I, := (f1,..., fx) denote
the ideal generated by the sequence o, and V(o) be the associated scheme-theoretic
complete intersection in P™. Consider the Jacobian matrix of ¢, namely:

Vi
do 1= :
Vfk
This can be viewed as a morphism of sheaves:
Jo: ORI — ®F, Opn (d;).
The main focus of this paper concerns the sheaf:
T :=ker(ds).

We call T, the logarithmic tangent sheaf associated to o. This nomenclature for
T, is motivated by the following observation. Set X = V(o) and recall that the
Zariski tangent sheaf TX and the sheaf Ty supported at Sing(X) fit into:

k
0—TX — TP"|x - P Ox(d; +1) > Tx —0.
i=1
The sheaf Tpn(X) of vector fields on P™ tangent to X is the kernel of the natural
morphism TP — (—szl Ox(d; + 1), see [10, Chapter 3]. It turns out that T, (1) is
a subsheaf of rank n — k + 1 of Tpn(X ). More precisely (see Lemma 24)), writing
V, = @le Ix(d; + 1)/Opn and denoting by Q, the cokernel of J,, we have:

0= To(1) = TpadX) = Vy — Oy (1) — Ty — 0.

When the sequence o consists of a single polynomial f (so that k = 1), then
Vo =050 T5(1) ~ Tpn(X) is precisely the logarithmic tangent sheaf associated to
the divisor V(f), see for instance [IT] or the celebrated [9].

Note that, for k& > 2, the sheaf Tpn{(X) cannot be locally free. On the other
hand, as we shall see, T, may be locally free or even completely decomposable.
Hence we propose the following three definitions, whose goal is to generalize the
usual concept of a free divisor introduced in [9)].

Definition. A regular sequence o is said to be:

(1) locally free if the associated logarithmic tangent sheaf T, is locally free.
(2) free if the logarithmic tangent sheaf Ty splits as a sum of line bundles.
(3) strongly free if every sequence o’ such that I, = I, is free.



LOGARITHMIC SHEAVES OF COMPLETE INTERSECTIONS 3

Clearly, every free regular sequence of length £ = 1 is also strongly free. On
the other extreme case, we observe that if ¢ is a regular sequence of length k = n,
then T, = Opn(e) for some negative integer e, since every rank 1 reflexive sheaf on
P™ is a line bundle. Therefore, every regular sequence o in k[, ..., x,] of length
n is strongly free. We provide explicit examples of free and strongly free regular
sequences of length 2 in x[xg, 21, z2, x3], see Example 277 and Example below.

Regarding the middle range 1 < k < n, recall that it is notoriously hard to
construct indecomposable locally free sheaves of rank r on P when 2 < r <n — 2.
In fact, only two examples are known, the Horrocks-Mumford rank 2 bundle on P*
and Horrocks’ rank 3 parent bundle on P°. Furthermore, Hartshorne’s conjecture
predicts that every locally free sheaf of rank r on P™ with 3r < n splits as a sum
of line bundles, which would imply that locally free regular sequences of length k
in k[xg,...,x,| are free whenever 3k > 2n + 3.

With these facts in mind, it seems natural to investigate regular sequences of
length 2 in R = k[zg,...,2z,]|. Following two directions usually pursued in the lit-
erature concerning logarithmic sheaves for hypersurfaces, our goal is to find criteria
to determine when, on the one hand, a regular sequence o = (f1, f2) is (locally)
free, and, on the other hand, when the associated logarithmic tangent sheaf T, is
slope-stable.

We start in Section [ by setting up basic definitions and examples. Most im-
portantly, we provide criteria to determine when a regular sequence in R is locally
free (see Lemma [Z2)), as well as examples of free regular sequences that are not
strongly free (Example 2.7)), and of a strongly free regular sequence (Example 2.g]).
In Section 2.2l we show that regular sequences of length & induces codimension k— 1
distributions on P, see Lemma 2.3l Yet another important notion in this paper is
the compressibility of a k-web ¢ (that is, a regular sequence of length k consisting
only of forms of equal degree): o is said to be compressible if there is a variable
that occurs in none of the forms contained in o; a regular sequence that is not
compressible is said to be incompressible (see Definition 2.12)).

Sections Bl through [ are dedicated to a thorough study of regular sequences of
consisting of 2 polynomials of degree 2, also referred to as pencils of quadrics.

First, recall that the slope of a torsion-free sheaf F' of rank p > 0 on P™ of
determinant ( A" F)Vv ~ Opn(e) is defined as u(F) = e/p. The sheaf F is said to
be slope-(semi)stable if any proper subsheaf K of E has slope pu(K) < (<) p(E);
F is slope-polystable if it is the direct sum of slope-stable sheaves with the same
slope, and F' is slope-unstable if it is not slope-semistable. The following result is
proved in Section [Bl

Theorem A. Let o be a pencil of quadrics in P™ and let ro be the maximal corank
of the Hessian matriz for each quadric of the pencil.

. P(n—1
(1) If o contains two double hyperplanes, then T, = (’)Pn( ).

(2) If o contains only one double hyperplane, then T, is slope-stable if and only
if o is incompressible.
(3) If o is compressible and contains no double hyperplanes, then T, is slope-
unstable.
(4) If o is incompressible and contains no double hyperplanes, then
i) To is slope-stable when 2ro < mn + 1;
it) T, is strictly slope-semistable when 2rg =n + 1;
iii) Ty is slope-unstable when 2rg > n + 1.
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The upshot is that, for the most interesting case (namely that of incompressible
pencils without double hyperplanes), stability depends only of the maximal corank
ro of the quadrics in the pencil. By [1], semistability of a pencil of quadrics in the
sense of geometric invariant theory is equivalent to the fact that the discriminant
of the pencils is non-zero (i.e. the pencil is regular) and has no root of multiplicity
greater than (n+1)/2. So there are many GIT-unstable pencils o whose logarithmic
sheaf T, is still slope-semistable or even slope-stable see Remark 3.141

Next, we look at freeness and local freeness of pencils of quadrics and, more
generally, at projective dimension of T, both in the local and in the graded senses.
This turns out to depend on more subtle invariants of the pencil. To review them,
note that the pencil of quadrics defined by o gives a symmetric matrix p, of linear
forms on P!, whose generic corank 71 is the corank of the Hessian matrix of a
generic quadric in the pencil. Note that r; = 0 if and only if o contains smooth
quadrics, we call o reqular in this case and irregular otherwise. When ¢ is irregular,
there are integers ¢; < - -+ < ¢, such that the torsion free part of C, = coker(py) is
@l Opi(c;). Wecall e = (c1, ..., ¢, ) the degree vector of o. TEA = {\1,..., \} C
P! is the support of the torsion part €; of C,, then, for each j € {1,..., ¢}, denoting

by /\éa) the a-tuple structure over \;, the localization at \; of C; is P, O?@é‘i),
i
for some s; and (a;;,p;i | i€ {1,...,s;}). These data are arranged into the Segre

symbol ¥ = [X1,...,%], defined for all j € {1,...,¢} by:

Ej = (aj71,...,aj)l,...,aj75j,...,aj,sj), with aj1 > "> aj,sj.
[ N
Pj.1 Pj,s;

It turns out that the data (r1, A, X) completely characterize an incompressible pencil
of quadrics up to homography, thus generalizing a classical result attributed to Segre
and Weierstrass for the case of regular pencils, see Section [4.]] for further details.

With these data, we describe the scheme-theoretic structure of the Jacobian
scheme, when o is regular, as a union of nilpotent structures on pairwise disjoint
linear spaces whose dimension and degree of nilpotency depend on ¥ and whose
position depends on A. If ¢ is irregular, the Jacobian scheme contains an additional
component which is a rational normal scroll of dimension 71 and degree c¢; +- - -+¢;,
that connects all the linear spaces, with a prescribed intersection along each space.

The upshot is that these invariants also characterize the projective and global
projective dimensions of T, as it is described in the following two results, proved
in Section and Section 3] respectively

Theorem B. Let o have Segre symbol . For ¢ > 0, Ext}, (Ty, Opn) # 0 if and
only if there are j € {1,...,¢} and k€ {1,...,s;} such that:

q+pj,1+...+pj7k=nfr171,

orry >0 and ¢+ r1 =n — 2. In particular we have:

i) if o is reqular and p = min{p;1 | 7 € {1,...,¢}}, then pdim(T,) = n—p—1;
ii) if o is irreqular, then pdim(T,) =n —ry — 2.

We have a rather different situation for the graded projective dimension
gpdim(T,) — namely, the projective dimension of the module of global sections
of T,. This is summarized in the following result.
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Theorem C. For a reqular pencil of quadrics o in P"™ we have gpdim(T,) = n —2
except if o has Segre symbol [17,19] forp = q = 1 or [(29,17)] with ¢ = 1. In both
these cases gpdim(T,) =n —q— 1.

For an irregular pencil of quadrics o of generic corank r1 we have gpdim(T,) =
n—1 except if o has degree vector (1,...,1), in which case gpdim(T,) = n—ry — 2.

With this in mind, after a careful analysis of pencils of quadrics in P?, performed
in Section B, we come to the conclusion that freeness and local freeness are equiv-
alent conditions for pencils of quadrics in P and we completely classify pencils
satisfying such condition.

Theorem D. A pencil of quadrics o inP™, n = 3, is free if and only if T, is locally
free. More precisely, the only free pencils of quadrics are displayed in Table [52.

By contrast, we provide in Section [1 a series of examples of locally free pen-
cils of degree k > 3 that are not free. This indicates that potentially interesting
vector bundles may arise as logarithmic sheaves associated to regular sequences of
higher degree having deep singularities. To understand our following result, recall
that a null correlation bundle is defined as the cokernel of a non vanishing mor-
phism Ops(—1) — Qg3 (1); every slope-stable rank 2 locally free sheaf N on P? with
c1(N) =0 and c2(N) = 1 arises in this way.

Theorem E. Fiz k = 0, and consider the pencil o = (f,g) of degree k + 3 with:
f= xoxlf+2 + I§+3 + x§+2:173 and g = I2$3($§+1 — x]fﬂ).
Then Ty ~ N(—k — 2), where N is a null correlation bundle.

We complete this paper with an application of our results to the study of rational
codimension one foliations on P", see Section[8 To be precise, recall that a rational
1-form is a twisted 1-form given by the expression

w=(d+1)f1-dfs— (d2+1)fo-dfy € H (Qpn(dy + d2 + 2)),

where f; € H(Opn(d; + 1)) for i = 1,2 and fi, f» have no common factors. Re-
garding w as a morphism TP"™ — Opx(d; + di + 2), we consider the kernel sheaf
K., := kerw. We show in Section[Jthat the natural 1-1 correspondence (f1, f2) < w
between regular sequences of length 2 and rational 1-forms is such that X, = T, (1),
see Lemma [B11

This fact has two important consequences. First, we can invoke a result from the
general theory of codimension one distributions on P3, presented in [4], to obtain
simple criteria to establish when T, is slope-(semi)stable, see Corollary 8.2

Second, we provide a negative answer to a problem posed by Calvo-Andrade,
Cerveau, Giraldo and Lins Neto, see [3, Problem 2|; namely, these authors asked
whether the tangent sheaf of a codimension one foliation must split as a sum of line
bundles whenever it is locally free. While Theorem [Dlimplies that this claim is true
for rational foliations of type (2,2), Theorem [E] says that for each k > 0 there are
rational foliations of type (k + 3,k + 3) on P3 whose tangent sheaf is a slope-stable
locally free sheaf.

All things considered, we believe that the results presented in this paper point to
a rich, interesting general theory of (local/strong) freeness for complete intersection
subschemes that in some sense parallels the widely known theory of freeness for
divisors in P™.
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2. BASIC DEFINITIONS AND EXAMPLES

Let k be a field of characteristic 0, n € N and put R = s[zg,...,2,]|. In this
section we will give some preliminary properties of logarithmic tangent sheaves
associated with complete intersections. Many properties remain valid for x of char-
acteristic different from 2.

2.1. General framework. Let o := (f1,..., fx) be a regular sequence of R. Con-
sider the associated complete intersection variety X = V(o) and set J, for the
associated Jacobian matrix. Let us denote by 0; the partial derivative 8%1 and
Vf=(0f,...,0nf) the gradient of a homogeneous polynomial f € R.

We put T, for the associated logarithmic tangent sheaf as defined in the introduc-
tion, namely T, is the kernel of J,. In addition, we define the sheaves M, := im(J,)
and Q, := coker(J,). The sheaf M, is torsion free, it can be thought of as the nat-
ural extension to P™ of the equisingular normal sheaf of X = V(o) and that T, is
reflexive. We have the fundamental exact sequences:

(1) 0—> T, —> 081 2o, v, 0
(2) 0— M, — @ 0pn(d;) — Qy — 0

We define the Jacobian scheme =, as the degeneracy locus of g,

v (An).

This is the subscheme of P™ defined by the common zeros of the k& x k minors of
J-. The reduced structure (2, )req coincides with the support of the sheaf Q,. Note
that (2, )rea may contain a hypersurface.

More precisely, the image of the exterior power morphism:

n+1

k
3) Ado 02 L ogad ++ i)

is of the form Jy,_ (dy + -+ + di — 1), where [ := ¢1(Q,) is the degree of the hyper-
surface contained in =,, and W, < P” is a subscheme of codimension at least 2,
possibly not pure. Let us illustrate this discussion with an explicit example.

Example 2.1. Let f = zgx1 + x223 and g = zori1T223, SO that:

g T 0 73 o
7 T1T2T3  ToT2x3 ToX1T3 ToT1T2 |
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The curve C = V(f,g) is the union of the four lines V(z;,z;) with ¢ = 0,1 and
7 =2,3. Two of the 2 x 2 minors of J, vanish identically, and we have that

2
/\30- = (.I()Il — I2$3) . (O T3 T1xX2 T1Xx3 T2 O)

It follows that =, consists of the quadric V (xox1 — x2x3), so that [ = ¢1(Q,) =2 in
this case, plus two lines V(zg,z1) and V(x2,23). So W, is the union of these two
skew lines. Note that neither f and g have common factors, nor do V f and Vg.

Lemma 2.2. Let o be a reqular sequence. Then:

i) o is locally free if and only if Qs has no subsheaf of codimension = 3;
i) if o is locally free, Z, has no irreducible component of codimension = 3.

Note that (Z4)rea may have no irreducible component of codimension at least
3 even when Q, admits a subsheaf of codimension at least 3, see Section [l This
means that the converse of item (7) above does not hold in general.

Proof. Taking duals of (@) and (@) we obtain Extf, * (T, Opn) = 0 and, for j < n—1:
Eath (Ty, Opn) =~ ExthiH (M, Opn) ~ Extd?*(Qy, Opn).

The sheaf T, is locally free if and only if &zt +(T5, Opn) = 0 for 7 > 1, which is
equivalent to requiring that Sxt%m(QU, Opn) = 0 for j = 3. This gives the equiva-
lence in the first claim.

If (25 )rea has an irreducible component Y of codimension j > 3, then, since
(25 )red is the support of Q,, it follows that Q, has a non trivial subsheaf V < Q,
supported on Y, hence codimV = j. The previous item then implies that T, is not
locally free. O

2.2. Regular sequences and distributions. Recall that a codimension r distri-
bution on P" is a short exact sequence of the form

D :0— Ty —> TP" — Ny —> 0

where Ng is a torsion free sheaf of rank r» and T4 is a reflexive sheaf of rank n — r,
respectively called the normal and tangent sheaves of 2. We refer to [4, Section
2.1] for further details on the general theory of distributions.

Let us point out how distributions are related to regular sequences. First, think-
ing of the Koszul complex attached to o we consider & = ((d1 +1) f1, ..., (dx+1) fx)"
and the Koszul syzygy sheaf 8, := coker(5), so:

k
(4) 0 — Opn(—1) > P Opn(d;) > 85 — 0.
i=1

Let 1 : Opn(—1) —> O+ be the Euler morphism, namely 7 = (2o, ...,7,)".
The Euler relation gives - Vf; = (d; + 1) f; for all i € {1,..., k}. This allows us to
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construct the following commutative diagram:

| l)
Opn(—1) Opn (—1)
% %
(5) 0— T, —> 081 22 DF | 05 (dy)

[ l

0—7J, —TP"(-1) ———= 38§,
J !
0 0

Here we used that x is of characteristic zero, or rather that the characteristic of s
does not divide d; + 1 for all i € {1,..., k}.

Note that the image of & is contained in M, and set N, for the cokernel of &,
corestricted to M,. The previous diagram gives:

0

l

Opn (—1)

in

(6) 0— T, — 0Fpt!

| |

0—=T, —= TP"(~1)
0

Furthermore, we have a second diagram featuring the cokernel sheaf Q,:

&)
=
3
T%O
—_
N

Qv

Q
(a=)

q
(a=)

0 0
! !
Opn (—1) === Opn(—1)
! 1o
(7) 0 M, @ Opn(d;) —= Qy —= 0
! J H
0 N, 8o Q, —=0
| |
0

0

It follows that the bottom line in diagram in display (6) defines, for k£ > 2, a
codimension k — 1 distribution 9, on P™, given by the exact sequence

(8) Dy : 0 —> T5(1) — TP" — N, (1) — 0.

Summing up, we have proved the following statement.
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Lemma 2.3. Every regular sequence o of length k on n + 1 wvariables induces a
codimension k — 1 distribution 9, on P™ such that T, = T5(1).

However, not every codimension k — 1 distribution on P" comes from a regular
sequence via the construction above. For instance, given a codimension k — 1

distribution 2 on P", the monomorphism T4 < TP"™ may not factor through
Opn (—1)®n+L,

2.3. Logarithmic tangent sheaf and deformations. Let us point out the re-
lationship between our sheaf and classical sheaves of tangent vector fields, in con-
nection with locally trivial deformations of embeddings.

2.3.1. Tangent vector fields along a complete intersection. Given the regular se-
quence o we have a complete intersection X = V(o) < P, whose ideal sheaf Jx
is generated by ¢ : ®F_;Opn(—d;) — Ix(1). In addition, we have the equisingu-
lar normal sheaf N"Xmm see [10, § 3.4.4], which is defined as the quotient sheaf
TP"|x/TX, and therefore satisfies the following exact sequence

0->TX - TP"|x — N}QW — 0;
here, TX denotes the Zariski tangent sheaf of X. Note also that N fX /pn is a subsheaf
of the normal bundle Ny jpn =~ @le Ox(d; + 1), so:

k
NS(/P" - P 0x(d; +1);
i=1
the quotient of this monomorphism is denoted by T, see [10, § 1.1.3]; it is sup-
ported at the singular locus of X. For further reference, we write its defining exact
sequence:

k
9) 0= Ny /pn = @ 0Ox(di +1) > T — 0.
i=1
The sheaf of vector fields on P™ tangent to X, denoted by Tpn(X), is defined
as the kernel of the composed epimorphism TP™ — TP"|x — N P yielding the
exact sequence

(10) 0 = Ton(X) — TP" — N jp. — 0.

The main motivation for introducing Tpn(X ) is given by [I0, Proposition 3.4.17];
namely, H!(Tp:(X)) and H?(Tp:(X)) are the tangent space and the obstruction
space of the semiuniversal space of locally trivial deformations of the embedding
X < P". Here we show that T, (1) is a subsheaf of Tpn(X ) and, to a certain extent,
describe the quotient Tpn (X )/T5(1).

Since the forms f1,..., fi generate the homogeneous ideal of X in P, we may
view ¢ = ((dy + 1) f1, ..., (dx + 1) fx)" as a morphism Opn — @le Ix(di +1). We
define a torsion free sheaf V, = coker(d) fitting into:

k
0 — Opn —»(—Bjx(dz+ 1) -V, — 0.
i=1
Note that, when k = 1, we have V, = 0, as Ix(d; + 1) ~ Opn in this case, so:
To(1) =~ TpndX), for k = 1.
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For k > 2 the relationship between the two sheaves T, (1) and Tpn(X) is ex-
pressed by the following lemma.

Lemma 2.4. We have an exact sequence:

(11) 0—T,(1) - TpnlX) >V, — Q,(1) > T — 0.

Proof. We use the Koszul syzygy sheaf 8, of Subsection 222] to write the following
exact sequence relating 8, and V,:

0> Vo = 8:(1) > P Ox(d; +1) — 0.

We get a commutative diagram:

0

i

0 Opn —Z—> @F_, Ix(di + 1)
l I |
0 —= T, (1) —= 02"V (1) 22 @F  0p.(d; +1)

l | |

0 — Tpn(X) TP —Z = @F , Ox(d; + 1)

|
0

O

where @ is given by the composition TP" — N ., — (—Bf;l Ox(d;+1). The exact

sequence in display (1) is then obtained via the snake lemma, since V,, := coker(d),
Q, := coker(d,) and T% := coker(w). O

2.3.2. Tangent vector fields along hypersurfaces. We look at the relationship be-
tween T, and the tangent vector field to one of the hypersurfaces defining o.

Lemma 2.5. We have:

(12) T, = ﬁ T

Further, for each j € {1,...,k}, set Z; = Sing (V(f;)). Then there is an exact
sequence:

(13) 0T, =T, > B Op(di) > 9 — 0z,(dj) > 0.
i {1, k}\ ()

Proof. For any j € {1,...,n}, we have:

Ty, = ker (ij: O%ﬁ"“) — Opn (dj)>'
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Therefore, since T, is defined as kernel of the matrix obtained by stacking
V(f1),...,V(fr), we get (I2). Next, for any j € {1,...,k}, we have the follow-
ing commutative diagram:

0 0
0 To I Dieqr, ..oy O (di)
(14) 0— =T, — >0 9= pF Op.(dy)
Vi
O p——

Since Z; is the Jacobian scheme of f;, the completion of this diagram via the
snake lemma leads to (I3)). O

These observations will play an important role in the proof of Theorem [ZI]below.

2.4. Syzygies and global sections. Let us point out the relationship between
the Jacobian syzygies and the global sections of T,. Let v : Opn(—a) — 02! be
a sygyzy of degree a for the Jacobian matrix J, of a regular sequence o, that is,
do ov = 0; assume that the entries of v have no common factors of positive degree,
so that N, := coker(v) is a torsion free sheaf. We have the commutative diagram:

0

i

O[an 7&) —_— O[pn (70,)

|
(
|k
|
J

(15) 0 T O R LNV S

D

0 Mg, N, Mo 0

)

\

0 0

It follows that every syzygy of degree a for J, induces a section in H%(T,(a)).
Conversely, every non trivial section in H°(T,(a)) induces a syzygy of degree a for
do, thus we obtain an isomorphism of vector spaces

(16) H®(Ty(a)) ~ Syz, (),
where Syz,(J.) is the vector space of syzygies of degree a for the matrix J,.

Example 2.6. Let us consider the case n = k = 1 as a toy model for the theory
we are proposing; Take g € H%(Op1(d + 1)) and the associated morphism

dg=Vg:08? - Opi(d);
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If dpg and 01¢ have no common factors, then J, is surjective and T, = Op1(—d).
The observation (I0) implies that Vg has no syzygies of degree less than d.

More generally, if dyg and d1¢ have a common factor of degree e (for instance, if
g = z323, then zoxq is a common factor for dyg and d1g), then M, ~ Op:(d — e),
and Ty ~ Opi(—d + e).

Example 2.7. Here is an example of a free regular sequence that is not strongly
free. Consider the following regular sequences in R = k[xzg, 21, x2, 23]

o= (zor1,g) and o’ := (zoxy, v371 + 9);

where g is a polynomial of degree 3 depending only on x5 and z3. Assume that dag
and 03¢ have no common factors, so that, as it was observed in Example 2.6l above,
Vg has no syzygies of degree < 2.

Clearly, I, = I,,. We argue that o is free, while ¢’ is not. Indeed, their Jacobian
matrices are given by:

do = ( 9%1 :COO 089 029 ) and Jor = ( 21213:1 i% 029 529 )
Note that J, has two independent syzygies, given by
v = (—x0,21,0,0) and v = (0,0, d39, —029)
of degrees 1 and 2, respectively. Therefore, we have a monomorphism
v: Ops(—1) ® Ops(—2) — T,

whose cokernel, being a subsheaf of I, (1) @ Jo(2) with L = V(xg,21) and C =
V (029, d3g), must be torsion free. It follows that v must be an isomorphism, thus
‘Tg >~ O]p3(*1) @ O]p'%(*2)

To see that T,» does not split as a sum of line bundles, note that v» is also a
syzygy for d,/, thus h®(T,/(2)) > 0. On the other hand, since g,/ has no syzygy
of degree < 1, we have that h%(T,/(1)) = 0. In addition, the minors appearing in
/\2 Jo» have no common factor, thus ¢1(Qy/) = 0 and ¢1(T,) = —c1(Myr) = —3.
Thus if T5r = Ops(a) @ Ops(b) with a < b, then a + b = —3, and a,b < —2, which
is impossible.

In fact, note that =, consists of the line V(zg,x1) together with the following
0-dimensional schemes:

V(xoan.gaa:ig) and V(xlan.gva&g)a

each of length equal to 4. Therefore, (2, );ed contains at least two irreducible
components of codimension 3; the second item of Lemma 2.2 implies that T, is not
locally free.

Example 2.8. We show that the regular sequence o = (z9,23) in R =
K[xo,x1,22,23] is a strongly free sequence consisting of polynomials of differ-
ent degrees. Any regular sequence ¢’ such that I, = I, must be of the form
o' = (axg, zol + fx3) for some linear form h € H(Ops(1)) and «, 8 € k*. Setting

h = axg + bxy + cxa + dxs, that Jacobian matrix for ¢’ is given by

g _( @ 0 0 0
o=\ 2azy bry cxy dro+ 2Bz )
If ¢ # 0, then
v = (0,—¢,b,0) and vo = (0,0, dxo + 283, —cxp)



LOGARITHMIC SHEAVES OF COMPLETE INTERSECTIONS 13

are independent syzygies of degree 0 and 1, respectively. Following the argument
in Example 27 so we can conclude that T, = Ops @ Ops(—1).
When ¢ =0 and b # 0 then

v1 = (0,0,1,0) and vo = (0, dzo + 2Bx3,0, —bxo)

are independent syzygies of degree 0 and 1, respectively, so again we conclude that
Tor = Ops @ Ops(—1).

Finally, if b = ¢ = 0, then v; = (0,0,1,0) and o = (0,1,0,0) are independent
syzygies of degree 0, thus T, = (’)1?,32.

It is worth noticing that, in general, det(T,) is not fixed and may change with
the choice of generators for I,,.

2.5. Webs. Fix integers d = 0 and k > 1 and let o = (f1,..., fx) be a regular
sequence of forms of degree d + 1 in R = k[xq,...,x,]; we call o a k-web in P*; a
2-web is usually called a pencil. In this section, we establish some basic properties
of logarithmic tangent sheaves associated to k-webs, which will be useful later on.

2.5.1. Freeness of webs. Here is the first fundamental fact.

Lemma 2.9. Let o be a k-web. If o is free, then it is strongly free.

Proof. Let ¢’ = (f1,..., f].) be another regular sequence such that I,» = I,; one
can check that there is a matrix P € GLy(x) such that

fi fi

=P

i i
It follows that J,» = PJ,, thus in fact T, ~ T, from which the desired statement
follows immediately. O

A particular case of the previous result leads to the simplest example of a strongly
free regular sequence.

Example 2.10. Take a regular sequence o = (fi,..., fr) such that each f; is
a linear polynomial; note that V(o) is a linear subspace of codimension k. The
Jacobian matrix is then a constant matrix of maximal rank, inducing a surjective
morphism OD@SH — Oﬂ@f. It follows that T, = OE@M?H*’“, M, = ODfo, and Q, = 0.

2.5.2. Webs versus reqular sequence. Let us point out how to associate a web to any
regular sequence, keeping the logarithmic sheaf unchanged. Let o = (f1,..., fx)
be a regular sequence, with deg(f;) = d; + 1, for some dy + 1,...,dr +1 € N.
Let e be the least common multiple of dq + 1,...,dx + 1. For i € {1,...,k}, put
l;=e/(d; +1). Set:

7= fl,..., ,f’“)

Note that 7 is a web of degree e.

Lemma 2.11. We have:
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Proof. For i€ {1,...,k}, set g; = f so that 7 = (g1,...,9x). By the chain rule,
for each i e {1,..., k:} we have:

V(gi) = Lif {7V (i)

In other words, considering the morphism defined by the diagonal matrix:
P = dwug((lfe1 Lo é" 1 @ Opn (d;) — Opn (e)@“,

we get that:
37- =Po 30-
Since k is of characteristic zero, P is injective, so T, = ker(d,) = ker(J,) = T,. O

2.5.3. Compressibility of webs. Next, we introduce the following definitions.

Definition 2.12. We say that the k-web o is:

(1) regular if there is (21, ..., zx) € k¥ such that the hypersurface V(Zl 1 %ifi)
is non singular;

(2) compressible if, up to a linear coordinate change, there is a variable that
occurs in none of the forms f1,..., f.

A k-web that is not regular is called irreqular; a k-web that is not compressible is
called incompressible.

Note that regular k-webs are incompressible. Furthermore, as it was observed in
the proof of Lemma 2.9 above, if o is a k-web, then the logarithmic tangent sheaf
T, is independent from the choice of generators of the ideal I, generated by o.

Lemma 2.13. A k-web o is compressible if and only if H*(T,) # 0.

Proof. The condition H°(T,) # 0 does not depend on the given choice of a system
of coordinates, and if none of the forms fi,..., fr depends on a given variable,
then all partial derivatives of f1,..., fx with respect to this variable are zero. This
means that J, contains a column containing only 0 and thus the kernel sheaf T,
contains a copy of Opn.

Conversely, assume H%(T,) # 0. For all (4,j) € N> with 1 <i < kand 0 < j < n,
we set:

_9fi
Since the sheaf T, satisfies H°(T,) # 0, there is a non-zero vector (bg,...,b,) €
k" *1 such that:
bofio+ -+ bufin =0, forall 1 <i<k.
Then we define new coordinates (xj, ..., x,,) by choosing an invertible matrix (a;,;)

of size n 4+ 1 with the condition a;¢ = b; for all 0 < j < n and putting :
n
xj = Z a;j ey, for all 0 < j < n.

Then, for all for all 1 <7 < k, we have:

Z ax] fl,] Z bjfi,j =0
j=0
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Therefore, in the new coordinates (xj, ...,z ), none of the forms appearing in o
depends on xj. O

The compressibility of a k-web o = (f1,..., fr) is defined as the number of
independent variables that can be removed from the polynomials f;, in a suitable
coordinate system. In other words, o has compressibility m if and only if h°(T,) =
m; note that 0 < m < n — 1. We set n := n — m; it indicates the minimal number
of variables where the web is defined.

Lemma 2.14. If o is a compressible k-web in R, then there is an incompressible
k-web & in k[xo,...,xs] and a n-dimensional linear space L < P™ such that T, =

Oﬂ(ﬂnfﬁ) ® & where E|f, ~ Ts.

Proof. Assume that o = (f1,..., fr) is compressible, so that m := h°(T,) > 0;
set i := n — h%(T,). We get a monomorphism O™ < T, so that the following
composition

0" > T, > 0PV - 0@

is the identity morphism; it follows that T, = O%ﬁ"iﬁ) @ &, where the sheaf & fits
in the exact sequence

(17) 0—&— 02D L 9p(d—1)®F

As we have seen in the proof of Lemma (Z.I3)), there are new coordinates (z( : - - :
a})) such that the variables xj, ..., 2}, ; do not appear in the polynomials f; € o.

This means that the first m columns of the Jacobian matrix consist only of zeros,
and that the matrix p in display (7)) is precisely the submatrix of trivial columns
of J,.

In addition, the k-web o can be regarded as a k-web in k[z],, , ..., 2} ], which we
rename &. Setting L = V(z(,--- ,x,,_;), we have that u|;, = Js, thus €|, ~ T5. O

As an immediate consequence, we have:

Corollary 2.15. The logarithmic tangent sheaf of a compressible k-web is never
slope-stable.

Recall that a coherent subsheaf F of a coherent sheaf & is saturated if €/F is
torsion free. The following technical observation will be useful later on.

Lemma 2.16. If 0 is an incompressible k-web, then every saturated subsheaf K <

To satisfies ¢1(K) < 0.

Proof. Any saturated subsheaf X of T, is also a saturated subsheaf of O%ﬁf“, which
is a slope polystable sheaf. It follows that ¢;(K) < 0, and if ¢;(X) = 0, then [
Corollary 1.6.11] implies that X = OH@Z” , S0 o is compressible. O

We complete this section with a characterization of the degeneracy locus of k-
webs as the set of points which are singular for some hypersurface of the web.

Lemma 2.17. Let o be a k-web. The reduced degeneracy locus (S, )rea 0f the
Jacobian matriz J, coincides with the union of the singular loci of the singular
hypersurfaces contained in the web.
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Proof. Set 0 = (f1,..., fr). A point z € P™ belongs to (Z,)red if and only if the

gradients of f; are linearly dependent, that is, there is (z1,. .., zx) € k*T1\{0} such
that:
k k
i=1 i=1

But this is the same as saying that z lies in the singular locus of V(Zle zifi). O

3. STABILITY FOR PENCILS OF QUADRICS

In this section x is algebraically closed of characteristic different from 2. Given
a quadric hypersurface @ in P", we denote by rk(Q) the rank of the Hessian matrix
of an equation of @, that is, the rank of a quadratic form associated with Q). We
set cork(Q) = n + 1 — rk(Q). When non empty, the singular locus of @ is a linear
subspace of P™ of dimension cork(Q) — 1. The quadric @ is a double plane if and
only if rk(Q) = 1.

In this section, we focus on regular sequences o = (f1, f2) such that deg(f1) =
deg(f2) = 2, to which we can associate the pencil of quadrics @y := V(zl i+ zzfg),
where \ = [z : 22] € PL. Let

ro = max { cork(Q,) | A € P'}.

Our goal is to present the proof of Theorem[A] as follows. We will start by consid-
ering the easiest case, namely pencils that contain at least one double hyperplane,
and prove the first two items of Theorem [A] in Section Bl The third item is an
immediate consequence of Lemma 213} the most involved part of Theorem [Al is
the last item, and its proof will take the bulk of Section

3.1. Stability of pencils with a double hyperplane. If Q) contains two double
hyperplanes, then we can take f; = 23 and fo = 2%, so that

g _ (20 0 0 0
=0 25, 0 -~ 0)

It is then easy to see that T, = O%ﬁ"*”, as desired.
Assume now that Q) contains only one double plane. We can take f; = 23 and

put g = fo, so that
. = ( 209 0 -+ 0 >
7 go g1 - Gn )’

with g; = 0g/dx;, for i € {0,...,n}. The hypothesis that @, contains only one
double plane implies that at least two of the partial derivatives g; are non trivial
for i e {1,...,n}. Since

2
Ndo =220 (01 - ga),
it follows that =, = V(z) U V(g1,-..,gn), thus ¢;(T,) = —1.

Lemma 3.1. Let o be a pencil of quadrics containing only one double plane. Then
To is slope-stable if and only if o is incompressible.

Proof. If o is compressible, then h°(T,) # 0 by Lemma 213} thus T, cannot be
slope-stable since u(T,) = —1/(n — 1).
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Conversely, assume that T, is not slope-stable, and let X < T, be a destabilizing
subsheaf; set r = rk(X). If ¢1(X) < —1, then

-1 < Cl(fK) -1

x < — <= T > n— 17
n—1 T T
which is a contradiction. It follows that ¢;(X) = 0, and Lemma [ZT6] implies that
o must be compressible. 1

3.2. The stability criterion for pencils of quadrics. If a pencil of quadrics
o contains no double hyperplanes, then ¢;(7,) = —2. Lemma then implies
that compressible pencils of quadrics containing no double hyperplanes have slope-
unstable logarithmic sheaves, thus proving the third item of Theorem [Al

We can finally address incompressible pencils of quadrics o = (f1, f2) containing
no double hyperplanes. The result depends on the maximal corank of the quadrics
Q> where for each A = (21 : 25) € P! we write Q) = V(21 f1 + 22f2). To be precise,
we prove the following result.

Theorem 3.2. Let n = 3 and let o be an incompressible pencil of quadrics in P™
containing no double hyperplane. Put ro = max(cork(Q,) | A € P1).
i) If 2ro <n + 1, then T, is slope-stable.
ii) If 2ro = n + 1, then T, is strictly slope-semistable.
wi) If 2ro > n+ 1, then T, is slope-unstable.

Since o contains no double plane, we have codim(Q,) = 2 so the slope of T, is:

2
T,) = .
(7o) 1-n
The proof of Theorem will be divided in three parts. We start by establishing
items [ii)| and in Section For the proof of item [i)l we first consider regular
pencils in Section B4l leaving the case of irregular pencils for Section 3.6l We start
with the following observation.

Lemma 3.3. Let o be an incompressible pencil of quadrics and let A, € P! be
distinct points such that Qx and Q,, are singular. Then the singular loci of Qx and
Q. are disjoint linear spaces of dimension cork(Qy) — 1 and cork(Q,) — 1.

Proof. The singular locy of QX and @, are defined by linear equations and the
corank of QA and @, is precisely the number of independent equations. In addition,
these two linear spaces are disjoint, as the coordinates of a point of P™ lying in
the singular locus of two distinct quadrics fi, fo of the pencil would annihilate the
derivatives of f; and fa, so such derivatives would fail to span H%(Opx (1)). Thus we
could choose coordinates so that one of the variables xq, ..., z, occurs neither in f;
nor in fo. However, this is excluded by the hypothesis that ¢ is incompressible. [

3.3. Koszul subsheaves. As a preliminary step towards the proof of items [ii)

and let Rps be the first Koszul syzygy sheaf of a linear subspace M < P of

codimension 7 > 1, namely the sheaf fitting into the following short exact sequence:
0— Ry — O (1) - Iy — 0.

We claim that Ry, is slope-stable. Indeed, note that u(Rpr(1)) = —1/(r — 1);
moreover, any saturated subsheaf F < Rj;(1) must, by the argument in the proof
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of Lemma [ZI6] have c¢1(F) < —1, since h®(Rps(1)) = 0. If F destabilizes Ry (1),
then
a1 (F) -1 rk(F)

BV
rk(.’r")>r—1 — ald)> —1°

providing a contradiction.

3.3.1. Koszul subsheaves from singular quadrics. A linear subspace of Z, is called
mazimal if it is not strictly contained in another linear subspace of =,. The fol-
lowing technical lemma is quite useful.

Lemma 3.4. Let o be a incompressible pencil, o = 3 be an integer and L < =,
be a mazximal linear subspace of dimension o — 1. Then there is a linear subspace
M < P™ of codimension ¢ and a subscheme W < M such that T, fits into

(18) 0— Ru(1) = To = Rp(1) = Ty (1) — 0.

Proof. Since the pencil o is incompressible, the linear forms appearing in the Jaco-
bian matrix of o span H%(Opx (1)), hence the sheaf Q, has rank 1 at each point of
its support, in particular this happens at each point of L, so Q.| is a line bundle
on L, namely there is e € Z such that Q,|, ~ O (e). Since O (1)®? surjects onto
Or(e) and ¢ = 3, we conclude that e = 1.

The surjection 9, — O (1) allows to write the following commutative exact
diagram:

0 —= M, —= Opn(1)®? —=Q, —=0

! l

0—IJ5(1) —= Opn(l) —=0r(1) —0

J |

0 0

Put F and G for the kernel and cokernel of the induced morphism M, — Iz (1),
respectively; in addition, let Q" denote the kernel of the epimorphism Q, — O (1).
The snake lemma provides the following exact sequence

0—>F— Opn(l) > Q" -G —0,
thus there is a subscheme W < P™ such that F ~ Jy,(1) and
Supp(§) = Supp(Q') < Supp(Qs) = (o )rea-

Since M, is the image of the the Jacobian matrix OP@TS"H) — Opn (1)92] we get
a morphism O%nﬂ) — I, (1), with cokernel §. Therefore, either this morphism is
surjective, or G is supported on a linear space strictly containing L. However, this
second possibility is excluded because L is maximal.

Summing up, we obtain an epimorphism M, — J7(1). Since L is cut by n+1—p
equations, the induced epimorphism OP(?,S"H) — J1,(1) factors through O%,f"“fg) —
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Jr(1), and we get a second diagram:

02— T (1)

| |

O—>-‘J_‘—>-O§n(n+l) — M, —=0

]

0—Rp(1) — OP@S”“*Q) —J,(1)—0
0

|

0

Note that the image of the morphism OP@f — Jw (1) is the ideal sheaf of a linear
subspace M < P" of codimension g containing W, twisted by Ops(1); its cokernel
is the ideal of W in M, also twisted by Ops(1). The snake lemma then yields the
exact sequence ([Ig]). O

3.3.2. Destabilizing Kozsul subsheaves. Now we can prove itemsand Indeed,
we set o = 19 and consider a quadric @ in the pencil o having cork(Q») = ro. The
assumption rg = (n 4 1)/2 forces 1o = 3 or (n,rg) = (3,2). The latter case follows
from the full classification of pencils of quadrics in P? and their logarithmic tangent
sheaves provided in Subsection Bl Hence we can assume rg > 3, so the linear space
L < P" of dimension ry — 1 appearing as the singular locus of @), satisfies the
hypotheses of Lemma B4 thus T, contains the Koszul subsheaf Rps(1) which has
slope 1/(1 —rg). The condition 79 > (n + 1)/2 implies:
1 2

Rar(1)) = = p(7).
pRu (1) = 1= > T = ()
Finally, for item we use the exact sequence in display (I8]), which yields:
(20) 0> Ry(1) > T, > E—0,

where € is the kernel of Ry (1) — Jy/p(1). Since M has codimension ro > 2, the
sheaves € and Ry (1) share the same slope, namely 1/(1 — 7). This implies that
any destabilizing subsheaf of & would also destabilize R (1), thus € is slope-stable.
But if g = (n + 1)/2, then Ry (1) also has slope equal to 1/(1 —rp). Therefore, the
exact sequence in display (20) shows that T is strictly slope-semistable; in addition,
Rar(1) and € are the factors of the Jordan—Holder filtration of T,.

3.4. Proof of stability for regular pencils. Let o be a regular pencil of quadrics
containing no double hyperplane, so that there are only finitely many points \ € P!
such that @) is singular and at each such point the singular locus of @) is a
linear space of dimension cork(Q,) — 1. A regular pencil is incompressible so these
spaces are disjoint by Lemma B3] so (2, )red is the union of finitely linear spaces
of dimension at most rg — 1.

In order to prove we assume, by contradiction, that T has a saturated desta-
bilizing subsheaf X of rank p, with 1 < p < n — 2 with (A" JC)VV ~ Opn(—e).
Since ¢ is incompressible, Lemma implies that e > 0. The condition that K
destabilizes T amounts to:

(n—1)e < 2p.
Since p < n — 2, this gives e = 1. Also, we get p = (n —1)/2.
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Choose a sufficiently general linear subspace M < P™ of dimension n —rg. Since
dim(M) + dim(E,) = n— 1, we may assume that M is disjoint from the degeneracy
locus =, and that M meets transversely the locus where T/X is not locally free.
The second assumption implies that Tory(T/XK,O0p) = 0, so we get a subsheaf
K|ar — T|ar which still destabilizes T|ps. The first assumption yields Qy|p =0 =
Tor (M, Opr), so the restricted Jacobian matrix gives an exact sequence:

(21) 0 — T|ar — 09" 092(1) - 0.

The sheaf T|y/ is locally free and, setting ¢ =n — 1 — p we get:

(;\7|M)(1) ~ (/q\TrV|M)(71),

Since XK|ps is a subsheaf of T|ys, we obtain a monomorphism

01~ (AKX = (AT > (A7)

which in turn gives HO((/\q TV|M>(—1)) # 0. We need to prove that this is

absurd.
In order to check this, we dualize the exact sequence in display (2] and take
exterior powers to get a long exact sequence:

q
0— Op(—g—1)PUH) — 9y (—g)®?"H) — o </\7V|M)(*1) — 0.

All of the terms in the sequence above, except for the rightmost one, are copies
of Opr(—t) for some integer ¢t with 1 < ¢ < g+1. In the range p > (n—1)/2, we have
g=n—-1-p<(n—1)/2s0q+1< (n+1)/2. Now, the assumption ro < (n+1)/2
guarantees (n + 1)/2 < n —rg + 1 = dim(M) + 1, thus ¢ < dim(M). Therefore
H*(Op(—t)) =0forall 1 <t < g+ 1 and hence HO( A? TV|M>(—1)) = 0. This

is the contradiction we were looking for, thus proving [i)
This finishes the proof of Theorem for regular pencils.

3.5. Irregular pencils of quadrics. The goal of this section is to set up some
basic analysis of irregular pencils that is necessary for the proof of item |i)| for
irregular pencils of quadrics. In particular, we study in detail a special kind of
pencil that we call completely irreqular, which is actually the only kind of irregular
pencils where the proof given in Subsection [3.4] fails.

3.5.1. The regular part of an irregular pencil. Considering the polarization (or Hes-
sian) matrix of the quadrics in the pencil o we obtain a pencil of symmetric matrices
of size n + 1:

po : Opr (—1)B+D _, B+,
Definition 3.5. The splitting type of a pencil of quadrics o is the unique pair of
integers (u,v), such that

im(py) = Opr (—1)®" @ OF.

Note that o is regular if and only if p, is injective, if and only the splitting type
of o is (n + 1,0). In addition, if ¢ is incompressible, then coker(p,) contains no
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trivial direct summand. Set r1 := min { cork(Qx) | A € P'}. We call 71 the generic
corank of P1. We have:

rn=n+1—-1k(ps) =n+1—u—o.
Set K := ker(p,), F := im(p,), Cr := coker(p,) and write the long exact se-
quence:

(22) 0 — K — Op (~1)®+D 8D e, 0.

The cokernel sheaf G, decomposes as C, ~ Cir @ Cy, where Cy is its torsion part
and Cyr is its torsion free part.

Lemma 3.6. If o has splitting type (u,v) then u = v and there is a regular pencil
of symmetric matrices py with size uw — v satisfying coker(p,) ~ Cy.

Proof. Using that p, is symmetric and that C; is zero-dimensional, we get:
Cip > CYY ~ KV (—1), Cy = Eatpi (Cp, Opr (—1)).

Therefore, dualizing the above sequence we get:

0— CY(—=1) = Op1 (—1)®+D) & Fv(_1) - €, — 0,
(23) v B ®(n+1) v
0—FV(-1) 5 05" - xv(-1) - 0.

Again by the symmetry of p,, the following composition of morphisms
Op (—1)®+1) 2 gv (1) & o +Y)

coincides with p,, thus the image of the morphism « in display (23] is precisely .
We get an injective twisted endomorphism p, of the vector bundle F and an exact
sequence:
0—F L% FV(-1) - € — 0.

This endomorphism is also symmetric. Let us rewrite this in terms of the splitting
type:

0— O (-1)®* @ OFY L% O (-1)® @ OF* — €, — 0.
The morphism Oﬂ(ﬁ” — og%“ extracted from p, is thus injective. Therefore its
transpose Op1 (—1)9% — Op1 (—1)®V is surjective — in particular we must have v < u.
These constant maps of maximal rank can be expunged from p, so that p, reduces
to a symmetric morphism, still denoted by 7., which takes the form:

By : Opr (—1)8=) oy @),

The torsion part G is a sheaf of length h°(C;) = u — v which is supported at the
points A € P! such that cork(Q,) > r1. We obtain the exact sequence:

(24) 0 — Opi (—1)®=) Lo, 9B=0) e g,
O

Definition 3.7. The pencil of quadrics associated with the pencil of matrices p,
given by the previous lemma is called the regular part of o.
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Note that the regular part of a pencil of quadrics may be empty: this happens
for u = v. We will shall call these pencils completely irregular and treat them in
detail a bit further on. Note also that the regular part of an irregular pencil may
fail to be a pencil, namely when v = v + 1. By convention, a pencil of symmetric
matrices of size 0 (the empty pencil) and a non-zero pencil of symmetric matrices
of size 1 are regular.

3.5.2. Recovering the pencil. The torsion-free part Cy of C, decomposes as a sum
of ample line bundles. Namely, there are integers ci, ..., ¢y, such that:

T1 71
Ct =P Op(c) 1<a<-<c,, Y,c=u
i=1 i=1

We call ¢ = (¢1,...,¢,) the degree vector of o. The following result allows to
recover a pencil from its regular part and the degree vector.

Proposition 3.8. Let n; € N and let p be a regular pencil of symmetric matriz of

size ny. Fix integers ry and 1 < ¢ < -+ < ¢py. Then, up homography, there is a
unique incompressible pencil o such that C, ~ Cy @ C¢ with:

ry
(25) Cor >~ P Opi(cs), Gy ~ coker(p), Do = p-

i=1

Proof. According to the previous subsection, we put:
1

(26) U=Zci, uw=ny+0, n=ri+u+uv—1.
i=1

For all m € N* we consider the exact sequence:
(27) 0 — Op1 (1)@ I 9B+, 951 (m) — 0,

given by the mth symmetric power of the Euler sequence on P'. The matrix 7, is
unique up to a coordinate change on the source and target and up to homography
of PL.

We consider the block-diagonal matrix formed by the morphisms 7., for all i €
{1,...,r1}. In view of the definition of v this gives:

1
P e, : Opr (-1)® — (‘)I?I(HTI).
i=1

Stacking this morphism together with its transpose and with p, in view of our
definition of n we get a symmetric matrix pencil of the form:

T1

(28) D (e, ®7L) @ p 1 Op1 (1) 5 9FHD,

i=1
We obtain a pencil of quadrics o on P”. By construction o is incompressible and
satisfies the conditions in display (25)).

About uniqueness of o, we argue as follows. First note that, under the assump-
tion of incompressibility, the dimension n and the splitting type (u,v) are deter-
mined by 71,¢1,...,¢r, through the equalities in display (26]). Next, we observe
that for any pencil o satisfying (28]), the direct sum decomposition of C, gives:

e I
0% (~1) 0RC ey
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This is a block-diagonal matrix pencil having a block O;Pl(u_v)(fl) — OI?I(“_U)
which is p and a block 0%"(—1) — OI?I(UJ’”) obtained by concatenating minimal
presentation matrices of Opi(cy), ..., Opi (¢, ). In other words, this second block is
Te, @@ 7, . Up to choosing coordinates of P adapted to this decomposition,
the above pencil appears in a block decomposition of p, and by symmetry of p,
the residual block must be Tctl ® P Tct”. So o is obtained as in (28]). O

3.5.3. The Jacobian scheme of an irregular pencil. We continue with the assump-
tion that ¢ is an incompressible irregular pencil and seek a set-theoretic description
of degeneracy scheme =, .

The torsion free part Ci defines a projective bundle Y = P(Ci) and, since
the vector bundle Cy is very ample, Y = P(Cy) embeds via the linear system of
the tautological relatively ample divisor h as a rational normal scroll of degree v,
spanning a linear space L < P" of dimension n — u.

Lemma 3.9. Let o be an incompressible pencil of quadrics. Then Z, satisfies:
(29) Eolrea=Y v | PP
AeSupp(Cy)

where the linear subspaces {P™~1 | \ € Supp(Cy)} are disjoint. In particular:

dim(Z,) = max(ro — 1,71), rn=n+1l-u—uv.
Proof. We look at the projectivization of the vector bundle Ci¢ and of the coherent
sheaves Gy, €, The epimorphisms Ogl("ﬂ) — Cq, OI?I(”H) — @y, and OI?I("H) — Cyf
induce embeddings P(C,) < P! xP", P(€;) < P! xP" and Y < P! x P". Similarly,
the epimorphism O%? — Q(—1) induces an embedding P(Q,(—1)) — P! x P",
The two subschemes P(C,) and P(Q,(—1)) of P! x P are defined by the same

bihomogeneous equations. Indeed, denoting by A = (21 : z2) and @ = (xg : ... : )

the points of P! and P" and recalling the notation f; ; = aggﬁ(@
J

P(Qy(—1)) = P(€y) = {((z,X) € P! x P" | f1j21 + fajz2 = 0,V =0,...,n},
which in turn gives a Kozsul complex (in the obvious notation):
(30) oo Opryepn (=1, 1)@ 5 Opi o — Op(e,y — 0.

We get thus a correspondence:

P(€s)
(31) y \ﬂ
P! P

where the map ¢ : P(C,) — P! is generically a P"*~!-bundle and v : P(C,) —
Z, < P is an isomorphism at the points where Q, has rank 1.

At each point A of the support of the torsion part C; we have a skyscraper sheaf
I%(n-&—l) N O(;»\)’I")\

, we have:

supported at A, whose rank we denote by ry. The surjection O
induces an embedding P ~! ¢ E, < P". We noticed in Lemma 3.3 that the linear
spaces appearing as singular loci of distinct points of Supp(C:) are disjoint. This
achieves the proof. O

In addition, we will also use the following statement later on.

. . . . . +1
Lemma 3.10. An incompressible pencil of quadrics satisfies 11 < "5~.
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Proof. We assume that ¢ is an incompressible pencil of quadrics. Recall that ¢ has
a splitting type (u,v) with w > v. Since o is incompressible, the integers ¢1, ..., ¢,
appearing in the degree vector are strictly positive, hence:

Therefore we have n+1=7r +u+v =171 + 2v = 3ry. O

3.5.4. Completely irregular pencils. We say that the incompressible pencil o is com-
pletely irregular if has no regular part, which is to say, if v = v. This is equivalent
to the condition C; = 0, which in turn is tantamount to ro = r1.

We take a closer look at the degeneration scheme in this case. Denote by F' the
divisor class of a fibre of Y — P!, so Oy (F) ~ ¢*(Op1(1)), in the notation of the di-
agram in display I]); write also H = ¢1(¢*(Opn(1))). Note that 1, (0y (F)) ~ Q,
and that the Koszul complex [B0) is exact at Opi1 ypn. Tensoring it with Op1,pa (1,0)
and applying v, we get an exact sequence:

08 (—1) - 092 - 0y (F) — 0.

The rightmost morphism above agrees with the Jacobian matrix, so we have an
exact sequence:

(32) 0— T, — 02" 3 0., (1)82 - Oy (H + F) — 0.

Example 3.11. Let us list all the possible splitting types (u,v) for n = 5 together
with the data of the scroll, compressibility and so forth. Regular pencils give
€, = Cy, a finite-length scheme with h°(C,) = 6. For irregular pencils we have the
following possibilities.

1 | (u,v) | ho(et) | Cet | m | Completely irregular
1| (5,0) 5 Op1 yes no
1| (4,1) 3 Op1 (1) no no
1] (3,2 1 Op1(2) no no
2| (4,0) 4 0%’ yes no
2| (3,1) 2 Opt @ Op1(1) | yes no
2| (2,2) 0 Opa (1)®? no yes
21 (2,2 0 Op1t @ Op1(2) | yes yes
31 (3,0) 3 o’ yes no
31 (2,1) 1 (‘)P@f @ Op1 (1) | yes no
41 (2,0) 2 O%r)f yes no
4 | (1,1) 0 (‘)]?13 @ Op1(1) | yes yes
51 (1,0) 1 o yes no

Observe that there is only one incompressible, completely irregular pencil of
quadrics in P°; moreover, n = 5 is the lowest dimension in which such pencils
can occur.

Lemma 3.12. Let o be an incompressible completely irreqular pencil. Then there
is an action of SLg = SLa(k) on P™ for which the exact sequence in display [B2) is
equivariant.

Proof. Let the group SLz act by homographies on P! regarded as the base of the
pencil. For any integer m € N we let V,,, be the irreducible representation SLg of
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weight m, so Vj is the trivial representation of rank 1, V; is the standard represen-
tation of rank 2, while V,;, = S™V) has rank m + 1. By convention we set V_; = 0.
For all m € N* we rewrite ([27)) as in SLa-equivariant form:

0= Vi1 ® Op1(—1) = V,,, ® Op1 — Op1 (m) — 0.

Given an incompressible, completely irregular pencil o, the matrix pencil o is
formed by stacking the morphisms 7., with their transpose for all ¢ € {1,...,n +
1 — 2u} whereby obtaining a symmetric block matrix. Thus we rewrite the exact
sequence in display ([22)) in equivariant form:

n+1—2u n+1l—2u
0> @ On(-1-c)> @ Var®V)®0n(-1)5
1=1 1=1
n+1—-2u n+1—-2u

L @ (‘/Cifl S) VCl) ® Op1 — @ Op (CZ) — 0.
i=1 i=1
Since the matrix pencil p is SLa-equivariant, so is the pencil o obtained by p. Hence
the Jacobian matrix of ¢ is also SLs-equivariant and this induces an SLo-action on
its kernel and cokernel sheaves. Since the pencil o is determined by the degree
vector (¢1,...,Cnt1—24) by Proposition B8 we get that this construction holds for
any incompressible completely irreducible pencil. O

Note that the SLs-action on Oy (H + f) is simply the action by homographies
on the basis of the scroll Y. Also, the SLy-action on P" induces the isomorphism
of SLo-modules:

n+1—-2u
(33) HO(P", 000 (1) = D (Vo1 @ Vo).
i=1
The following lemma says that, if o is a completely irregular pencil of quadrics,
then the logarithmic sheaf T, is simple.

Lemma 3.13. Let o be a completely irregular incompressible pencil of quadrics
with u = 2. Then Endpn (Ty) ~ k.

Proof. We use the exact sequence in display ([B2]). We first use its rightmost part,
namely:

(34) 0— My — Opn (1) - Oy (H + F) — 0.

Since Oy is a line bundle on the smooth irreducible variety Y, we have
Endx(Oy) =~ k. Since the morphism O£ — Oy (F) induces an isomorphism
on global sections and H?(Oy(F)) = 0 for p > 0, we get H*(M,(—1)) = 0.
Also, Ext}, (Oy (F 4+ h),Opn (1)) = 0 for p = 0,1 by Serre duality since dim(Y) =
n+1—2u < n— 1. Therefore applying Hompn (—, M, ) and Hompn (Oy (H + F), —)
to the exact sequence in display (B4) we get:

Endpn (M,) ~ Extp. (Oy (F + h), M,) ~ Endpn (Oy) ~ k.

Also, note that Serre duality gives Extp,(Oy (F + h),0pn) = 0 for p = 1,
dim(Y) = n +1—2u < n —2. We deduce that Exth, (M, Opn) = 0 for p = 0,
Next, we write the exact sequence:

2 as
1.

(35) 0T, - 02" L M, - 0.
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Applying Homp» (M,, —) to ([BH) and using that ExtL, (M,, Op») = 0 for p = 0,1,
we get:

Extpn (Mg, Ty) =~ Endpn (M,) =~ 5.

Finally, we apply Hompn (—, T5) to ([B3) and use that, since o is incompressible, we
have H(T,) = H'(T,) = 0. This concludes the proof, since:

Endpn (T,) ~ Extp, (Mo, Ty) ~ k.

O

3.6. Proof of stability for irregular pencils of quadrics. It only remains for
us to prove item |[i)| for irregular incompressible pencils ¢ containing no double
hyperplane.

By hypothesis, we have 2rq < n + 1. As in Subsection B4 we assume by
contradiction that T admits a saturated subsheaf X of rank p and again we get
p=(n—1)/2and (A"K)VY ~ Opn(—1).

Next, observe that, if r; < rg, then by Lemma B.9 we have dim(Z,) < ro—1. In
this case, the proof of [i)| given in Subsection [3.4] goes through as again a sufficiently
general linear subspace M < P™ of dimension n — ry does not meet =, while the
rest of the argument is still valid for irregular pencils.

Therefore, we may assume until the end of the subsection that ry = 1, which is
to say, that the pencil is completely irregular, so u = v, C, = G and dim(Z,) = ro.

This time, with a slight difference with respect to the proof of item [i)| given in
Subsection 3.4 we choose a general linear subspace M < P" of dimension n —
ro — 1. In particular, we may assume that M does not meet =, and that the p'"
exterior power of K|y < T|as gives a non-zero element of HO(A? TV | (—1)), with
q =n — 1 — p; this equality ¢ = n — 1 — p comes from duality of the sheaf T, which
is of rank n — 1.

If n is odd, we write n = 2ng + 1 and 2rqg < n + 1 gives o < ng, while p >
(n—1)/2 = ng gives ¢ = 2ng — p < ng. Since dim(M) = 2ng — rg = ng we get
q < dim(M) unless dim(M) = ng. If ¢ < dim(M), again the argument given in
Subsection B4 remains valid, so we may assume, without loss of generality, that
dim(M) = ng. It then follows that ng = dim(M) = 2ng — 19, thus ng = ro; since
ro =n+ 1 — 2u, ng is even, say ng = 2n1, and v = ny + 1. Summing up, if n is
odd, then:

(36) n=4u—3, dmM)=p=q=r9=2(u—1), u=>2.

Similarly, if n = 2ng, then we get that rog < ng < p and thus ¢ < ng — 1 < dim(M),
so we may assume that dim(M) = ng — 1. It follows that ng =rp =n +1 —2u so
ng is odd; setting ng = 2nq + 1, we obtain v = ny + 1. Summarizing, if n is even,
then:

(37) n=4u—2, dim(M)=qg=2u—-1), ro=p=2u—1, u=>=2.

In any case, the sheaves X and £ = T/X are slope-stable.
Having established these numerical constraints, we proceed with the next step
of the proof, which requires looking at the exact sequence in display [32]). Working
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in the linear span L = P"*1=% c P" of Y, we write an exact commutative diagram

0 0

|

Iy (1) =Ty, (1)®?

l
(
|
|

)2 —~ Oy (H +F)—0
0—= Oy (h— F) —= Oy (h)®2 —= Oy (H + F) —= 0

| |

0

Here, the sheaf My, defined by the middle row, can be though of as the normal sheaf
associated to the pencil of quadrics restricted to the smaller space L. Using the
leftmost column of the previous diagram and the fact that the morphism O, (1)®? —
Oy (H+F) in the exact sequence in display ([B2) factors through O, (1)®? — Oy (H+
F), we get an exact sequence:

0— Iz (1) > M, — My — 0.

Using this exact sequence and the one in display ([B2]) we get a second exact com-
mutative diagram:

!
0 My OL(
!

0 0 0

0= Rp(1)®? —— 0% —— 7 /pn (1)®2" — 0
¢ @(%H—l) \L

0 T Opn M, 0
) | !

0— o 9 - OP@TEn+1—2u) ML 0
0 0 0

Here the sheaf G, defined with the bottom row, has ¢1(9) = 0 and rk(§) = n+1—2u,

while R, (1) is the Koszul syzygy of L which we already proved to be stable of slope
1/(1 — w).

In view of the leftmost column of the previous diagram and of the slope-
semistability of Ry, (1)®2, the inclusion K < T must descend to an inclusion X < §.
We get thus two injections with isomorphic cokernel:

(38) X — g, Rp(1)%?% — L.

Denote by P this common cokernel sheaf, so P ~ §/K ~ £/R;(1)®2. Then, note
that independently on whether n is even or odd, we get:

tk(X) =p=n+1-2u=rk(9).

Therefore, since (/\" K)V¥ ~ Opn(—1), we get a hyperplane H < P" as support
P. Note that the hyperplane H is determined uniquely by T. Indeed, if X' — T
is an embedding of any saturated destabilizing subsheaf of T, then the induced
morphism X' — £ is either zero or an isomorphism, since X’ and £ are stable of
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the same slope. If X' — £ is zero then X' — T factors through X so it determines
the same hyperplane H. If X’ — £ is an isomorphism, then T is decomposable,
which is absurd by Lemma B3]

Now, recall from Lemma B2 that T, is equivariant for a natural SLo-action on
P™. So the hyperplane H must be fixed by this action, in other words, it must
correspond to a trivial summand V; in the decomposition in display (33)).

Set t for the number of indices i € {1,...,n + 1 — 2u} such that ¢; = 1, so:

n+1—2u
(39) u=t+ > ¢;=2n-2u—t+1)+t
i=t+1

If t > 3, then we can equip Y (and consequently T,) with a further SLs-action
by letting SLo operate as Vi—1 ® Op1 (1) on the summands of €, of the form Op:(1).
Again we obtain that H°(Op. (1)) contains no copy of V. In all these cases the
SLo-fixed hyperplane H cannot exist and we conclude that T, is stable.

Finally if ¢ < 2 then using [B9), depending on whether n is odd or even, we
get from (BG) or B7) that v < 2 or u < 1, which leaves the only case n = 5,
u = 2, ¢c; = cg = 1. This last case corresponds to the pencil of quadrics o =
(125 + 2324, X224 + Tox5). For this explicit pencil, direct computation shows that

HO((/\2 ‘J'g)v(—l)) = 0 so that T, is stable.

Remark 3.14. One may check that GIT-semistability of o implies slope-
semistability of T,. Indeed, [I, Theorem 3.1] says that GIT-semistability of o
amounts to o being regular with C, supported at A1, ..., Ay with the condition that
for all j € {1,...,¢}, \; has multiplicity at most (n + 1)/2 as a root of det(p,). In
terms of the Segre symbol (see the introduction or the next paragraph), this means
that 377 | ajp;i < (n+1)/2. This implies ;7 | p;; < (n+1)/2, which amounts to
rx, < (n+1)/2, so T, is slope-semistable, as ro = max{>,;"  p;; | j € {1,...,(}}.
However, the converse implication fails as one can see reverting the argument or
considering that there are irregular pencils ¢ having a slope-semistable sheaf T,.

4. PROJECTIVE DIMENSION FOR PENCILS OF QUADRICS

Also in this section, k is an algebraically closed field of characteristic different
from 2.

4.1. Segre symbols. Let o be a pencil of quadrics. Following the notation in-
troduced in Section 5Tl let (u,v) be the splitting type of o, so that its generic
corank 7 satisfies n + 1 =wu + v + 7. Let {\1,...,\¢} = P! be the support of the
torsion sheaf C;. Its localization at A\; of C; can be written in the following way:

5

(€, ~ @ O(B(;ij’,i)'

i=1 A
Here, we denoted by )\;aj ) the subscheme defined by the ideal (g;-” ") where g; is a
linear form vanishing at \; for each j € {1,...,¢}.

The integers a; ; can then be arranged into the so called Segre symbol. We write,
for each j € {1,...,¢}:

Ej = (aj71,...,aj)l,...,aj75j,...,aj,sj), with aj1 > > Qjs;-
[ [ ———

Pj1 Pj,s;
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The Segre symbol ¥ for a pencil of quadrics o is defined to be the multi-set
[X1,...,2¢]. We will use exponential notation for repeated entries; for instance,
the Segre symbol [(1,1,1),(3,3,1),2] in exponential notation reads [12, (32, 1),2].

Note that, as we are dealing with potentially irregular pencils o, we always refer
to the Segre pencil of the regular part ¢ of o. In case o is completely irregular, its
Segre symbol is (J by convention. Note that, in contrast to the behavior for regular
pencils, the Segre symbol of an irregular pencil may be of the form [1?], for some
integer p.

The Segre symbol is a the key invariant of regular pencils. Indeed, the content
of the Segre-Weierstrass theorem is that the set of singular quadrics of a regular
pencil together with its Segre symbol classifies the regular pencil up to homography
of P! and P". For a reference of this theorem going back to Corrado Segre’s thesis,
the reader may look at the classical textbook [7, §XIII.10] or at the more recent
paper [6]. This classical result is extended to irregular pencils as follows.

Proposition 4.1. Given ¢,r; € N and integers 1 < ¢; < ... < ¢, fix distinct
points {\1,..., \e} € P, and a multiset ¥ = [$1,...,3¢]. Then there is an incom-
pressible pencil of quadrics o, unique up to homography, such that:

1
Cor ~ @OJPI (ci), Supp(Ct) = {A1,..., Aet, X(ps) = X.
i=1
Proof. In view of the Segre-Weierstrass theorem, there is a regular pencil, and thus
a regular symmetric pencil of matrices, uniquely defined by the datum of the set-
theoretic support of C; together with the Segre symbol. Therefore the result follows
from Proposition O

Note that p;; < n for all indices (4, j). The splitting type (u, v) satisfies:
L S5
(40) Z Z ajyl-pjﬁi = hO(Gt) =Uu—"nv,
j=li=1

according to the exact sequence in display (24)).

4.2. Ext sheaves. The main result of this section provides necessary and sufficient
conditions in terms of ¥ for the Ext sheaves Extf, (To, Opn) to be non trivial.

Theorem 4.2. For a pencil of quadrics o with Segre symbol ¥ and for ¢ > 0, we
have Ext, (T, Opn) # 0 if and only if there are j € {1,...,4} and k € {1,...,s;}
such that:

(41) qg+pji+...+pjr=n—r1—1,
orry >0 andq+ry =n— 2.

Proof. We prove the theorem under the assumption that o is incompressible, see
the end of the proof for compressible pencils. Since the question is local and T, is
free of rank n — 1 locally around any point outside =,, it is enough to prove the
claim on charts containing a single primary component of =,. In view of Lemma
329 these components are supported either at disjoint linear subspaces associated
with distinct points in the support of C¢, or at the rational normal scroll Y. Note
that the points of the support of C; correspond to the parenthesized pieces of the
Segre symbol. Also, the proof at the points of YV is similar if the support of G
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contains one point or many. So we may assume, without loss of generality, that
¢ =1 and simplify the notation to ¥ = (a}*,...,aP*) with a; > -+ > a5 > 0.

As we did in the proof of item [i)| of Theorem (see Section [B4), we observe
that the sheaf Q, is a line bundle supported at Z,. Therefore, given ¢ > 0, we
have Ext4?(Q,, Opn) # 0 if and only if €zt *(O=,,Opn) # 0, so this in turn is
equivalent to Extl, (T,, Opn) # 0.

Let us analyze =, more in detail and recall the notation of Subsection
Since we are working under the assumption ¢ = 1 the sheaf C;, if nonzero, is
supported at a single point of P! and we may fix coordinates so that this point is
A = (0:1). In such coordinates and up to the action of GL,1(k), the pencil of
matrices p = p, of the regular part of ¢ is a block-diagonal matrix with blocks of

sizes ai,...,as, repeated pi,...,ps times, where a block of size a € N* takes the
form (below, (21, 22) is a basis for H(Op1(1))):
0 0 s 0 Z9 z1
0 s 0 z9 zZ1 0
0
Pa = 0 z9 Z1 0
Z9 zZ1 0

Z1 0

The cokernel of this matrix is the structure sheaf of Oy, where A@ s the
a-tuple point of P! defined by the ideal (2¢). Therefore, we have:

S

Cp ~ @ O?(IZ)-

i=1
For each i € {1,...,s}, we consider the injection A@i) = @) Concatenating
the surjections Oy(s) — Oy ;) We get an epimorphism:

S
®pi
Gy — (‘D OXan -
i=1

For ke {l,...,s}, put qx = Zle pi. From the above epimorphism we get the exact
sequence:

s—1

®pi @Dgs

0—> @O .., = C — Ok, —0.
i=1

Iterating this procedure we obtain a natural filtration:

0=DO cpW ...cDE _g,

where, for all k € {1,..., s}, we have (with the convention as;1 = 0):
k
k ®pi k) ._ k E=1) _ @
‘D( ) = @O)\({;‘*awrl)’ e( ) T ‘D( )/‘D( D= O)\gli*ak+1)'
i=1

To make the proof more transparent, we carry it out first under the assumption
that o is regular, hence p = p,, 11 = 0, (u,v) = (n + 1,0), Cy = 0 and C; = C,.
For any k € {1,..., s}, projectivizing the surjection DF) — CF) we get a closed
embedding P(€"*)) < P(D®) of schemes of the same dimension, with a residual
subscheme of P(€%) in P(D®)) which is isomorphic to P(D*~Y) and has thus
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strictly smaller dimension — by convention, P(D(®) = . Note that, for each
ke{l,...,s}, the exact sequence

0 = Jpew)p@®) = Op(prr)y = Opemwy — 0
induces an exact sequence :
0 — H°(Tpew)pni)) = H(Opepw)) — H(Op(em)) — 0.

Thus, since jP(e(k))/P(D(k)) is supported at ]P’(CD(k_l)), we have an isomorphism
Ho(j[p(e(k))/[p('D(k))) ~ HO(OP(D(;CA))), which in turn implies that j]p(@(k))/[p)(@(k)) is
isomorphic to Op(pe-1)).

Recalling the correspondence ([BII), we send this filtration to P and define, for
each k € {1,..., s} the subschemes Z*) = ¢)(P(D®)) xp1 P(C,)) < P* and T =
P(P(CH)) xp1 P(€,)) = P, Since 1 is an embedding on the fibres of ¢, this gives
Y®*) < =) for each k€ {1,...,s} and finally a stratification:

(42) 0= OE(O) = 05(1) [ 05(571) = OE(S) = OEU,
(43) OE(k)/OE(k—l) >~ Oy,

for all each k € {1,...,s}, with 21 = Y Each component T is the projec-
tivization of a trivial bundle of rank q; over a subscheme of length aj in P'. As

such, it is equidimensional and Cohen—Macaulay of codimension n — g + 1 and
therefore satisfies:

with :

q+2 )0 ifg+2#n—qp+1,
(44) Eatpn™ (00, Opn) = { Wy (n+1), ifg+2=n—q+1.
So this sheaf is non zero if and only if ¢ = n—p; —- - - — pr — 1, which in turn agrees
with (@I).

We apply €zt (—, Opn) to the filtration {@2). To compute this we use @3] and
induction on k € {0,...,s}. Since for all k € {1,...,s} the sheaves [@]) are line
bundles supported on subschemes sharing no common component, the boundary
morphisms induced by applying Eztf, (—, Opn) to [@2) are all zero. We deduce that
Eatli? (0=, , Opn) # 0 if and only if there is k € {1,..., s} such that @I] is satisfied.

This concludes the proof when ¢ is regular.

Now let us assume that o is irregular. Restricting C¢s to each of the subschemes
e X(@9) we obtain the sheaves:

(45) Hk) = k) g Cot(—ans1), ek _ @(k)/@(k—l) — ©®aktry)

)\(akfakJrl)?
with the filtration:
(46) Cu(—ar) = DO c DD ... D) = ¢,.

Again, for any k € {1,..., s}, we get an embedding P(C*)) < P(D*)) of schemes
of the same dimension. The residual subscheme is P(ﬁ(kfl)) and has strictly smaller
dimension — this time P(CD(O)) =Y. The component Y of =, is a rational normal
scroll over P!. We denote by F the divisor class of a fibre of the scroll map Y — P!.

Using the diagram (BI) we define, for each k € {1,..., s} the subschemes Z(*) =

P(P(D®) xp1 P(€,)) = P and T®) = y(PEH) xp1 P(C,)) = P*. We get

T®) < =), Note that 14 (p*(Op1(1))) ~ Oy (F) and that F|rw = 0. Hence, in
view of ([@H) we obtain for each k € {1,..., s} an exact sequence:

(47) 0= Ozpe-n) (—arF) = Ozy = O3y — 0.
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With our convention, ¥ = 2(© = T go for k = 1 the leftmost term of the
above sequence is Oz (—a1F) ~ Oy (—ar F).

We have obtained a stratification of =, that allows to compute the desired Ext
sheaves. Indeed, to compute Sxt[%,;fz((’)gd , Opn ) for ¢ > 0 we apply Eatf, (—, Opn) to
@7 and use induction on k € {0,. .., s} together with twists by Oy (¢tF’) for suitable
t € Z. For k = 0 we observe that, since Y < P" is smooth of codimension n —ry, for
any t € Z we have Ext%*(Oy (tF), Opn) # 0 if and only if ¢ = n—7 — 2. For k > 1,
T®) is the projectivization of a trivial bundle of rank g + r; over a subscheme of
length ay, in P!, so:

(48) 81’7&%?{2(0?%),0@71) #0 ifandonly if g =n—7r; —qx — 1,

and this sheaf is wy,) (n+1) if ¢ = n—r; —qr —1. Again, since these sheaves are line

bundles on Y(O), ceey T() and since these subschemes have no common component,
we have the vanishing of all the boundary morphisms of the long exact sequence
obtained by applying Extf.(—, Opn) to @D). Therefore, 8113'15%:2(050,@?71) # 0 if
andonlyifg=n—ri —p; —---—pp—1for some ke {l,...,s}org=n—ry —2.
This concludes the proof if ¢ is incompressible.

Finally, if ¢ has compressibility m with 1 < m < n, then we set n = n —m
as in Lemma [214] and work with the incompressible pencil of quadrics 6 in P™
associated with o. We obtained already a stratification of Z; Cohen—Macaulay
closed subschemes of P which are projective bundles over subschemes of P!, or the
scroll Y. The equations of these subschemes, viewed in P™ define cones over such
subschemes, which are still Cohen—-Macaulay of the same codimension. Therefore,
for all ¢ > 0, we have Ext{, (T,, Opn) # 0 if and only if Extl, (Ts, Opa) # 0. This
concludes the proof. O

Let us give a couple of explicit examples to show the stratification appearing in
the proof of the theorem.

Example 4.3. Consider a regular pencil with Segre symbol [(63,3%,2%)], so that
¢=1,s =3, and (a1,a2,a3) = (6,3,2), (p1,p2,p3) = (3,4,3). We have a torsion
sheaf €, = coker(p) with h%(C,) = 18 +12+6 = 36 = n+ 1, so n = 35 and
p= p6®3 ® p4®4 ® p2®3. We have:
Co = ®(3) = O?(?é) @ O%(Lls) S O?(?;)-

The Jacobian subscheme Z, = () is set-theoretically a linear subspace of P3°
of dimension 3 +4 +3 —1 = 9. We have €*) = B = Oiaé?. The scheme =,
contains Y3 = 1, (*(C®))) which is a double structure over P? < P3°. We have:

DR = 93

98 @O @ — @7

A1) A1)

Note that T2 = 4, (p*(P(€?)))) and Z?) = ¢, (¢*(P(D?))) have dimension
6. The residual subscheme of Y®) in 23) = = is 2. This is set-theoretically a
PP% and contains Y which is a reduced P%. We have:

P = e = 0% .

The residual subscheme of T®) in 2®) is 21 = Y This is a triple structure on
P2. For ¢ > 0, we have Extl, (T, Opn) # 0 if and only g € {24,27,31}.
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Example 4.4. An incompressible pencil with r; = 3, (c¢1,¢2,¢3) = (1,2,2) and
Segre symbol ¥ = [(32,1%), (4%, 32,23)], hence with (u,v) = (47,5), lives in P4, Tts
Jacobian scheme consists of a rational normal scroll Y of dimension 3 and degree
5 spanning a P and of two linear spaces (Z1)req and (Z2)req of dimension 5 and 9
meeting Y along two disjoint projective planes appearing as fibres of the scroll. The
subscheme (Z1) contains a simple P> with a double line as residual subscheme. On
the other hand the subscheme (Z3) contains a double PY, whose residual subscheme
still contains a simple P® with a simple P* as residual subscheme.

We have ¢ = 2 and Extf, (T, 0pn) # 0 if and only ¢ = 54 —2 — 7y or ¢ =
4—1—-ri—piporqg=5—-1—-r —pi1—pioorq=>54—1—r —pyqor
q = 54 — 1 — T — P21 — P22 Or q = 54 — 1 — T —P2,1 — P22 — P23 which giVGS
q € {40,43,44,45,48,49}.

From the proof of the previous theorem, we extract some precise information on
the primary components of Z,. Assume ¢ is an incompressible pencil of quadrics
having Segre symbol ¥ and degree vector ¢, with:

. p"s,
Y= [215' "725]7 E] = (ag?,]il?" '5a’j75jj)a
c=(c1,...,Crp),
for some integers rq,,s1,.. ., se, {(ajyivpj,i) | je{l,....0}i€ {17"'7Sj} with
aj1 > - > ajs; forall je{l,...,¢} and ¢; < --- < ¢,,. Recall the convention

aji=0fori>s; and for each j e {1,...,0} set gj o —1 =31 pji—1.

Corollary 4.5. Let o be an incompressible pencil of quadrics.

i) If o is regular, then the Jacobian scheme Z, has primary components:

T;k), forje{l,....0} and ke {1,...,s;},

where the components T;k) are projective spaces of dimension qj — 1 over
subschemes of length a;; — ajr+1 of P1. We have:

‘
h0z,) =Y a1, TV AT =g ifj =75
j=1
ii) If o is irreqular, then the Jacobian scheme =, consists of a smooth scroll
Y of dimension r1 and degree v =Y.' ¢; and of the primary components:
Y;k), forje{l,....0} and ke {1,...,s;},
(k)

J
over subschemes of length a;; — aj k11 of P. Also:

where the components T are projective spaces of dimension r1 + q;r — 1

Wo=,) =1, TPt —g iz
Finally, setting = for the residual scheme of Y in =5, we have:
[
hO(Oé) = Z CLjﬁl.
j=1
Proof. We gave in Lemma [3.9] a set-theoretic description of the Jacobian scheme =,

which shows that =, consists of ¢ pairwise disjoint linear spaces, together with the
scroll Y in case o is irregular, and in this case we also noticed that Y has dimension
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r1 and degree v. Also, in the proof of Theorem we gave the structure of each
primary component supported at any of the linear spaces mentioned above. Taking
the union over all such spaces we get precisely the set {TEk) |jed{l,.... ¢}, ke
{1,...,s;}}, or {Tgk) | 7e{1,....0}, ke {1,...,s;}} depending on whether o is
regular or not. Note that in the proof of Theorem 2] we also had the component
YO but this is just the scroll Y which is already accounted for.

To compute h?(Oz,), note that taking h® of the structure sheaf is an additive
operation on disjoint primary components, which is invariant under taking projec-
tive bundles and takes value a at )\;a) c P! for any a € N*. So for regular pencils
we get:

L S5 L S5 l
h0(0z,) = 35 2 h0O0xk) = 3 D105 — ajes1) = ) a4
j=1k=1 j=1k=1 j=1
For irregular pencils, the Jacobian scheme is connected as Y meets all the compo-
nents {T;k) |jef{l,....0}, ke {l,...,s;}}, hence we have h?(O=z,) = 1. Finally,

the primary components of = are precisely the {T;k) [jed{l,....t}, ke{l,...,s;}}
so the last formula follows as in the regular case. O

4.3. Applications to projective dimension. Theorem allows to compute
the projective dimension pdim(7,) of the logarithmic tangent sheaf associated to
a pencil o quadrics, namely, the minimal length of a locally free resolution of 7.

Proposition 4.6. Let o be an incompressible pencil of quadrics.
i) Assume o is wrregular. Then pdim(T,) =n —ry — 2.
i) Assume o is regular and put p = min{p;. | j € {1,...,£}}. Then:

pdim(T,) =n—p— 1.

Proof. By Theorem 4.2 we can compute for which values of ¢ > 1 one has
Extd.(Ty,Opn) # 0. On the other hand, we have:

pdim(T,) = max{q e N | Extl, (T, Opn) # 0}.

Fixing j € {1,...,¢} and letting k vary in {1,...,s;} the maximal value for
n—1ry —pj1 — - — pjr — 1 is attained by choosing & = 1. Such value is thus
n—r1—pj1— 1. Letting j vary in {1,..., ¢}, the maximal value of n —7r1 —p;1 —1
isn—ry —p—1. The maximum between n —r; —p—1landn—ry —2isn—1r; — 2
because p > 1. This gives the result. O

Example 4.7. A pencil o as in Example has pdim(7T,) = 31. For Example
A we get pdim(T,) = 49.

Example 4.8. The completely irregular pencil o = (x125 + 2324, T4 + ToT5)
showing up at the end of the proof of Theorem B2 has n = 5,u =v =7 = 2. So
for ¢ > 0 we have Extf, (T, Opn) # 0 if and only if ¢ = 1. We get pdim(T,) = 1.

Corollary 4.9. A regular pencil of quadrics is locally free if and only if n € {1,2}
or its Segre symbol is [(1,1),(1,1)] or [(2,2)].

Proof. A regular pencil o is locally free if and only if all the integers ¢ satisfying
(1) are non positive. This is always the case for n < 2 and holds true for the Segre
symbols [(1,1),(1,1)] or [(2,2)] so one implication is proved.
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Conversely, assume n > 3 and o locally free. Set a = min{a;1 | j € {1,...,¢}}.
For all j € {1,...,¢}, take k = 1 and define ¢ by ([#I]). The inequality ¢ < 0 gives
pj1 = n — 1, which implies, in view of [{0), that:

[
n+1lz Z(a% (n—1) +Zawp,7>.

=2

This gives n(al — 1) < al + 1 and therefore either a = ¢ = 1, or al = 2 and n = 3.

In the former case s; = 1 so {Q) gives p11 = n + 1, Wthh is impossible. In the
latter, either (a,f) = (1,2) and the Segre symbol is [(1%), (12)] = [(1,1),(1,1)] or
(a,?) = (2,1) and the Segre symbol is [(22)] = [(2,2)]. O

In the same spirit we have, more generally, the following.

Corollary 4.10. Let o be an incompressible pencil of quadrics. Then:
i) If o is regular, then pdim(T,) > 253,

.. .. . 2n—"7
i) If o is irregular, then pdim(T,) > 2L,

Proof. Assume o is irregular. Then by Lemma B.10 we get:
n+1l 2n—-7

3 3

Next, suppose o is regular. Again put ¢ = min{a;1 | j € {1,...,0}}, p =
min{p;, | j € {1,...,¢}} and use @) to get n + 1 > lap. By Corollary ([@0]), we
obtain:

pdim(T,)=n—r —2>n—2—

n+1=Lla(n — pdim(T,) — 1).
Rearranging the terms, this yields:

n+1
dim(T,) = n — -
pdim(T,) = n a
We saw in the previous proof that af > 2 so this gives pdim(T,) > 252 O
Remark 4.11. The previous bounds are sharp. Indeed, if ¢ is a completely irreg-
ular incompressible pencil, then 3r1 = n + 1 so pdim(7,) = 252.

Also, if ¢ is a regular pencil with n > 3 odd, say n + 1 = 2m, then we may take
o to have Segre symbol [(1™), (1™)] or [(2™)] and we get pdim(T,) = 252,

Example 4.12. Let us list all the possible cases for irregular pencils of quadrics
in P3. We give the possible Segre symbols of the regular part.

1| (u,0) | AO(C) | Cet | Compressible | Segre
11 (3,0) 3 Op1 yes [1,1,1]
11 (3,0) 3 Op1 yes [2,1]

11 (3,0) 3 Op1 yes [3]

1] (3,0) 3 Op1 yes [1%,1]
11 (3,0) 3 Op1 yes [(2,1)]
11 (2,1) 1 Op1 (1) no [1]

2 | (2,0 2 0%? yes [1,1]

2 | (2,0) 2 0%’ yes [2]

2| (1,1) 0 Op1 @ Op1 (1) yes %]

The pencil with empty Segre symbol is completely irregular. We see that only
one case gives an incompressible pencil. This one has pdim(7T,) = 1.
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4.4. Graded projective dimension. Let n > 2. We call graded projective di-
mension of a torsion free sheaf € on P™ :

gpdim(&) = max{q € {0,...,n — 1} | Ext}, (&, Opn )y # 0}.
Here, Extd, (€, Opn )4 is a shortcut for @rez Extf, (€, Opn (t)). The graded projective

dimension is the length of a sheafified minimal graded free resolution of the module
of global sections of €.

Theorem 4.13. Let o be a pencil of quadrics in P™.
i) Assume o is reqular. Then:
epdim(T,) =n — 2,
unless the Segre symbol o of o [17,19] for some p = q = 1, or [(29,17)] for
some p =0 and q = 1, in which case:
gpdim(T,) =n—q— 1.
ii) Assume o is irregular of generic corank r1. Then:
gpdim(T,) =n —1,
unless o has degree vector (1,...,1), in which case:
gpdim(T,) =n—ry — 2.
We underline that the graded projective dimension of T, depends on the Segre

symbol only if o is regular; otherwise, gpdim (7T, ) only depends on whether or not
the degree vector ¢ = (cy, ..., ¢y, ) contains a value strictly greater than 1.

Proof. First of all we observe that, without loss of generality, we can assume that
the pencil o is incompressible. Indeed, if o has compressibility m > 0, then we may
work in a projective space of dimension 1 = n — m whose coordinates do occur in
the quadrics of 0. The minimal resolution obtained over the coordinate ring of this
space is a minimal resolution of T, /0% and thus computes gpdim(7T,).

Next we note that, according to the proof of Theorem B2l the sheaf Q,(—1)
of an incompressible pencil ¢ is isomorphic to Oz, (F), where F is the class of
a fibre of the scroll map ¥ — P!. The divisor F is trivial on the components

{Tgk) [jed{l,....¢}, ke{l,...,s;}}. Seta = Zﬁ:l a; 1. By Corollary L5, we get:
(49) RY(Q(-1)) = a, if o is regular.

Also, if o is irregular, denoting again by = the residual scheme of Y in Z,, we get
an exact sequence:

(50) 0— Oy(F) = Q(—-1) —» 0z — 0.

In order to prove the result, we will need two more ingredients, namely two
equivalent definitions of the graded projective dimension. For the first one, for any
coherent sheaf & on P™ and g € N, put H{(€) = @®,., H1(E(t)). Set:

qo = min{q € N* | H}(T,) # 0}.
We have, by Serre duality:
gpdim(Ts) =1 — qo.

The second one is worked out in the framework of graded modules over the
polynomial ring R = k[xg,...,x,]. Consider the matrix J, as a map of graded
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modules R"*! — R(1)? and define the R-modules Q,, M, and T, as the cokernel,
image and kernel of this map, so that sheafifying the graded modules @,, M, and
T, we get back Q,, M, and T,. We write down the exact sequence of graded
R-modules:
0T, >R 25 R(1)2 - Q, — 0.
The Auslander—Buchsbaum formula gives:
gpdim(7T,) = n + 1 — depth(Ty).
We compute the depth of T, by the relation:
depth(T,;) = min{q € N | Ext}(k, Ty) # 0},

where k is the residual field, namely k = R/(xo, ..., x1).

Having set up all this, we are in position to prove So assume o is regular.
First we compute gpdim(7,) when ¥ = [1P,19] or ¥ = [(29,17)]. If ¥ = [17,19]
with p = ¢ = 1 then p + ¢ = n + 1 and the generators (f,g) of o can be chosen
tobe f=af+ ---+a) ;and g =a) +---+ 5. Set L = V(xg,..., 2, 1) and
M =V (xp,...,z,). Looking at J,, we see that:

Ty ~ fRL(l) (—BRM(l),

where Ry and Ry, are the Koszul syzygies of L and M, see §3.3.2 Now
gpdim(RL(1)) =p—2 > ¢ — 2 = gpdim(Rp (1)), so:

gpdim(T,)=p—2=n—q—1.

Next, we deal with ¥ = [(29,1P)], for ¢ = 1 and p > 0. Note that p + 2¢ = n + 1,
son—q—1=¢q When p=0 we have Qy(—1) ~ Oya), where T is a projective
space P" 7 over a length-2 subscheme of P!, while for p > 0 we have a filtration:

O — O'r(l) — Qg(*l) g O'r(2) — 0,

where T is a reduced P~ 7 and Y is a reduced P4~! < P"~4. In both cases,
since the coordinate rings of the subschemes T(*) are graded Cohen-Macaulay rings,
we have gpdim(Oau)) = codim(Y*)). Therefore gpdim(T,) + 2 is the maximum
of the gpdim (O ) for different values of k. Since n — g — 1 = ¢, in both cases we
obtain the equality:

gpdim(T,) =n—q— 1.

Let us show that, unless ¥ = [17,19] or X = [(29, 17)], we have H?(T,(—1)) # 0,
which implies gpdim(T,) = n — 2. It suffices to show H'(M,(—1)) # 0, which in
turn holds true if h°(Q,(—1)) > 2. But by @), we have h°(Q,(—1)) > 2 unless
¢ = 2 and S§1 = S2 = Q1,1 = G231 = 1, or { = 1, S1 € {1,2}, a1 = 2. Since
these two cases correspond to the Segre symbols ¥ = [17, 1] for some p,q = 1 or
¥ = [(29,17)] for some ¢ = 1,p = 0, we get gpdim(T,) = n — 2 except in these
cases.

Now we prove that, for regular pencils, we have gpdim(T,) < n — 2. It suffices
to show that the module @, contains no copy of the residual field x. Indeed,
otherwise there would be a non-zero element of @, represented by (h, k) € R(1)?,
whose annihilator contains the maximal ideal (zg,...,z,). Up to switching the
factors, we may assume h # 0. Also, since the pencil o is regular, we may choose
the generators (f, g) of the pencil to be both associated to smooth quadrics. Also,
we may select coordinates zo, . ..,z, of P" so that 2f = 23 + - + 2.
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Then, for the pair (h, k) € R(1)? with h # 0, there must be a matrix (a; j)o<i j<n,
with a;; € R for all 0 < 4,7 < n such that:

ap,0 - ao,n

N O v

Qn,0 " An,n

where o0 = (f,g) and we wrote g; = 0g/0x;, for all i € {0,...,n}. We used here
2f = a% + -+ + 22. Note that, by the symmetric role of f and g, we may assume
h # 0. Hence, (BI)) implies that the matrix A = (a;;)o<i j<n S hl,41 and is thus
invertible in k(xo, ..., z,). Hence, we may rewrite (&1) in x(zo,...,x,) as:

(Ve mar= (=),

Therefore J, should have generic rank 1, which is impossible by the Euler relation
since f, g are not proportional.

Summing up, we have proved Hompg(x, Q,) = 0. Therefore, applying Ext}; (s, —)
to the above sequence we get Ext%(k,T,) = 0 for ¢ < 2. Hence depth(7,,) > 3 and
finally gpdim(T,) < n — 2. This concludes the proof for regular pencils.

It remains to carry out the proof if ¢ is irregular. In view of the filtration (G0)
and since the coordinate rings of the primary components of = are graded Cohen—
Macaulay rings, we get:

gpdim(0z) = codim(E) < codim(Y) = n — 7.

Now, if ¢; = 1 foralli € {1,...,71}, the sheaf Oy (F) has a minimal Buchsbaum—
Rim resolution of length equal to codim(Y"). This is obtained by the Buchsbaum—
Rim resolution of Oy (F) in the linear span L = P'~! « P" of Y seen as cokernel
of a matrix of linear forms of size 2 x v over L, combined with the Koszul complex
of L in P™; we refer to [5, Theorem A2.10, Exercice A2.19] for Buchsbaum-Rim

complexes and matrices associated with scrolls.
We deduce gpdim(OQy (F)) = codim(Y), which in turn yields:

gpdim (T, ) = max(gpdim(Oz), gpdim(Oy (F)) =2 =n —r; — 2.
This proves the last part of

To conclude the proof, let us assume that there is ¢ € {1,...,r1} such that ¢; > 2
and show that gpdim(7T,) = n — 1. It is enough to show that H(T,) # 0. Note
that H°(T,) = 0 by incompressibility of o, hence:

RY(Ty) =2(n+1) —h%(Qy) — (n+1) =n+ 1 —h%(Q,),
so it suffices to check h%(Q,) < n + 1.

To show this inequality we recall the notation (u,v) for the splitting type of

o and take cohomology of ([B0) twisted by Opn(1). Since the linear span of the

residual subscheme = of Y in 2, is P(H°(C,)) and since h¥(Oy (F + H)) = 0 for
k>0 and h°(Oy (tF + H)) = v + trq, for all t > 0, we obtain:

h%(Q,) = h’(Oy (F + H)) + h°(02(1)) =

71

= Z(Ci +2)+ h%(C) = (v +2r) + (u —v).
i=1
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We are reduced to show u + 2r; < n+ 1 and, since n+ 1 = v + v+ rq, this amounts
to v > r1. But the inequality v = Z:;l ¢; > rp takes place precisely if there is
i€ {l,...,r1} such that ¢; > 2, so the non-vanishing H'(7,) # 0 is established.
The proof of the theorem is achieved. O

Example 4.14. Let o be a regular pencil of quadrics with 79 = 1. Then the
module of global sections T, of T, has the Buchsbaum—Rim type resolution:

n+1 <(n+1

OHTGHR(*2)(3)H"'HR(flfj)J j+2)<—...HR(7n)’ﬂ—l(707

with j € {1,...,n — 1}. This resolution is minimal and linear of length n — 2.
For a regular pencil of quadrics, the Buchsbaum-Rim complex in the above
display is exact if and only if dim(Q,) = 0. This happens if and only if 7o = 1.

5. PENCILS OF QUADRICS IN DIMENSION 3

We can arrive at a full classification for pencils of quadrics in P? over an alge-
braically closed field & of characteristic different from 2. The result is the following.

Theorem 5.1. Let o be a pencil of quadrics in P3. Then the following holds.

1) The pencil o is free if and only if it is locally free. This happens:
a) If o has Segre symbol [(1,1),(1,1)], in which case Ty ~ Ops(—1)9?;
b) If o has Segre symbol [(2,2)], in which case T, ~ Ops(—1)%2%;
c¢) If o is irreqular and incompressible, in which case T, ~ Ops(—1)?;
d) If o is compressible, in which case T, ~ Ops @ Ops(e — 2), where

e € {0,1,2} is the number of double planes in the pencil.
it) In all other cases o is regular, pdim(T,) = 1 and the sheafified minimal
graded free resolution of T, reads:

a) If ro = 1:
0 — Ops(—3)%% — Ops (—2)%* - T, — 0.
b) If ro = 2 and the Segre symbol is not [(1,1), (1,1)] or [(2,2)]:

0 — Ops(—3)P? = Opa(—2)P? @ Ops(—1) — T, — 0.

The proof of the theorem is by inspection of the different Segre symbols. It
follows from the analysis appearing in the next subsubsections.
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5.1. Regular pencils. Let us write the table of possible Segre symbols of regular
pencils, together with the description of =, arising from the previous sections.

Segre | V4 || =5 | 0 | Chern | stable | pdim
[1,1,1,1] | 4 4 simple points 1] (-2,3,4) S 1
[2,1,1] 3 double point & 2 simple points 1] (=2,3,4) s 1
2, 2] 2 2 double points 1] (=2,3,4) s 1
[3,1] 2 triple point & simple point 1] (-2,3,4) S 1
[4] 3 quadruple point 1] (=2,3,4) s 1
[((1%),1,1] | 2 line & 2 simple points 2 | (-2,2,2) SSS 1
[(1%),2] |2 line & double point 2| (-2,2,2) | sss 1
line T® &
[(2,1),1] |2 simple point Y™ & 2 1(-2,2,2) SSS 1
simple point
line Y® &
1 1 2 —2,2,2 1
(C) double point Y™ (=2.2,2) 598
[(1H),1H)] ] 2 2 disjoint lines 2 | (=2,1,0) | free 0
[(2%)] 1 double line T™ 2 | (-=2,1,0) | free 0
13,1 2 plane & simple point 3 -1,1,1 S
[(
lane T® &
2,1%)] |1 P ~1,1,1 1
[(2,15)] simple point T 3| (L1 s

In the column labelled stable, we wrote s or sss according to whether T, is stable
or strictly semi stable (in the sense of the slope), and free when T, is split. In the
description of Z, we let the subschemes T(*) show up when a primary component
of =, has a non trivial filtration as in the proof of Theorem In the column
labelled Chern we write the triple (¢1(T), c2(T5), c3(T5))-

Some comments are in order.

i)
ii)

iii)

When ¢ is free, we have T, ~ Ops(—1)®2.
When rg = 1, the sheaf Q, has a Buchsbaum—Rim resolution that induces
a sheafified minimal graded free resolution:

0 — Ops(—3)®? = Ops(—2)®* - T, — 0.

This gives the Chern classes of T, when rg = 1.

When ry = 2, there are lines M, L — P2, not necessarily distinct, with
L c Z,, and a finite length subscheme W < M, such that T, fits into (IJ).
Note that, since ro = 2, there is a quadric in the pencil, say f2, which is
a rank-2 quadric in the coordinates zg, 1, up to homography. So, setting
L = V(xp,21) and composing the Jacobian matrix with the projection
OP?(1) — Ops(1) onto the second factor and with the obvious quotient
Op3(1) — Or(1) we obtain explicitly the morphism Q, — O (1) required
to get (I8), so Lemma B4 holds also for (n, ) = (3,2).

We have Ry ~ Ry ~ Ops(—2) and the length of W is either 2 or 0,
according to whether pdim(7T,) is 1 or 0. So T, is polystable in the free
case, otherwise it is strictly slope semistable and Gieseker-unstable.

In the latter case, we have Jyy/p; =~ Opr(—2) and the morphism Rz, (1) —
Iw /(1) of ([@8) is the natural surjection Ops(—1) — Opr(—1). Therefore
the term Gy appearing in the sequence (20) fits into:

0 — Ops(—3) = Ops(—2)®? - Gy — 0.
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Then we have a sheafified minimal graded free resolution of 7, of the form:

This gives the Chern classes of T, when rg = 2.
iv) Stability of T, for rg = 3 follows from Proposition Bl
v) One can put two quadrics of o in normal form. This is done in [6].

5.2. Irregular pencils. We gave in Example[dT2]the list of numerical invariants of
irregular pencils in P3. We observed that there is only one irregular incompressible
pencil in P3. Note that in any case the number of points in the support of €;
is at most 3, so irregular pencils have a normal form (f1, f2) which is completely
determined up to SLg-action as SLo is 3-transitive on P!. Note that we can assume
that this support is contained in {(1:0),(0:1),(1: —1)}. The column labelled m
displays the compressibility of the pencil.

We are going to see that, for irregular pencils of quadrics o in P3, the sheaf T, is
always free, with exponents as in the following table. The pair (a,b) in the column
exponents indicates that T, ~ Ops(a) @ Ops (D).

1 | (u,v) | exponents | m | Segre | f1 | fa

1] (30 (0, —2) 1I[LL1] ] 28 + 23 z3 + x5

11 3,0 | (0,-2) [1] [21] Tox1 3 + 23

11 3,0 | (0,-2) |1 3] | 2zow2 + % ToT1

1] (3,0 (0, —1) 1| [(2,1)] | 2zox: + 23 z3

11 (3,0 (0,—1) | 1| [1%,1] z2 3 4 23

1] (2,1) ] (-1,-1) |0 [1] ToTa 2x0x1 + 23
2 | (2,0) (0,0) 2 | [1,1] x5 x3

2 | (2,0 (0,0) 2 [2] xg ToT1

2 (17 1) (07 —1) 1 [@] XoX2 o1

5.2.1. Irreqular incompressible pencils. The unique irregular incompressible pencil
on P? has 71 = 1 so according to Proposition @6 we have T, locally free.

The splitting type of o is (2,1) and the regular part of o vanishes at a single
point A € P! which gives a single quadric of corank 2 in the pencil, so 7o = 2. This
gives a component 2 « =, which is a reduced line. The component Y of =,
is a line which meets Z() at \. In the normalized form appearing in the proof of
Theorem [L.2] we have A = (0 : 1) and the matrix p reads:

0 zZ1 Z2 0

20 00
» 0 00
0 0 0=

The associated pencil is (22972, 22071 +2%) and, up to dividing by 2, the Jacobian

matrix reads:
X9 0 Zo 0
r1 X9 0 I3

The kernel of this matrix is T, ~ Ops(—1)®?, the syzygy map being:

o 0
—T1 —I3
—xI2 0

0 Zo
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5.2.2. Compressible pencils. Assume o is compressible. Then the sheaf T, contains
a copy of the trivial sheaf Ops which is thus a direct summand of J,. Therefore
T,/Ops is a reflexive sheaf of rank one and thus isomorphic to Ops(—c1(7,)). For
compressible pencils, we get the following.

i) If o contains no double plane, then T, ~ Ops @ Ops(—2).
ii) If o contains precisely one double plane, then T, ~ Ops @ Ops(—1).
iii) If o contains two double planes, then T, ~ Ops @ Ops.

6. LOCALLY FREE PENCILS OF QUADRICS

Let us conclude the analysis of freeness and local freeness of pencils of quadrics
over an algebraically closed field x of characteristic different from 2. In the next
table, the column labelled ¥ displays the Segre symbol of the regular part of o. In
the column labelled exponents we write the sequence of degrees of the line bundles
which are direct summands of T, for instance the sequence (0”3, —12) means that
T, = 0P @ Opn (—1)®2. Recall from Section EH] that 7 = n — h%(T,). When
n = 2 one should not consider the first three lines.

Theorem 6.1. Let n > 2. A pencil of quadrics o is free if and only if o is locally
free. This happens if and only if, up to homography, o = (f1, f2) is:

fi | f2 | exponents | A | ro | r1 | )
Tox1 T2x3 073, —1%) [ 3 n—2]n-3|[(17),(1%)]
Tory + x2w3 | a3+ a7 | (0"3,-12) |3 |n—2|n—-3 [(2%)]
ToT2 zory + 23 | (073, -12) |3 |n—1|n—2 (1]
z3 + a3 23 +23 | (0"2,-2) [2|n—1][n—-2] [1,1,1]
(52) ToT1 w3+23 | (02,-2) [2|n—1|n—-2 2,
2z072 + 23 ToT1 (0m=2,-2) |2|n—1|n—2 [3]
2z011 + 75 z3 o2 1) [2] n [n—=2] [(2,1)]
x? 423 | (0"2,-1) [2| n |n-—2] [1%1]
3 a3 (om= 1) 1| n |n-1 [1,1]
x3 ToT1 (om1) 1 n |n-—1 [2]

Proof. Let o be a locally free pencil of quadrics. Following the notation of Section
2.3 set m for the compressibility of o and 7 = n — m. By Lemma [Z14] the sheaf
T, decomposes as O%ﬁ @€, thus € must be locally free. In addition, the associated
incompressible pencil & is also locally free, since T5 coincides with the restriction
of € to some n-dimensional linear space.

If 6 is regular, then Corollary says that n < 2 or n = 3 and & has Segre
symbol [12,12] or [22]. In the latter case the normal form of the quadrics of &
obtained as in the proof of Theorem is the one displayed in the first two lines
of the table in display (B2)). Since o depends only on z, ..., x4, this is actually the
normal form of the quadrics of o.

On the other hand, if ¢ is irregular, then, since ¢ is locally free, setting 71 for
the generic rank of &, we must have 7y > n — 2 by Corollary .6l Combining this
with Lemma B0 gives 1 + 1 > 37 — 6 which implies 7 < 3. If 7 = 3, we are in the
situation of Subsection .21l and we obtain the third line of the above table.

It remains to treat the cases n < 2. Let us assume n = 2. Since ¢ is incom-
pressible, T is a reflexive sheaf of rank 1 with determinant equal to e — 2 where
e is the number of double lines in 6. Note that e € {0,1} as & is incompressible.
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Also, e = 0 if and only if rg = n — 1 and this corresponds to the Segre symbols
[1,1,1], [2,1] and [3], while e = 1 takes place when ro = n and the Segre symbol
is [(2,1)] or [(1,1),1]. These Segre symbols are associated to unique pencils up to
homography since ps defines at most 3 distinct points in support of €; and PGLa (k)
acts transitively on triplets of points of P!.

Finally, assume n = 1, so that T, ~ Opn. Then there are only two possible Segre
symbols, whose normal forms give the pencils (22, 2%) and (zox1,23). O

7. LOCALLY FREE PENCILS OF HIGHER DEGREE

In this section, k is any field of characteristic 0. In contrast with the case of
pencils of quadrics seen in the previous section, we will now show that there are
locally free pencils of higher degree that are not free.

Before stepping into the general case, let us take a look at the case of pencils of
cubics in detail.

Over the complex projective space P3, there are, according to [2], two non-normal
cubic surfaces up to homography. In the homogeneous variables (zo,...,x3), the
equations of these surfaces are:

2 2 2
f= les + ror2 +xiT3, , g = les + zoT2 + ToT123.

Both surfaces are singular along the line L = V(xg,z1). The Jacobian matrix of
the pencil of cubics o = (f, g) reads:

2x0T2 356% + 2123 :v% :v%
2x0r9 + 123 3%‘% + Tox3 :v% ToT1)

gcr:

The sheaf Q, has rank two over L and admits no zero-dimensional subsheaf. The
first part of Lemma 2.2 implies that T, is locally free.
However, the scheme-theoretic locus where Q, has rank two has an embedded

point at p = (0 : 0 : 1 : 0). In fact, the Jacobian scheme =, has 4 primary
components Py, ..., Py described by the next table.

Dimension | degree | radical ideal

1 5 (xo,xl)
1 1 (xl,xg)
1 1 (IO 7171,173)
0 20 (LL'Q,LL'l,,Tg).

Note that (Z,)rea consists of the union of the 3 lines V(zg,z1), V(x1,23) and
V(xo — x1,x3); the first one appears with multiple structure of degree 5.

In this example, T,(2) has ¢1(T,(2)) = 0 and 2(T,(2)) = 1, ¢3(T,(2)) = 0.
Also, we have H%(T,(2)) = 0. Therefore T,(2) is a null correlation bundle.

This example is generalized to degree k + 3, for any k > 0, in our next result.

Theorem 7.1. For any k > 0, define the pencil o = (f,g) as:

k+2 ., k+3
f

= ToxT{ ~ + Ty k+2

k+1 k+1
+ a5 —zy ).

r3, g = I2$3(I2
Then we have T, ~ N(—k — 2), where N is a null correlation bundle.
Proof. Set f = xoa 2 + 25T 4 25 223 and g = wox3(xh — 2¥). Observe that, in

the algebraic closure of k, the divisor V' (g) is an arrangement of planes consisting
of k + 2 planes Hy, ..., Hi.o passing through the line L = V(x1, z2) together with
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an extra plane H not containing L, namely the plane V' (x3). This arrangement is
free, more precisely, we have :

{‘Tg ol OPS (—B OPS(—l) (—DOPS(—k - 1)

Factoring out the trivial summand Ops of T4, we write explicitly the syzygy
¢ Ops(—1)DOps(—k —1) — 0%)’, independently on whether x is closed or not:

T $§+1
¢ = T2 ilflfl‘2

—(k+2)z3 —abxs3
; ; . (D4 ®2 .
The the Jacobian matrix J, : Opy — Opz (K + 2) reads:
g - VT2 (k+ 2)zoxi T (k4 3)ab T 4+ (k + 2)ah T ah+? '
7 0 (k+1)atzouxs 2" ey — (k + 2)ah Tl gy — b t?

Note that this matrix has a vanishing entry at the bottom left corner and that
the vanishing of this entry corresponds to the trivial summand of T,. Therefore,
projecting onto the last three factors of O%f and onto the second factor of ng(kﬂﬂ)
we get a commutative diagram, which is essentially a particular case of the diagram

in display ([I3)):

Ops —— Ops (k + 2)

! !

(53) 0 T, 0% 22 022(k + 2)

l | |

0 — Opa(—1) @ Opa(—k — 1) —= 092 2% 0z (k + 2)

The top arrow defines a surface D < P? of degree k + 2, whose equation must
sit in the top left corner of J,. In other words, D = V(z¥*?) is the (k + 2)-tuple
structure over the plane V(z1).

Also, we observe that the image of d4 is Jo/ps(k + 2), where the curve C is the
scheme-theoretic singular locus of V(g) and is defined by the 3 minors of order 2
of ¢. Incidentally, over the algebraic closure of k, the curve C' consists of k + 2
reduced lines Lq,..., Lyi2, with L; = H n H; for all i € {1,...,k + 2}, together
with a (k+1)-tuple complete intersection structure over L of degree (k+1)? defined
by V(z§xy, 2f ™ — (k + 2)zk ).

The rightmost column of diagram (B3] gives a surjection My — I /ps(k + 2),
whose kernel is a torsion free sheaf of rank 1, isomorphic to Jp/ps(k + 2), where
the subscheme B ¢ D — P2 is defined in P? by the homogeneous polynomials
h of the form h = agfo + -+ + azfz with a; € R = k[xo,...,23] and satisfying
a1g1+az92+asgs = 0, where we put f; = 0f/dx; and g; = 0g/0x;, fori € {0,1,2,3}.
Since ¢ accounts for all relations of the homogeneous ideal of C, the homogeneous

ideal of B is thus generated by (fo, fi¢1,1 + fag2,1 + f3¢3.1, 1012 + faga2 + f332)
and the matrix of these generators is:

$k+2
1
(k + 2)z0x 2 + (k + 3)25 ™3
(k + 2)zozh T rab ™ 4 (k + 3)akah™ 4 (k + 1)abab ™2y
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Therefore, the homogeneous ideal Iz,p of B in D = V(x’f”) is :
(54) (25%3, (k + 2)zoxi b ™ + (kb + D2k ab ;).
We have an exact sequence:
0 — Jgmps(k+2) =M, = Jops(k +2) =0,
and thus, from the leftmost column of diagram (B3):
0—T5 — Ops(—1)®Ops(—k — 1) —» Ip/p(k +2) — 0.

The morphism Ops(—1) — I p(k + 2) is given by the generator 2R+3 of the
ideal of B in D as in (&4]). It defines a curve section A of D of degree k + 3 which
contains B. We get an exact sequence:

0— jE/ps(—k— 1) — Ops(—l — k) — :]B/A(k-i- 2) — 0,

where the curve E < P3 is defined by the sequence and is cut in D as the residual
scheme of B with respect to the complete intersection A = V(a:lf+2, x§+3). From
the diagram (53)), using the snake lemma we also get:

(55) O—’OPS(—]C—?))—)TU—>jE/P3(—1—k)—>O.
We compute the equations of E from [54) as (Ip/p : (z§+3)) and get:
E =V (23, m122, 23, (k + 2)zoz1 — (k + 1)z023) .

Therefore, the curve E is a double structure of arithmetic genus —1 over the line
L. We conclude from (B5) that T, (k + 2) is a null correlation bundle. O

Remark 7.2. By the previous theorem, for any degree k + 3 there is a pencil o
which is locally free but not free. Also, we have gpdim(T,) = 2. More precisely,
the sheafified minimal graded free resolution of T, reads:

0 — Ops(—k — 5) — Ops(—k — 4)®* — Ops(—k — 3)® > T, — 0.

This is in contrast with the case of pencils of quadrics, where local freeness is
equivalent to freeness and where gpdim(T,) < n — 2.

8. REGULAR SEQUENCES OF LENGTH 2 AND RATIONAL FOLIATIONS

We complete this paper by looking at arbitrary regular sequences of length 2
and showing how these are related to rational 1-forms, which we now introduce.

Let w € H°(Q4.(d + 2)) be a rational 1-form of type (di + 1,ds + 1), where
0 < d; < da, given by

w=afy-dfs =bf-dfi,
where f; and fy are homogeneous polynomials with no common factors of degree
di1 + 1 and ds + 1, respectively, with d; + d2 = d, and a and b are relatively prime
integers such that (dy + 1)b = (d2 + 1)a. Remark that o := (f1, f2) is a regular
sequence in R = k[xg, ..., T,].

Regarding w as an element of Hompx (TP", Opn (d + 2)), we set K, := ker(w).
Since w vanishes along the complete intersection scheme C := V (o), the image of
the morphism w : TP™ — Opn (d+2) is actually contained in the ideal sheaf I (d+2).
Applying the functor Hompn (O~ (1)®"F1 —) to the resolution of Jo(d + 2)

0 —> Opn —5 Opa(dy + 1) ® Opn (da + 1) —> Jo(d + 2) —> 0,
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where 77 = ((d1 + 1)f1  (d2 + 1) f2)", we check that the composed morphism
Opn (1)@ = TP — I (d + 2)
lifts to a unique morphism j : Opa (1)1 — Opn(dy + 1) ® Opn(dg + 1), since
Hompn (Opn (1)@ Opn) = Extpn (Opn (1)@ Opn) = 0.
Therefore we obtain the commutative diagram:

0 0

O]Pn O]Pn
n Ul
(56) 0 —— Ky — Opn (1)®" 1 L5 Opn(dy + 1) @ Opn(dy + 1)

0 X, TP @ Jo(d +2)

0 0

This proves that K, ~ ker(u). We argue that y = J,, thus in fact K, ~ T,(1).
Indeed, note that

w = Z (f10if2 — qf20if1) - dx,
i=0

which means that the entries of the morphism a : Opn (1)®"+1 — Opn(d + 2) given
by the composition

Opn (1) = TP — Jo(d + 2) <> Opn(d + 2)

are precisely o;; = p- f10; fa—q- f20; f1. Since, on the other hand, o = (—qfa pf1)op,
we conclude that p = J,, as desired.

Conversely, given a regular sequence o = (f1, f2) with deg(f;) = d; + 1, we follow
the proof of Lemma in Section and consider the associated codimension 1
distribution Z,, as presented in display (®)); in the case at hand, this simplifies to
(setting d = dy + da)

(57) 0 —> Ty(1) — TP" 5 Jp_(d — 1 +2) —> 0,

where I', < P" is a (possibly not pure) 2-codimensional subscheme of P", and
I = ¢1(Qp); this is precisely the codimension one distribution associated to the
(possibly non saturated) twisted rational 1-form

w=(dy+1)f1-dfs— (d2+1)fo-dfy € Hompn(TP",Ip(d—1+2)) = H*(Qp. (d+2)).

Moreover, the bottom line of the diagram in display (@) yields the following de-
scription for the singular scheme I', of w:

(58) 0—Jr,(d=1+1)—IJc(d+1) — 9, — 0.
In particular, we have that
deg('y) = deg(Qy) + deg(C) = deg(Qy) + (di + 1)(dz + 1).
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Summarizing, we have established a natural 1-1 correspondence between regular
sequences of length 2 and rational codimension one foliations as follows.

Lemma 8.1. There exists a 1-1 correspondence between regqular sequences
o = (f1,f2) on R and rational codimension one foliations 9 on P™ of type
(deg(f1),deg(f2)) such that To(1) = Ty and Sing(2) =T ,.

The previous statement has the following two important applications when n = 3.
First, as an immediate consequence of [l Theorem 6.3], we obtain the following
stability result for logarithmic sheaves associated to regular sequences of length 2
on P3.

Corollary 8.2. Let 0 = (f1, f2) be a reqular sequence in k[xg,x1,x2,x3] and let
d; :=deg(f;) — 1; assume that dy + d2 > 0 and ¢1(Q,) = 0.
(1) If dv + dg is even, then
o if deg(Q,) < (df +d3 — dy — dy — 2)/2, then T, is slope-stable;
o ifdeg(Q,) < (d? + d% + d1 + d2)/2, then T, is slope-semistable;
(2) If dy + do is odd and deg(Q,) < (d3 + d3 — 1)/2, then T, is slope-stable.

In particular, if the Jacobian scheme is 0-dimensional, then T, is slope-stable.

We remark that the previous result is not sharp, and it is not hard to find
examples of regular sequences with slope-stable logarithmic sheaves whose degrees
do not satisfy the numerical inequalities above. Indeed, if o corresponds to a pencil
of quadrics, so that dy = do = 1, with dim G, = 0, then Corollary R.2] only implies
that T, is slope-semistable; however, as we have seen in Section 5.1l T, is actually
slope-stable in this case. Note that the case di = do = 1 is the only one for which
the right hand sides of the inequalities is not positive.

In addition, the higher degree pencils provided in Theorem [Tl yield yet another
set of examples showing that the converse of Corollary B2 does not hold.

Finally, as a second application, we give a negative answer to a problem posed by
Calvo-Andrade, Cerveau, Giraldo and Lins Neto, see [3, Problem 2]. To be preceise,
these authors asked whether the tangent sheaf of a codimension one foliation on P3
splits as a sum of line bundles whenever it is locally free. Indeed, in light of the
proof of Lemma [B] the pencils presented in Theorem [Z.I] provide examples, for
each k > 0, of rational foliations of type (k + 3,k + 3) on P? whose tangent sheaves
are slope-stable locally free sheaves.
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